drm/i915: Change i915.enable_psr parameter to use per platform default.
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_runtime_pm.c
1 /*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 * Daniel Vetter <daniel.vetter@ffwll.ch>
26 *
27 */
28
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34
35 /**
36 * DOC: runtime pm
37 *
38 * The i915 driver supports dynamic enabling and disabling of entire hardware
39 * blocks at runtime. This is especially important on the display side where
40 * software is supposed to control many power gates manually on recent hardware,
41 * since on the GT side a lot of the power management is done by the hardware.
42 * But even there some manual control at the device level is required.
43 *
44 * Since i915 supports a diverse set of platforms with a unified codebase and
45 * hardware engineers just love to shuffle functionality around between power
46 * domains there's a sizeable amount of indirection required. This file provides
47 * generic functions to the driver for grabbing and releasing references for
48 * abstract power domains. It then maps those to the actual power wells
49 * present for a given platform.
50 */
51
52 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
53 for (i = 0; \
54 i < (power_domains)->power_well_count && \
55 ((power_well) = &(power_domains)->power_wells[i]); \
56 i++) \
57 for_each_if ((power_well)->domains & (domain_mask))
58
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 for (i = (power_domains)->power_well_count - 1; \
61 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 i--) \
63 for_each_if ((power_well)->domains & (domain_mask))
64
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 int power_well_id);
67
68 const char *
69 intel_display_power_domain_str(enum intel_display_power_domain domain)
70 {
71 switch (domain) {
72 case POWER_DOMAIN_PIPE_A:
73 return "PIPE_A";
74 case POWER_DOMAIN_PIPE_B:
75 return "PIPE_B";
76 case POWER_DOMAIN_PIPE_C:
77 return "PIPE_C";
78 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
79 return "PIPE_A_PANEL_FITTER";
80 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
81 return "PIPE_B_PANEL_FITTER";
82 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
83 return "PIPE_C_PANEL_FITTER";
84 case POWER_DOMAIN_TRANSCODER_A:
85 return "TRANSCODER_A";
86 case POWER_DOMAIN_TRANSCODER_B:
87 return "TRANSCODER_B";
88 case POWER_DOMAIN_TRANSCODER_C:
89 return "TRANSCODER_C";
90 case POWER_DOMAIN_TRANSCODER_EDP:
91 return "TRANSCODER_EDP";
92 case POWER_DOMAIN_PORT_DDI_A_LANES:
93 return "PORT_DDI_A_LANES";
94 case POWER_DOMAIN_PORT_DDI_B_LANES:
95 return "PORT_DDI_B_LANES";
96 case POWER_DOMAIN_PORT_DDI_C_LANES:
97 return "PORT_DDI_C_LANES";
98 case POWER_DOMAIN_PORT_DDI_D_LANES:
99 return "PORT_DDI_D_LANES";
100 case POWER_DOMAIN_PORT_DDI_E_LANES:
101 return "PORT_DDI_E_LANES";
102 case POWER_DOMAIN_PORT_DSI:
103 return "PORT_DSI";
104 case POWER_DOMAIN_PORT_CRT:
105 return "PORT_CRT";
106 case POWER_DOMAIN_PORT_OTHER:
107 return "PORT_OTHER";
108 case POWER_DOMAIN_VGA:
109 return "VGA";
110 case POWER_DOMAIN_AUDIO:
111 return "AUDIO";
112 case POWER_DOMAIN_PLLS:
113 return "PLLS";
114 case POWER_DOMAIN_AUX_A:
115 return "AUX_A";
116 case POWER_DOMAIN_AUX_B:
117 return "AUX_B";
118 case POWER_DOMAIN_AUX_C:
119 return "AUX_C";
120 case POWER_DOMAIN_AUX_D:
121 return "AUX_D";
122 case POWER_DOMAIN_GMBUS:
123 return "GMBUS";
124 case POWER_DOMAIN_INIT:
125 return "INIT";
126 case POWER_DOMAIN_MODESET:
127 return "MODESET";
128 default:
129 MISSING_CASE(domain);
130 return "?";
131 }
132 }
133
134 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
135 struct i915_power_well *power_well)
136 {
137 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
138 power_well->ops->enable(dev_priv, power_well);
139 power_well->hw_enabled = true;
140 }
141
142 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
143 struct i915_power_well *power_well)
144 {
145 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
146 power_well->hw_enabled = false;
147 power_well->ops->disable(dev_priv, power_well);
148 }
149
150 /*
151 * We should only use the power well if we explicitly asked the hardware to
152 * enable it, so check if it's enabled and also check if we've requested it to
153 * be enabled.
154 */
155 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
156 struct i915_power_well *power_well)
157 {
158 return I915_READ(HSW_PWR_WELL_DRIVER) ==
159 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
160 }
161
162 /**
163 * __intel_display_power_is_enabled - unlocked check for a power domain
164 * @dev_priv: i915 device instance
165 * @domain: power domain to check
166 *
167 * This is the unlocked version of intel_display_power_is_enabled() and should
168 * only be used from error capture and recovery code where deadlocks are
169 * possible.
170 *
171 * Returns:
172 * True when the power domain is enabled, false otherwise.
173 */
174 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
175 enum intel_display_power_domain domain)
176 {
177 struct i915_power_domains *power_domains;
178 struct i915_power_well *power_well;
179 bool is_enabled;
180 int i;
181
182 if (dev_priv->pm.suspended)
183 return false;
184
185 power_domains = &dev_priv->power_domains;
186
187 is_enabled = true;
188
189 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
190 if (power_well->always_on)
191 continue;
192
193 if (!power_well->hw_enabled) {
194 is_enabled = false;
195 break;
196 }
197 }
198
199 return is_enabled;
200 }
201
202 /**
203 * intel_display_power_is_enabled - check for a power domain
204 * @dev_priv: i915 device instance
205 * @domain: power domain to check
206 *
207 * This function can be used to check the hw power domain state. It is mostly
208 * used in hardware state readout functions. Everywhere else code should rely
209 * upon explicit power domain reference counting to ensure that the hardware
210 * block is powered up before accessing it.
211 *
212 * Callers must hold the relevant modesetting locks to ensure that concurrent
213 * threads can't disable the power well while the caller tries to read a few
214 * registers.
215 *
216 * Returns:
217 * True when the power domain is enabled, false otherwise.
218 */
219 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
220 enum intel_display_power_domain domain)
221 {
222 struct i915_power_domains *power_domains;
223 bool ret;
224
225 power_domains = &dev_priv->power_domains;
226
227 mutex_lock(&power_domains->lock);
228 ret = __intel_display_power_is_enabled(dev_priv, domain);
229 mutex_unlock(&power_domains->lock);
230
231 return ret;
232 }
233
234 /**
235 * intel_display_set_init_power - set the initial power domain state
236 * @dev_priv: i915 device instance
237 * @enable: whether to enable or disable the initial power domain state
238 *
239 * For simplicity our driver load/unload and system suspend/resume code assumes
240 * that all power domains are always enabled. This functions controls the state
241 * of this little hack. While the initial power domain state is enabled runtime
242 * pm is effectively disabled.
243 */
244 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
245 bool enable)
246 {
247 if (dev_priv->power_domains.init_power_on == enable)
248 return;
249
250 if (enable)
251 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
252 else
253 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
254
255 dev_priv->power_domains.init_power_on = enable;
256 }
257
258 /*
259 * Starting with Haswell, we have a "Power Down Well" that can be turned off
260 * when not needed anymore. We have 4 registers that can request the power well
261 * to be enabled, and it will only be disabled if none of the registers is
262 * requesting it to be enabled.
263 */
264 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
265 {
266 struct drm_device *dev = dev_priv->dev;
267
268 /*
269 * After we re-enable the power well, if we touch VGA register 0x3d5
270 * we'll get unclaimed register interrupts. This stops after we write
271 * anything to the VGA MSR register. The vgacon module uses this
272 * register all the time, so if we unbind our driver and, as a
273 * consequence, bind vgacon, we'll get stuck in an infinite loop at
274 * console_unlock(). So make here we touch the VGA MSR register, making
275 * sure vgacon can keep working normally without triggering interrupts
276 * and error messages.
277 */
278 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
279 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
280 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
281
282 if (IS_BROADWELL(dev))
283 gen8_irq_power_well_post_enable(dev_priv,
284 1 << PIPE_C | 1 << PIPE_B);
285 }
286
287 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
288 struct i915_power_well *power_well)
289 {
290 struct drm_device *dev = dev_priv->dev;
291
292 /*
293 * After we re-enable the power well, if we touch VGA register 0x3d5
294 * we'll get unclaimed register interrupts. This stops after we write
295 * anything to the VGA MSR register. The vgacon module uses this
296 * register all the time, so if we unbind our driver and, as a
297 * consequence, bind vgacon, we'll get stuck in an infinite loop at
298 * console_unlock(). So make here we touch the VGA MSR register, making
299 * sure vgacon can keep working normally without triggering interrupts
300 * and error messages.
