drm/i915: Unify SKL cdclk init paths
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_runtime_pm.c
1 /*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 * Daniel Vetter <daniel.vetter@ffwll.ch>
26 *
27 */
28
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34
35 /**
36 * DOC: runtime pm
37 *
38 * The i915 driver supports dynamic enabling and disabling of entire hardware
39 * blocks at runtime. This is especially important on the display side where
40 * software is supposed to control many power gates manually on recent hardware,
41 * since on the GT side a lot of the power management is done by the hardware.
42 * But even there some manual control at the device level is required.
43 *
44 * Since i915 supports a diverse set of platforms with a unified codebase and
45 * hardware engineers just love to shuffle functionality around between power
46 * domains there's a sizeable amount of indirection required. This file provides
47 * generic functions to the driver for grabbing and releasing references for
48 * abstract power domains. It then maps those to the actual power wells
49 * present for a given platform.
50 */
51
52 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
53 for (i = 0; \
54 i < (power_domains)->power_well_count && \
55 ((power_well) = &(power_domains)->power_wells[i]); \
56 i++) \
57 for_each_if ((power_well)->domains & (domain_mask))
58
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 for (i = (power_domains)->power_well_count - 1; \
61 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 i--) \
63 for_each_if ((power_well)->domains & (domain_mask))
64
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 int power_well_id);
67
68 const char *
69 intel_display_power_domain_str(enum intel_display_power_domain domain)
70 {
71 switch (domain) {
72 case POWER_DOMAIN_PIPE_A:
73 return "PIPE_A";
74 case POWER_DOMAIN_PIPE_B:
75 return "PIPE_B";
76 case POWER_DOMAIN_PIPE_C:
77 return "PIPE_C";
78 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
79 return "PIPE_A_PANEL_FITTER";
80 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
81 return "PIPE_B_PANEL_FITTER";
82 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
83 return "PIPE_C_PANEL_FITTER";
84 case POWER_DOMAIN_TRANSCODER_A:
85 return "TRANSCODER_A";
86 case POWER_DOMAIN_TRANSCODER_B:
87 return "TRANSCODER_B";
88 case POWER_DOMAIN_TRANSCODER_C:
89 return "TRANSCODER_C";
90 case POWER_DOMAIN_TRANSCODER_EDP:
91 return "TRANSCODER_EDP";
92 case POWER_DOMAIN_TRANSCODER_DSI_A:
93 return "TRANSCODER_DSI_A";
94 case POWER_DOMAIN_TRANSCODER_DSI_C:
95 return "TRANSCODER_DSI_C";
96 case POWER_DOMAIN_PORT_DDI_A_LANES:
97 return "PORT_DDI_A_LANES";
98 case POWER_DOMAIN_PORT_DDI_B_LANES:
99 return "PORT_DDI_B_LANES";
100 case POWER_DOMAIN_PORT_DDI_C_LANES:
101 return "PORT_DDI_C_LANES";
102 case POWER_DOMAIN_PORT_DDI_D_LANES:
103 return "PORT_DDI_D_LANES";
104 case POWER_DOMAIN_PORT_DDI_E_LANES:
105 return "PORT_DDI_E_LANES";
106 case POWER_DOMAIN_PORT_DSI:
107 return "PORT_DSI";
108 case POWER_DOMAIN_PORT_CRT:
109 return "PORT_CRT";
110 case POWER_DOMAIN_PORT_OTHER:
111 return "PORT_OTHER";
112 case POWER_DOMAIN_VGA:
113 return "VGA";
114 case POWER_DOMAIN_AUDIO:
115 return "AUDIO";
116 case POWER_DOMAIN_PLLS:
117 return "PLLS";
118 case POWER_DOMAIN_AUX_A:
119 return "AUX_A";
120 case POWER_DOMAIN_AUX_B:
121 return "AUX_B";
122 case POWER_DOMAIN_AUX_C:
123 return "AUX_C";
124 case POWER_DOMAIN_AUX_D:
125 return "AUX_D";
126 case POWER_DOMAIN_GMBUS:
127 return "GMBUS";
128 case POWER_DOMAIN_INIT:
129 return "INIT";
130 case POWER_DOMAIN_MODESET:
131 return "MODESET";
132 default:
133 MISSING_CASE(domain);
134 return "?";
135 }
136 }
137
138 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
139 struct i915_power_well *power_well)
140 {
141 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
142 power_well->ops->enable(dev_priv, power_well);
143 power_well->hw_enabled = true;
144 }
145
146 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
147 struct i915_power_well *power_well)
148 {
149 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
150 power_well->hw_enabled = false;
151 power_well->ops->disable(dev_priv, power_well);
152 }
153
154 /*
155 * We should only use the power well if we explicitly asked the hardware to
156 * enable it, so check if it's enabled and also check if we've requested it to
157 * be enabled.
