drm/modes: drop __drm_framebuffer_unregister.
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_runtime_pm.c
1 /*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 * Daniel Vetter <daniel.vetter@ffwll.ch>
26 *
27 */
28
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34
35 /**
36 * DOC: runtime pm
37 *
38 * The i915 driver supports dynamic enabling and disabling of entire hardware
39 * blocks at runtime. This is especially important on the display side where
40 * software is supposed to control many power gates manually on recent hardware,
41 * since on the GT side a lot of the power management is done by the hardware.
42 * But even there some manual control at the device level is required.
43 *
44 * Since i915 supports a diverse set of platforms with a unified codebase and
45 * hardware engineers just love to shuffle functionality around between power
46 * domains there's a sizeable amount of indirection required. This file provides
47 * generic functions to the driver for grabbing and releasing references for
48 * abstract power domains. It then maps those to the actual power wells
49 * present for a given platform.
50 */
51
52 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
53 for (i = 0; \
54 i < (power_domains)->power_well_count && \
55 ((power_well) = &(power_domains)->power_wells[i]); \
56 i++) \
57 for_each_if ((power_well)->domains & (domain_mask))
58
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 for (i = (power_domains)->power_well_count - 1; \
61 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 i--) \
63 for_each_if ((power_well)->domains & (domain_mask))
64
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 int power_well_id);
67
68 const char *
69 intel_display_power_domain_str(enum intel_display_power_domain domain)
70 {
71 switch (domain) {
72 case POWER_DOMAIN_PIPE_A:
73 return "PIPE_A";
74 case POWER_DOMAIN_PIPE_B:
75 return "PIPE_B";
76 case POWER_DOMAIN_PIPE_C:
77 return "PIPE_C";
78 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
79 return "PIPE_A_PANEL_FITTER";
80 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
81 return "PIPE_B_PANEL_FITTER";
82 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
83 return "PIPE_C_PANEL_FITTER";
84 case POWER_DOMAIN_TRANSCODER_A:
85 return "TRANSCODER_A";
86 case POWER_DOMAIN_TRANSCODER_B:
87 return "TRANSCODER_B";
88 case POWER_DOMAIN_TRANSCODER_C:
89 return "TRANSCODER_C";
90 case POWER_DOMAIN_TRANSCODER_EDP:
91 return "TRANSCODER_EDP";
92 case POWER_DOMAIN_TRANSCODER_DSI_A:
93 return "TRANSCODER_DSI_A";
94 case POWER_DOMAIN_TRANSCODER_DSI_C:
95 return "TRANSCODER_DSI_C";
96 case POWER_DOMAIN_PORT_DDI_A_LANES:
97 return "PORT_DDI_A_LANES";
98 case POWER_DOMAIN_PORT_DDI_B_LANES:
99 return "PORT_DDI_B_LANES";
100 case POWER_DOMAIN_PORT_DDI_C_LANES:
101 return "PORT_DDI_C_LANES";
102 case POWER_DOMAIN_PORT_DDI_D_LANES:
103 return "PORT_DDI_D_LANES";
104 case POWER_DOMAIN_PORT_DDI_E_LANES:
105 return "PORT_DDI_E_LANES";
106 case POWER_DOMAIN_PORT_DSI:
107 return "PORT_DSI";
108 case POWER_DOMAIN_PORT_CRT:
109 return "PORT_CRT";
110 case POWER_DOMAIN_PORT_OTHER:
111 return "PORT_OTHER";
112 case POWER_DOMAIN_VGA:
113 return "VGA";
114 case POWER_DOMAIN_AUDIO:
115 return "AUDIO";
116 case POWER_DOMAIN_PLLS:
117 return "PLLS";
118 case POWER_DOMAIN_AUX_A:
119 return "AUX_A";
120 case POWER_DOMAIN_AUX_B:
121 return "AUX_B";
122 case POWER_DOMAIN_AUX_C:
123 return "AUX_C";
124 case POWER_DOMAIN_AUX_D:
125 return "AUX_D";
126 case POWER_DOMAIN_GMBUS:
127 return "GMBUS";
128 case POWER_DOMAIN_INIT:
129 return "INIT";
130 case POWER_DOMAIN_MODESET:
131 return "MODESET";
132 default:
133 MISSING_CASE(domain);
134 return "?";
135 }
136 }
137
138 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
139 struct i915_power_well *power_well)
140 {
141 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
142 power_well->ops->enable(dev_priv, power_well);
143 power_well->hw_enabled = true;
144 }
145
146 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
147 struct i915_power_well *power_well)
148 {
149 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
150 power_well->hw_enabled = false;
151 power_well->ops->disable(dev_priv, power_well);
152 }
153
154 /*
155 * We should only use the power well if we explicitly asked the hardware to
156 * enable it, so check if it's enabled and also check if we've requested it to
157 * be enabled.
158 */
159 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
160 struct i915_power_well *power_well)
161 {
162 return I915_READ(HSW_PWR_WELL_DRIVER) ==
163 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
164 }
165
166 /**
167 * __intel_display_power_is_enabled - unlocked check for a power domain
168 * @dev_priv: i915 device instance
169 * @domain: power domain to check
170 *
171 * This is the unlocked version of intel_display_power_is_enabled() and should
172 * only be used from error capture and recovery code where deadlocks are
173 * possible.
174 *
175 * Returns:
176 * True when the power domain is enabled, false otherwise.
177 */
178 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
179 enum intel_display_power_domain domain)
180 {
181 struct i915_power_domains *power_domains;
182 struct i915_power_well *power_well;
183 bool is_enabled;
184 int i;
185
186 if (dev_priv->pm.suspended)
187 return false;
188
189 power_domains = &dev_priv->power_domains;
190
191 is_enabled = true;
192
193 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
194 if (power_well->always_on)
195 continue;
196
197 if (!power_well->hw_enabled) {
198 is_enabled = false;
199 break;
200 }
201 }
202
203 return is_enabled;
204 }
205
206 /**
207 * intel_display_power_is_enabled - check for a power domain
208 * @dev_priv: i915 device instance
209 * @domain: power domain to check
210 *
211 * This function can be used to check the hw power domain state. It is mostly
212 * used in hardware state readout functions. Everywhere else code should rely
213 * upon explicit power domain reference counting to ensure that the hardware
214 * block is powered up before accessing it.
215 *
216 * Callers must hold the relevant modesetting locks to ensure that concurrent
217 * threads can't disable the power well while the caller tries to read a few
218 * registers.
219 *
220 * Returns:
221 * True when the power domain is enabled, false otherwise.
222 */
223 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
224 enum intel_display_power_domain domain)
225 {
226 struct i915_power_domains *power_domains;
227 bool ret;
228
229 power_domains = &dev_priv->power_domains;
230
231 mutex_lock(&power_domains->lock);
232 ret = __intel_display_power_is_enabled(dev_priv, domain);
233 mutex_unlock(&power_domains->lock);
234
235 return ret;
236 }
237
238 /**
239 * intel_display_set_init_power - set the initial power domain state
240 * @dev_priv: i915 device instance
241 * @enable: whether to enable or disable the initial power domain state
242 *
243 * For simplicity our driver load/unload and system suspend/resume code assumes
244 * that all power domains are always enabled. This functions controls the state
245 * of this little hack. While the initial power domain state is enabled runtime
246 * pm is effectively disabled.
247 */
248 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
249 bool enable)
250 {
251 if (dev_priv->power_domains.init_power_on == enable)
252 return;
253
254 if (enable)
255 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
256 else
257 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
258
259 dev_priv->power_domains.init_power_on = enable;
260 }
261
262 /*
263 * Starting with Haswell, we have a "Power Down Well" that can be turned off
264 * when not needed anymore. We have 4 registers that can request the power well
265 * to be enabled, and it will only be disabled if none of the registers is
266 * requesting it to be enabled.
267 */
268 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
269 {
270 struct drm_device *dev = dev_priv->dev;
271
272 /*
273 * After we re-enable the power well, if we touch VGA register 0x3d5
274 * we'll get unclaimed register interrupts. This stops after we write
275 * anything to the VGA MSR register. The vgacon module uses this
276 * register all the time, so if we unbind our driver and, as a
277 * consequence, bind vgacon, we'll get stuck in an infinite loop at
278 * console_unlock(). So make here we touch the VGA MSR register, making
279 * sure vgacon can keep working normally without triggering interrupts
280 * and error messages.