301 */
302 if (power_well->data == SKL_DISP_PW_2) {
303 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
304 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
305 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
306
307 gen8_irq_power_well_post_enable(dev_priv,
308 1 << PIPE_C | 1 << PIPE_B);
309 }
310 }
311
312 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
313 struct i915_power_well *power_well, bool enable)
314 {
315 bool is_enabled, enable_requested;
316 uint32_t tmp;
317
318 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
319 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
320 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
321
322 if (enable) {
323 if (!enable_requested)
324 I915_WRITE(HSW_PWR_WELL_DRIVER,
325 HSW_PWR_WELL_ENABLE_REQUEST);
326
327 if (!is_enabled) {
328 DRM_DEBUG_KMS("Enabling power well\n");
329 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
330 HSW_PWR_WELL_STATE_ENABLED), 20))
331 DRM_ERROR("Timeout enabling power well\n");
332 hsw_power_well_post_enable(dev_priv);
333 }
334
335 } else {
336 if (enable_requested) {
337 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
338 POSTING_READ(HSW_PWR_WELL_DRIVER);
339 DRM_DEBUG_KMS("Requesting to disable the power well\n");
340 }
341 }
342 }
343
344 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
345 BIT(POWER_DOMAIN_TRANSCODER_A) | \
346 BIT(POWER_DOMAIN_PIPE_B) | \
347 BIT(POWER_DOMAIN_TRANSCODER_B) | \
348 BIT(POWER_DOMAIN_PIPE_C) | \
349 BIT(POWER_DOMAIN_TRANSCODER_C) | \
350 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
351 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
352 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
353 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
354 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
355 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
356 BIT(POWER_DOMAIN_AUX_B) | \
357 BIT(POWER_DOMAIN_AUX_C) | \
358 BIT(POWER_DOMAIN_AUX_D) | \
359 BIT(POWER_DOMAIN_AUDIO) | \
360 BIT(POWER_DOMAIN_VGA) | \
361 BIT(POWER_DOMAIN_INIT))
362 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \
363 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
364 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
365 BIT(POWER_DOMAIN_INIT))
366 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \
367 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
368 BIT(POWER_DOMAIN_INIT))
369 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \
370 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
371 BIT(POWER_DOMAIN_INIT))
372 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \
373 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
374 BIT(POWER_DOMAIN_INIT))
375 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
376 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
377 BIT(POWER_DOMAIN_MODESET) | \
378 BIT(POWER_DOMAIN_AUX_A) | \
379 BIT(POWER_DOMAIN_INIT))
380 #define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
381 (POWER_DOMAIN_MASK & ~( \
382 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
383 SKL_DISPLAY_DC_OFF_POWER_DOMAINS)) | \
384 BIT(POWER_DOMAIN_INIT))
385
386 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
387 BIT(POWER_DOMAIN_TRANSCODER_A) | \
388 BIT(POWER_DOMAIN_PIPE_B) | \
389 BIT(POWER_DOMAIN_TRANSCODER_B) | \
390 BIT(POWER_DOMAIN_PIPE_C) | \
391 BIT(POWER_DOMAIN_TRANSCODER_C) | \
392 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
393 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
394 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
395 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
396 BIT(POWER_DOMAIN_AUX_B) | \
397 BIT(POWER_DOMAIN_AUX_C) | \
398 BIT(POWER_DOMAIN_AUDIO) | \
399 BIT(POWER_DOMAIN_VGA) | \
400 BIT(POWER_DOMAIN_GMBUS) | \
401 BIT(POWER_DOMAIN_INIT))
402 #define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \
403 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
404 BIT(POWER_DOMAIN_PIPE_A) | \
405 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
406 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
407 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
408 BIT(POWER_DOMAIN_AUX_A) | \
409 BIT(POWER_DOMAIN_PLLS) | \
410 BIT(POWER_DOMAIN_INIT))
411 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS ( \
412 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
413 BIT(POWER_DOMAIN_MODESET) | \
414 BIT(POWER_DOMAIN_AUX_A) | \
415 BIT(POWER_DOMAIN_INIT))
416 #define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
417 (POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS | \
418 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) | \
419 BIT(POWER_DOMAIN_INIT))
420
421 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
422 {
423 struct drm_device *dev = dev_priv->dev;
424
425 WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n");
426 WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
427 "DC9 already programmed to be enabled.\n");
428 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
429 "DC5 still not disabled to enable DC9.\n");
430 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
431 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
432
433 /*
434 * TODO: check for the following to verify the conditions to enter DC9
435 * state are satisfied:
436 * 1] Check relevant display engine registers to verify if mode set
437 * disable sequence was followed.
438 * 2] Check if display uninitialize sequence is initialized.
439 */
440 }
441
442 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
443 {
444 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
445 WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
446 "DC9 already programmed to be disabled.\n");
447 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
448 "DC5 still not disabled.\n");
449
450 /*
451 * TODO: check for the following to verify DC9 state was indeed
452 * entered before programming to disable it:
453 * 1] Check relevant display engine registers to verify if mode
454 * set disable sequence was followed.
455 * 2] Check if display uninitialize sequence is initialized.
456 */
457 }
458
459 static void gen9_set_dc_state_debugmask_memory_up(
460 struct drm_i915_private *dev_priv)
461 {
462 uint32_t val;
463
464 /* The below bit doesn't need to be cleared ever afterwards */
465 val = I915_READ(DC_STATE_DEBUG);
466 if (!(val & DC_STATE_DEBUG_MASK_MEMORY_UP)) {
467 val |= DC_STATE_DEBUG_MASK_MEMORY_UP;
468 I915_WRITE(DC_STATE_DEBUG, val);
469 POSTING_READ(DC_STATE_DEBUG);
470 }
471 }
472
473 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
474 {
475 uint32_t val;
476 uint32_t mask;
477
478 mask = DC_STATE_EN_UPTO_DC5;
479 if (IS_BROXTON(dev_priv))
480 mask |= DC_STATE_EN_DC9;
481 else
482 mask |= DC_STATE_EN_UPTO_DC6;
483
484 WARN_ON_ONCE(state & ~mask);
485
486 if (i915.enable_dc == 0)
487 state = DC_STATE_DISABLE;
488 else if (i915.enable_dc == 1 && state > DC_STATE_EN_UPTO_DC5)
489 state = DC_STATE_EN_UPTO_DC5;
490
491 if (state & DC_STATE_EN_UPTO_DC5_DC6_MASK)
492 gen9_set_dc_state_debugmask_memory_up(dev_priv);
493
494 val = I915_READ(DC_STATE_EN);
495 DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
496 val & mask, state);
497 val &= ~mask;
498 val |= state;
499 I915_WRITE(DC_STATE_EN, val);
500 POSTING_READ(DC_STATE_EN);
501 }
502
503 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
504 {
505 assert_can_enable_dc9(dev_priv);
506
507 DRM_DEBUG_KMS("Enabling DC9\n");
508
509 gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
510 }
511
512 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
513 {
514 assert_can_disable_dc9(dev_priv);
515
516 DRM_DEBUG_KMS("Disabling DC9\n");
517
518 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
519 }
520
521 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
522 {
523 WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
524 "CSR program storage start is NULL\n");
525 WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
526 WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
527 }
528
529 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
530 {
531 struct drm_device *dev = dev_priv->dev;
532 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
533 SKL_DISP_PW_2);
534
535 WARN_ONCE(!IS_SKYLAKE(dev) && !IS_KABYLAKE(dev),
536 "Platform doesn't support DC5.\n");
537 WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
538 WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
539
540 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
541 "DC5 already programmed to be enabled.\n");
542 assert_rpm_wakelock_held(dev_priv);
543
544 assert_csr_loaded(dev_priv);
545 }
546
547 static void assert_can_disable_dc5(struct drm_i915_private *dev_priv)
548 {
549 /*
550 * During initialization, the firmware may not be loaded yet.
551 * We still want to make sure that the DC enabling flag is cleared.
