drm/i915: Store number of active engines in device info
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_runtime_pm.c
1 /*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 * Daniel Vetter <daniel.vetter@ffwll.ch>
26 *
27 */
28
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34
35 /**
36 * DOC: runtime pm
37 *
38 * The i915 driver supports dynamic enabling and disabling of entire hardware
39 * blocks at runtime. This is especially important on the display side where
40 * software is supposed to control many power gates manually on recent hardware,
41 * since on the GT side a lot of the power management is done by the hardware.
42 * But even there some manual control at the device level is required.
43 *
44 * Since i915 supports a diverse set of platforms with a unified codebase and
45 * hardware engineers just love to shuffle functionality around between power
46 * domains there's a sizeable amount of indirection required. This file provides
47 * generic functions to the driver for grabbing and releasing references for
48 * abstract power domains. It then maps those to the actual power wells
49 * present for a given platform.
50 */
51
52 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
53 for (i = 0; \
54 i < (power_domains)->power_well_count && \
55 ((power_well) = &(power_domains)->power_wells[i]); \
56 i++) \
57 for_each_if ((power_well)->domains & (domain_mask))
58
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 for (i = (power_domains)->power_well_count - 1; \
61 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 i--) \
63 for_each_if ((power_well)->domains & (domain_mask))
64
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 int power_well_id);
67
68 static struct i915_power_well *
69 lookup_power_well(struct drm_i915_private *dev_priv, int power_well_id);
70
71 const char *
72 intel_display_power_domain_str(enum intel_display_power_domain domain)
73 {
74 switch (domain) {
75 case POWER_DOMAIN_PIPE_A:
76 return "PIPE_A";
77 case POWER_DOMAIN_PIPE_B:
78 return "PIPE_B";
79 case POWER_DOMAIN_PIPE_C:
80 return "PIPE_C";
81 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
82 return "PIPE_A_PANEL_FITTER";
83 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
84 return "PIPE_B_PANEL_FITTER";
85 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
86 return "PIPE_C_PANEL_FITTER";
87 case POWER_DOMAIN_TRANSCODER_A:
88 return "TRANSCODER_A";
89 case POWER_DOMAIN_TRANSCODER_B:
90 return "TRANSCODER_B";
91 case POWER_DOMAIN_TRANSCODER_C:
92 return "TRANSCODER_C";
93 case POWER_DOMAIN_TRANSCODER_EDP:
94 return "TRANSCODER_EDP";
95 case POWER_DOMAIN_TRANSCODER_DSI_A:
96 return "TRANSCODER_DSI_A";
97 case POWER_DOMAIN_TRANSCODER_DSI_C:
98 return "TRANSCODER_DSI_C";
99 case POWER_DOMAIN_PORT_DDI_A_LANES:
100 return "PORT_DDI_A_LANES";
101 case POWER_DOMAIN_PORT_DDI_B_LANES:
102 return "PORT_DDI_B_LANES";
103 case POWER_DOMAIN_PORT_DDI_C_LANES:
104 return "PORT_DDI_C_LANES";
105 case POWER_DOMAIN_PORT_DDI_D_LANES:
106 return "PORT_DDI_D_LANES";
107 case POWER_DOMAIN_PORT_DDI_E_LANES:
108 return "PORT_DDI_E_LANES";
109 case POWER_DOMAIN_PORT_DSI:
110 return "PORT_DSI";
111 case POWER_DOMAIN_PORT_CRT:
112 return "PORT_CRT";
113 case POWER_DOMAIN_PORT_OTHER:
114 return "PORT_OTHER";
115 case POWER_DOMAIN_VGA:
116 return "VGA";
117 case POWER_DOMAIN_AUDIO:
118 return "AUDIO";
119 case POWER_DOMAIN_PLLS:
120 return "PLLS";
121 case POWER_DOMAIN_AUX_A:
122 return "AUX_A";
123 case POWER_DOMAIN_AUX_B:
124 return "AUX_B";
125 case POWER_DOMAIN_AUX_C:
126 return "AUX_C";
127 case POWER_DOMAIN_AUX_D:
128 return "AUX_D";
129 case POWER_DOMAIN_GMBUS:
130 return "GMBUS";
131 case POWER_DOMAIN_INIT:
132 return "INIT";
133 case POWER_DOMAIN_MODESET:
134 return "MODESET";
135 default:
136 MISSING_CASE(domain);
137 return "?";
138 }
139 }
140
141 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
142 struct i915_power_well *power_well)
143 {
144 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
145 power_well->ops->enable(dev_priv, power_well);
146 power_well->hw_enabled = true;
147 }
148
149 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
150 struct i915_power_well *power_well)
151 {
152 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
153 power_well->hw_enabled = false;
154 power_well->ops->disable(dev_priv, power_well);
155 }
156
157 static void intel_power_well_get(struct drm_i915_private *dev_priv,
158 struct i915_power_well *power_well)
159 {
160 if (!power_well->count++)
161 intel_power_well_enable(dev_priv, power_well);
162 }
163
164 static void intel_power_well_put(struct drm_i915_private *dev_priv,
165 struct i915_power_well *power_well)
166 {
167 WARN(!power_well->count, "Use count on power well %s is already zero",
168 power_well->name);
169
170 if (!--power_well->count)
171 intel_power_well_disable(dev_priv, power_well);
172 }
173
174 /*
175 * We should only use the power well if we explicitly asked the hardware to
176 * enable it, so check if it's enabled and also check if we've requested it to
177 * be enabled.
178 */
179 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
180 struct i915_power_well *power_well)
181 {
182 return I915_READ(HSW_PWR_WELL_DRIVER) ==
183 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
184 }
185
186 /**
187 * __intel_display_power_is_enabled - unlocked check for a power domain
188 * @dev_priv: i915 device instance
189 * @domain: power domain to check
190 *
191 * This is the unlocked version of intel_display_power_is_enabled() and should
192 * only be used from error capture and recovery code where deadlocks are
193 * possible.
194 *
195 * Returns:
196 * True when the power domain is enabled, false otherwise.
197 */
198 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
199 enum intel_display_power_domain domain)
200 {
201 struct i915_power_domains *power_domains;
202 struct i915_power_well *power_well;
203 bool is_enabled;
204 int i;
205
206 if (dev_priv->pm.suspended)
207 return false;
208
209 power_domains = &dev_priv->power_domains;
210
211 is_enabled = true;
212
213 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
214 if (power_well->always_on)
215 continue;
216
217 if (!power_well->hw_enabled) {
218 is_enabled = false;
219 break;
220 }
221 }
222
223 return is_enabled;
224 }
225
226 /**
227 * intel_display_power_is_enabled - check for a power domain
228 * @dev_priv: i915 device instance
229 * @domain: power domain to check
230 *
231 * This function can be used to check the hw power domain state. It is mostly
232 * used in hardware state readout functions. Everywhere else code should rely
233 * upon explicit power domain reference counting to ensure that the hardware
234 * block is powered up before accessing it.
235 *
236 * Callers must hold the relevant modesetting locks to ensure that concurrent
237 * threads can't disable the power well while the caller tries to read a few
238 * registers.
239 *
240 * Returns:
241 * True when the power domain is enabled, false otherwise.
242 */
243 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
244 enum intel_display_power_domain domain)
245 {
246 struct i915_power_domains *power_domains;
247 bool ret;
248
249 power_domains = &dev_priv->power_domains;
250
251 mutex_lock(&power_domains->lock);
252 ret = __intel_display_power_is_enabled(dev_priv, domain);
253 mutex_unlock(&power_domains->lock);
254
255 return ret;
256 }
257
258 /**
259 * intel_display_set_init_power - set the initial power domain state
260 * @dev_priv: i915 device instance
261 * @enable: whether to enable or disable the initial power domain state
262 *
263 * For simplicity our driver load/unload and system suspend/resume code assumes
264 * that all power domains are always enabled. This functions controls the state
265 * of this little hack. While the initial power domain state is enabled runtime
266 * pm is effectively disabled.
267 */
268 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
269 bool enable)
270 {
271 if (dev_priv->power_domains.init_power_on == enable)
272 return;
273
274 if (enable)
275 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
276 else
277 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
278
279 dev_priv->power_domains.init_power_on = enable;
280 }
281
282 /*
283 * Starting with Haswell, we have a "Power Down Well" that can be turned off
284 * when not needed anymore. We have 4 registers that can request the power well
285 * to be enabled, and it will only be disabled if none of the registers is
286 * requesting it to be enabled.
287 */
288 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
289 {
290 struct drm_device *dev = &dev_priv->drm;
291
292 /*
293 * After we re-enable the power well, if we touch VGA register 0x3d5
294 * we'll get unclaimed register interrupts. This stops after we write
295 * anything to the VGA MSR register. The vgacon module uses this
296 * register all the time, so if we unbind our driver and, as a
297 * consequence, bind vgacon, we'll get stuck in an infinite loop at
298 * console_unlock(). So make here we touch the VGA MSR register, making
299 * sure vgacon can keep working normally without triggering interrupts
300 * and error messages.
301 */
302 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
303 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
304 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
305
306 if (IS_BROADWELL(dev))
307 gen8_irq_power_well_post_enable(dev_priv,
308 1 << PIPE_C | 1 << PIPE_B);
309 }
310
311 static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv)
312 {
313 if (IS_BROADWELL(dev_priv))
314 gen8_irq_power_well_pre_disable(dev_priv,
315 1 << PIPE_C | 1 << PIPE_B);
316 }
317
318 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
319 struct i915_power_well *power_well)
320 {
321 struct drm_device *dev = &dev_priv->drm;
322
323 /*
324 * After we re-enable the power well, if we touch VGA register 0x3d5
325 * we'll get unclaimed register interrupts. This stops after we write
326 * anything to the VGA MSR register. The vgacon module uses this
327 * register all the time, so if we unbind our driver and, as a
328 * consequence, bind vgacon, we'll get stuck in an infinite loop at
329 * console_unlock(). So make here we touch the VGA MSR register, making
330 * sure vgacon can keep working normally without triggering interrupts
331 * and error messages.