281 */
282 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
283 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
284 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
285
286 if (IS_BROADWELL(dev))
287 gen8_irq_power_well_post_enable(dev_priv,
288 1 << PIPE_C | 1 << PIPE_B);
289 }
290
291 static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv)
292 {
293 if (IS_BROADWELL(dev_priv))
294 gen8_irq_power_well_pre_disable(dev_priv,
295 1 << PIPE_C | 1 << PIPE_B);
296 }
297
298 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
299 struct i915_power_well *power_well)
300 {
301 struct drm_device *dev = dev_priv->dev;
302
303 /*
304 * After we re-enable the power well, if we touch VGA register 0x3d5
305 * we'll get unclaimed register interrupts. This stops after we write
306 * anything to the VGA MSR register. The vgacon module uses this
307 * register all the time, so if we unbind our driver and, as a
308 * consequence, bind vgacon, we'll get stuck in an infinite loop at
309 * console_unlock(). So make here we touch the VGA MSR register, making
310 * sure vgacon can keep working normally without triggering interrupts
311 * and error messages.
312 */
313 if (power_well->data == SKL_DISP_PW_2) {
314 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
315 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
316 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
317
318 gen8_irq_power_well_post_enable(dev_priv,
319 1 << PIPE_C | 1 << PIPE_B);
320 }
321 }
322
323 static void skl_power_well_pre_disable(struct drm_i915_private *dev_priv,
324 struct i915_power_well *power_well)
325 {
326 if (power_well->data == SKL_DISP_PW_2)
327 gen8_irq_power_well_pre_disable(dev_priv,
328 1 << PIPE_C | 1 << PIPE_B);
329 }
330
331 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
332 struct i915_power_well *power_well, bool enable)
333 {
334 bool is_enabled, enable_requested;
335 uint32_t tmp;
336
337 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
338 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
339 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
340
341 if (enable) {
342 if (!enable_requested)
343 I915_WRITE(HSW_PWR_WELL_DRIVER,
344 HSW_PWR_WELL_ENABLE_REQUEST);
345
346 if (!is_enabled) {
347 DRM_DEBUG_KMS("Enabling power well\n");
348 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
349 HSW_PWR_WELL_STATE_ENABLED), 20))
350 DRM_ERROR("Timeout enabling power well\n");
351 hsw_power_well_post_enable(dev_priv);
352 }
353
354 } else {
355 if (enable_requested) {
356 hsw_power_well_pre_disable(dev_priv);
357 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
358 POSTING_READ(HSW_PWR_WELL_DRIVER);
359 DRM_DEBUG_KMS("Requesting to disable the power well\n");
360 }
361 }
362 }
363
364 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
365 BIT(POWER_DOMAIN_TRANSCODER_A) | \
366 BIT(POWER_DOMAIN_PIPE_B) | \
367 BIT(POWER_DOMAIN_TRANSCODER_B) | \
368 BIT(POWER_DOMAIN_PIPE_C) | \
369 BIT(POWER_DOMAIN_TRANSCODER_C) | \
370 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
371 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
372 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
373 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
374 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
375 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
376 BIT(POWER_DOMAIN_AUX_B) | \
377 BIT(POWER_DOMAIN_AUX_C) | \
378 BIT(POWER_DOMAIN_AUX_D) | \
379 BIT(POWER_DOMAIN_AUDIO) | \
380 BIT(POWER_DOMAIN_VGA) | \
381 BIT(POWER_DOMAIN_INIT))
382 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \
383 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
384 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
385 BIT(POWER_DOMAIN_INIT))
386 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \
387 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
388 BIT(POWER_DOMAIN_INIT))
389 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \
390 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
391 BIT(POWER_DOMAIN_INIT))
392 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \
393 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
394 BIT(POWER_DOMAIN_INIT))
395 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
396 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
397 BIT(POWER_DOMAIN_MODESET) | \
398 BIT(POWER_DOMAIN_AUX_A) | \
399 BIT(POWER_DOMAIN_INIT))
400 #define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
401 (POWER_DOMAIN_MASK & ~( \
402 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
403 SKL_DISPLAY_DC_OFF_POWER_DOMAINS)) | \
404 BIT(POWER_DOMAIN_INIT))
405
406 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
407 BIT(POWER_DOMAIN_TRANSCODER_A) | \
408 BIT(POWER_DOMAIN_PIPE_B) | \
409 BIT(POWER_DOMAIN_TRANSCODER_B) | \
410 BIT(POWER_DOMAIN_PIPE_C) | \
411 BIT(POWER_DOMAIN_TRANSCODER_C) | \
412 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
413 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
414 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
415 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
416 BIT(POWER_DOMAIN_AUX_B) | \
417 BIT(POWER_DOMAIN_AUX_C) | \
418 BIT(POWER_DOMAIN_AUDIO) | \
419 BIT(POWER_DOMAIN_VGA) | \
420 BIT(POWER_DOMAIN_GMBUS) | \
421 BIT(POWER_DOMAIN_INIT))
422 #define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \
423 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
424 BIT(POWER_DOMAIN_PIPE_A) | \
425 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
426 BIT(POWER_DOMAIN_TRANSCODER_DSI_A) | \
427 BIT(POWER_DOMAIN_TRANSCODER_DSI_C) | \
428 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
429 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
430 BIT(POWER_DOMAIN_PORT_DSI) | \
431 BIT(POWER_DOMAIN_AUX_A) | \
432 BIT(POWER_DOMAIN_PLLS) | \
433 BIT(POWER_DOMAIN_INIT))
434 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS ( \
435 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
436 BIT(POWER_DOMAIN_MODESET) | \
437 BIT(POWER_DOMAIN_AUX_A) | \
438 BIT(POWER_DOMAIN_INIT))
439 #define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
440 (POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS | \
441 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) | \
442 BIT(POWER_DOMAIN_INIT))
443
444 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
445 {
446 struct drm_device *dev = dev_priv->dev;
447
448 WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n");
449 WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
450 "DC9 already programmed to be enabled.\n");
451 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
452 "DC5 still not disabled to enable DC9.\n");
453 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
454 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
455
456 /*
457 * TODO: check for the following to verify the conditions to enter DC9
458 * state are satisfied:
459 * 1] Check relevant display engine registers to verify if mode set
460 * disable sequence was followed.
461 * 2] Check if display uninitialize sequence is initialized.
462 */
463 }
464
465 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
466 {
467 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
468 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
469 "DC5 still not disabled.\n");
470
471 /*
472 * TODO: check for the following to verify DC9 state was indeed
473 * entered before programming to disable it:
474 * 1] Check relevant display engine registers to verify if mode
475 * set disable sequence was followed.
476 * 2] Check if display uninitialize sequence is initialized.
477 */
478 }
479
480 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
481 u32 state)
482 {
483 int rewrites = 0;
484 int rereads = 0;
485 u32 v;
486
487 I915_WRITE(DC_STATE_EN, state);
488
489 /* It has been observed that disabling the dc6 state sometimes
490 * doesn't stick and dmc keeps returning old value. Make sure
491 * the write really sticks enough times and also force rewrite until
492 * we are confident that state is exactly what we want.