552 */
553 if (dev_priv->power_domains.initializing)
554 return;
555
556 assert_rpm_wakelock_held(dev_priv);
557 }
558
559 static void gen9_enable_dc5(struct drm_i915_private *dev_priv)
560 {
561 assert_can_enable_dc5(dev_priv);
562
563 DRM_DEBUG_KMS("Enabling DC5\n");
564
565 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
566 }
567
568 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
569 {
570 struct drm_device *dev = dev_priv->dev;
571
572 WARN_ONCE(!IS_SKYLAKE(dev) && !IS_KABYLAKE(dev),
573 "Platform doesn't support DC6.\n");
574 WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
575 WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
576 "Backlight is not disabled.\n");
577 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
578 "DC6 already programmed to be enabled.\n");
579
580 assert_csr_loaded(dev_priv);
581 }
582
583 static void assert_can_disable_dc6(struct drm_i915_private *dev_priv)
584 {
585 /*
586 * During initialization, the firmware may not be loaded yet.
587 * We still want to make sure that the DC enabling flag is cleared.
588 */
589 if (dev_priv->power_domains.initializing)
590 return;
591
592 WARN_ONCE(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
593 "DC6 already programmed to be disabled.\n");
594 }
595
596 static void gen9_disable_dc5_dc6(struct drm_i915_private *dev_priv)
597 {
598 assert_can_disable_dc5(dev_priv);
599
600 if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
601 i915.enable_dc != 0 && i915.enable_dc != 1)
602 assert_can_disable_dc6(dev_priv);
603
604 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
605 }
606
607 void skl_enable_dc6(struct drm_i915_private *dev_priv)
608 {
609 assert_can_enable_dc6(dev_priv);
610
611 DRM_DEBUG_KMS("Enabling DC6\n");
612
613 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
614
615 }
616
617 void skl_disable_dc6(struct drm_i915_private *dev_priv)
618 {
619 assert_can_disable_dc6(dev_priv);
620
621 DRM_DEBUG_KMS("Disabling DC6\n");
622
623 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
624 }
625
626 static void skl_set_power_well(struct drm_i915_private *dev_priv,
627 struct i915_power_well *power_well, bool enable)
628 {
629 uint32_t tmp, fuse_status;
630 uint32_t req_mask, state_mask;
631 bool is_enabled, enable_requested, check_fuse_status = false;
632
633 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
634 fuse_status = I915_READ(SKL_FUSE_STATUS);
635
636 switch (power_well->data) {
637 case SKL_DISP_PW_1:
638 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
639 SKL_FUSE_PG0_DIST_STATUS), 1)) {
640 DRM_ERROR("PG0 not enabled\n");
641 return;
642 }
643 break;
644 case SKL_DISP_PW_2:
645 if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
646 DRM_ERROR("PG1 in disabled state\n");
647 return;
648 }
649 break;
650 case SKL_DISP_PW_DDI_A_E:
651 case SKL_DISP_PW_DDI_B:
652 case SKL_DISP_PW_DDI_C:
653 case SKL_DISP_PW_DDI_D:
654 case SKL_DISP_PW_MISC_IO:
655 break;
656 default:
657 WARN(1, "Unknown power well %lu\n", power_well->data);
658 return;
659 }
660
661 req_mask = SKL_POWER_WELL_REQ(power_well->data);
662 enable_requested = tmp & req_mask;
663 state_mask = SKL_POWER_WELL_STATE(power_well->data);
664 is_enabled = tmp & state_mask;
665
666 if (enable) {
667 if (!enable_requested) {
668 WARN((tmp & state_mask) &&
669 !I915_READ(HSW_PWR_WELL_BIOS),
670 "Invalid for power well status to be enabled, unless done by the BIOS, \
671 when request is to disable!\n");
672 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
673 }
674
675 if (!is_enabled) {
676 DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
677 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
678 state_mask), 1))
679 DRM_ERROR("%s enable timeout\n",
680 power_well->name);
681 check_fuse_status = true;
682 }
683 } else {
684 if (enable_requested) {
685 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask);
686 POSTING_READ(HSW_PWR_WELL_DRIVER);
687 DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
688 }
689 }
690
691 if (check_fuse_status) {
692 if (power_well->data == SKL_DISP_PW_1) {
693 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
694 SKL_FUSE_PG1_DIST_STATUS), 1))
695 DRM_ERROR("PG1 distributing status timeout\n");
696 } else if (power_well->data == SKL_DISP_PW_2) {
697 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
698 SKL_FUSE_PG2_DIST_STATUS), 1))
699 DRM_ERROR("PG2 distributing status timeout\n");
700 }
701 }
702
703 if (enable && !is_enabled)
704 skl_power_well_post_enable(dev_priv, power_well);
705 }
706
707 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
708 struct i915_power_well *power_well)
709 {
710 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
711
712 /*
713 * We're taking over the BIOS, so clear any requests made by it since
714 * the driver is in charge now.
715 */
716 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
717 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
718 }
719
720 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
721 struct i915_power_well *power_well)
722 {
723 hsw_set_power_well(dev_priv, power_well, true);
724 }
725
726 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
727 struct i915_power_well *power_well)
728 {
729 hsw_set_power_well(dev_priv, power_well, false);
730 }
731
732 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
733 struct i915_power_well *power_well)
734 {
735 uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
736 SKL_POWER_WELL_STATE(power_well->data);
737
738 return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
739 }
740
741 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
742 struct i915_power_well *power_well)
743 {
744 skl_set_power_well(dev_priv, power_well, power_well->count > 0);
745
746 /* Clear any request made by BIOS as driver is taking over */
747 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
748 }
749
750 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
751 struct i915_power_well *power_well)
752 {
753 skl_set_power_well(dev_priv, power_well, true);
754 }
755
756 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
757 struct i915_power_well *power_well)
758 {
759 skl_set_power_well(dev_priv, power_well, false);
760 }
761
762 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
763 struct i915_power_well *power_well)
764 {
765 return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
766 }
767
768 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
769 struct i915_power_well *power_well)
770 {
771 gen9_disable_dc5_dc6(dev_priv);
772 }
773
774 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
775 struct i915_power_well *power_well)
776 {
777 if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
778 i915.enable_dc != 0 && i915.enable_dc != 1)
779 skl_enable_dc6(dev_priv);
780 else
781 gen9_enable_dc5(dev_priv);
782 }
783
784 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
785 struct i915_power_well *power_well)
786 {
787 if (power_well->count > 0) {
788 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
789 } else {
790 if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
791 i915.enable_dc != 0 &&
792 i915.enable_dc != 1)
793 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
794 else
795 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
796 }
797 }
798
799 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
800 struct i915_power_well *power_well)
801 {
802 }
803
804 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
805 struct i915_power_well *power_well)
806 {
807 return true;
808 }
809
810 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
811 struct i915_power_well *power_well, bool enable)
812 {
813 enum punit_power_well power_well_id = power_well->data;
814 u32 mask;
815 u32 state;
816 u32 ctrl;
817
818 mask = PUNIT_PWRGT_MASK(power_well_id);
819 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
820 PUNIT_PWRGT_PWR_GATE(power_well_id);
821
822 mutex_lock(&dev_priv->rps.hw_lock);
823
824 #define COND \
825 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
826
827 if (COND)
828 goto out;
829
830 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
831 ctrl &= ~mask;
832 ctrl |= state;
833 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
834
835 if (wait_for(COND, 100))
836 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
837 state,
838 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
839
840 #undef COND
841
842 out:
843 mutex_unlock(&dev_priv->rps.hw_lock);
844 }
845
846 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
847 struct i915_power_well *power_well)
848 {
849 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
850 }
851
852 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
853 struct i915_power_well *power_well)
854 {
855 vlv_set_power_well(dev_priv, power_well, true);
856 }
857
858 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
859 struct i915_power_well *power_well)
860 {
861 vlv_set_power_well(dev_priv, power_well, false);
862 }
863
864 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
865 struct i915_power_well *power_well)
866 {
867 int power_well_id = power_well->data;
868 bool enabled = false;
869 u32 mask;
870 u32 state;
871 u32 ctrl;
872
873 mask = PUNIT_PWRGT_MASK(power_well_id);
874 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
875
876 mutex_lock(&dev_priv->rps.hw_lock);
877
878 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
879 /*
880 * We only ever set the power-on and power-gate states, anything
881 * else is unexpected.
882 */
883 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
884 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
885 if (state == ctrl)
886 enabled = true;
887
888 /*
889 * A transient state at this point would mean some unexpected party
890 * is poking at the power controls too.
891 */
892 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
893 WARN_ON(ctrl != state);
894
895 mutex_unlock(&dev_priv->rps.hw_lock);
896
897 return enabled;
898 }
899
900 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
901 {
902 enum pipe pipe;
903
904 /*
905 * Enable the CRI clock source so we can get at the
906 * display and the reference clock for VGA
907 * hotplug / manual detection. Supposedly DSI also
908 * needs the ref clock up and running.
909 *
910 * CHV DPLL B/C have some issues if VGA mode is enabled.