332 */
333 if (power_well->data == SKL_DISP_PW_2) {
334 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
335 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
336 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
337
338 gen8_irq_power_well_post_enable(dev_priv,
339 1 << PIPE_C | 1 << PIPE_B);
340 }
341 }
342
343 static void skl_power_well_pre_disable(struct drm_i915_private *dev_priv,
344 struct i915_power_well *power_well)
345 {
346 if (power_well->data == SKL_DISP_PW_2)
347 gen8_irq_power_well_pre_disable(dev_priv,
348 1 << PIPE_C | 1 << PIPE_B);
349 }
350
351 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
352 struct i915_power_well *power_well, bool enable)
353 {
354 bool is_enabled, enable_requested;
355 uint32_t tmp;
356
357 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
358 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
359 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
360
361 if (enable) {
362 if (!enable_requested)
363 I915_WRITE(HSW_PWR_WELL_DRIVER,
364 HSW_PWR_WELL_ENABLE_REQUEST);
365
366 if (!is_enabled) {
367 DRM_DEBUG_KMS("Enabling power well\n");
368 if (intel_wait_for_register(dev_priv,
369 HSW_PWR_WELL_DRIVER,
370 HSW_PWR_WELL_STATE_ENABLED,
371 HSW_PWR_WELL_STATE_ENABLED,
372 20))
373 DRM_ERROR("Timeout enabling power well\n");
374 hsw_power_well_post_enable(dev_priv);
375 }
376
377 } else {
378 if (enable_requested) {
379 hsw_power_well_pre_disable(dev_priv);
380 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
381 POSTING_READ(HSW_PWR_WELL_DRIVER);
382 DRM_DEBUG_KMS("Requesting to disable the power well\n");
383 }
384 }
385 }
386
387 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
388 BIT(POWER_DOMAIN_TRANSCODER_A) | \
389 BIT(POWER_DOMAIN_PIPE_B) | \
390 BIT(POWER_DOMAIN_TRANSCODER_B) | \
391 BIT(POWER_DOMAIN_PIPE_C) | \
392 BIT(POWER_DOMAIN_TRANSCODER_C) | \
393 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
394 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
395 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
396 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
397 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
398 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
399 BIT(POWER_DOMAIN_AUX_B) | \
400 BIT(POWER_DOMAIN_AUX_C) | \
401 BIT(POWER_DOMAIN_AUX_D) | \
402 BIT(POWER_DOMAIN_AUDIO) | \
403 BIT(POWER_DOMAIN_VGA) | \
404 BIT(POWER_DOMAIN_INIT))
405 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \
406 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
407 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
408 BIT(POWER_DOMAIN_INIT))
409 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \
410 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
411 BIT(POWER_DOMAIN_INIT))
412 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \
413 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
414 BIT(POWER_DOMAIN_INIT))
415 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \
416 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
417 BIT(POWER_DOMAIN_INIT))
418 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
419 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
420 BIT(POWER_DOMAIN_MODESET) | \
421 BIT(POWER_DOMAIN_AUX_A) | \
422 BIT(POWER_DOMAIN_INIT))
423
424 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
425 BIT(POWER_DOMAIN_TRANSCODER_A) | \
426 BIT(POWER_DOMAIN_PIPE_B) | \
427 BIT(POWER_DOMAIN_TRANSCODER_B) | \
428 BIT(POWER_DOMAIN_PIPE_C) | \
429 BIT(POWER_DOMAIN_TRANSCODER_C) | \
430 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
431 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
432 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
433 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
434 BIT(POWER_DOMAIN_AUX_B) | \
435 BIT(POWER_DOMAIN_AUX_C) | \
436 BIT(POWER_DOMAIN_AUDIO) | \
437 BIT(POWER_DOMAIN_VGA) | \
438 BIT(POWER_DOMAIN_GMBUS) | \
439 BIT(POWER_DOMAIN_INIT))
440 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS ( \
441 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
442 BIT(POWER_DOMAIN_MODESET) | \
443 BIT(POWER_DOMAIN_AUX_A) | \
444 BIT(POWER_DOMAIN_INIT))
445 #define BXT_DPIO_CMN_A_POWER_DOMAINS ( \
446 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
447 BIT(POWER_DOMAIN_AUX_A) | \
448 BIT(POWER_DOMAIN_INIT))
449 #define BXT_DPIO_CMN_BC_POWER_DOMAINS ( \
450 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
451 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
452 BIT(POWER_DOMAIN_AUX_B) | \
453 BIT(POWER_DOMAIN_AUX_C) | \
454 BIT(POWER_DOMAIN_INIT))
455
456 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
457 {
458 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
459 "DC9 already programmed to be enabled.\n");
460 WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
461 "DC5 still not disabled to enable DC9.\n");
462 WARN_ONCE(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
463 WARN_ONCE(intel_irqs_enabled(dev_priv),
464 "Interrupts not disabled yet.\n");
465
466 /*
467 * TODO: check for the following to verify the conditions to enter DC9
468 * state are satisfied:
469 * 1] Check relevant display engine registers to verify if mode set
470 * disable sequence was followed.
471 * 2] Check if display uninitialize sequence is initialized.
472 */
473 }
474
475 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
476 {
477 WARN_ONCE(intel_irqs_enabled(dev_priv),
478 "Interrupts not disabled yet.\n");
479 WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
480 "DC5 still not disabled.\n");
481
482 /*
483 * TODO: check for the following to verify DC9 state was indeed
484 * entered before programming to disable it:
485 * 1] Check relevant display engine registers to verify if mode
486 * set disable sequence was followed.
487 * 2] Check if display uninitialize sequence is initialized.
488 */
489 }
490
491 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
492 u32 state)
493 {
494 int rewrites = 0;
495 int rereads = 0;
496 u32 v;
497
498 I915_WRITE(DC_STATE_EN, state);
499
500 /* It has been observed that disabling the dc6 state sometimes
501 * doesn't stick and dmc keeps returning old value. Make sure
502 * the write really sticks enough times and also force rewrite until
503 * we are confident that state is exactly what we want.
504 */
505 do {
506 v = I915_READ(DC_STATE_EN);
507
508 if (v != state) {
509 I915_WRITE(DC_STATE_EN, state);
510 rewrites++;
511 rereads = 0;
512 } else if (rereads++ > 5) {
513 break;
514 }
515
516 } while (rewrites < 100);
517
518 if (v != state)
519 DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
520 state, v);
521
522 /* Most of the times we need one retry, avoid spam */
523 if (rewrites > 1)
524 DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
525 state, rewrites);
526 }
527
528 static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
529 {
530 u32 mask;
531
532 mask = DC_STATE_EN_UPTO_DC5;
533 if (IS_BROXTON(dev_priv))
534 mask |= DC_STATE_EN_DC9;
535 else
536 mask |= DC_STATE_EN_UPTO_DC6;
537
538 return mask;
539 }
540
541 void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv)
542 {
543 u32 val;
544
545 val = I915_READ(DC_STATE_EN) & gen9_dc_mask(dev_priv);
546
547 DRM_DEBUG_KMS("Resetting DC state tracking from %02x to %02x\n",
548 dev_priv->csr.dc_state, val);
549 dev_priv->csr.dc_state = val;
550 }
551
552 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
553 {
554 uint32_t val;
555 uint32_t mask;
556
557 if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
558 state &= dev_priv->csr.allowed_dc_mask;
559
560 val = I915_READ(DC_STATE_EN);
561 mask = gen9_dc_mask(dev_priv);
562 DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
563 val & mask, state);
564
565 /* Check if DMC is ignoring our DC state requests */
566 if ((val & mask) != dev_priv->csr.dc_state)
567 DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
568 dev_priv->csr.dc_state, val & mask);
569
570 val &= ~mask;
571 val |= state;
572
573 gen9_write_dc_state(dev_priv, val);
574
575 dev_priv->csr.dc_state = val & mask;
576 }
577
578 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
579 {
580 assert_can_enable_dc9(dev_priv);
581
582 DRM_DEBUG_KMS("Enabling DC9\n");
583
584 intel_power_sequencer_reset(dev_priv);
585 gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
586 }
587
588 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
589 {
590 assert_can_disable_dc9(dev_priv);
591
592 DRM_DEBUG_KMS("Disabling DC9\n");
593
594 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
595
596 intel_pps_unlock_regs_wa(dev_priv);
597 }
598
599 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
600 {
601 WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
602 "CSR program storage start is NULL\n");
603 WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
604 WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
605 }
606
607 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
608 {
609 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
610 SKL_DISP_PW_2);
611
612 WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
613
614 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
615 "DC5 already programmed to be enabled.\n");
616 assert_rpm_wakelock_held(dev_priv);
617
618 assert_csr_loaded(dev_priv);
619 }
620
621 void gen9_enable_dc5(struct drm_i915_private *dev_priv)
622 {
623 assert_can_enable_dc5(dev_priv);
624
625 DRM_DEBUG_KMS("Enabling DC5\n");
626
627 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
628 }
629
630 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
631 {
632 WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
633 "Backlight is not disabled.\n");
634 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
635 "DC6 already programmed to be enabled.\n");
636
637 assert_csr_loaded(dev_priv);
638 }
639
640 void skl_enable_dc6(struct drm_i915_private *dev_priv)
641 {
642 assert_can_enable_dc6(dev_priv);
643
644 DRM_DEBUG_KMS("Enabling DC6\n");
645
646 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
647
648 }
649
650 void skl_disable_dc6(struct drm_i915_private *dev_priv)
651 {
652 DRM_DEBUG_KMS("Disabling DC6\n");
653
654 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
655 }
656
657 static void
658 gen9_sanitize_power_well_requests(struct drm_i915_private *dev_priv,
659 struct i915_power_well *power_well)
660 {
661 enum skl_disp_power_wells power_well_id = power_well->data;
662 u32 val;
663 u32 mask;
664
665 mask = SKL_POWER_WELL_REQ(power_well_id);
666
667 val = I915_READ(HSW_PWR_WELL_KVMR);
668 if (WARN_ONCE(val & mask, "Clearing unexpected KVMR request for %s\n",
669 power_well->name))
670 I915_WRITE(HSW_PWR_WELL_KVMR, val & ~mask);
671
672 val = I915_READ(HSW_PWR_WELL_BIOS);
673 val |= I915_READ(HSW_PWR_WELL_DEBUG);
674
675 if (!(val & mask))
676 return;
677
678 /*
679 * DMC is known to force on the request bits for power well 1 on SKL
680 * and BXT and the misc IO power well on SKL but we don't expect any
681 * other request bits to be set, so WARN for those.