493 */
494 do {
495 v = I915_READ(DC_STATE_EN);
496
497 if (v != state) {
498 I915_WRITE(DC_STATE_EN, state);
499 rewrites++;
500 rereads = 0;
501 } else if (rereads++ > 5) {
502 break;
503 }
504
505 } while (rewrites < 100);
506
507 if (v != state)
508 DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
509 state, v);
510
511 /* Most of the times we need one retry, avoid spam */
512 if (rewrites > 1)
513 DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
514 state, rewrites);
515 }
516
517 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
518 {
519 uint32_t val;
520 uint32_t mask;
521
522 mask = DC_STATE_EN_UPTO_DC5;
523 if (IS_BROXTON(dev_priv))
524 mask |= DC_STATE_EN_DC9;
525 else
526 mask |= DC_STATE_EN_UPTO_DC6;
527
528 if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
529 state &= dev_priv->csr.allowed_dc_mask;
530
531 val = I915_READ(DC_STATE_EN);
532 DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
533 val & mask, state);
534
535 /* Check if DMC is ignoring our DC state requests */
536 if ((val & mask) != dev_priv->csr.dc_state)
537 DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
538 dev_priv->csr.dc_state, val & mask);
539
540 val &= ~mask;
541 val |= state;
542
543 gen9_write_dc_state(dev_priv, val);
544
545 dev_priv->csr.dc_state = val & mask;
546 }
547
548 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
549 {
550 assert_can_enable_dc9(dev_priv);
551
552 DRM_DEBUG_KMS("Enabling DC9\n");
553
554 gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
555 }
556
557 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
558 {
559 assert_can_disable_dc9(dev_priv);
560
561 DRM_DEBUG_KMS("Disabling DC9\n");
562
563 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
564 }
565
566 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
567 {
568 WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
569 "CSR program storage start is NULL\n");
570 WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
571 WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
572 }
573
574 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
575 {
576 struct drm_device *dev = dev_priv->dev;
577 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
578 SKL_DISP_PW_2);
579
580 WARN_ONCE(!IS_SKYLAKE(dev) && !IS_KABYLAKE(dev),
581 "Platform doesn't support DC5.\n");
582 WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
583 WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
584
585 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
586 "DC5 already programmed to be enabled.\n");
587 assert_rpm_wakelock_held(dev_priv);
588
589 assert_csr_loaded(dev_priv);
590 }
591
592 static void gen9_enable_dc5(struct drm_i915_private *dev_priv)
593 {
594 assert_can_enable_dc5(dev_priv);
595
596 DRM_DEBUG_KMS("Enabling DC5\n");
597
598 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
599 }
600
601 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
602 {
603 struct drm_device *dev = dev_priv->dev;
604
605 WARN_ONCE(!IS_SKYLAKE(dev) && !IS_KABYLAKE(dev),
606 "Platform doesn't support DC6.\n");
607 WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
608 WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
609 "Backlight is not disabled.\n");
610 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
611 "DC6 already programmed to be enabled.\n");
612
613 assert_csr_loaded(dev_priv);
614 }
615
616 void skl_enable_dc6(struct drm_i915_private *dev_priv)
617 {
618 assert_can_enable_dc6(dev_priv);
619
620 DRM_DEBUG_KMS("Enabling DC6\n");
621
622 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
623
624 }
625
626 void skl_disable_dc6(struct drm_i915_private *dev_priv)
627 {
628 DRM_DEBUG_KMS("Disabling DC6\n");
629
630 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
631 }
632
633 static void skl_set_power_well(struct drm_i915_private *dev_priv,
634 struct i915_power_well *power_well, bool enable)
635 {
636 uint32_t tmp, fuse_status;
637 uint32_t req_mask, state_mask;
638 bool is_enabled, enable_requested, check_fuse_status = false;
639
640 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
641 fuse_status = I915_READ(SKL_FUSE_STATUS);
642
643 switch (power_well->data) {
644 case SKL_DISP_PW_1:
645 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
646 SKL_FUSE_PG0_DIST_STATUS), 1)) {
647 DRM_ERROR("PG0 not enabled\n");
648 return;
649 }
650 break;
651 case SKL_DISP_PW_2:
652 if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
653 DRM_ERROR("PG1 in disabled state\n");
654 return;
655 }
656 break;
657 case SKL_DISP_PW_DDI_A_E:
658 case SKL_DISP_PW_DDI_B:
659 case SKL_DISP_PW_DDI_C:
660 case SKL_DISP_PW_DDI_D:
661 case SKL_DISP_PW_MISC_IO:
662 break;
663 default:
664 WARN(1, "Unknown power well %lu\n", power_well->data);
665 return;
666 }
667
668 req_mask = SKL_POWER_WELL_REQ(power_well->data);
669 enable_requested = tmp & req_mask;
670 state_mask = SKL_POWER_WELL_STATE(power_well->data);
671 is_enabled = tmp & state_mask;
672
673 if (!enable && enable_requested)
674 skl_power_well_pre_disable(dev_priv, power_well);
675
676 if (enable) {
677 if (!enable_requested) {
678 WARN((tmp & state_mask) &&
679 !I915_READ(HSW_PWR_WELL_BIOS),
680 "Invalid for power well status to be enabled, unless done by the BIOS, \
681 when request is to disable!\n");
682 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
683 }
684
685 if (!is_enabled) {
686 DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
687 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
688 state_mask), 1))
689 DRM_ERROR("%s enable timeout\n",
690 power_well->name);
691 check_fuse_status = true;
692 }
693 } else {
694 if (enable_requested) {
695 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask);
696 POSTING_READ(HSW_PWR_WELL_DRIVER);
697 DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
698 }
699 }
700
701 if (check_fuse_status) {
702 if (power_well->data == SKL_DISP_PW_1) {
703 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
704 SKL_FUSE_PG1_DIST_STATUS), 1))
705 DRM_ERROR("PG1 distributing status timeout\n");
706 } else if (power_well->data == SKL_DISP_PW_2) {
707 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
708 SKL_FUSE_PG2_DIST_STATUS), 1))
709 DRM_ERROR("PG2 distributing status timeout\n");
710 }
711 }
712
713 if (enable && !is_enabled)
714 skl_power_well_post_enable(dev_priv, power_well);
715 }
716
717 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
718 struct i915_power_well *power_well)
719 {
720 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
721
722 /*
723 * We're taking over the BIOS, so clear any requests made by it since
724 * the driver is in charge now.
725 */
726 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
727 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
728 }
729
730 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
731 struct i915_power_well *power_well)
732 {
733 hsw_set_power_well(dev_priv, power_well, true);
734 }
735
736 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
737 struct i915_power_well *power_well)
738 {
739 hsw_set_power_well(dev_priv, power_well, false);
740 }
741
742 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
743 struct i915_power_well *power_well)
744 {
745 uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
746 SKL_POWER_WELL_STATE(power_well->data);
747
748 return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
749 }
750
751 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
752 struct i915_power_well *power_well)
753 {
754 skl_set_power_well(dev_priv, power_well, power_well->count > 0);
755
756 /* Clear any request made by BIOS as driver is taking over */
757 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
758 }
759
760 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
761 struct i915_power_well *power_well)
762 {
763 skl_set_power_well(dev_priv, power_well, true);
764 }
765
766 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
767 struct i915_power_well *power_well)
768 {
769 skl_set_power_well(dev_priv, power_well, false);
770 }
771
772 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
773 struct i915_power_well *power_well)
774 {
775 return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
776 }
777
778 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
779 struct i915_power_well *power_well)
780 {
781 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
782 }
783
784 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
785 struct i915_power_well *power_well)
786 {
787 if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
788 skl_enable_dc6(dev_priv);
789 else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
790 gen9_enable_dc5(dev_priv);
791 }
792
793 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
794 struct i915_power_well *power_well)
795 {
796 if (power_well->count > 0)
797 gen9_dc_off_power_well_enable(dev_priv, power_well);
798 else
799 gen9_dc_off_power_well_disable(dev_priv, power_well);
800 }
801
802 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
803 struct i915_power_well *power_well)
804 {
805 }
806
807 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
808 struct i915_power_well *power_well)
809 {
810 return true;
811 }
812
813 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
814 struct i915_power_well *power_well, bool enable)
815 {
816 enum punit_power_well power_well_id = power_well->data;
817 u32 mask;
818 u32 state;
819 u32 ctrl;
820
821 mask = PUNIT_PWRGT_MASK(power_well_id);
822 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
823 PUNIT_PWRGT_PWR_GATE(power_well_id);
824
825 mutex_lock(&dev_priv->rps.hw_lock);
826
827 #define COND \
828 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
829
830 if (COND)
831 goto out;
832
833 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
834 ctrl &= ~mask;
835 ctrl |= state;
836 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
837
838 if (wait_for(COND, 100))
839 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
840 state,
841 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
842
843 #undef COND
844
845 out:
846 mutex_unlock(&dev_priv->rps.hw_lock);
847 }
848
849 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
850 struct i915_power_well *power_well)
851 {
852 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
853 }
854
855 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
856 struct i915_power_well *power_well)
857 {
858 vlv_set_power_well(dev_priv, power_well, true);
859 }
860
861 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
862 struct i915_power_well *power_well)
863 {
864 vlv_set_power_well(dev_priv, power_well, false);
865 }
866
867 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
868 struct i915_power_well *power_well)
869 {
870 int power_well_id = power_well->data;
871 bool enabled = false;
872 u32 mask;
873 u32 state;
874 u32 ctrl;
875
876 mask = PUNIT_PWRGT_MASK(power_well_id);
877 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
878
879 mutex_lock(&dev_priv->rps.hw_lock);
880
881 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
882 /*
883 * We only ever set the power-on and power-gate states, anything
884 * else is unexpected.
885 */
886 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
887 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
888 if (state == ctrl)
889 enabled = true;
890
891 /*
892 * A transient state at this point would mean some unexpected party
893 * is poking at the power controls too.
894 */
895 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
896 WARN_ON(ctrl != state);
897
898 mutex_unlock(&dev_priv->rps.hw_lock);
899
900 return enabled;
901 }
902
903 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
904 {
905 enum pipe pipe;
906
907 /*
908 * Enable the CRI clock source so we can get at the
909 * display and the reference clock for VGA
910 * hotplug / manual detection. Supposedly DSI also
911 * needs the ref clock up and running.
912 *
913 * CHV DPLL B/C have some issues if VGA mode is enabled.
914 */
915 for_each_pipe(dev_priv->dev, pipe) {
916 u32 val = I915_READ(DPLL(pipe));
917
918 val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
919 if (pipe != PIPE_A)
920 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
921
922 I915_WRITE(DPLL(pipe), val);
923 }
924
925 spin_lock_irq(&dev_priv->irq_lock);
926 valleyview_enable_display_irqs(dev_priv);
927 spin_unlock_irq(&dev_priv->irq_lock);
928
929 /*
930 * During driver initialization/resume we can avoid restoring the
931 * part of the HW/SW state that will be inited anyway explicitly.