911 */
912 for_each_pipe(dev_priv->dev, pipe) {
913 u32 val = I915_READ(DPLL(pipe));
914
915 val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
916 if (pipe != PIPE_A)
917 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
918
919 I915_WRITE(DPLL(pipe), val);
920 }
921
922 spin_lock_irq(&dev_priv->irq_lock);
923 valleyview_enable_display_irqs(dev_priv);
924 spin_unlock_irq(&dev_priv->irq_lock);
925
926 /*
927 * During driver initialization/resume we can avoid restoring the
928 * part of the HW/SW state that will be inited anyway explicitly.
929 */
930 if (dev_priv->power_domains.initializing)
931 return;
932
933 intel_hpd_init(dev_priv);
934
935 i915_redisable_vga_power_on(dev_priv->dev);
936 }
937
938 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
939 {
940 spin_lock_irq(&dev_priv->irq_lock);
941 valleyview_disable_display_irqs(dev_priv);
942 spin_unlock_irq(&dev_priv->irq_lock);
943
944 vlv_power_sequencer_reset(dev_priv);
945 }
946
947 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
948 struct i915_power_well *power_well)
949 {
950 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
951
952 vlv_set_power_well(dev_priv, power_well, true);
953
954 vlv_display_power_well_init(dev_priv);
955 }
956
957 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
958 struct i915_power_well *power_well)
959 {
960 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
961
962 vlv_display_power_well_deinit(dev_priv);
963
964 vlv_set_power_well(dev_priv, power_well, false);
965 }
966
967 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
968 struct i915_power_well *power_well)
969 {
970 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
971
972 /* since ref/cri clock was enabled */
973 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
974
975 vlv_set_power_well(dev_priv, power_well, true);
976
977 /*
978 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
979 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
980 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
981 * b. The other bits such as sfr settings / modesel may all
982 * be set to 0.
983 *
984 * This should only be done on init and resume from S3 with
985 * both PLLs disabled, or we risk losing DPIO and PLL
986 * synchronization.
987 */
988 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
989 }
990
991 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
992 struct i915_power_well *power_well)
993 {
994 enum pipe pipe;
995
996 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
997
998 for_each_pipe(dev_priv, pipe)
999 assert_pll_disabled(dev_priv, pipe);
1000
1001 /* Assert common reset */
1002 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1003
1004 vlv_set_power_well(dev_priv, power_well, false);
1005 }
1006
1007 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1008
1009 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1010 int power_well_id)
1011 {
1012 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1013 int i;
1014
1015 for (i = 0; i < power_domains->power_well_count; i++) {
1016 struct i915_power_well *power_well;
1017
1018 power_well = &power_domains->power_wells[i];
1019 if (power_well->data == power_well_id)
1020 return power_well;
1021 }
1022
1023 return NULL;
1024 }
1025
1026 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1027
1028 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1029 {
1030 struct i915_power_well *cmn_bc =
1031 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1032 struct i915_power_well *cmn_d =
1033 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1034 u32 phy_control = dev_priv->chv_phy_control;
1035 u32 phy_status = 0;
1036 u32 phy_status_mask = 0xffffffff;
1037 u32 tmp;
1038
1039 /*
1040 * The BIOS can leave the PHY is some weird state
1041 * where it doesn't fully power down some parts.
1042 * Disable the asserts until the PHY has been fully
1043 * reset (ie. the power well has been disabled at
1044 * least once).
1045 */
1046 if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1047 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1048 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1049 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1050 PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1051 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1052 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1053
1054 if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1055 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1056 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1057 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1058
1059 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1060 phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1061
1062 /* this assumes override is only used to enable lanes */
1063 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1064 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1065
1066 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1067 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1068
1069 /* CL1 is on whenever anything is on in either channel */
1070 if (BITS_SET(phy_control,
1071 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1072 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1073 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1074
1075 /*
1076 * The DPLLB check accounts for the pipe B + port A usage
1077 * with CL2 powered up but all the lanes in the second channel
1078 * powered down.
1079 */
1080 if (BITS_SET(phy_control,
1081 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1082 (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1083 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1084
1085 if (BITS_SET(phy_control,
1086 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1087 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1088 if (BITS_SET(phy_control,
1089 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1090 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1091
1092 if (BITS_SET(phy_control,
1093 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1094 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1095 if (BITS_SET(phy_control,
1096 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1097 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1098 }
1099
1100 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1101 phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1102
1103 /* this assumes override is only used to enable lanes */
1104 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1105 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1106
1107 if (BITS_SET(phy_control,
1108 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1109 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1110
1111 if (BITS_SET(phy_control,
1112 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1113 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1114 if (BITS_SET(phy_control,
1115 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1116 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1117 }
1118
1119 phy_status &= phy_status_mask;
1120
1121 /*
1122 * The PHY may be busy with some initial calibration and whatnot,
1123 * so the power state can take a while to actually change.
1124 */
1125 if (wait_for((tmp = I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask) == phy_status, 10))
1126 WARN(phy_status != tmp,
1127 "Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1128 tmp, phy_status, dev_priv->chv_phy_control);
1129 }
1130
1131 #undef BITS_SET
1132
1133 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1134 struct i915_power_well *power_well)
1135 {
1136 enum dpio_phy phy;
1137 enum pipe pipe;
1138 uint32_t tmp;
1139
1140 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1141 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1142
1143 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1144 pipe = PIPE_A;
1145 phy = DPIO_PHY0;
1146 } else {
1147 pipe = PIPE_C;
1148 phy = DPIO_PHY1;
1149 }
1150
1151 /* since ref/cri clock was enabled */
1152 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1153 vlv_set_power_well(dev_priv, power_well, true);
1154
1155 /* Poll for phypwrgood signal */
1156 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
1157 DRM_ERROR("Display PHY %d is not power up\n", phy);
1158
1159 mutex_lock(&dev_priv->sb_lock);
1160
1161 /* Enable dynamic power down */
1162 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1163 tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1164 DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1165 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1166
1167 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1168 tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1169 tmp |= DPIO_DYNPWRDOWNEN_CH1;
1170 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1171 } else {
1172 /*
1173 * Force the non-existing CL2 off. BXT does this
1174 * too, so maybe it saves some power even though
1175 * CL2 doesn't exist?
1176 */
1177 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1178 tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1179 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1180 }
1181
1182 mutex_unlock(&dev_priv->sb_lock);
1183
1184 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1185 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1186
1187 DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1188 phy, dev_priv->chv_phy_control);
1189
1190 assert_chv_phy_status(dev_priv);
1191 }
1192
1193 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1194 struct i915_power_well *power_well)
1195 {
1196 enum dpio_phy phy;
1197
1198 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1199 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1200
1201 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1202 phy = DPIO_PHY0;
1203 assert_pll_disabled(dev_priv, PIPE_A);
1204 assert_pll_disabled(dev_priv, PIPE_B);
1205 } else {
1206 phy = DPIO_PHY1;
1207 assert_pll_disabled(dev_priv, PIPE_C);
1208 }
1209
1210 dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1211 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1212
1213 vlv_set_power_well(dev_priv, power_well, false);
1214
1215 DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1216 phy, dev_priv->chv_phy_control);
1217
1218 /* PHY is fully reset now, so we can enable the PHY state asserts */
1219 dev_priv->chv_phy_assert[phy] = true;
1220
1221 assert_chv_phy_status(dev_priv);
1222 }
1223
1224 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1225 enum dpio_channel ch, bool override, unsigned int mask)
1226 {
1227 enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1228 u32 reg, val, expected, actual;
1229
1230 /*
1231 * The BIOS can leave the PHY is some weird state
1232 * where it doesn't fully power down some parts.
1233 * Disable the asserts until the PHY has been fully
1234 * reset (ie. the power well has been disabled at
1235 * least once).
1236 */
1237 if (!dev_priv->chv_phy_assert[phy])
1238 return;
1239
1240 if (ch == DPIO_CH0)
1241 reg = _CHV_CMN_DW0_CH0;
1242 else
1243 reg = _CHV_CMN_DW6_CH1;
1244
1245 mutex_lock(&dev_priv->sb_lock);
1246 val = vlv_dpio_read(dev_priv, pipe, reg);
1247 mutex_unlock(&dev_priv->sb_lock);
1248
1249 /*
1250 * This assumes !override is only used when the port is disabled.
1251 * All lanes should power down even without the override when
1252 * the port is disabled.
1253 */
1254 if (!override || mask == 0xf) {
1255 expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1256 /*
1257 * If CH1 common lane is not active anymore
1258 * (eg. for pipe B DPLL) the entire channel will
1259 * shut down, which causes the common lane registers
1260 * to read as 0. That means we can't actually check
1261 * the lane power down status bits, but as the entire
1262 * register reads as 0 it's a good indication that the
1263 * channel is indeed entirely powered down.