682 */
683 if (power_well_id == SKL_DISP_PW_1 ||
684 ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
685 power_well_id == SKL_DISP_PW_MISC_IO))
686 DRM_DEBUG_DRIVER("Clearing auxiliary requests for %s forced on "
687 "by DMC\n", power_well->name);
688 else
689 WARN_ONCE(1, "Clearing unexpected auxiliary requests for %s\n",
690 power_well->name);
691
692 I915_WRITE(HSW_PWR_WELL_BIOS, val & ~mask);
693 I915_WRITE(HSW_PWR_WELL_DEBUG, val & ~mask);
694 }
695
696 static void skl_set_power_well(struct drm_i915_private *dev_priv,
697 struct i915_power_well *power_well, bool enable)
698 {
699 uint32_t tmp, fuse_status;
700 uint32_t req_mask, state_mask;
701 bool is_enabled, enable_requested, check_fuse_status = false;
702
703 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
704 fuse_status = I915_READ(SKL_FUSE_STATUS);
705
706 switch (power_well->data) {
707 case SKL_DISP_PW_1:
708 if (intel_wait_for_register(dev_priv,
709 SKL_FUSE_STATUS,
710 SKL_FUSE_PG0_DIST_STATUS,
711 SKL_FUSE_PG0_DIST_STATUS,
712 1)) {
713 DRM_ERROR("PG0 not enabled\n");
714 return;
715 }
716 break;
717 case SKL_DISP_PW_2:
718 if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
719 DRM_ERROR("PG1 in disabled state\n");
720 return;
721 }
722 break;
723 case SKL_DISP_PW_DDI_A_E:
724 case SKL_DISP_PW_DDI_B:
725 case SKL_DISP_PW_DDI_C:
726 case SKL_DISP_PW_DDI_D:
727 case SKL_DISP_PW_MISC_IO:
728 break;
729 default:
730 WARN(1, "Unknown power well %lu\n", power_well->data);
731 return;
732 }
733
734 req_mask = SKL_POWER_WELL_REQ(power_well->data);
735 enable_requested = tmp & req_mask;
736 state_mask = SKL_POWER_WELL_STATE(power_well->data);
737 is_enabled = tmp & state_mask;
738
739 if (!enable && enable_requested)
740 skl_power_well_pre_disable(dev_priv, power_well);
741
742 if (enable) {
743 if (!enable_requested) {
744 WARN((tmp & state_mask) &&
745 !I915_READ(HSW_PWR_WELL_BIOS),
746 "Invalid for power well status to be enabled, unless done by the BIOS, \
747 when request is to disable!\n");
748 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
749 }
750
751 if (!is_enabled) {
752 DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
753 check_fuse_status = true;
754 }
755 } else {
756 if (enable_requested) {
757 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask);
758 POSTING_READ(HSW_PWR_WELL_DRIVER);
759 DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
760 }
761
762 if (IS_GEN9(dev_priv))
763 gen9_sanitize_power_well_requests(dev_priv, power_well);
764 }
765
766 if (wait_for(!!(I915_READ(HSW_PWR_WELL_DRIVER) & state_mask) == enable,
767 1))
768 DRM_ERROR("%s %s timeout\n",
769 power_well->name, enable ? "enable" : "disable");
770
771 if (check_fuse_status) {
772 if (power_well->data == SKL_DISP_PW_1) {
773 if (intel_wait_for_register(dev_priv,
774 SKL_FUSE_STATUS,
775 SKL_FUSE_PG1_DIST_STATUS,
776 SKL_FUSE_PG1_DIST_STATUS,
777 1))
778 DRM_ERROR("PG1 distributing status timeout\n");
779 } else if (power_well->data == SKL_DISP_PW_2) {
780 if (intel_wait_for_register(dev_priv,
781 SKL_FUSE_STATUS,
782 SKL_FUSE_PG2_DIST_STATUS,
783 SKL_FUSE_PG2_DIST_STATUS,
784 1))
785 DRM_ERROR("PG2 distributing status timeout\n");
786 }
787 }
788
789 if (enable && !is_enabled)
790 skl_power_well_post_enable(dev_priv, power_well);
791 }
792
793 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
794 struct i915_power_well *power_well)
795 {
796 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
797
798 /*
799 * We're taking over the BIOS, so clear any requests made by it since
800 * the driver is in charge now.
801 */
802 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
803 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
804 }
805
806 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
807 struct i915_power_well *power_well)
808 {
809 hsw_set_power_well(dev_priv, power_well, true);
810 }
811
812 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
813 struct i915_power_well *power_well)
814 {
815 hsw_set_power_well(dev_priv, power_well, false);
816 }
817
818 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
819 struct i915_power_well *power_well)
820 {
821 uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
822 SKL_POWER_WELL_STATE(power_well->data);
823
824 return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
825 }
826
827 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
828 struct i915_power_well *power_well)
829 {
830 skl_set_power_well(dev_priv, power_well, power_well->count > 0);
831
832 /* Clear any request made by BIOS as driver is taking over */
833 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
834 }
835
836 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
837 struct i915_power_well *power_well)
838 {
839 skl_set_power_well(dev_priv, power_well, true);
840 }
841
842 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
843 struct i915_power_well *power_well)
844 {
845 skl_set_power_well(dev_priv, power_well, false);
846 }
847
848 static enum dpio_phy bxt_power_well_to_phy(struct i915_power_well *power_well)
849 {
850 enum skl_disp_power_wells power_well_id = power_well->data;
851
852 return power_well_id == BXT_DPIO_CMN_A ? DPIO_PHY1 : DPIO_PHY0;
853 }
854
855 static void bxt_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
856 struct i915_power_well *power_well)
857 {
858 enum skl_disp_power_wells power_well_id = power_well->data;
859 struct i915_power_well *cmn_a_well;
860
861 if (power_well_id == BXT_DPIO_CMN_BC) {
862 /*
863 * We need to copy the GRC calibration value from the eDP PHY,
864 * so make sure it's powered up.
865 */
866 cmn_a_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
867 intel_power_well_get(dev_priv, cmn_a_well);
868 }
869
870 bxt_ddi_phy_init(dev_priv, bxt_power_well_to_phy(power_well));
871
872 if (power_well_id == BXT_DPIO_CMN_BC)
873 intel_power_well_put(dev_priv, cmn_a_well);
874 }
875
876 static void bxt_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
877 struct i915_power_well *power_well)
878 {
879 bxt_ddi_phy_uninit(dev_priv, bxt_power_well_to_phy(power_well));
880 }
881
882 static bool bxt_dpio_cmn_power_well_enabled(struct drm_i915_private *dev_priv,
883 struct i915_power_well *power_well)
884 {
885 return bxt_ddi_phy_is_enabled(dev_priv,
886 bxt_power_well_to_phy(power_well));
887 }
888
889 static void bxt_dpio_cmn_power_well_sync_hw(struct drm_i915_private *dev_priv,
890 struct i915_power_well *power_well)
891 {
892 if (power_well->count > 0)
893 bxt_dpio_cmn_power_well_enable(dev_priv, power_well);
894 else
895 bxt_dpio_cmn_power_well_disable(dev_priv, power_well);
896 }
897
898
899 static void bxt_verify_ddi_phy_power_wells(struct drm_i915_private *dev_priv)
900 {
901 struct i915_power_well *power_well;
902
903 power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
904 if (power_well->count > 0)
905 bxt_ddi_phy_verify_state(dev_priv,
906 bxt_power_well_to_phy(power_well));
907
908 power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_BC);
909 if (power_well->count > 0)
910 bxt_ddi_phy_verify_state(dev_priv,
911 bxt_power_well_to_phy(power_well));
912 }
913
914 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
915 struct i915_power_well *power_well)
916 {
917 return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
918 }
919
920 static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv)
921 {
922 u32 tmp = I915_READ(DBUF_CTL);
923
924 WARN((tmp & (DBUF_POWER_STATE | DBUF_POWER_REQUEST)) !=
925 (DBUF_POWER_STATE | DBUF_POWER_REQUEST),
926 "Unexpected DBuf power power state (0x%08x)\n", tmp);
927 }
928
929 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
930 struct i915_power_well *power_well)
931 {
932 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
933
934 WARN_ON(dev_priv->cdclk_freq !=
935 dev_priv->display.get_display_clock_speed(&dev_priv->drm));
936
937 gen9_assert_dbuf_enabled(dev_priv);
938
939 if (IS_BROXTON(dev_priv))
940 bxt_verify_ddi_phy_power_wells(dev_priv);
941 }
942
943 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
944 struct i915_power_well *power_well)
945 {
946 if (!dev_priv->csr.dmc_payload)
947 return;
948
949 if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
950 skl_enable_dc6(dev_priv);
951 else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
952 gen9_enable_dc5(dev_priv);
953 }
954
955 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
956 struct i915_power_well *power_well)
957 {
958 if (power_well->count > 0)
959 gen9_dc_off_power_well_enable(dev_priv, power_well);
960 else
961 gen9_dc_off_power_well_disable(dev_priv, power_well);
962 }
963
964 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
965 struct i915_power_well *power_well)
966 {
967 }
968
969 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
970 struct i915_power_well *power_well)
971 {
972 return true;
973 }
974
975 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
976 struct i915_power_well *power_well, bool enable)
977 {
978 enum punit_power_well power_well_id = power_well->data;
979 u32 mask;
980 u32 state;
981 u32 ctrl;
982
983 mask = PUNIT_PWRGT_MASK(power_well_id);
984 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
985 PUNIT_PWRGT_PWR_GATE(power_well_id);
986
987 mutex_lock(&dev_priv->rps.hw_lock);
988
989 #define COND \
990 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
991
992 if (COND)
993 goto out;
994
995 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
996 ctrl &= ~mask;
997 ctrl |= state;
998 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
999
1000 if (wait_for(COND, 100))
1001 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1002 state,
1003 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
1004
1005 #undef COND
1006
1007 out:
1008 mutex_unlock(&dev_priv->rps.hw_lock);
1009 }
1010
1011 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
1012 struct i915_power_well *power_well)
1013 {
1014 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
1015 }
1016
1017 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
1018 struct i915_power_well *power_well)
1019 {
1020 vlv_set_power_well(dev_priv, power_well, true);
1021 }
1022
1023 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
1024 struct i915_power_well *power_well)
1025 {
1026 vlv_set_power_well(dev_priv, power_well, false);
1027 }
1028
1029 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
1030 struct i915_power_well *power_well)
1031 {
1032 int power_well_id = power_well->data;
1033 bool enabled = false;
1034 u32 mask;
1035 u32 state;
1036 u32 ctrl;
1037
1038 mask = PUNIT_PWRGT_MASK(power_well_id);
1039 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
1040
1041 mutex_lock(&dev_priv->rps.hw_lock);
1042
1043 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
1044 /*
1045 * We only ever set the power-on and power-gate states, anything
1046 * else is unexpected.