932 */
933 if (dev_priv->power_domains.initializing)
934 return;
935
936 intel_hpd_init(dev_priv);
937
938 i915_redisable_vga_power_on(dev_priv->dev);
939 }
940
941 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
942 {
943 spin_lock_irq(&dev_priv->irq_lock);
944 valleyview_disable_display_irqs(dev_priv);
945 spin_unlock_irq(&dev_priv->irq_lock);
946
947 /* make sure we're done processing display irqs */
948 synchronize_irq(dev_priv->dev->irq);
949
950 vlv_power_sequencer_reset(dev_priv);
951 }
952
953 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
954 struct i915_power_well *power_well)
955 {
956 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
957
958 vlv_set_power_well(dev_priv, power_well, true);
959
960 vlv_display_power_well_init(dev_priv);
961 }
962
963 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
964 struct i915_power_well *power_well)
965 {
966 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
967
968 vlv_display_power_well_deinit(dev_priv);
969
970 vlv_set_power_well(dev_priv, power_well, false);
971 }
972
973 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
974 struct i915_power_well *power_well)
975 {
976 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
977
978 /* since ref/cri clock was enabled */
979 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
980
981 vlv_set_power_well(dev_priv, power_well, true);
982
983 /*
984 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
985 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
986 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
987 * b. The other bits such as sfr settings / modesel may all
988 * be set to 0.
989 *
990 * This should only be done on init and resume from S3 with
991 * both PLLs disabled, or we risk losing DPIO and PLL
992 * synchronization.
993 */
994 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
995 }
996
997 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
998 struct i915_power_well *power_well)
999 {
1000 enum pipe pipe;
1001
1002 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1003
1004 for_each_pipe(dev_priv, pipe)
1005 assert_pll_disabled(dev_priv, pipe);
1006
1007 /* Assert common reset */
1008 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1009
1010 vlv_set_power_well(dev_priv, power_well, false);
1011 }
1012
1013 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1014
1015 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1016 int power_well_id)
1017 {
1018 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1019 int i;
1020
1021 for (i = 0; i < power_domains->power_well_count; i++) {
1022 struct i915_power_well *power_well;
1023
1024 power_well = &power_domains->power_wells[i];
1025 if (power_well->data == power_well_id)
1026 return power_well;
1027 }
1028
1029 return NULL;
1030 }
1031
1032 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1033
1034 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1035 {
1036 struct i915_power_well *cmn_bc =
1037 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1038 struct i915_power_well *cmn_d =
1039 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1040 u32 phy_control = dev_priv->chv_phy_control;
1041 u32 phy_status = 0;
1042 u32 phy_status_mask = 0xffffffff;
1043 u32 tmp;
1044
1045 /*
1046 * The BIOS can leave the PHY is some weird state
1047 * where it doesn't fully power down some parts.
1048 * Disable the asserts until the PHY has been fully
1049 * reset (ie. the power well has been disabled at
1050 * least once).
1051 */
1052 if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1053 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1054 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1055 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1056 PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1057 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1058 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1059
1060 if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1061 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1062 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1063 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1064
1065 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1066 phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1067
1068 /* this assumes override is only used to enable lanes */
1069 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1070 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1071
1072 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1073 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1074
1075 /* CL1 is on whenever anything is on in either channel */
1076 if (BITS_SET(phy_control,
1077 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1078 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1079 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1080
1081 /*
1082 * The DPLLB check accounts for the pipe B + port A usage
1083 * with CL2 powered up but all the lanes in the second channel
1084 * powered down.
1085 */
1086 if (BITS_SET(phy_control,
1087 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1088 (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1089 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1090
1091 if (BITS_SET(phy_control,
1092 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1093 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1094 if (BITS_SET(phy_control,
1095 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1096 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1097
1098 if (BITS_SET(phy_control,
1099 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1100 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1101 if (BITS_SET(phy_control,
1102 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1103 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1104 }
1105
1106 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1107 phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1108
1109 /* this assumes override is only used to enable lanes */
1110 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1111 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1112
1113 if (BITS_SET(phy_control,
1114 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1115 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1116
1117 if (BITS_SET(phy_control,
1118 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1119 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1120 if (BITS_SET(phy_control,
1121 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1122 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1123 }
1124
1125 phy_status &= phy_status_mask;
1126
1127 /*
1128 * The PHY may be busy with some initial calibration and whatnot,
1129 * so the power state can take a while to actually change.
1130 */
1131 if (wait_for((tmp = I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask) == phy_status, 10))
1132 WARN(phy_status != tmp,
1133 "Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1134 tmp, phy_status, dev_priv->chv_phy_control);
1135 }
1136
1137 #undef BITS_SET
1138
1139 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1140 struct i915_power_well *power_well)
1141 {
1142 enum dpio_phy phy;
1143 enum pipe pipe;
1144 uint32_t tmp;
1145
1146 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1147 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1148
1149 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1150 pipe = PIPE_A;
1151 phy = DPIO_PHY0;
1152 } else {
1153 pipe = PIPE_C;
1154 phy = DPIO_PHY1;
1155 }
1156
1157 /* since ref/cri clock was enabled */
1158 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1159 vlv_set_power_well(dev_priv, power_well, true);
1160
1161 /* Poll for phypwrgood signal */
1162 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
1163 DRM_ERROR("Display PHY %d is not power up\n", phy);
1164
1165 mutex_lock(&dev_priv->sb_lock);
1166
1167 /* Enable dynamic power down */
1168 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1169 tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1170 DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1171 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1172
1173 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1174 tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1175 tmp |= DPIO_DYNPWRDOWNEN_CH1;
1176 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1177 } else {
1178 /*
1179 * Force the non-existing CL2 off. BXT does this
1180 * too, so maybe it saves some power even though
1181 * CL2 doesn't exist?
1182 */
1183 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1184 tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1185 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1186 }
1187
1188 mutex_unlock(&dev_priv->sb_lock);
1189
1190 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1191 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1192
1193 DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1194 phy, dev_priv->chv_phy_control);
1195
1196 assert_chv_phy_status(dev_priv);
1197 }
1198
1199 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1200 struct i915_power_well *power_well)
1201 {
1202 enum dpio_phy phy;
1203
1204 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1205 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1206
1207 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1208 phy = DPIO_PHY0;
1209 assert_pll_disabled(dev_priv, PIPE_A);
1210 assert_pll_disabled(dev_priv, PIPE_B);
1211 } else {
1212 phy = DPIO_PHY1;
1213 assert_pll_disabled(dev_priv, PIPE_C);
1214 }
1215
1216 dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1217 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1218
1219 vlv_set_power_well(dev_priv, power_well, false);
1220
1221 DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1222 phy, dev_priv->chv_phy_control);
1223
1224 /* PHY is fully reset now, so we can enable the PHY state asserts */
1225 dev_priv->chv_phy_assert[phy] = true;
1226
1227 assert_chv_phy_status(dev_priv);
1228 }
1229
1230 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1231 enum dpio_channel ch, bool override, unsigned int mask)
1232 {
1233 enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1234 u32 reg, val, expected, actual;
1235
1236 /*
1237 * The BIOS can leave the PHY is some weird state
1238 * where it doesn't fully power down some parts.
1239 * Disable the asserts until the PHY has been fully
1240 * reset (ie. the power well has been disabled at
1241 * least once).
1242 */
1243 if (!dev_priv->chv_phy_assert[phy])
1244 return;
1245
1246 if (ch == DPIO_CH0)
1247 reg = _CHV_CMN_DW0_CH0;
1248 else
1249 reg = _CHV_CMN_DW6_CH1;
1250
1251 mutex_lock(&dev_priv->sb_lock);
1252 val = vlv_dpio_read(dev_priv, pipe, reg);
1253 mutex_unlock(&dev_priv->sb_lock);
1254
1255 /*
1256 * This assumes !override is only used when the port is disabled.
1257 * All lanes should power down even without the override when
1258 * the port is disabled.
1259 */
1260 if (!override || mask == 0xf) {
1261 expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1262 /*
1263 * If CH1 common lane is not active anymore
1264 * (eg. for pipe B DPLL) the entire channel will
1265 * shut down, which causes the common lane registers
1266 * to read as 0. That means we can't actually check
1267 * the lane power down status bits, but as the entire
1268 * register reads as 0 it's a good indication that the
1269 * channel is indeed entirely powered down.