1264 */
1265 if (ch == DPIO_CH1 && val == 0)
1266 expected = 0;
1267 } else if (mask != 0x0) {
1268 expected = DPIO_ANYDL_POWERDOWN;
1269 } else {
1270 expected = 0;
1271 }
1272
1273 if (ch == DPIO_CH0)
1274 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1275 else
1276 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1277 actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1278
1279 WARN(actual != expected,
1280 "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1281 !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1282 !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1283 reg, val);
1284 }
1285
1286 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1287 enum dpio_channel ch, bool override)
1288 {
1289 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1290 bool was_override;
1291
1292 mutex_lock(&power_domains->lock);
1293
1294 was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1295
1296 if (override == was_override)
1297 goto out;
1298
1299 if (override)
1300 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1301 else
1302 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1303
1304 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1305
1306 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1307 phy, ch, dev_priv->chv_phy_control);
1308
1309 assert_chv_phy_status(dev_priv);
1310
1311 out:
1312 mutex_unlock(&power_domains->lock);
1313
1314 return was_override;
1315 }
1316
1317 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1318 bool override, unsigned int mask)
1319 {
1320 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1321 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1322 enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1323 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1324
1325 mutex_lock(&power_domains->lock);
1326
1327 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1328 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1329
1330 if (override)
1331 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1332 else
1333 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1334
1335 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1336
1337 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1338 phy, ch, mask, dev_priv->chv_phy_control);
1339
1340 assert_chv_phy_status(dev_priv);
1341
1342 assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1343
1344 mutex_unlock(&power_domains->lock);
1345 }
1346
1347 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1348 struct i915_power_well *power_well)
1349 {
1350 enum pipe pipe = power_well->data;
1351 bool enabled;
1352 u32 state, ctrl;
1353
1354 mutex_lock(&dev_priv->rps.hw_lock);
1355
1356 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1357 /*
1358 * We only ever set the power-on and power-gate states, anything
1359 * else is unexpected.
1360 */
1361 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1362 enabled = state == DP_SSS_PWR_ON(pipe);
1363
1364 /*
1365 * A transient state at this point would mean some unexpected party
1366 * is poking at the power controls too.
1367 */
1368 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1369 WARN_ON(ctrl << 16 != state);
1370
1371 mutex_unlock(&dev_priv->rps.hw_lock);
1372
1373 return enabled;
1374 }
1375
1376 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1377 struct i915_power_well *power_well,
1378 bool enable)
1379 {
1380 enum pipe pipe = power_well->data;
1381 u32 state;
1382 u32 ctrl;
1383
1384 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1385
1386 mutex_lock(&dev_priv->rps.hw_lock);
1387
1388 #define COND \
1389 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1390
1391 if (COND)
1392 goto out;
1393
1394 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1395 ctrl &= ~DP_SSC_MASK(pipe);
1396 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1397 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1398
1399 if (wait_for(COND, 100))
1400 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1401 state,
1402 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1403
1404 #undef COND
1405
1406 out:
1407 mutex_unlock(&dev_priv->rps.hw_lock);
1408 }
1409
1410 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1411 struct i915_power_well *power_well)
1412 {
1413 WARN_ON_ONCE(power_well->data != PIPE_A);
1414
1415 chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1416 }
1417
1418 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1419 struct i915_power_well *power_well)
1420 {
1421 WARN_ON_ONCE(power_well->data != PIPE_A);
1422
1423 chv_set_pipe_power_well(dev_priv, power_well, true);
1424
1425 vlv_display_power_well_init(dev_priv);
1426 }
1427
1428 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1429 struct i915_power_well *power_well)
1430 {
1431 WARN_ON_ONCE(power_well->data != PIPE_A);
1432
1433 vlv_display_power_well_deinit(dev_priv);
1434
1435 chv_set_pipe_power_well(dev_priv, power_well, false);
1436 }
1437
1438 static void
1439 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1440 enum intel_display_power_domain domain)
1441 {
1442 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1443 struct i915_power_well *power_well;
1444 int i;
1445
1446 for_each_power_well(i, power_well, BIT(domain), power_domains) {
1447 if (!power_well->count++)
1448 intel_power_well_enable(dev_priv, power_well);
1449 }
1450
1451 power_domains->domain_use_count[domain]++;
1452 }
1453
1454 /**
1455 * intel_display_power_get - grab a power domain reference
1456 * @dev_priv: i915 device instance
1457 * @domain: power domain to reference
1458 *
1459 * This function grabs a power domain reference for @domain and ensures that the
1460 * power domain and all its parents are powered up. Therefore users should only
1461 * grab a reference to the innermost power domain they need.
1462 *
1463 * Any power domain reference obtained by this function must have a symmetric
1464 * call to intel_display_power_put() to release the reference again.
1465 */
1466 void intel_display_power_get(struct drm_i915_private *dev_priv,
1467 enum intel_display_power_domain domain)
1468 {
1469 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1470
1471 intel_runtime_pm_get(dev_priv);
1472
1473 mutex_lock(&power_domains->lock);
1474
1475 __intel_display_power_get_domain(dev_priv, domain);
1476
1477 mutex_unlock(&power_domains->lock);
1478 }
1479
1480 /**
1481 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1482 * @dev_priv: i915 device instance
1483 * @domain: power domain to reference
1484 *
1485 * This function grabs a power domain reference for @domain and ensures that the
1486 * power domain and all its parents are powered up. Therefore users should only
1487 * grab a reference to the innermost power domain they need.
1488 *
1489 * Any power domain reference obtained by this function must have a symmetric
1490 * call to intel_display_power_put() to release the reference again.
1491 */
1492 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1493 enum intel_display_power_domain domain)
1494 {
1495 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1496 bool is_enabled;
1497
1498 if (!intel_runtime_pm_get_if_in_use(dev_priv))
1499 return false;
1500
1501 mutex_lock(&power_domains->lock);
1502
1503 if (__intel_display_power_is_enabled(dev_priv, domain)) {
1504 __intel_display_power_get_domain(dev_priv, domain);
1505 is_enabled = true;
1506 } else {
1507 is_enabled = false;
1508 }
1509
1510 mutex_unlock(&power_domains->lock);
1511
1512 if (!is_enabled)
1513 intel_runtime_pm_put(dev_priv);
1514
1515 return is_enabled;
1516 }
1517
1518 /**
1519 * intel_display_power_put - release a power domain reference
1520 * @dev_priv: i915 device instance
1521 * @domain: power domain to reference
1522 *
1523 * This function drops the power domain reference obtained by
1524 * intel_display_power_get() and might power down the corresponding hardware
1525 * block right away if this is the last reference.