1047 */
1048 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
1049 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
1050 if (state == ctrl)
1051 enabled = true;
1052
1053 /*
1054 * A transient state at this point would mean some unexpected party
1055 * is poking at the power controls too.
1056 */
1057 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
1058 WARN_ON(ctrl != state);
1059
1060 mutex_unlock(&dev_priv->rps.hw_lock);
1061
1062 return enabled;
1063 }
1064
1065 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
1066 {
1067 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
1068
1069 /*
1070 * Disable trickle feed and enable pnd deadline calculation
1071 */
1072 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
1073 I915_WRITE(CBR1_VLV, 0);
1074
1075 WARN_ON(dev_priv->rawclk_freq == 0);
1076
1077 I915_WRITE(RAWCLK_FREQ_VLV,
1078 DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 1000));
1079 }
1080
1081 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
1082 {
1083 struct intel_encoder *encoder;
1084 enum pipe pipe;
1085
1086 /*
1087 * Enable the CRI clock source so we can get at the
1088 * display and the reference clock for VGA
1089 * hotplug / manual detection. Supposedly DSI also
1090 * needs the ref clock up and running.
1091 *
1092 * CHV DPLL B/C have some issues if VGA mode is enabled.
1093 */
1094 for_each_pipe(&dev_priv->drm, pipe) {
1095 u32 val = I915_READ(DPLL(pipe));
1096
1097 val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1098 if (pipe != PIPE_A)
1099 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1100
1101 I915_WRITE(DPLL(pipe), val);
1102 }
1103
1104 vlv_init_display_clock_gating(dev_priv);
1105
1106 spin_lock_irq(&dev_priv->irq_lock);
1107 valleyview_enable_display_irqs(dev_priv);
1108 spin_unlock_irq(&dev_priv->irq_lock);
1109
1110 /*
1111 * During driver initialization/resume we can avoid restoring the
1112 * part of the HW/SW state that will be inited anyway explicitly.
1113 */
1114 if (dev_priv->power_domains.initializing)
1115 return;
1116
1117 intel_hpd_init(dev_priv);
1118
1119 /* Re-enable the ADPA, if we have one */
1120 for_each_intel_encoder(&dev_priv->drm, encoder) {
1121 if (encoder->type == INTEL_OUTPUT_ANALOG)
1122 intel_crt_reset(&encoder->base);
1123 }
1124
1125 i915_redisable_vga_power_on(&dev_priv->drm);
1126
1127 intel_pps_unlock_regs_wa(dev_priv);
1128 }
1129
1130 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
1131 {
1132 spin_lock_irq(&dev_priv->irq_lock);
1133 valleyview_disable_display_irqs(dev_priv);
1134 spin_unlock_irq(&dev_priv->irq_lock);
1135
1136 /* make sure we're done processing display irqs */
1137 synchronize_irq(dev_priv->drm.irq);
1138
1139 intel_power_sequencer_reset(dev_priv);
1140
1141 intel_hpd_poll_init(dev_priv);
1142 }
1143
1144 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1145 struct i915_power_well *power_well)
1146 {
1147 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1148
1149 vlv_set_power_well(dev_priv, power_well, true);
1150
1151 vlv_display_power_well_init(dev_priv);
1152 }
1153
1154 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1155 struct i915_power_well *power_well)
1156 {
1157 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1158
1159 vlv_display_power_well_deinit(dev_priv);
1160
1161 vlv_set_power_well(dev_priv, power_well, false);
1162 }
1163
1164 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1165 struct i915_power_well *power_well)
1166 {
1167 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1168
1169 /* since ref/cri clock was enabled */
1170 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1171
1172 vlv_set_power_well(dev_priv, power_well, true);
1173
1174 /*
1175 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1176 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
1177 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
1178 * b. The other bits such as sfr settings / modesel may all
1179 * be set to 0.
1180 *
1181 * This should only be done on init and resume from S3 with
1182 * both PLLs disabled, or we risk losing DPIO and PLL
1183 * synchronization.
1184 */
1185 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1186 }
1187
1188 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1189 struct i915_power_well *power_well)
1190 {
1191 enum pipe pipe;
1192
1193 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1194
1195 for_each_pipe(dev_priv, pipe)
1196 assert_pll_disabled(dev_priv, pipe);
1197
1198 /* Assert common reset */
1199 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1200
1201 vlv_set_power_well(dev_priv, power_well, false);
1202 }
1203
1204 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1205
1206 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1207 int power_well_id)
1208 {
1209 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1210 int i;
1211
1212 for (i = 0; i < power_domains->power_well_count; i++) {
1213 struct i915_power_well *power_well;
1214
1215 power_well = &power_domains->power_wells[i];
1216 if (power_well->data == power_well_id)
1217 return power_well;
1218 }
1219
1220 return NULL;
1221 }
1222
1223 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1224
1225 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1226 {
1227 struct i915_power_well *cmn_bc =
1228 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1229 struct i915_power_well *cmn_d =
1230 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1231 u32 phy_control = dev_priv->chv_phy_control;
1232 u32 phy_status = 0;
1233 u32 phy_status_mask = 0xffffffff;
1234
1235 /*
1236 * The BIOS can leave the PHY is some weird state
1237 * where it doesn't fully power down some parts.
1238 * Disable the asserts until the PHY has been fully
1239 * reset (ie. the power well has been disabled at
1240 * least once).
1241 */
1242 if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1243 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1244 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1245 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1246 PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1247 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1248 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1249
1250 if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1251 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1252 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1253 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1254
1255 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1256 phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1257
1258 /* this assumes override is only used to enable lanes */
1259 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1260 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1261
1262 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1263 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1264
1265 /* CL1 is on whenever anything is on in either channel */
1266 if (BITS_SET(phy_control,
1267 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1268 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1269 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1270
1271 /*
1272 * The DPLLB check accounts for the pipe B + port A usage
1273 * with CL2 powered up but all the lanes in the second channel
1274 * powered down.
1275 */
1276 if (BITS_SET(phy_control,
1277 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1278 (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1279 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1280
1281 if (BITS_SET(phy_control,
1282 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1283 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1284 if (BITS_SET(phy_control,
1285 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1286 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1287
1288 if (BITS_SET(phy_control,
1289 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1290 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1291 if (BITS_SET(phy_control,
1292 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1293 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1294 }
1295
1296 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1297 phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1298
1299 /* this assumes override is only used to enable lanes */
1300 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1301 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1302
1303 if (BITS_SET(phy_control,
1304 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1305 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1306
1307 if (BITS_SET(phy_control,
1308 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1309 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1310 if (BITS_SET(phy_control,
1311 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1312 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1313 }
1314
1315 phy_status &= phy_status_mask;
1316
1317 /*
1318 * The PHY may be busy with some initial calibration and whatnot,
1319 * so the power state can take a while to actually change.
1320 */
1321 if (intel_wait_for_register(dev_priv,
1322 DISPLAY_PHY_STATUS,
1323 phy_status_mask,
1324 phy_status,
1325 10))
1326 DRM_ERROR("Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1327 I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask,
1328 phy_status, dev_priv->chv_phy_control);
1329 }
1330
1331 #undef BITS_SET
1332
1333 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1334 struct i915_power_well *power_well)
1335 {
1336 enum dpio_phy phy;
1337 enum pipe pipe;
1338 uint32_t tmp;
1339
1340 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1341 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1342
1343 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1344 pipe = PIPE_A;
1345 phy = DPIO_PHY0;
1346 } else {
1347 pipe = PIPE_C;
1348 phy = DPIO_PHY1;
1349 }
1350
1351 /* since ref/cri clock was enabled */
1352 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1353 vlv_set_power_well(dev_priv, power_well, true);
1354
1355 /* Poll for phypwrgood signal */
1356 if (intel_wait_for_register(dev_priv,
1357 DISPLAY_PHY_STATUS,
1358 PHY_POWERGOOD(phy),
1359 PHY_POWERGOOD(phy),
1360 1))
1361 DRM_ERROR("Display PHY %d is not power up\n", phy);
1362
1363 mutex_lock(&dev_priv->sb_lock);
1364
1365 /* Enable dynamic power down */
1366 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1367 tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1368 DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1369 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1370
1371 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1372 tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1373 tmp |= DPIO_DYNPWRDOWNEN_CH1;
1374 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1375 } else {
1376 /*
1377 * Force the non-existing CL2 off. BXT does this
1378 * too, so maybe it saves some power even though
1379 * CL2 doesn't exist?
1380 */
1381 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1382 tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1383 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1384 }
1385
1386 mutex_unlock(&dev_priv->sb_lock);
1387
1388 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1389 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1390
1391 DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1392 phy, dev_priv->chv_phy_control);
1393
1394 assert_chv_phy_status(dev_priv);
1395 }
1396
1397 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1398 struct i915_power_well *power_well)
1399 {
1400 enum dpio_phy phy;
1401
1402 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1403 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1404
1405 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1406 phy = DPIO_PHY0;
1407 assert_pll_disabled(dev_priv, PIPE_A);
1408 assert_pll_disabled(dev_priv, PIPE_B);
1409 } else {
1410 phy = DPIO_PHY1;
1411 assert_pll_disabled(dev_priv, PIPE_C);
1412 }
1413
1414 dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1415 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1416
1417 vlv_set_power_well(dev_priv, power_well, false);
1418
1419 DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1420 phy, dev_priv->chv_phy_control);
1421
1422 /* PHY is fully reset now, so we can enable the PHY state asserts */
1423 dev_priv->chv_phy_assert[phy] = true;
1424
1425 assert_chv_phy_status(dev_priv);
1426 }
1427
1428 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1429 enum dpio_channel ch, bool override, unsigned int mask)
1430 {
1431 enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1432 u32 reg, val, expected, actual;
1433
1434 /*
1435 * The BIOS can leave the PHY is some weird state
1436 * where it doesn't fully power down some parts.