1270 */
1271 if (ch == DPIO_CH1 && val == 0)
1272 expected = 0;
1273 } else if (mask != 0x0) {
1274 expected = DPIO_ANYDL_POWERDOWN;
1275 } else {
1276 expected = 0;
1277 }
1278
1279 if (ch == DPIO_CH0)
1280 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1281 else
1282 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1283 actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1284
1285 WARN(actual != expected,
1286 "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1287 !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1288 !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1289 reg, val);
1290 }
1291
1292 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1293 enum dpio_channel ch, bool override)
1294 {
1295 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1296 bool was_override;
1297
1298 mutex_lock(&power_domains->lock);
1299
1300 was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1301
1302 if (override == was_override)
1303 goto out;
1304
1305 if (override)
1306 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1307 else
1308 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1309
1310 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1311
1312 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1313 phy, ch, dev_priv->chv_phy_control);
1314
1315 assert_chv_phy_status(dev_priv);
1316
1317 out:
1318 mutex_unlock(&power_domains->lock);
1319
1320 return was_override;
1321 }
1322
1323 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1324 bool override, unsigned int mask)
1325 {
1326 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1327 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1328 enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1329 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1330
1331 mutex_lock(&power_domains->lock);
1332
1333 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1334 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1335
1336 if (override)
1337 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1338 else
1339 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1340
1341 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1342
1343 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1344 phy, ch, mask, dev_priv->chv_phy_control);
1345
1346 assert_chv_phy_status(dev_priv);
1347
1348 assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1349
1350 mutex_unlock(&power_domains->lock);
1351 }
1352
1353 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1354 struct i915_power_well *power_well)
1355 {
1356 enum pipe pipe = power_well->data;
1357 bool enabled;
1358 u32 state, ctrl;
1359
1360 mutex_lock(&dev_priv->rps.hw_lock);
1361
1362 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1363 /*
1364 * We only ever set the power-on and power-gate states, anything
1365 * else is unexpected.
1366 */
1367 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1368 enabled = state == DP_SSS_PWR_ON(pipe);
1369
1370 /*
1371 * A transient state at this point would mean some unexpected party
1372 * is poking at the power controls too.
1373 */
1374 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1375 WARN_ON(ctrl << 16 != state);
1376
1377 mutex_unlock(&dev_priv->rps.hw_lock);
1378
1379 return enabled;
1380 }
1381
1382 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1383 struct i915_power_well *power_well,
1384 bool enable)
1385 {
1386 enum pipe pipe = power_well->data;
1387 u32 state;
1388 u32 ctrl;
1389
1390 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1391
1392 mutex_lock(&dev_priv->rps.hw_lock);
1393
1394 #define COND \
1395 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1396
1397 if (COND)
1398 goto out;
1399
1400 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1401 ctrl &= ~DP_SSC_MASK(pipe);
1402 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1403 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1404
1405 if (wait_for(COND, 100))
1406 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1407 state,
1408 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1409
1410 #undef COND
1411
1412 out:
1413 mutex_unlock(&dev_priv->rps.hw_lock);
1414 }
1415
1416 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1417 struct i915_power_well *power_well)
1418 {
1419 WARN_ON_ONCE(power_well->data != PIPE_A);
1420
1421 chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1422 }
1423
1424 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1425 struct i915_power_well *power_well)
1426 {
1427 WARN_ON_ONCE(power_well->data != PIPE_A);
1428
1429 chv_set_pipe_power_well(dev_priv, power_well, true);
1430
1431 vlv_display_power_well_init(dev_priv);
1432 }
1433
1434 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1435 struct i915_power_well *power_well)
1436 {
1437 WARN_ON_ONCE(power_well->data != PIPE_A);
1438
1439 vlv_display_power_well_deinit(dev_priv);
1440
1441 chv_set_pipe_power_well(dev_priv, power_well, false);
1442 }
1443
1444 static void
1445 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1446 enum intel_display_power_domain domain)
1447 {
1448 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1449 struct i915_power_well *power_well;
1450 int i;
1451
1452 for_each_power_well(i, power_well, BIT(domain), power_domains) {
1453 if (!power_well->count++)
1454 intel_power_well_enable(dev_priv, power_well);
1455 }
1456
1457 power_domains->domain_use_count[domain]++;
1458 }
1459
1460 /**
1461 * intel_display_power_get - grab a power domain reference
1462 * @dev_priv: i915 device instance
1463 * @domain: power domain to reference
1464 *
1465 * This function grabs a power domain reference for @domain and ensures that the
1466 * power domain and all its parents are powered up. Therefore users should only
1467 * grab a reference to the innermost power domain they need.
1468 *
1469 * Any power domain reference obtained by this function must have a symmetric
1470 * call to intel_display_power_put() to release the reference again.
1471 */
1472 void intel_display_power_get(struct drm_i915_private *dev_priv,
1473 enum intel_display_power_domain domain)
1474 {
1475 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1476
1477 intel_runtime_pm_get(dev_priv);
1478
1479 mutex_lock(&power_domains->lock);
1480
1481 __intel_display_power_get_domain(dev_priv, domain);
1482
1483 mutex_unlock(&power_domains->lock);
1484 }
1485
1486 /**
1487 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1488 * @dev_priv: i915 device instance
1489 * @domain: power domain to reference
1490 *
1491 * This function grabs a power domain reference for @domain and ensures that the
1492 * power domain and all its parents are powered up. Therefore users should only
1493 * grab a reference to the innermost power domain they need.
1494 *
1495 * Any power domain reference obtained by this function must have a symmetric
1496 * call to intel_display_power_put() to release the reference again.
1497 */
1498 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1499 enum intel_display_power_domain domain)
1500 {
1501 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1502 bool is_enabled;
1503
1504 if (!intel_runtime_pm_get_if_in_use(dev_priv))
1505 return false;
1506
1507 mutex_lock(&power_domains->lock);
1508
1509 if (__intel_display_power_is_enabled(dev_priv, domain)) {
1510 __intel_display_power_get_domain(dev_priv, domain);
1511 is_enabled = true;
1512 } else {
1513 is_enabled = false;
1514 }
1515
1516 mutex_unlock(&power_domains->lock);
1517
1518 if (!is_enabled)
1519 intel_runtime_pm_put(dev_priv);
1520
1521 return is_enabled;
1522 }
1523
1524 /**
1525 * intel_display_power_put - release a power domain reference
1526 * @dev_priv: i915 device instance
1527 * @domain: power domain to reference
1528 *
1529 * This function drops the power domain reference obtained by
1530 * intel_display_power_get() and might power down the corresponding hardware
1531 * block right away if this is the last reference.
1532 */
1533 void intel_display_power_put(struct drm_i915_private *dev_priv,
1534 enum intel_display_power_domain domain)
1535 {
1536 struct i915_power_domains *power_domains;
1537 struct i915_power_well *power_well;
1538 int i;
1539
1540 power_domains = &dev_priv->power_domains;
1541
1542 mutex_lock(&power_domains->lock);
1543
1544 WARN(!power_domains->domain_use_count[domain],
1545 "Use count on domain %s is already zero\n",
1546 intel_display_power_domain_str(domain));
1547 power_domains->domain_use_count[domain]--;
1548
1549 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
1550 WARN(!power_well->count,
1551 "Use count on power well %s is already zero",
1552 power_well->name);
1553
1554 if (!--power_well->count)
1555 intel_power_well_disable(dev_priv, power_well);
1556 }
1557
1558 mutex_unlock(&power_domains->lock);
1559
1560 intel_runtime_pm_put(dev_priv);
1561 }
1562
1563 #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
1564 BIT(POWER_DOMAIN_PIPE_A) | \
1565 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
1566 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
1567 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1568 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1569 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1570 BIT(POWER_DOMAIN_PORT_CRT) | \
1571 BIT(POWER_DOMAIN_PLLS) | \
1572 BIT(POWER_DOMAIN_AUX_A) | \
1573 BIT(POWER_DOMAIN_AUX_B) | \
1574 BIT(POWER_DOMAIN_AUX_C) | \
1575 BIT(POWER_DOMAIN_AUX_D) | \
1576 BIT(POWER_DOMAIN_GMBUS) | \
1577 BIT(POWER_DOMAIN_INIT))
1578 #define HSW_DISPLAY_POWER_DOMAINS ( \
1579 (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
1580 BIT(POWER_DOMAIN_INIT))
1581
1582 #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
1583 HSW_ALWAYS_ON_POWER_DOMAINS | \
1584 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
1585 #define BDW_DISPLAY_POWER_DOMAINS ( \
1586 (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
1587 BIT(POWER_DOMAIN_INIT))
1588
1589 #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
1590 #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
1591
1592 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
1593 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1594 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1595 BIT(POWER_DOMAIN_PORT_CRT) | \
1596 BIT(POWER_DOMAIN_AUX_B) | \
1597 BIT(POWER_DOMAIN_AUX_C) | \
1598 BIT(POWER_DOMAIN_INIT))
1599
1600 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
1601 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1602 BIT(POWER_DOMAIN_AUX_B) | \
1603 BIT(POWER_DOMAIN_INIT))
1604
1605 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
1606 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1607 BIT(POWER_DOMAIN_AUX_B) | \
1608 BIT(POWER_DOMAIN_INIT))
1609
1610 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
1611 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1612 BIT(POWER_DOMAIN_AUX_C) | \
1613 BIT(POWER_DOMAIN_INIT))
1614
1615 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
1616 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1617 BIT(POWER_DOMAIN_AUX_C) | \
1618 BIT(POWER_DOMAIN_INIT))
1619