1526 */
1527 void intel_display_power_put(struct drm_i915_private *dev_priv,
1528 enum intel_display_power_domain domain)
1529 {
1530 struct i915_power_domains *power_domains;
1531 struct i915_power_well *power_well;
1532 int i;
1533
1534 power_domains = &dev_priv->power_domains;
1535
1536 mutex_lock(&power_domains->lock);
1537
1538 WARN(!power_domains->domain_use_count[domain],
1539 "Use count on domain %s is already zero\n",
1540 intel_display_power_domain_str(domain));
1541 power_domains->domain_use_count[domain]--;
1542
1543 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
1544 WARN(!power_well->count,
1545 "Use count on power well %s is already zero",
1546 power_well->name);
1547
1548 if (!--power_well->count)
1549 intel_power_well_disable(dev_priv, power_well);
1550 }
1551
1552 mutex_unlock(&power_domains->lock);
1553
1554 intel_runtime_pm_put(dev_priv);
1555 }
1556
1557 #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
1558 BIT(POWER_DOMAIN_PIPE_A) | \
1559 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
1560 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
1561 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1562 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1563 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1564 BIT(POWER_DOMAIN_PORT_CRT) | \
1565 BIT(POWER_DOMAIN_PLLS) | \
1566 BIT(POWER_DOMAIN_AUX_A) | \
1567 BIT(POWER_DOMAIN_AUX_B) | \
1568 BIT(POWER_DOMAIN_AUX_C) | \
1569 BIT(POWER_DOMAIN_AUX_D) | \
1570 BIT(POWER_DOMAIN_GMBUS) | \
1571 BIT(POWER_DOMAIN_INIT))
1572 #define HSW_DISPLAY_POWER_DOMAINS ( \
1573 (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
1574 BIT(POWER_DOMAIN_INIT))
1575
1576 #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
1577 HSW_ALWAYS_ON_POWER_DOMAINS | \
1578 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
1579 #define BDW_DISPLAY_POWER_DOMAINS ( \
1580 (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
1581 BIT(POWER_DOMAIN_INIT))
1582
1583 #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
1584 #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
1585
1586 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
1587 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1588 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1589 BIT(POWER_DOMAIN_PORT_CRT) | \
1590 BIT(POWER_DOMAIN_AUX_B) | \
1591 BIT(POWER_DOMAIN_AUX_C) | \
1592 BIT(POWER_DOMAIN_INIT))
1593
1594 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
1595 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1596 BIT(POWER_DOMAIN_AUX_B) | \
1597 BIT(POWER_DOMAIN_INIT))
1598
1599 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
1600 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1601 BIT(POWER_DOMAIN_AUX_B) | \
1602 BIT(POWER_DOMAIN_INIT))
1603
1604 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
1605 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1606 BIT(POWER_DOMAIN_AUX_C) | \
1607 BIT(POWER_DOMAIN_INIT))
1608
1609 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
1610 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1611 BIT(POWER_DOMAIN_AUX_C) | \
1612 BIT(POWER_DOMAIN_INIT))
1613
1614 #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
1615 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1616 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1617 BIT(POWER_DOMAIN_AUX_B) | \
1618 BIT(POWER_DOMAIN_AUX_C) | \
1619 BIT(POWER_DOMAIN_INIT))
1620
1621 #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
1622 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1623 BIT(POWER_DOMAIN_AUX_D) | \
1624 BIT(POWER_DOMAIN_INIT))
1625
1626 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1627 .sync_hw = i9xx_always_on_power_well_noop,
1628 .enable = i9xx_always_on_power_well_noop,
1629 .disable = i9xx_always_on_power_well_noop,
1630 .is_enabled = i9xx_always_on_power_well_enabled,
1631 };
1632
1633 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1634 .sync_hw = chv_pipe_power_well_sync_hw,
1635 .enable = chv_pipe_power_well_enable,
1636 .disable = chv_pipe_power_well_disable,
1637 .is_enabled = chv_pipe_power_well_enabled,
1638 };
1639
1640 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1641 .sync_hw = vlv_power_well_sync_hw,
1642 .enable = chv_dpio_cmn_power_well_enable,
1643 .disable = chv_dpio_cmn_power_well_disable,
1644 .is_enabled = vlv_power_well_enabled,
1645 };
1646
1647 static struct i915_power_well i9xx_always_on_power_well[] = {
1648 {
1649 .name = "always-on",
1650 .always_on = 1,
1651 .domains = POWER_DOMAIN_MASK,
1652 .ops = &i9xx_always_on_power_well_ops,
1653 },
1654 };
1655
1656 static const struct i915_power_well_ops hsw_power_well_ops = {
1657 .sync_hw = hsw_power_well_sync_hw,
1658 .enable = hsw_power_well_enable,
1659 .disable = hsw_power_well_disable,
1660 .is_enabled = hsw_power_well_enabled,
1661 };
1662
1663 static const struct i915_power_well_ops skl_power_well_ops = {
1664 .sync_hw = skl_power_well_sync_hw,
1665 .enable = skl_power_well_enable,
1666 .disable = skl_power_well_disable,
1667 .is_enabled = skl_power_well_enabled,
1668 };
1669
1670 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1671 .sync_hw = gen9_dc_off_power_well_sync_hw,
1672 .enable = gen9_dc_off_power_well_enable,
1673 .disable = gen9_dc_off_power_well_disable,
1674 .is_enabled = gen9_dc_off_power_well_enabled,
1675 };
1676
1677 static struct i915_power_well hsw_power_wells[] = {
1678 {
1679 .name = "always-on",
1680 .always_on = 1,
1681 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
1682 .ops = &i9xx_always_on_power_well_ops,
1683 },
1684 {
1685 .name = "display",
1686 .domains = HSW_DISPLAY_POWER_DOMAINS,
1687 .ops = &hsw_power_well_ops,
1688 },
1689 };
1690
1691 static struct i915_power_well bdw_power_wells[] = {
1692 {
1693 .name = "always-on",
1694 .always_on = 1,
1695 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
1696 .ops = &i9xx_always_on_power_well_ops,
1697 },
1698 {
1699 .name = "display",
1700 .domains = BDW_DISPLAY_POWER_DOMAINS,
1701 .ops = &hsw_power_well_ops,
1702 },
1703 };
1704
1705 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1706 .sync_hw = vlv_power_well_sync_hw,
1707 .enable = vlv_display_power_well_enable,
1708 .disable = vlv_display_power_well_disable,
1709 .is_enabled = vlv_power_well_enabled,
1710 };
1711
1712 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1713 .sync_hw = vlv_power_well_sync_hw,
1714 .enable = vlv_dpio_cmn_power_well_enable,
1715 .disable = vlv_dpio_cmn_power_well_disable,
1716 .is_enabled = vlv_power_well_enabled,
1717 };
1718
1719 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1720 .sync_hw = vlv_power_well_sync_hw,
1721 .enable = vlv_power_well_enable,
1722 .disable = vlv_power_well_disable,
1723 .is_enabled = vlv_power_well_enabled,
1724 };
1725
1726 static struct i915_power_well vlv_power_wells[] = {
1727 {
1728 .name = "always-on",
1729 .always_on = 1,
1730 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1731 .ops = &i9xx_always_on_power_well_ops,
1732 .data = PUNIT_POWER_WELL_ALWAYS_ON,
1733 },
1734 {
1735 .name = "display",
1736 .domains = VLV_DISPLAY_POWER_DOMAINS,
1737 .data = PUNIT_POWER_WELL_DISP2D,
1738 .ops = &vlv_display_power_well_ops,
1739 },
1740 {
1741 .name = "dpio-tx-b-01",
1742 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1743 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1744 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1745 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1746 .ops = &vlv_dpio_power_well_ops,
1747 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1748 },
1749 {
1750 .name = "dpio-tx-b-23",
1751 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1752 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1753 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1754 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1755 .ops = &vlv_dpio_power_well_ops,
1756 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
1757 },
1758 {
1759 .name = "dpio-tx-c-01",
1760 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1761 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1762 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1763 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1764 .ops = &vlv_dpio_power_well_ops,
1765 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
1766 },
1767 {
1768 .name = "dpio-tx-c-23",
1769 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1770 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1771 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1772 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1773 .ops = &vlv_dpio_power_well_ops,
1774 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
1775 },
1776 {
1777 .name = "dpio-common",
1778 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
1779 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1780 .ops = &vlv_dpio_cmn_power_well_ops,
1781 },
1782 };
1783
1784 static struct i915_power_well chv_power_wells[] = {
1785 {
1786 .name = "always-on",
1787 .always_on = 1,
1788 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1789 .ops = &i9xx_always_on_power_well_ops,
1790 },
1791 {
1792 .name = "display",
1793 /*
1794 * Pipe A power well is the new disp2d well. Pipe B and C
1795 * power wells don't actually exist. Pipe A power well is
1796 * required for any pipe to work.