1437 * Disable the asserts until the PHY has been fully
1438 * reset (ie. the power well has been disabled at
1439 * least once).
1440 */
1441 if (!dev_priv->chv_phy_assert[phy])
1442 return;
1443
1444 if (ch == DPIO_CH0)
1445 reg = _CHV_CMN_DW0_CH0;
1446 else
1447 reg = _CHV_CMN_DW6_CH1;
1448
1449 mutex_lock(&dev_priv->sb_lock);
1450 val = vlv_dpio_read(dev_priv, pipe, reg);
1451 mutex_unlock(&dev_priv->sb_lock);
1452
1453 /*
1454 * This assumes !override is only used when the port is disabled.
1455 * All lanes should power down even without the override when
1456 * the port is disabled.
1457 */
1458 if (!override || mask == 0xf) {
1459 expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1460 /*
1461 * If CH1 common lane is not active anymore
1462 * (eg. for pipe B DPLL) the entire channel will
1463 * shut down, which causes the common lane registers
1464 * to read as 0. That means we can't actually check
1465 * the lane power down status bits, but as the entire
1466 * register reads as 0 it's a good indication that the
1467 * channel is indeed entirely powered down.
1468 */
1469 if (ch == DPIO_CH1 && val == 0)
1470 expected = 0;
1471 } else if (mask != 0x0) {
1472 expected = DPIO_ANYDL_POWERDOWN;
1473 } else {
1474 expected = 0;
1475 }
1476
1477 if (ch == DPIO_CH0)
1478 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1479 else
1480 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1481 actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1482
1483 WARN(actual != expected,
1484 "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1485 !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1486 !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1487 reg, val);
1488 }
1489
1490 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1491 enum dpio_channel ch, bool override)
1492 {
1493 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1494 bool was_override;
1495
1496 mutex_lock(&power_domains->lock);
1497
1498 was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1499
1500 if (override == was_override)
1501 goto out;
1502
1503 if (override)
1504 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1505 else
1506 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1507
1508 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1509
1510 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1511 phy, ch, dev_priv->chv_phy_control);
1512
1513 assert_chv_phy_status(dev_priv);
1514
1515 out:
1516 mutex_unlock(&power_domains->lock);
1517
1518 return was_override;
1519 }
1520
1521 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1522 bool override, unsigned int mask)
1523 {
1524 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1525 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1526 enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1527 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1528
1529 mutex_lock(&power_domains->lock);
1530
1531 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1532 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1533
1534 if (override)
1535 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1536 else
1537 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1538
1539 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1540
1541 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1542 phy, ch, mask, dev_priv->chv_phy_control);
1543
1544 assert_chv_phy_status(dev_priv);
1545
1546 assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1547
1548 mutex_unlock(&power_domains->lock);
1549 }
1550
1551 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1552 struct i915_power_well *power_well)
1553 {
1554 enum pipe pipe = power_well->data;
1555 bool enabled;
1556 u32 state, ctrl;
1557
1558 mutex_lock(&dev_priv->rps.hw_lock);
1559
1560 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1561 /*
1562 * We only ever set the power-on and power-gate states, anything
1563 * else is unexpected.
1564 */
1565 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1566 enabled = state == DP_SSS_PWR_ON(pipe);
1567
1568 /*
1569 * A transient state at this point would mean some unexpected party
1570 * is poking at the power controls too.
1571 */
1572 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1573 WARN_ON(ctrl << 16 != state);
1574
1575 mutex_unlock(&dev_priv->rps.hw_lock);
1576
1577 return enabled;
1578 }
1579
1580 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1581 struct i915_power_well *power_well,
1582 bool enable)
1583 {
1584 enum pipe pipe = power_well->data;
1585 u32 state;
1586 u32 ctrl;
1587
1588 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1589
1590 mutex_lock(&dev_priv->rps.hw_lock);
1591
1592 #define COND \
1593 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1594
1595 if (COND)
1596 goto out;
1597
1598 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1599 ctrl &= ~DP_SSC_MASK(pipe);
1600 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1601 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1602
1603 if (wait_for(COND, 100))
1604 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1605 state,
1606 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1607
1608 #undef COND
1609
1610 out:
1611 mutex_unlock(&dev_priv->rps.hw_lock);
1612 }
1613
1614 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1615 struct i915_power_well *power_well)
1616 {
1617 WARN_ON_ONCE(power_well->data != PIPE_A);
1618
1619 chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1620 }
1621
1622 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1623 struct i915_power_well *power_well)
1624 {
1625 WARN_ON_ONCE(power_well->data != PIPE_A);
1626
1627 chv_set_pipe_power_well(dev_priv, power_well, true);
1628
1629 vlv_display_power_well_init(dev_priv);
1630 }
1631
1632 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1633 struct i915_power_well *power_well)
1634 {
1635 WARN_ON_ONCE(power_well->data != PIPE_A);
1636
1637 vlv_display_power_well_deinit(dev_priv);
1638
1639 chv_set_pipe_power_well(dev_priv, power_well, false);
1640 }
1641
1642 static void
1643 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1644 enum intel_display_power_domain domain)
1645 {
1646 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1647 struct i915_power_well *power_well;
1648 int i;
1649
1650 for_each_power_well(i, power_well, BIT(domain), power_domains)
1651 intel_power_well_get(dev_priv, power_well);
1652
1653 power_domains->domain_use_count[domain]++;
1654 }
1655
1656 /**
1657 * intel_display_power_get - grab a power domain reference
1658 * @dev_priv: i915 device instance
1659 * @domain: power domain to reference
1660 *
1661 * This function grabs a power domain reference for @domain and ensures that the
1662 * power domain and all its parents are powered up. Therefore users should only
1663 * grab a reference to the innermost power domain they need.
1664 *
1665 * Any power domain reference obtained by this function must have a symmetric
1666 * call to intel_display_power_put() to release the reference again.
1667 */
1668 void intel_display_power_get(struct drm_i915_private *dev_priv,
1669 enum intel_display_power_domain domain)
1670 {
1671 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1672
1673 intel_runtime_pm_get(dev_priv);
1674
1675 mutex_lock(&power_domains->lock);
1676
1677 __intel_display_power_get_domain(dev_priv, domain);
1678
1679 mutex_unlock(&power_domains->lock);
1680 }
1681
1682 /**
1683 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1684 * @dev_priv: i915 device instance
1685 * @domain: power domain to reference
1686 *
1687 * This function grabs a power domain reference for @domain and ensures that the
1688 * power domain and all its parents are powered up. Therefore users should only
1689 * grab a reference to the innermost power domain they need.
1690 *
1691 * Any power domain reference obtained by this function must have a symmetric
1692 * call to intel_display_power_put() to release the reference again.
1693 */
1694 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1695 enum intel_display_power_domain domain)
1696 {
1697 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1698 bool is_enabled;
1699
1700 if (!intel_runtime_pm_get_if_in_use(dev_priv))
1701 return false;
1702
1703 mutex_lock(&power_domains->lock);
1704
1705 if (__intel_display_power_is_enabled(dev_priv, domain)) {
1706 __intel_display_power_get_domain(dev_priv, domain);
1707 is_enabled = true;
1708 } else {
1709 is_enabled = false;
1710 }
1711
1712 mutex_unlock(&power_domains->lock);
1713
1714 if (!is_enabled)
1715 intel_runtime_pm_put(dev_priv);
1716
1717 return is_enabled;
1718 }
1719
1720 /**
1721 * intel_display_power_put - release a power domain reference
1722 * @dev_priv: i915 device instance
1723 * @domain: power domain to reference
1724 *
1725 * This function drops the power domain reference obtained by
1726 * intel_display_power_get() and might power down the corresponding hardware
1727 * block right away if this is the last reference.