1620 #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
1621 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1622 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1623 BIT(POWER_DOMAIN_AUX_B) | \
1624 BIT(POWER_DOMAIN_AUX_C) | \
1625 BIT(POWER_DOMAIN_INIT))
1626
1627 #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
1628 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1629 BIT(POWER_DOMAIN_AUX_D) | \
1630 BIT(POWER_DOMAIN_INIT))
1631
1632 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1633 .sync_hw = i9xx_always_on_power_well_noop,
1634 .enable = i9xx_always_on_power_well_noop,
1635 .disable = i9xx_always_on_power_well_noop,
1636 .is_enabled = i9xx_always_on_power_well_enabled,
1637 };
1638
1639 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1640 .sync_hw = chv_pipe_power_well_sync_hw,
1641 .enable = chv_pipe_power_well_enable,
1642 .disable = chv_pipe_power_well_disable,
1643 .is_enabled = chv_pipe_power_well_enabled,
1644 };
1645
1646 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1647 .sync_hw = vlv_power_well_sync_hw,
1648 .enable = chv_dpio_cmn_power_well_enable,
1649 .disable = chv_dpio_cmn_power_well_disable,
1650 .is_enabled = vlv_power_well_enabled,
1651 };
1652
1653 static struct i915_power_well i9xx_always_on_power_well[] = {
1654 {
1655 .name = "always-on",
1656 .always_on = 1,
1657 .domains = POWER_DOMAIN_MASK,
1658 .ops = &i9xx_always_on_power_well_ops,
1659 },
1660 };
1661
1662 static const struct i915_power_well_ops hsw_power_well_ops = {
1663 .sync_hw = hsw_power_well_sync_hw,
1664 .enable = hsw_power_well_enable,
1665 .disable = hsw_power_well_disable,
1666 .is_enabled = hsw_power_well_enabled,
1667 };
1668
1669 static const struct i915_power_well_ops skl_power_well_ops = {
1670 .sync_hw = skl_power_well_sync_hw,
1671 .enable = skl_power_well_enable,
1672 .disable = skl_power_well_disable,
1673 .is_enabled = skl_power_well_enabled,
1674 };
1675
1676 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1677 .sync_hw = gen9_dc_off_power_well_sync_hw,
1678 .enable = gen9_dc_off_power_well_enable,
1679 .disable = gen9_dc_off_power_well_disable,
1680 .is_enabled = gen9_dc_off_power_well_enabled,
1681 };
1682
1683 static struct i915_power_well hsw_power_wells[] = {
1684 {
1685 .name = "always-on",
1686 .always_on = 1,
1687 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
1688 .ops = &i9xx_always_on_power_well_ops,
1689 },
1690 {
1691 .name = "display",
1692 .domains = HSW_DISPLAY_POWER_DOMAINS,
1693 .ops = &hsw_power_well_ops,
1694 },
1695 };
1696
1697 static struct i915_power_well bdw_power_wells[] = {
1698 {
1699 .name = "always-on",
1700 .always_on = 1,
1701 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
1702 .ops = &i9xx_always_on_power_well_ops,
1703 },
1704 {
1705 .name = "display",
1706 .domains = BDW_DISPLAY_POWER_DOMAINS,
1707 .ops = &hsw_power_well_ops,
1708 },
1709 };
1710
1711 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1712 .sync_hw = vlv_power_well_sync_hw,
1713 .enable = vlv_display_power_well_enable,
1714 .disable = vlv_display_power_well_disable,
1715 .is_enabled = vlv_power_well_enabled,
1716 };
1717
1718 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1719 .sync_hw = vlv_power_well_sync_hw,
1720 .enable = vlv_dpio_cmn_power_well_enable,
1721 .disable = vlv_dpio_cmn_power_well_disable,
1722 .is_enabled = vlv_power_well_enabled,
1723 };
1724
1725 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1726 .sync_hw = vlv_power_well_sync_hw,
1727 .enable = vlv_power_well_enable,
1728 .disable = vlv_power_well_disable,
1729 .is_enabled = vlv_power_well_enabled,
1730 };
1731
1732 static struct i915_power_well vlv_power_wells[] = {
1733 {
1734 .name = "always-on",
1735 .always_on = 1,
1736 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1737 .ops = &i9xx_always_on_power_well_ops,
1738 .data = PUNIT_POWER_WELL_ALWAYS_ON,
1739 },
1740 {
1741 .name = "display",
1742 .domains = VLV_DISPLAY_POWER_DOMAINS,
1743 .data = PUNIT_POWER_WELL_DISP2D,
1744 .ops = &vlv_display_power_well_ops,
1745 },
1746 {
1747 .name = "dpio-tx-b-01",
1748 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1749 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1750 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1751 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1752 .ops = &vlv_dpio_power_well_ops,
1753 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1754 },
1755 {
1756 .name = "dpio-tx-b-23",
1757 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1758 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1759 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1760 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1761 .ops = &vlv_dpio_power_well_ops,
1762 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
1763 },
1764 {
1765 .name = "dpio-tx-c-01",
1766 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1767 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1768 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1769 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1770 .ops = &vlv_dpio_power_well_ops,
1771 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
1772 },
1773 {
1774 .name = "dpio-tx-c-23",
1775 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1776 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1777 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1778 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1779 .ops = &vlv_dpio_power_well_ops,
1780 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
1781 },
1782 {
1783 .name = "dpio-common",
1784 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
1785 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1786 .ops = &vlv_dpio_cmn_power_well_ops,
1787 },
1788 };
1789
1790 static struct i915_power_well chv_power_wells[] = {
1791 {
1792 .name = "always-on",
1793 .always_on = 1,
1794 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1795 .ops = &i9xx_always_on_power_well_ops,
1796 },
1797 {
1798 .name = "display",
1799 /*
1800 * Pipe A power well is the new disp2d well. Pipe B and C
1801 * power wells don't actually exist. Pipe A power well is
1802 * required for any pipe to work.
1803 */
1804 .domains = VLV_DISPLAY_POWER_DOMAINS,
1805 .data = PIPE_A,
1806 .ops = &chv_pipe_power_well_ops,
1807 },
1808 {
1809 .name = "dpio-common-bc",
1810 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
1811 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1812 .ops = &chv_dpio_cmn_power_well_ops,
1813 },
1814 {
1815 .name = "dpio-common-d",
1816 .domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
1817 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
1818 .ops = &chv_dpio_cmn_power_well_ops,
1819 },
1820 };
1821
1822 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
1823 int power_well_id)
1824 {
1825 struct i915_power_well *power_well;
1826 bool ret;
1827
1828 power_well = lookup_power_well(dev_priv, power_well_id);
1829 ret = power_well->ops->is_enabled(dev_priv, power_well);
1830
1831 return ret;
1832 }
1833
1834 static struct i915_power_well skl_power_wells[] = {
1835 {
1836 .name = "always-on",
1837 .always_on = 1,
1838 .domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1839 .ops = &i9xx_always_on_power_well_ops,
1840 .data = SKL_DISP_PW_ALWAYS_ON,
1841 },
1842 {
1843 .name = "power well 1",
1844 /* Handled by the DMC firmware */
1845 .domains = 0,
1846 .ops = &skl_power_well_ops,
1847 .data = SKL_DISP_PW_1,
1848 },
1849 {
1850 .name = "MISC IO power well",
1851 /* Handled by the DMC firmware */
1852 .domains = 0,
1853 .ops = &skl_power_well_ops,
1854 .data = SKL_DISP_PW_MISC_IO,
1855 },
1856 {
1857 .name = "DC off",
1858 .domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
1859 .ops = &gen9_dc_off_power_well_ops,
1860 .data = SKL_DISP_PW_DC_OFF,
1861 },
1862 {
1863 .name = "power well 2",
1864 .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1865 .ops = &skl_power_well_ops,
1866 .data = SKL_DISP_PW_2,
1867 },
1868 {
1869 .name = "DDI A/E power well",
1870 .domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
1871 .ops = &skl_power_well_ops,
1872 .data = SKL_DISP_PW_DDI_A_E,
1873 },
1874 {
1875 .name = "DDI B power well",
1876 .domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
1877 .ops = &skl_power_well_ops,
1878 .data = SKL_DISP_PW_DDI_B,
1879 },
1880 {
1881 .name = "DDI C power well",
1882 .domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
1883 .ops = &skl_power_well_ops,
1884 .data = SKL_DISP_PW_DDI_C,
1885 },
1886 {
1887 .name = "DDI D power well",
1888 .domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
1889 .ops = &skl_power_well_ops,
1890 .data = SKL_DISP_PW_DDI_D,
1891 },
1892 };
1893
1894 void skl_pw1_misc_io_init(struct drm_i915_private *dev_priv)
1895 {
1896 struct i915_power_well *well;
1897
1898 if (!(IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)))
1899 return;
1900
1901 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1902 intel_power_well_enable(dev_priv, well);
1903
1904 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1905 intel_power_well_enable(dev_priv, well);
1906 }
1907
1908 void skl_pw1_misc_io_fini(struct drm_i915_private *dev_priv)
1909 {
1910 struct i915_power_well *well;
1911
1912 if (!(IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)))
1913 return;
1914
1915 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1916 intel_power_well_disable(dev_priv, well);
1917
1918 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1919 intel_power_well_disable(dev_priv, well);
1920 }
1921
1922 static struct i915_power_well bxt_power_wells[] = {
1923 {
1924 .name = "always-on",
1925 .always_on = 1,
1926 .domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1927 .ops = &i9xx_always_on_power_well_ops,
1928 },
1929 {
1930 .name = "power well 1",
1931 .domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS,
1932 .ops = &skl_power_well_ops,
1933 .data = SKL_DISP_PW_1,
1934 },
1935 {
1936 .name = "DC off",
1937 .domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
1938 .ops = &gen9_dc_off_power_well_ops,
1939 .data = SKL_DISP_PW_DC_OFF,
1940 },
1941 {
1942 .name = "power well 2",
1943 .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1944 .ops = &skl_power_well_ops,
1945 .data = SKL_DISP_PW_2,
1946 },
1947 };
1948
1949 static int
1950 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
1951 int disable_power_well)
1952 {
1953 if (disable_power_well >= 0)
1954 return !!disable_power_well;
1955
1956 if (IS_BROXTON(dev_priv)) {
1957 DRM_DEBUG_KMS("Disabling display power well support\n");
1958 return 0;
1959 }
1960
1961 return 1;
1962 }
1963
1964 static uint32_t get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
1965 int enable_dc)
1966 {
1967 uint32_t mask;
1968 int requested_dc;
1969 int max_dc;
1970
1971 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1972 max_dc = 2;
1973 mask = 0;
1974 } else if (IS_BROXTON(dev_priv)) {
1975 max_dc = 1;
1976 /*
1977 * DC9 has a separate HW flow from the rest of the DC states,
1978 * not depending on the DMC firmware. It's needed by system
1979 * suspend/resume, so allow it unconditionally.