1797 */
1798 .domains = VLV_DISPLAY_POWER_DOMAINS,
1799 .data = PIPE_A,
1800 .ops = &chv_pipe_power_well_ops,
1801 },
1802 {
1803 .name = "dpio-common-bc",
1804 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
1805 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1806 .ops = &chv_dpio_cmn_power_well_ops,
1807 },
1808 {
1809 .name = "dpio-common-d",
1810 .domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
1811 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
1812 .ops = &chv_dpio_cmn_power_well_ops,
1813 },
1814 };
1815
1816 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
1817 int power_well_id)
1818 {
1819 struct i915_power_well *power_well;
1820 bool ret;
1821
1822 power_well = lookup_power_well(dev_priv, power_well_id);
1823 ret = power_well->ops->is_enabled(dev_priv, power_well);
1824
1825 return ret;
1826 }
1827
1828 static struct i915_power_well skl_power_wells[] = {
1829 {
1830 .name = "always-on",
1831 .always_on = 1,
1832 .domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1833 .ops = &i9xx_always_on_power_well_ops,
1834 .data = SKL_DISP_PW_ALWAYS_ON,
1835 },
1836 {
1837 .name = "power well 1",
1838 /* Handled by the DMC firmware */
1839 .domains = 0,
1840 .ops = &skl_power_well_ops,
1841 .data = SKL_DISP_PW_1,
1842 },
1843 {
1844 .name = "MISC IO power well",
1845 /* Handled by the DMC firmware */
1846 .domains = 0,
1847 .ops = &skl_power_well_ops,
1848 .data = SKL_DISP_PW_MISC_IO,
1849 },
1850 {
1851 .name = "DC off",
1852 .domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
1853 .ops = &gen9_dc_off_power_well_ops,
1854 .data = SKL_DISP_PW_DC_OFF,
1855 },
1856 {
1857 .name = "power well 2",
1858 .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1859 .ops = &skl_power_well_ops,
1860 .data = SKL_DISP_PW_2,
1861 },
1862 {
1863 .name = "DDI A/E power well",
1864 .domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
1865 .ops = &skl_power_well_ops,
1866 .data = SKL_DISP_PW_DDI_A_E,
1867 },
1868 {
1869 .name = "DDI B power well",
1870 .domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
1871 .ops = &skl_power_well_ops,
1872 .data = SKL_DISP_PW_DDI_B,
1873 },
1874 {
1875 .name = "DDI C power well",
1876 .domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
1877 .ops = &skl_power_well_ops,
1878 .data = SKL_DISP_PW_DDI_C,
1879 },
1880 {
1881 .name = "DDI D power well",
1882 .domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
1883 .ops = &skl_power_well_ops,
1884 .data = SKL_DISP_PW_DDI_D,
1885 },
1886 };
1887
1888 void skl_pw1_misc_io_init(struct drm_i915_private *dev_priv)
1889 {
1890 struct i915_power_well *well;
1891
1892 if (!(IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)))
1893 return;
1894
1895 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1896 intel_power_well_enable(dev_priv, well);
1897
1898 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1899 intel_power_well_enable(dev_priv, well);
1900 }
1901
1902 void skl_pw1_misc_io_fini(struct drm_i915_private *dev_priv)
1903 {
1904 struct i915_power_well *well;
1905
1906 if (!(IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)))
1907 return;
1908
1909 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1910 intel_power_well_disable(dev_priv, well);
1911
1912 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1913 intel_power_well_disable(dev_priv, well);
1914 }
1915
1916 static struct i915_power_well bxt_power_wells[] = {
1917 {
1918 .name = "always-on",
1919 .always_on = 1,
1920 .domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1921 .ops = &i9xx_always_on_power_well_ops,
1922 },
1923 {
1924 .name = "power well 1",
1925 .domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS,
1926 .ops = &skl_power_well_ops,
1927 .data = SKL_DISP_PW_1,
1928 },
1929 {
1930 .name = "DC off",
1931 .domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
1932 .ops = &gen9_dc_off_power_well_ops,
1933 .data = SKL_DISP_PW_DC_OFF,
1934 },
1935 {
1936 .name = "power well 2",
1937 .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1938 .ops = &skl_power_well_ops,
1939 .data = SKL_DISP_PW_2,
1940 },
1941 };
1942
1943 static int
1944 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
1945 int disable_power_well)
1946 {
1947 if (disable_power_well >= 0)
1948 return !!disable_power_well;
1949
1950 if (IS_BROXTON(dev_priv)) {
1951 DRM_DEBUG_KMS("Disabling display power well support\n");
1952 return 0;
1953 }
1954
1955 return 1;
1956 }
1957
1958 #define set_power_wells(power_domains, __power_wells) ({ \
1959 (power_domains)->power_wells = (__power_wells); \
1960 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
1961 })
1962
1963 /**
1964 * intel_power_domains_init - initializes the power domain structures
1965 * @dev_priv: i915 device instance
1966 *
1967 * Initializes the power domain structures for @dev_priv depending upon the
1968 * supported platform.
1969 */
1970 int intel_power_domains_init(struct drm_i915_private *dev_priv)
1971 {
1972 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1973
1974 i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
1975 i915.disable_power_well);
1976
1977 BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
1978
1979 mutex_init(&power_domains->lock);
1980
1981 /*
1982 * The enabling order will be from lower to higher indexed wells,
1983 * the disabling order is reversed.
1984 */
1985 if (IS_HASWELL(dev_priv->dev)) {
1986 set_power_wells(power_domains, hsw_power_wells);
1987 } else if (IS_BROADWELL(dev_priv->dev)) {
1988 set_power_wells(power_domains, bdw_power_wells);
1989 } else if (IS_SKYLAKE(dev_priv->dev) || IS_KABYLAKE(dev_priv->dev)) {
1990 set_power_wells(power_domains, skl_power_wells);
1991 } else if (IS_BROXTON(dev_priv->dev)) {
1992 set_power_wells(power_domains, bxt_power_wells);
1993 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1994 set_power_wells(power_domains, chv_power_wells);
1995 } else if (IS_VALLEYVIEW(dev_priv->dev)) {
1996 set_power_wells(power_domains, vlv_power_wells);
1997 } else {
1998 set_power_wells(power_domains, i9xx_always_on_power_well);
1999 }
2000
2001 return 0;
2002 }
2003
2004 /**
2005 * intel_power_domains_fini - finalizes the power domain structures
2006 * @dev_priv: i915 device instance
2007 *
2008 * Finalizes the power domain structures for @dev_priv depending upon the
2009 * supported platform. This function also disables runtime pm and ensures that
2010 * the device stays powered up so that the driver can be reloaded.
2011 */
2012 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2013 {
2014 struct device *device = &dev_priv->dev->pdev->dev;
2015
2016 /*
2017 * The i915.ko module is still not prepared to be loaded when
2018 * the power well is not enabled, so just enable it in case
2019 * we're going to unload/reload.
2020 * The following also reacquires the RPM reference the core passed
2021 * to the driver during loading, which is dropped in
2022 * intel_runtime_pm_enable(). We have to hand back the control of the
2023 * device to the core with this reference held.
2024 */
2025 intel_display_set_init_power(dev_priv, true);
2026
2027 /* Remove the refcount we took to keep power well support disabled. */
2028 if (!i915.disable_power_well)
2029 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2030
2031 /*
2032 * Remove the refcount we took in intel_runtime_pm_enable() in case
2033 * the platform doesn't support runtime PM.
2034 */
2035 if (!HAS_RUNTIME_PM(dev_priv))
2036 pm_runtime_put(device);
2037 }
2038
2039 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2040 {
2041 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2042 struct i915_power_well *power_well;
2043 int i;
2044
2045 mutex_lock(&power_domains->lock);
2046 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2047 power_well->ops->sync_hw(dev_priv, power_well);
2048 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2049 power_well);
2050 }
2051 mutex_unlock(&power_domains->lock);
2052 }
2053
2054 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2055 bool resume)
2056 {
2057 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2058 uint32_t val;
2059
2060 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2061
2062 /* enable PCH reset handshake */
2063 val = I915_READ(HSW_NDE_RSTWRN_OPT);
2064 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2065
2066 /* enable PG1 and Misc I/O */
2067 mutex_lock(&power_domains->lock);
2068 skl_pw1_misc_io_init(dev_priv);
2069 mutex_unlock(&power_domains->lock);
2070
2071 if (!resume)
2072 return;
2073
2074 skl_init_cdclk(dev_priv);
2075
2076 if (dev_priv->csr.dmc_payload)
2077 intel_csr_load_program(dev_priv);
2078 }
2079
2080 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2081 {
2082 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2083
2084 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2085
2086 skl_uninit_cdclk(dev_priv);
2087
2088 /* The spec doesn't call for removing the reset handshake flag */
2089 /* disable PG1 and Misc I/O */
2090 mutex_lock(&power_domains->lock);
2091 skl_pw1_misc_io_fini(dev_priv);
2092 mutex_unlock(&power_domains->lock);
2093 }
2094
2095 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2096 {
2097 struct i915_power_well *cmn_bc =
2098 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2099 struct i915_power_well *cmn_d =
2100 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2101
2102 /*
2103 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2104 * workaround never ever read DISPLAY_PHY_CONTROL, and
2105 * instead maintain a shadow copy ourselves. Use the actual
2106 * power well state and lane status to reconstruct the
2107 * expected initial value.
2108 */
2109 dev_priv->chv_phy_control =
2110 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2111 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2112 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2113 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2114 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2115
2116 /*
2117 * If all lanes are disabled we leave the override disabled
2118 * with all power down bits cleared to match the state we
2119 * would use after disabling the port. Otherwise enable the
2120 * override and set the lane powerdown bits accding to the
2121 * current lane status.