1728 */
1729 void intel_display_power_put(struct drm_i915_private *dev_priv,
1730 enum intel_display_power_domain domain)
1731 {
1732 struct i915_power_domains *power_domains;
1733 struct i915_power_well *power_well;
1734 int i;
1735
1736 power_domains = &dev_priv->power_domains;
1737
1738 mutex_lock(&power_domains->lock);
1739
1740 WARN(!power_domains->domain_use_count[domain],
1741 "Use count on domain %s is already zero\n",
1742 intel_display_power_domain_str(domain));
1743 power_domains->domain_use_count[domain]--;
1744
1745 for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
1746 intel_power_well_put(dev_priv, power_well);
1747
1748 mutex_unlock(&power_domains->lock);
1749
1750 intel_runtime_pm_put(dev_priv);
1751 }
1752
1753 #define HSW_DISPLAY_POWER_DOMAINS ( \
1754 BIT(POWER_DOMAIN_PIPE_B) | \
1755 BIT(POWER_DOMAIN_PIPE_C) | \
1756 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1757 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1758 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1759 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1760 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1761 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1762 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1763 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1764 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1765 BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
1766 BIT(POWER_DOMAIN_VGA) | \
1767 BIT(POWER_DOMAIN_AUDIO) | \
1768 BIT(POWER_DOMAIN_INIT))
1769
1770 #define BDW_DISPLAY_POWER_DOMAINS ( \
1771 BIT(POWER_DOMAIN_PIPE_B) | \
1772 BIT(POWER_DOMAIN_PIPE_C) | \
1773 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1774 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1775 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1776 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1777 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1778 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1779 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1780 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1781 BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
1782 BIT(POWER_DOMAIN_VGA) | \
1783 BIT(POWER_DOMAIN_AUDIO) | \
1784 BIT(POWER_DOMAIN_INIT))
1785
1786 #define VLV_DISPLAY_POWER_DOMAINS ( \
1787 BIT(POWER_DOMAIN_PIPE_A) | \
1788 BIT(POWER_DOMAIN_PIPE_B) | \
1789 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1790 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1791 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1792 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1793 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1794 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1795 BIT(POWER_DOMAIN_PORT_DSI) | \
1796 BIT(POWER_DOMAIN_PORT_CRT) | \
1797 BIT(POWER_DOMAIN_VGA) | \
1798 BIT(POWER_DOMAIN_AUDIO) | \
1799 BIT(POWER_DOMAIN_AUX_B) | \
1800 BIT(POWER_DOMAIN_AUX_C) | \
1801 BIT(POWER_DOMAIN_GMBUS) | \
1802 BIT(POWER_DOMAIN_INIT))
1803
1804 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
1805 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1806 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1807 BIT(POWER_DOMAIN_PORT_CRT) | \
1808 BIT(POWER_DOMAIN_AUX_B) | \
1809 BIT(POWER_DOMAIN_AUX_C) | \
1810 BIT(POWER_DOMAIN_INIT))
1811
1812 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
1813 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1814 BIT(POWER_DOMAIN_AUX_B) | \
1815 BIT(POWER_DOMAIN_INIT))
1816
1817 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
1818 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1819 BIT(POWER_DOMAIN_AUX_B) | \
1820 BIT(POWER_DOMAIN_INIT))
1821
1822 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
1823 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1824 BIT(POWER_DOMAIN_AUX_C) | \
1825 BIT(POWER_DOMAIN_INIT))
1826
1827 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
1828 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1829 BIT(POWER_DOMAIN_AUX_C) | \
1830 BIT(POWER_DOMAIN_INIT))
1831
1832 #define CHV_DISPLAY_POWER_DOMAINS ( \
1833 BIT(POWER_DOMAIN_PIPE_A) | \
1834 BIT(POWER_DOMAIN_PIPE_B) | \
1835 BIT(POWER_DOMAIN_PIPE_C) | \
1836 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1837 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1838 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1839 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1840 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1841 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1842 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1843 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1844 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1845 BIT(POWER_DOMAIN_PORT_DSI) | \
1846 BIT(POWER_DOMAIN_VGA) | \
1847 BIT(POWER_DOMAIN_AUDIO) | \
1848 BIT(POWER_DOMAIN_AUX_B) | \
1849 BIT(POWER_DOMAIN_AUX_C) | \
1850 BIT(POWER_DOMAIN_AUX_D) | \
1851 BIT(POWER_DOMAIN_GMBUS) | \
1852 BIT(POWER_DOMAIN_INIT))
1853
1854 #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
1855 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1856 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1857 BIT(POWER_DOMAIN_AUX_B) | \
1858 BIT(POWER_DOMAIN_AUX_C) | \
1859 BIT(POWER_DOMAIN_INIT))
1860
1861 #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
1862 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1863 BIT(POWER_DOMAIN_AUX_D) | \
1864 BIT(POWER_DOMAIN_INIT))
1865
1866 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1867 .sync_hw = i9xx_always_on_power_well_noop,
1868 .enable = i9xx_always_on_power_well_noop,
1869 .disable = i9xx_always_on_power_well_noop,
1870 .is_enabled = i9xx_always_on_power_well_enabled,
1871 };
1872
1873 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1874 .sync_hw = chv_pipe_power_well_sync_hw,
1875 .enable = chv_pipe_power_well_enable,
1876 .disable = chv_pipe_power_well_disable,
1877 .is_enabled = chv_pipe_power_well_enabled,
1878 };
1879
1880 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1881 .sync_hw = vlv_power_well_sync_hw,
1882 .enable = chv_dpio_cmn_power_well_enable,
1883 .disable = chv_dpio_cmn_power_well_disable,
1884 .is_enabled = vlv_power_well_enabled,
1885 };
1886
1887 static struct i915_power_well i9xx_always_on_power_well[] = {
1888 {
1889 .name = "always-on",
1890 .always_on = 1,
1891 .domains = POWER_DOMAIN_MASK,
1892 .ops = &i9xx_always_on_power_well_ops,
1893 },
1894 };
1895
1896 static const struct i915_power_well_ops hsw_power_well_ops = {
1897 .sync_hw = hsw_power_well_sync_hw,
1898 .enable = hsw_power_well_enable,
1899 .disable = hsw_power_well_disable,
1900 .is_enabled = hsw_power_well_enabled,
1901 };
1902
1903 static const struct i915_power_well_ops skl_power_well_ops = {
1904 .sync_hw = skl_power_well_sync_hw,
1905 .enable = skl_power_well_enable,
1906 .disable = skl_power_well_disable,
1907 .is_enabled = skl_power_well_enabled,
1908 };
1909
1910 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1911 .sync_hw = gen9_dc_off_power_well_sync_hw,
1912 .enable = gen9_dc_off_power_well_enable,
1913 .disable = gen9_dc_off_power_well_disable,
1914 .is_enabled = gen9_dc_off_power_well_enabled,
1915 };
1916
1917 static const struct i915_power_well_ops bxt_dpio_cmn_power_well_ops = {
1918 .sync_hw = bxt_dpio_cmn_power_well_sync_hw,
1919 .enable = bxt_dpio_cmn_power_well_enable,
1920 .disable = bxt_dpio_cmn_power_well_disable,
1921 .is_enabled = bxt_dpio_cmn_power_well_enabled,
1922 };
1923
1924 static struct i915_power_well hsw_power_wells[] = {
1925 {
1926 .name = "always-on",
1927 .always_on = 1,
1928 .domains = POWER_DOMAIN_MASK,
1929 .ops = &i9xx_always_on_power_well_ops,
1930 },
1931 {
1932 .name = "display",
1933 .domains = HSW_DISPLAY_POWER_DOMAINS,
1934 .ops = &hsw_power_well_ops,
1935 },
1936 };
1937
1938 static struct i915_power_well bdw_power_wells[] = {
1939 {
1940 .name = "always-on",
1941 .always_on = 1,
1942 .domains = POWER_DOMAIN_MASK,
1943 .ops = &i9xx_always_on_power_well_ops,
1944 },
1945 {
1946 .name = "display",
1947 .domains = BDW_DISPLAY_POWER_DOMAINS,
1948 .ops = &hsw_power_well_ops,
1949 },
1950 };
1951
1952 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1953 .sync_hw = vlv_power_well_sync_hw,
1954 .enable = vlv_display_power_well_enable,
1955 .disable = vlv_display_power_well_disable,
1956 .is_enabled = vlv_power_well_enabled,
1957 };
1958
1959 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1960 .sync_hw = vlv_power_well_sync_hw,
1961 .enable = vlv_dpio_cmn_power_well_enable,
1962 .disable = vlv_dpio_cmn_power_well_disable,
1963 .is_enabled = vlv_power_well_enabled,
1964 };
1965
1966 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1967 .sync_hw = vlv_power_well_sync_hw,
1968 .enable = vlv_power_well_enable,
1969 .disable = vlv_power_well_disable,
1970 .is_enabled = vlv_power_well_enabled,
1971 };
1972
1973 static struct i915_power_well vlv_power_wells[] = {
1974 {
1975 .name = "always-on",
1976 .always_on = 1,
1977 .domains = POWER_DOMAIN_MASK,
1978 .ops = &i9xx_always_on_power_well_ops,
1979 .data = PUNIT_POWER_WELL_ALWAYS_ON,
1980 },
1981 {
1982 .name = "display",
1983 .domains = VLV_DISPLAY_POWER_DOMAINS,
1984 .data = PUNIT_POWER_WELL_DISP2D,
1985 .ops = &vlv_display_power_well_ops,
1986 },
1987 {
1988 .name = "dpio-tx-b-01",
1989 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1990 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1991 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1992 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1993 .ops = &vlv_dpio_power_well_ops,
1994 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1995 },
1996 {
1997 .name = "dpio-tx-b-23",
1998 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1999 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2000 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2001 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2002 .ops = &vlv_dpio_power_well_ops,
2003 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
2004 },
2005 {
2006 .name = "dpio-tx-c-01",
2007 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2008 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2009 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2010 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2011 .ops = &vlv_dpio_power_well_ops,
2012 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
2013 },
2014 {
2015 .name = "dpio-tx-c-23",
2016 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2017 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2018 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2019 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2020 .ops = &vlv_dpio_power_well_ops,
2021 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
2022 },
2023 {
2024 .name = "dpio-common",
2025 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
2026 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2027 .ops = &vlv_dpio_cmn_power_well_ops,
2028 },
2029 };
2030
2031 static struct i915_power_well chv_power_wells[] = {
2032 {
2033 .name = "always-on",
2034 .always_on = 1,
2035 .domains = POWER_DOMAIN_MASK,
2036 .ops = &i9xx_always_on_power_well_ops,
2037 },
2038 {
2039 .name = "display",
2040 /*
2041 * Pipe A power well is the new disp2d well. Pipe B and C
2042 * power wells don't actually exist. Pipe A power well is
2043 * required for any pipe to work.