1980 */
1981 mask = DC_STATE_EN_DC9;
1982 } else {
1983 max_dc = 0;
1984 mask = 0;
1985 }
1986
1987 if (!i915.disable_power_well)
1988 max_dc = 0;
1989
1990 if (enable_dc >= 0 && enable_dc <= max_dc) {
1991 requested_dc = enable_dc;
1992 } else if (enable_dc == -1) {
1993 requested_dc = max_dc;
1994 } else if (enable_dc > max_dc && enable_dc <= 2) {
1995 DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
1996 enable_dc, max_dc);
1997 requested_dc = max_dc;
1998 } else {
1999 DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
2000 requested_dc = max_dc;
2001 }
2002
2003 if (requested_dc > 1)
2004 mask |= DC_STATE_EN_UPTO_DC6;
2005 if (requested_dc > 0)
2006 mask |= DC_STATE_EN_UPTO_DC5;
2007
2008 DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
2009
2010 return mask;
2011 }
2012
2013 #define set_power_wells(power_domains, __power_wells) ({ \
2014 (power_domains)->power_wells = (__power_wells); \
2015 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
2016 })
2017
2018 /**
2019 * intel_power_domains_init - initializes the power domain structures
2020 * @dev_priv: i915 device instance
2021 *
2022 * Initializes the power domain structures for @dev_priv depending upon the
2023 * supported platform.
2024 */
2025 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2026 {
2027 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2028
2029 i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2030 i915.disable_power_well);
2031 dev_priv->csr.allowed_dc_mask = get_allowed_dc_mask(dev_priv,
2032 i915.enable_dc);
2033
2034 BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2035
2036 mutex_init(&power_domains->lock);
2037
2038 /*
2039 * The enabling order will be from lower to higher indexed wells,
2040 * the disabling order is reversed.
2041 */
2042 if (IS_HASWELL(dev_priv)) {
2043 set_power_wells(power_domains, hsw_power_wells);
2044 } else if (IS_BROADWELL(dev_priv)) {
2045 set_power_wells(power_domains, bdw_power_wells);
2046 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2047 set_power_wells(power_domains, skl_power_wells);
2048 } else if (IS_BROXTON(dev_priv)) {
2049 set_power_wells(power_domains, bxt_power_wells);
2050 } else if (IS_CHERRYVIEW(dev_priv)) {
2051 set_power_wells(power_domains, chv_power_wells);
2052 } else if (IS_VALLEYVIEW(dev_priv)) {
2053 set_power_wells(power_domains, vlv_power_wells);
2054 } else {
2055 set_power_wells(power_domains, i9xx_always_on_power_well);
2056 }
2057
2058 return 0;
2059 }
2060
2061 /**
2062 * intel_power_domains_fini - finalizes the power domain structures
2063 * @dev_priv: i915 device instance
2064 *
2065 * Finalizes the power domain structures for @dev_priv depending upon the
2066 * supported platform. This function also disables runtime pm and ensures that
2067 * the device stays powered up so that the driver can be reloaded.
2068 */
2069 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2070 {
2071 struct device *device = &dev_priv->dev->pdev->dev;
2072
2073 /*
2074 * The i915.ko module is still not prepared to be loaded when
2075 * the power well is not enabled, so just enable it in case
2076 * we're going to unload/reload.
2077 * The following also reacquires the RPM reference the core passed
2078 * to the driver during loading, which is dropped in
2079 * intel_runtime_pm_enable(). We have to hand back the control of the
2080 * device to the core with this reference held.
2081 */
2082 intel_display_set_init_power(dev_priv, true);
2083
2084 /* Remove the refcount we took to keep power well support disabled. */
2085 if (!i915.disable_power_well)
2086 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2087
2088 /*
2089 * Remove the refcount we took in intel_runtime_pm_enable() in case
2090 * the platform doesn't support runtime PM.
2091 */
2092 if (!HAS_RUNTIME_PM(dev_priv))
2093 pm_runtime_put(device);
2094 }
2095
2096 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2097 {
2098 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2099 struct i915_power_well *power_well;
2100 int i;
2101
2102 mutex_lock(&power_domains->lock);
2103 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2104 power_well->ops->sync_hw(dev_priv, power_well);
2105 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2106 power_well);
2107 }
2108 mutex_unlock(&power_domains->lock);
2109 }
2110
2111 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2112 bool resume)
2113 {
2114 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2115 uint32_t val;
2116
2117 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2118
2119 /* enable PCH reset handshake */
2120 val = I915_READ(HSW_NDE_RSTWRN_OPT);
2121 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2122
2123 /* enable PG1 and Misc I/O */
2124 mutex_lock(&power_domains->lock);
2125 skl_pw1_misc_io_init(dev_priv);
2126 mutex_unlock(&power_domains->lock);
2127
2128 if (!resume)
2129 return;
2130
2131 skl_init_cdclk(dev_priv);
2132
2133 if (dev_priv->csr.dmc_payload)
2134 intel_csr_load_program(dev_priv);
2135 }
2136
2137 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2138 {
2139 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2140
2141 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2142
2143 skl_uninit_cdclk(dev_priv);
2144
2145 /* The spec doesn't call for removing the reset handshake flag */
2146 /* disable PG1 and Misc I/O */
2147 mutex_lock(&power_domains->lock);
2148 skl_pw1_misc_io_fini(dev_priv);
2149 mutex_unlock(&power_domains->lock);
2150 }
2151
2152 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2153 {
2154 struct i915_power_well *cmn_bc =
2155 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2156 struct i915_power_well *cmn_d =
2157 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2158
2159 /*
2160 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2161 * workaround never ever read DISPLAY_PHY_CONTROL, and
2162 * instead maintain a shadow copy ourselves. Use the actual
2163 * power well state and lane status to reconstruct the
2164 * expected initial value.
2165 */
2166 dev_priv->chv_phy_control =
2167 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2168 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2169 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2170 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2171 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2172
2173 /*
2174 * If all lanes are disabled we leave the override disabled
2175 * with all power down bits cleared to match the state we
2176 * would use after disabling the port. Otherwise enable the
2177 * override and set the lane powerdown bits accding to the
2178 * current lane status.