2122 */
2123 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2124 uint32_t status = I915_READ(DPLL(PIPE_A));
2125 unsigned int mask;
2126
2127 mask = status & DPLL_PORTB_READY_MASK;
2128 if (mask == 0xf)
2129 mask = 0x0;
2130 else
2131 dev_priv->chv_phy_control |=
2132 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2133
2134 dev_priv->chv_phy_control |=
2135 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2136
2137 mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2138 if (mask == 0xf)
2139 mask = 0x0;
2140 else
2141 dev_priv->chv_phy_control |=
2142 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2143
2144 dev_priv->chv_phy_control |=
2145 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2146
2147 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2148
2149 dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2150 } else {
2151 dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2152 }
2153
2154 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2155 uint32_t status = I915_READ(DPIO_PHY_STATUS);
2156 unsigned int mask;
2157
2158 mask = status & DPLL_PORTD_READY_MASK;
2159
2160 if (mask == 0xf)
2161 mask = 0x0;
2162 else
2163 dev_priv->chv_phy_control |=
2164 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2165
2166 dev_priv->chv_phy_control |=
2167 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2168
2169 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2170
2171 dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2172 } else {
2173 dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2174 }
2175
2176 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2177
2178 DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2179 dev_priv->chv_phy_control);
2180 }
2181
2182 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2183 {
2184 struct i915_power_well *cmn =
2185 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2186 struct i915_power_well *disp2d =
2187 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2188
2189 /* If the display might be already active skip this */
2190 if (cmn->ops->is_enabled(dev_priv, cmn) &&
2191 disp2d->ops->is_enabled(dev_priv, disp2d) &&
2192 I915_READ(DPIO_CTL) & DPIO_CMNRST)
2193 return;
2194
2195 DRM_DEBUG_KMS("toggling display PHY side reset\n");
2196
2197 /* cmnlane needs DPLL registers */
2198 disp2d->ops->enable(dev_priv, disp2d);
2199
2200 /*
2201 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2202 * Need to assert and de-assert PHY SB reset by gating the
2203 * common lane power, then un-gating it.
2204 * Simply ungating isn't enough to reset the PHY enough to get
2205 * ports and lanes running.
2206 */
2207 cmn->ops->disable(dev_priv, cmn);
2208 }
2209
2210 /**
2211 * intel_power_domains_init_hw - initialize hardware power domain state
2212 * @dev_priv: i915 device instance
2213 *
2214 * This function initializes the hardware power domain state and enables all
2215 * power domains using intel_display_set_init_power().
2216 */
2217 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2218 {
2219 struct drm_device *dev = dev_priv->dev;
2220 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2221
2222 power_domains->initializing = true;
2223
2224 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2225 skl_display_core_init(dev_priv, resume);
2226 } else if (IS_CHERRYVIEW(dev)) {
2227 mutex_lock(&power_domains->lock);
2228 chv_phy_control_init(dev_priv);
2229 mutex_unlock(&power_domains->lock);
2230 } else if (IS_VALLEYVIEW(dev)) {
2231 mutex_lock(&power_domains->lock);
2232 vlv_cmnlane_wa(dev_priv);
2233 mutex_unlock(&power_domains->lock);
2234 }
2235
2236 /* For now, we need the power well to be always enabled. */
2237 intel_display_set_init_power(dev_priv, true);
2238 /* Disable power support if the user asked so. */
2239 if (!i915.disable_power_well)
2240 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2241 intel_power_domains_sync_hw(dev_priv);
2242 power_domains->initializing = false;
2243 }
2244
2245 /**
2246 * intel_power_domains_suspend - suspend power domain state
2247 * @dev_priv: i915 device instance
2248 *
2249 * This function prepares the hardware power domain state before entering
2250 * system suspend. It must be paired with intel_power_domains_init_hw().
2251 */
2252 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2253 {
2254 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2255 skl_display_core_uninit(dev_priv);
2256
2257 /*
2258 * Even if power well support was disabled we still want to disable
2259 * power wells while we are system suspended.
2260 */
2261 if (!i915.disable_power_well)
2262 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2263 }
2264
2265 /**
2266 * intel_runtime_pm_get - grab a runtime pm reference
2267 * @dev_priv: i915 device instance
2268 *
2269 * This function grabs a device-level runtime pm reference (mostly used for GEM
2270 * code to ensure the GTT or GT is on) and ensures that it is powered up.
2271 *
2272 * Any runtime pm reference obtained by this function must have a symmetric
2273 * call to intel_runtime_pm_put() to release the reference again.
2274 */
2275 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2276 {
2277 struct drm_device *dev = dev_priv->dev;
2278 struct device *device = &dev->pdev->dev;
2279
2280 pm_runtime_get_sync(device);
2281
2282 atomic_inc(&dev_priv->pm.wakeref_count);
2283 assert_rpm_wakelock_held(dev_priv);
2284 }
2285
2286 /**
2287 * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2288 * @dev_priv: i915 device instance
2289 *
2290 * This function grabs a device-level runtime pm reference if the device is
2291 * already in use and ensures that it is powered up.
2292 *
2293 * Any runtime pm reference obtained by this function must have a symmetric
2294 * call to intel_runtime_pm_put() to release the reference again.
2295 */
2296 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2297 {
2298 struct drm_device *dev = dev_priv->dev;
2299 struct device *device = &dev->pdev->dev;
2300 int ret;
2301
2302 if (!IS_ENABLED(CONFIG_PM))
2303 return true;
2304
2305 ret = pm_runtime_get_if_in_use(device);
2306
2307 /*
2308 * In cases runtime PM is disabled by the RPM core and we get an
2309 * -EINVAL return value we are not supposed to call this function,
2310 * since the power state is undefined. This applies atm to the
2311 * late/early system suspend/resume handlers.
2312 */
2313 WARN_ON_ONCE(ret < 0);
2314 if (ret <= 0)
2315 return false;
2316
2317 atomic_inc(&dev_priv->pm.wakeref_count);
2318 assert_rpm_wakelock_held(dev_priv);
2319
2320 return true;
2321 }
2322
2323 /**
2324 * intel_runtime_pm_get_noresume - grab a runtime pm reference
2325 * @dev_priv: i915 device instance
2326 *
2327 * This function grabs a device-level runtime pm reference (mostly used for GEM
2328 * code to ensure the GTT or GT is on).
2329 *
2330 * It will _not_ power up the device but instead only check that it's powered
2331 * on. Therefore it is only valid to call this functions from contexts where
2332 * the device is known to be powered up and where trying to power it up would
2333 * result in hilarity and deadlocks. That pretty much means only the system
2334 * suspend/resume code where this is used to grab runtime pm references for
2335 * delayed setup down in work items.
2336 *
2337 * Any runtime pm reference obtained by this function must have a symmetric
2338 * call to intel_runtime_pm_put() to release the reference again.
2339 */
2340 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2341 {
2342 struct drm_device *dev = dev_priv->dev;
2343 struct device *device = &dev->pdev->dev;
2344
2345 assert_rpm_wakelock_held(dev_priv);
2346 pm_runtime_get_noresume(device);
2347
2348 atomic_inc(&dev_priv->pm.wakeref_count);
2349 }
2350
2351 /**
2352 * intel_runtime_pm_put - release a runtime pm reference
2353 * @dev_priv: i915 device instance
2354 *
2355 * This function drops the device-level runtime pm reference obtained by
2356 * intel_runtime_pm_get() and might power down the corresponding
2357 * hardware block right away if this is the last reference.
2358 */
2359 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2360 {
2361 struct drm_device *dev = dev_priv->dev;
2362 struct device *device = &dev->pdev->dev;
2363
2364 assert_rpm_wakelock_held(dev_priv);
2365 if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2366 atomic_inc(&dev_priv->pm.atomic_seq);
2367
2368 pm_runtime_mark_last_busy(device);
2369 pm_runtime_put_autosuspend(device);
2370 }
2371
2372 /**
2373 * intel_runtime_pm_enable - enable runtime pm
2374 * @dev_priv: i915 device instance
2375 *
2376 * This function enables runtime pm at the end of the driver load sequence.
2377 *
2378 * Note that this function does currently not enable runtime pm for the
2379 * subordinate display power domains. That is only done on the first modeset
2380 * using intel_display_set_init_power().
2381 */
2382 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2383 {
2384 struct drm_device *dev = dev_priv->dev;
2385 struct device *device = &dev->pdev->dev;
2386
2387 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2388 pm_runtime_mark_last_busy(device);
2389
2390 /*
2391 * Take a permanent reference to disable the RPM functionality and drop
2392 * it only when unloading the driver. Use the low level get/put helpers,
2393 * so the driver's own RPM reference tracking asserts also work on
2394 * platforms without RPM support.
2395 */
2396 if (!HAS_RUNTIME_PM(dev)) {
2397 pm_runtime_dont_use_autosuspend(device);
2398 pm_runtime_get_sync(device);
2399 } else {
2400 pm_runtime_use_autosuspend(device);
2401 }
2402
2403 /*
2404 * The core calls the driver load handler with an RPM reference held.
2405 * We drop that here and will reacquire it during unloading in
2406 * intel_power_domains_fini().
2407 */
2408 pm_runtime_put_autosuspend(device);
2409 }
2410
This page took 0.114082 seconds and 5 git commands to generate.