2044 */
2045 .domains = CHV_DISPLAY_POWER_DOMAINS,
2046 .data = PIPE_A,
2047 .ops = &chv_pipe_power_well_ops,
2048 },
2049 {
2050 .name = "dpio-common-bc",
2051 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
2052 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2053 .ops = &chv_dpio_cmn_power_well_ops,
2054 },
2055 {
2056 .name = "dpio-common-d",
2057 .domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
2058 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
2059 .ops = &chv_dpio_cmn_power_well_ops,
2060 },
2061 };
2062
2063 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
2064 int power_well_id)
2065 {
2066 struct i915_power_well *power_well;
2067 bool ret;
2068
2069 power_well = lookup_power_well(dev_priv, power_well_id);
2070 ret = power_well->ops->is_enabled(dev_priv, power_well);
2071
2072 return ret;
2073 }
2074
2075 static struct i915_power_well skl_power_wells[] = {
2076 {
2077 .name = "always-on",
2078 .always_on = 1,
2079 .domains = POWER_DOMAIN_MASK,
2080 .ops = &i9xx_always_on_power_well_ops,
2081 .data = SKL_DISP_PW_ALWAYS_ON,
2082 },
2083 {
2084 .name = "power well 1",
2085 /* Handled by the DMC firmware */
2086 .domains = 0,
2087 .ops = &skl_power_well_ops,
2088 .data = SKL_DISP_PW_1,
2089 },
2090 {
2091 .name = "MISC IO power well",
2092 /* Handled by the DMC firmware */
2093 .domains = 0,
2094 .ops = &skl_power_well_ops,
2095 .data = SKL_DISP_PW_MISC_IO,
2096 },
2097 {
2098 .name = "DC off",
2099 .domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
2100 .ops = &gen9_dc_off_power_well_ops,
2101 .data = SKL_DISP_PW_DC_OFF,
2102 },
2103 {
2104 .name = "power well 2",
2105 .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2106 .ops = &skl_power_well_ops,
2107 .data = SKL_DISP_PW_2,
2108 },
2109 {
2110 .name = "DDI A/E power well",
2111 .domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
2112 .ops = &skl_power_well_ops,
2113 .data = SKL_DISP_PW_DDI_A_E,
2114 },
2115 {
2116 .name = "DDI B power well",
2117 .domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
2118 .ops = &skl_power_well_ops,
2119 .data = SKL_DISP_PW_DDI_B,
2120 },
2121 {
2122 .name = "DDI C power well",
2123 .domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
2124 .ops = &skl_power_well_ops,
2125 .data = SKL_DISP_PW_DDI_C,
2126 },
2127 {
2128 .name = "DDI D power well",
2129 .domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
2130 .ops = &skl_power_well_ops,
2131 .data = SKL_DISP_PW_DDI_D,
2132 },
2133 };
2134
2135 static struct i915_power_well bxt_power_wells[] = {
2136 {
2137 .name = "always-on",
2138 .always_on = 1,
2139 .domains = POWER_DOMAIN_MASK,
2140 .ops = &i9xx_always_on_power_well_ops,
2141 },
2142 {
2143 .name = "power well 1",
2144 .domains = 0,
2145 .ops = &skl_power_well_ops,
2146 .data = SKL_DISP_PW_1,
2147 },
2148 {
2149 .name = "DC off",
2150 .domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
2151 .ops = &gen9_dc_off_power_well_ops,
2152 .data = SKL_DISP_PW_DC_OFF,
2153 },
2154 {
2155 .name = "power well 2",
2156 .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2157 .ops = &skl_power_well_ops,
2158 .data = SKL_DISP_PW_2,
2159 },
2160 {
2161 .name = "dpio-common-a",
2162 .domains = BXT_DPIO_CMN_A_POWER_DOMAINS,
2163 .ops = &bxt_dpio_cmn_power_well_ops,
2164 .data = BXT_DPIO_CMN_A,
2165 },
2166 {
2167 .name = "dpio-common-bc",
2168 .domains = BXT_DPIO_CMN_BC_POWER_DOMAINS,
2169 .ops = &bxt_dpio_cmn_power_well_ops,
2170 .data = BXT_DPIO_CMN_BC,
2171 },
2172 };
2173
2174 static int
2175 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2176 int disable_power_well)
2177 {
2178 if (disable_power_well >= 0)
2179 return !!disable_power_well;
2180
2181 return 1;
2182 }
2183
2184 static uint32_t get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
2185 int enable_dc)
2186 {
2187 uint32_t mask;
2188 int requested_dc;
2189 int max_dc;
2190
2191 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2192 max_dc = 2;
2193 mask = 0;
2194 } else if (IS_BROXTON(dev_priv)) {
2195 max_dc = 1;
2196 /*
2197 * DC9 has a separate HW flow from the rest of the DC states,
2198 * not depending on the DMC firmware. It's needed by system
2199 * suspend/resume, so allow it unconditionally.
2200 */
2201 mask = DC_STATE_EN_DC9;
2202 } else {
2203 max_dc = 0;
2204 mask = 0;
2205 }
2206
2207 if (!i915.disable_power_well)
2208 max_dc = 0;
2209
2210 if (enable_dc >= 0 && enable_dc <= max_dc) {
2211 requested_dc = enable_dc;
2212 } else if (enable_dc == -1) {
2213 requested_dc = max_dc;
2214 } else if (enable_dc > max_dc && enable_dc <= 2) {
2215 DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
2216 enable_dc, max_dc);
2217 requested_dc = max_dc;
2218 } else {
2219 DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
2220 requested_dc = max_dc;
2221 }
2222
2223 if (requested_dc > 1)
2224 mask |= DC_STATE_EN_UPTO_DC6;
2225 if (requested_dc > 0)
2226 mask |= DC_STATE_EN_UPTO_DC5;
2227
2228 DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
2229
2230 return mask;
2231 }
2232
2233 #define set_power_wells(power_domains, __power_wells) ({ \
2234 (power_domains)->power_wells = (__power_wells); \
2235 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
2236 })
2237
2238 /**
2239 * intel_power_domains_init - initializes the power domain structures
2240 * @dev_priv: i915 device instance
2241 *
2242 * Initializes the power domain structures for @dev_priv depending upon the
2243 * supported platform.
2244 */
2245 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2246 {
2247 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2248
2249 i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2250 i915.disable_power_well);
2251 dev_priv->csr.allowed_dc_mask = get_allowed_dc_mask(dev_priv,
2252 i915.enable_dc);
2253
2254 BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2255
2256 mutex_init(&power_domains->lock);
2257
2258 /*
2259 * The enabling order will be from lower to higher indexed wells,
2260 * the disabling order is reversed.
2261 */
2262 if (IS_HASWELL(dev_priv)) {
2263 set_power_wells(power_domains, hsw_power_wells);
2264 } else if (IS_BROADWELL(dev_priv)) {
2265 set_power_wells(power_domains, bdw_power_wells);
2266 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2267 set_power_wells(power_domains, skl_power_wells);
2268 } else if (IS_BROXTON(dev_priv)) {
2269 set_power_wells(power_domains, bxt_power_wells);
2270 } else if (IS_CHERRYVIEW(dev_priv)) {
2271 set_power_wells(power_domains, chv_power_wells);
2272 } else if (IS_VALLEYVIEW(dev_priv)) {
2273 set_power_wells(power_domains, vlv_power_wells);
2274 } else {
2275 set_power_wells(power_domains, i9xx_always_on_power_well);
2276 }
2277
2278 return 0;
2279 }
2280
2281 /**
2282 * intel_power_domains_fini - finalizes the power domain structures
2283 * @dev_priv: i915 device instance
2284 *
2285 * Finalizes the power domain structures for @dev_priv depending upon the
2286 * supported platform. This function also disables runtime pm and ensures that
2287 * the device stays powered up so that the driver can be reloaded.
2288 */
2289 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2290 {
2291 struct device *device = &dev_priv->drm.pdev->dev;
2292
2293 /*
2294 * The i915.ko module is still not prepared to be loaded when
2295 * the power well is not enabled, so just enable it in case
2296 * we're going to unload/reload.
2297 * The following also reacquires the RPM reference the core passed
2298 * to the driver during loading, which is dropped in
2299 * intel_runtime_pm_enable(). We have to hand back the control of the
2300 * device to the core with this reference held.
2301 */
2302 intel_display_set_init_power(dev_priv, true);
2303
2304 /* Remove the refcount we took to keep power well support disabled. */
2305 if (!i915.disable_power_well)
2306 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2307
2308 /*
2309 * Remove the refcount we took in intel_runtime_pm_enable() in case
2310 * the platform doesn't support runtime PM.
2311 */
2312 if (!HAS_RUNTIME_PM(dev_priv))
2313 pm_runtime_put(device);
2314 }
2315
2316 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2317 {
2318 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2319 struct i915_power_well *power_well;
2320 int i;
2321
2322 mutex_lock(&power_domains->lock);
2323 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2324 power_well->ops->sync_hw(dev_priv, power_well);
2325 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2326 power_well);
2327 }
2328 mutex_unlock(&power_domains->lock);
2329 }
2330
2331 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
2332 {
2333 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
2334 POSTING_READ(DBUF_CTL);
2335
2336 udelay(10);
2337
2338 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
2339 DRM_ERROR("DBuf power enable timeout\n");
2340 }
2341
2342 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
2343 {
2344 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
2345 POSTING_READ(DBUF_CTL);
2346
2347 udelay(10);
2348
2349 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
2350 DRM_ERROR("DBuf power disable timeout!\n");
2351 }
2352
2353 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2354 bool resume)
2355 {
2356 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2357 struct i915_power_well *well;
2358 uint32_t val;
2359
2360 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2361
2362 /* enable PCH reset handshake */
2363 val = I915_READ(HSW_NDE_RSTWRN_OPT);
2364 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2365
2366 /* enable PG1 and Misc I/O */
2367 mutex_lock(&power_domains->lock);
2368
2369 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2370 intel_power_well_enable(dev_priv, well);
2371
2372 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2373 intel_power_well_enable(dev_priv, well);
2374
2375 mutex_unlock(&power_domains->lock);
2376
2377 skl_init_cdclk(dev_priv);
2378
2379 gen9_dbuf_enable(dev_priv);
2380
2381 if (resume && dev_priv->csr.dmc_payload)
2382 intel_csr_load_program(dev_priv);
2383 }
2384
2385 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2386 {
2387 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2388 struct i915_power_well *well;
2389
2390 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2391
2392 gen9_dbuf_disable(dev_priv);
2393
2394 skl_uninit_cdclk(dev_priv);
2395
2396 /* The spec doesn't call for removing the reset handshake flag */
2397 /* disable PG1 and Misc I/O */
2398
2399 mutex_lock(&power_domains->lock);
2400
2401 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2402 intel_power_well_disable(dev_priv, well);
2403
2404 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2405 intel_power_well_disable(dev_priv, well);
2406
2407 mutex_unlock(&power_domains->lock);
2408 }
2409
2410 void bxt_display_core_init(struct drm_i915_private *dev_priv,
2411 bool resume)
2412 {
2413 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2414 struct i915_power_well *well;
2415 uint32_t val;
2416
2417 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2418
2419 /*
2420 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
2421 * or else the reset will hang because there is no PCH to respond.
2422 * Move the handshake programming to initialization sequence.
2423 * Previously was left up to BIOS.
2424 */
2425 val = I915_READ(HSW_NDE_RSTWRN_OPT);
2426 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
2427 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
2428
2429 /* Enable PG1 */
2430 mutex_lock(&power_domains->lock);
2431
2432 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2433 intel_power_well_enable(dev_priv, well);
2434
2435 mutex_unlock(&power_domains->lock);
2436
2437 bxt_init_cdclk(dev_priv);
2438
2439 gen9_dbuf_enable(dev_priv);
2440
2441 if (resume && dev_priv->csr.dmc_payload)
2442 intel_csr_load_program(dev_priv);
2443 }
2444
2445 void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
2446 {
2447 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2448 struct i915_power_well *well;
2449
2450 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2451
2452 gen9_dbuf_disable(dev_priv);
2453
2454 bxt_uninit_cdclk(dev_priv);
2455
2456 /* The spec doesn't call for removing the reset handshake flag */
2457
2458 /* Disable PG1 */
2459 mutex_lock(&power_domains->lock);
2460
2461 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2462 intel_power_well_disable(dev_priv, well);
2463
2464 mutex_unlock(&power_domains->lock);
2465 }
2466
2467 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2468 {
2469 struct i915_power_well *cmn_bc =
2470 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2471 struct i915_power_well *cmn_d =
2472 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2473
2474 /*
2475 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2476 * workaround never ever read DISPLAY_PHY_CONTROL, and
2477 * instead maintain a shadow copy ourselves. Use the actual
2478 * power well state and lane status to reconstruct the
2479 * expected initial value.