2179 */
2180 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2181 uint32_t status = I915_READ(DPLL(PIPE_A));
2182 unsigned int mask;
2183
2184 mask = status & DPLL_PORTB_READY_MASK;
2185 if (mask == 0xf)
2186 mask = 0x0;
2187 else
2188 dev_priv->chv_phy_control |=
2189 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2190
2191 dev_priv->chv_phy_control |=
2192 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2193
2194 mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2195 if (mask == 0xf)
2196 mask = 0x0;
2197 else
2198 dev_priv->chv_phy_control |=
2199 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2200
2201 dev_priv->chv_phy_control |=
2202 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2203
2204 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2205
2206 dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2207 } else {
2208 dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2209 }
2210
2211 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2212 uint32_t status = I915_READ(DPIO_PHY_STATUS);
2213 unsigned int mask;
2214
2215 mask = status & DPLL_PORTD_READY_MASK;
2216
2217 if (mask == 0xf)
2218 mask = 0x0;
2219 else
2220 dev_priv->chv_phy_control |=
2221 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2222
2223 dev_priv->chv_phy_control |=
2224 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2225
2226 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2227
2228 dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2229 } else {
2230 dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2231 }
2232
2233 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2234
2235 DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2236 dev_priv->chv_phy_control);
2237 }
2238
2239 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2240 {
2241 struct i915_power_well *cmn =
2242 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2243 struct i915_power_well *disp2d =
2244 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2245
2246 /* If the display might be already active skip this */
2247 if (cmn->ops->is_enabled(dev_priv, cmn) &&
2248 disp2d->ops->is_enabled(dev_priv, disp2d) &&
2249 I915_READ(DPIO_CTL) & DPIO_CMNRST)
2250 return;
2251
2252 DRM_DEBUG_KMS("toggling display PHY side reset\n");
2253
2254 /* cmnlane needs DPLL registers */
2255 disp2d->ops->enable(dev_priv, disp2d);
2256
2257 /*
2258 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2259 * Need to assert and de-assert PHY SB reset by gating the
2260 * common lane power, then un-gating it.
2261 * Simply ungating isn't enough to reset the PHY enough to get
2262 * ports and lanes running.
2263 */
2264 cmn->ops->disable(dev_priv, cmn);
2265 }
2266
2267 /**
2268 * intel_power_domains_init_hw - initialize hardware power domain state
2269 * @dev_priv: i915 device instance
2270 *
2271 * This function initializes the hardware power domain state and enables all
2272 * power domains using intel_display_set_init_power().
2273 */
2274 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2275 {
2276 struct drm_device *dev = dev_priv->dev;
2277 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2278
2279 power_domains->initializing = true;
2280
2281 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2282 skl_display_core_init(dev_priv, resume);
2283 } else if (IS_CHERRYVIEW(dev)) {
2284 mutex_lock(&power_domains->lock);
2285 chv_phy_control_init(dev_priv);
2286 mutex_unlock(&power_domains->lock);
2287 } else if (IS_VALLEYVIEW(dev)) {
2288 mutex_lock(&power_domains->lock);
2289 vlv_cmnlane_wa(dev_priv);
2290 mutex_unlock(&power_domains->lock);
2291 }
2292
2293 /* For now, we need the power well to be always enabled. */
2294 intel_display_set_init_power(dev_priv, true);
2295 /* Disable power support if the user asked so. */
2296 if (!i915.disable_power_well)
2297 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2298 intel_power_domains_sync_hw(dev_priv);
2299 power_domains->initializing = false;
2300 }
2301
2302 /**
2303 * intel_power_domains_suspend - suspend power domain state
2304 * @dev_priv: i915 device instance
2305 *
2306 * This function prepares the hardware power domain state before entering
2307 * system suspend. It must be paired with intel_power_domains_init_hw().
2308 */
2309 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2310 {
2311 /*
2312 * Even if power well support was disabled we still want to disable
2313 * power wells while we are system suspended.
2314 */
2315 if (!i915.disable_power_well)
2316 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2317
2318 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2319 skl_display_core_uninit(dev_priv);
2320 }
2321
2322 /**
2323 * intel_runtime_pm_get - grab a runtime pm reference
2324 * @dev_priv: i915 device instance
2325 *
2326 * This function grabs a device-level runtime pm reference (mostly used for GEM
2327 * code to ensure the GTT or GT is on) and ensures that it is powered up.
2328 *
2329 * Any runtime pm reference obtained by this function must have a symmetric
2330 * call to intel_runtime_pm_put() to release the reference again.
2331 */
2332 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2333 {
2334 struct drm_device *dev = dev_priv->dev;
2335 struct device *device = &dev->pdev->dev;
2336
2337 pm_runtime_get_sync(device);
2338
2339 atomic_inc(&dev_priv->pm.wakeref_count);
2340 assert_rpm_wakelock_held(dev_priv);
2341 }
2342
2343 /**
2344 * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2345 * @dev_priv: i915 device instance
2346 *
2347 * This function grabs a device-level runtime pm reference if the device is
2348 * already in use and ensures that it is powered up.
2349 *
2350 * Any runtime pm reference obtained by this function must have a symmetric
2351 * call to intel_runtime_pm_put() to release the reference again.
2352 */
2353 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2354 {
2355 struct drm_device *dev = dev_priv->dev;
2356 struct device *device = &dev->pdev->dev;
2357
2358 if (IS_ENABLED(CONFIG_PM)) {
2359 int ret = pm_runtime_get_if_in_use(device);
2360
2361 /*
2362 * In cases runtime PM is disabled by the RPM core and we get
2363 * an -EINVAL return value we are not supposed to call this
2364 * function, since the power state is undefined. This applies
2365 * atm to the late/early system suspend/resume handlers.
2366 */
2367 WARN_ON_ONCE(ret < 0);
2368 if (ret <= 0)
2369 return false;
2370 }
2371
2372 atomic_inc(&dev_priv->pm.wakeref_count);
2373 assert_rpm_wakelock_held(dev_priv);
2374
2375 return true;
2376 }
2377
2378 /**
2379 * intel_runtime_pm_get_noresume - grab a runtime pm reference
2380 * @dev_priv: i915 device instance
2381 *
2382 * This function grabs a device-level runtime pm reference (mostly used for GEM
2383 * code to ensure the GTT or GT is on).
2384 *
2385 * It will _not_ power up the device but instead only check that it's powered
2386 * on. Therefore it is only valid to call this functions from contexts where
2387 * the device is known to be powered up and where trying to power it up would
2388 * result in hilarity and deadlocks. That pretty much means only the system
2389 * suspend/resume code where this is used to grab runtime pm references for
2390 * delayed setup down in work items.
2391 *
2392 * Any runtime pm reference obtained by this function must have a symmetric
2393 * call to intel_runtime_pm_put() to release the reference again.
2394 */
2395 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2396 {
2397 struct drm_device *dev = dev_priv->dev;
2398 struct device *device = &dev->pdev->dev;
2399
2400 assert_rpm_wakelock_held(dev_priv);
2401 pm_runtime_get_noresume(device);
2402
2403 atomic_inc(&dev_priv->pm.wakeref_count);
2404 }
2405
2406 /**
2407 * intel_runtime_pm_put - release a runtime pm reference
2408 * @dev_priv: i915 device instance
2409 *
2410 * This function drops the device-level runtime pm reference obtained by
2411 * intel_runtime_pm_get() and might power down the corresponding
2412 * hardware block right away if this is the last reference.
2413 */
2414 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2415 {
2416 struct drm_device *dev = dev_priv->dev;
2417 struct device *device = &dev->pdev->dev;
2418
2419 assert_rpm_wakelock_held(dev_priv);
2420 if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2421 atomic_inc(&dev_priv->pm.atomic_seq);
2422
2423 pm_runtime_mark_last_busy(device);
2424 pm_runtime_put_autosuspend(device);
2425 }
2426
2427 /**
2428 * intel_runtime_pm_enable - enable runtime pm
2429 * @dev_priv: i915 device instance
2430 *
2431 * This function enables runtime pm at the end of the driver load sequence.
2432 *
2433 * Note that this function does currently not enable runtime pm for the
2434 * subordinate display power domains. That is only done on the first modeset
2435 * using intel_display_set_init_power().
2436 */
2437 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2438 {
2439 struct drm_device *dev = dev_priv->dev;
2440 struct device *device = &dev->pdev->dev;
2441
2442 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2443 pm_runtime_mark_last_busy(device);
2444
2445 /*
2446 * Take a permanent reference to disable the RPM functionality and drop
2447 * it only when unloading the driver. Use the low level get/put helpers,
2448 * so the driver's own RPM reference tracking asserts also work on
2449 * platforms without RPM support.
2450 */
2451 if (!HAS_RUNTIME_PM(dev)) {
2452 pm_runtime_dont_use_autosuspend(device);
2453 pm_runtime_get_sync(device);
2454 } else {
2455 pm_runtime_use_autosuspend(device);
2456 }
2457
2458 /*
2459 * The core calls the driver load handler with an RPM reference held.
2460 * We drop that here and will reacquire it during unloading in
2461 * intel_power_domains_fini().
2462 */
2463 pm_runtime_put_autosuspend(device);
2464 }
2465
This page took 0.082202 seconds and 5 git commands to generate.