2480 */
2481 dev_priv->chv_phy_control =
2482 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2483 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2484 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2485 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2486 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2487
2488 /*
2489 * If all lanes are disabled we leave the override disabled
2490 * with all power down bits cleared to match the state we
2491 * would use after disabling the port. Otherwise enable the
2492 * override and set the lane powerdown bits accding to the
2493 * current lane status.
2494 */
2495 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2496 uint32_t status = I915_READ(DPLL(PIPE_A));
2497 unsigned int mask;
2498
2499 mask = status & DPLL_PORTB_READY_MASK;
2500 if (mask == 0xf)
2501 mask = 0x0;
2502 else
2503 dev_priv->chv_phy_control |=
2504 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2505
2506 dev_priv->chv_phy_control |=
2507 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2508
2509 mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2510 if (mask == 0xf)
2511 mask = 0x0;
2512 else
2513 dev_priv->chv_phy_control |=
2514 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2515
2516 dev_priv->chv_phy_control |=
2517 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2518
2519 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2520
2521 dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2522 } else {
2523 dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2524 }
2525
2526 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2527 uint32_t status = I915_READ(DPIO_PHY_STATUS);
2528 unsigned int mask;
2529
2530 mask = status & DPLL_PORTD_READY_MASK;
2531
2532 if (mask == 0xf)
2533 mask = 0x0;
2534 else
2535 dev_priv->chv_phy_control |=
2536 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2537
2538 dev_priv->chv_phy_control |=
2539 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2540
2541 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2542
2543 dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2544 } else {
2545 dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2546 }
2547
2548 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2549
2550 DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2551 dev_priv->chv_phy_control);
2552 }
2553
2554 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2555 {
2556 struct i915_power_well *cmn =
2557 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2558 struct i915_power_well *disp2d =
2559 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2560
2561 /* If the display might be already active skip this */
2562 if (cmn->ops->is_enabled(dev_priv, cmn) &&
2563 disp2d->ops->is_enabled(dev_priv, disp2d) &&
2564 I915_READ(DPIO_CTL) & DPIO_CMNRST)
2565 return;
2566
2567 DRM_DEBUG_KMS("toggling display PHY side reset\n");
2568
2569 /* cmnlane needs DPLL registers */
2570 disp2d->ops->enable(dev_priv, disp2d);
2571
2572 /*
2573 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2574 * Need to assert and de-assert PHY SB reset by gating the
2575 * common lane power, then un-gating it.
2576 * Simply ungating isn't enough to reset the PHY enough to get
2577 * ports and lanes running.
2578 */
2579 cmn->ops->disable(dev_priv, cmn);
2580 }
2581
2582 /**
2583 * intel_power_domains_init_hw - initialize hardware power domain state
2584 * @dev_priv: i915 device instance
2585 * @resume: Called from resume code paths or not
2586 *
2587 * This function initializes the hardware power domain state and enables all
2588 * power domains using intel_display_set_init_power().
2589 */
2590 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2591 {
2592 struct drm_device *dev = &dev_priv->drm;
2593 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2594
2595 power_domains->initializing = true;
2596
2597 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2598 skl_display_core_init(dev_priv, resume);
2599 } else if (IS_BROXTON(dev)) {
2600 bxt_display_core_init(dev_priv, resume);
2601 } else if (IS_CHERRYVIEW(dev)) {
2602 mutex_lock(&power_domains->lock);
2603 chv_phy_control_init(dev_priv);
2604 mutex_unlock(&power_domains->lock);
2605 } else if (IS_VALLEYVIEW(dev)) {
2606 mutex_lock(&power_domains->lock);
2607 vlv_cmnlane_wa(dev_priv);
2608 mutex_unlock(&power_domains->lock);
2609 }
2610
2611 /* For now, we need the power well to be always enabled. */
2612 intel_display_set_init_power(dev_priv, true);
2613 /* Disable power support if the user asked so. */
2614 if (!i915.disable_power_well)
2615 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2616 intel_power_domains_sync_hw(dev_priv);
2617 power_domains->initializing = false;
2618 }
2619
2620 /**
2621 * intel_power_domains_suspend - suspend power domain state
2622 * @dev_priv: i915 device instance
2623 *
2624 * This function prepares the hardware power domain state before entering
2625 * system suspend. It must be paired with intel_power_domains_init_hw().
2626 */
2627 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2628 {
2629 /*
2630 * Even if power well support was disabled we still want to disable
2631 * power wells while we are system suspended.
2632 */
2633 if (!i915.disable_power_well)
2634 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2635
2636 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2637 skl_display_core_uninit(dev_priv);
2638 else if (IS_BROXTON(dev_priv))
2639 bxt_display_core_uninit(dev_priv);
2640 }
2641
2642 /**
2643 * intel_runtime_pm_get - grab a runtime pm reference
2644 * @dev_priv: i915 device instance
2645 *
2646 * This function grabs a device-level runtime pm reference (mostly used for GEM
2647 * code to ensure the GTT or GT is on) and ensures that it is powered up.
2648 *
2649 * Any runtime pm reference obtained by this function must have a symmetric
2650 * call to intel_runtime_pm_put() to release the reference again.
2651 */
2652 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2653 {
2654 struct drm_device *dev = &dev_priv->drm;
2655 struct device *device = &dev->pdev->dev;
2656
2657 pm_runtime_get_sync(device);
2658
2659 atomic_inc(&dev_priv->pm.wakeref_count);
2660 assert_rpm_wakelock_held(dev_priv);
2661 }
2662
2663 /**
2664 * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2665 * @dev_priv: i915 device instance
2666 *
2667 * This function grabs a device-level runtime pm reference if the device is
2668 * already in use and ensures that it is powered up.
2669 *
2670 * Any runtime pm reference obtained by this function must have a symmetric
2671 * call to intel_runtime_pm_put() to release the reference again.
2672 */
2673 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2674 {
2675 struct drm_device *dev = &dev_priv->drm;
2676 struct device *device = &dev->pdev->dev;
2677
2678 if (IS_ENABLED(CONFIG_PM)) {
2679 int ret = pm_runtime_get_if_in_use(device);
2680
2681 /*
2682 * In cases runtime PM is disabled by the RPM core and we get
2683 * an -EINVAL return value we are not supposed to call this
2684 * function, since the power state is undefined. This applies
2685 * atm to the late/early system suspend/resume handlers.
2686 */
2687 WARN_ON_ONCE(ret < 0);
2688 if (ret <= 0)
2689 return false;
2690 }
2691
2692 atomic_inc(&dev_priv->pm.wakeref_count);
2693 assert_rpm_wakelock_held(dev_priv);
2694
2695 return true;
2696 }
2697
2698 /**
2699 * intel_runtime_pm_get_noresume - grab a runtime pm reference
2700 * @dev_priv: i915 device instance
2701 *
2702 * This function grabs a device-level runtime pm reference (mostly used for GEM
2703 * code to ensure the GTT or GT is on).
2704 *
2705 * It will _not_ power up the device but instead only check that it's powered
2706 * on. Therefore it is only valid to call this functions from contexts where
2707 * the device is known to be powered up and where trying to power it up would
2708 * result in hilarity and deadlocks. That pretty much means only the system
2709 * suspend/resume code where this is used to grab runtime pm references for
2710 * delayed setup down in work items.
2711 *
2712 * Any runtime pm reference obtained by this function must have a symmetric
2713 * call to intel_runtime_pm_put() to release the reference again.
2714 */
2715 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2716 {
2717 struct drm_device *dev = &dev_priv->drm;
2718 struct device *device = &dev->pdev->dev;
2719
2720 assert_rpm_wakelock_held(dev_priv);
2721 pm_runtime_get_noresume(device);
2722
2723 atomic_inc(&dev_priv->pm.wakeref_count);
2724 }
2725
2726 /**
2727 * intel_runtime_pm_put - release a runtime pm reference
2728 * @dev_priv: i915 device instance
2729 *
2730 * This function drops the device-level runtime pm reference obtained by
2731 * intel_runtime_pm_get() and might power down the corresponding
2732 * hardware block right away if this is the last reference.
2733 */
2734 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2735 {
2736 struct drm_device *dev = &dev_priv->drm;
2737 struct device *device = &dev->pdev->dev;
2738
2739 assert_rpm_wakelock_held(dev_priv);
2740 if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2741 atomic_inc(&dev_priv->pm.atomic_seq);
2742
2743 pm_runtime_mark_last_busy(device);
2744 pm_runtime_put_autosuspend(device);
2745 }
2746
2747 /**
2748 * intel_runtime_pm_enable - enable runtime pm
2749 * @dev_priv: i915 device instance
2750 *
2751 * This function enables runtime pm at the end of the driver load sequence.
2752 *
2753 * Note that this function does currently not enable runtime pm for the
2754 * subordinate display power domains. That is only done on the first modeset
2755 * using intel_display_set_init_power().
2756 */
2757 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2758 {
2759 struct drm_device *dev = &dev_priv->drm;
2760 struct device *device = &dev->pdev->dev;
2761
2762 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2763 pm_runtime_mark_last_busy(device);
2764
2765 /*
2766 * Take a permanent reference to disable the RPM functionality and drop
2767 * it only when unloading the driver. Use the low level get/put helpers,
2768 * so the driver's own RPM reference tracking asserts also work on
2769 * platforms without RPM support.
2770 */
2771 if (!HAS_RUNTIME_PM(dev)) {
2772 pm_runtime_dont_use_autosuspend(device);
2773 pm_runtime_get_sync(device);
2774 } else {
2775 pm_runtime_use_autosuspend(device);
2776 }
2777
2778 /*
2779 * The core calls the driver load handler with an RPM reference held.
2780 * We drop that here and will reacquire it during unloading in
2781 * intel_power_domains_fini().
2782 */
2783 pm_runtime_put_autosuspend(device);
2784 }
2785
This page took 0.140636 seconds and 5 git commands to generate.