158 */
159 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
160 struct i915_power_well *power_well)
161 {
162 return I915_READ(HSW_PWR_WELL_DRIVER) ==
163 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
164 }
165
166 /**
167 * __intel_display_power_is_enabled - unlocked check for a power domain
168 * @dev_priv: i915 device instance
169 * @domain: power domain to check
170 *
171 * This is the unlocked version of intel_display_power_is_enabled() and should
172 * only be used from error capture and recovery code where deadlocks are
173 * possible.
174 *
175 * Returns:
176 * True when the power domain is enabled, false otherwise.
177 */
178 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
179 enum intel_display_power_domain domain)
180 {
181 struct i915_power_domains *power_domains;
182 struct i915_power_well *power_well;
183 bool is_enabled;
184 int i;
185
186 if (dev_priv->pm.suspended)
187 return false;
188
189 power_domains = &dev_priv->power_domains;
190
191 is_enabled = true;
192
193 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
194 if (power_well->always_on)
195 continue;
196
197 if (!power_well->hw_enabled) {
198 is_enabled = false;
199 break;
200 }
201 }
202
203 return is_enabled;
204 }
205
206 /**
207 * intel_display_power_is_enabled - check for a power domain
208 * @dev_priv: i915 device instance
209 * @domain: power domain to check
210 *
211 * This function can be used to check the hw power domain state. It is mostly
212 * used in hardware state readout functions. Everywhere else code should rely
213 * upon explicit power domain reference counting to ensure that the hardware
214 * block is powered up before accessing it.
215 *
216 * Callers must hold the relevant modesetting locks to ensure that concurrent
217 * threads can't disable the power well while the caller tries to read a few
218 * registers.
219 *
220 * Returns:
221 * True when the power domain is enabled, false otherwise.
222 */
223 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
224 enum intel_display_power_domain domain)
225 {
226 struct i915_power_domains *power_domains;
227 bool ret;
228
229 power_domains = &dev_priv->power_domains;
230
231 mutex_lock(&power_domains->lock);
232 ret = __intel_display_power_is_enabled(dev_priv, domain);
233 mutex_unlock(&power_domains->lock);
234
235 return ret;
236 }
237
238 /**
239 * intel_display_set_init_power - set the initial power domain state
240 * @dev_priv: i915 device instance
241 * @enable: whether to enable or disable the initial power domain state
242 *
243 * For simplicity our driver load/unload and system suspend/resume code assumes
244 * that all power domains are always enabled. This functions controls the state
245 * of this little hack. While the initial power domain state is enabled runtime
246 * pm is effectively disabled.
247 */
248 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
249 bool enable)
250 {
251 if (dev_priv->power_domains.init_power_on == enable)
252 return;
253
254 if (enable)
255 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
256 else
257 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
258
259 dev_priv->power_domains.init_power_on = enable;
260 }
261
262 /*
263 * Starting with Haswell, we have a "Power Down Well" that can be turned off
264 * when not needed anymore. We have 4 registers that can request the power well
265 * to be enabled, and it will only be disabled if none of the registers is
266 * requesting it to be enabled.
267 */
268 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
269 {
270 struct drm_device *dev = dev_priv->dev;
271
272 /*
273 * After we re-enable the power well, if we touch VGA register 0x3d5
274 * we'll get unclaimed register interrupts. This stops after we write
275 * anything to the VGA MSR register. The vgacon module uses this
276 * register all the time, so if we unbind our driver and, as a
277 * consequence, bind vgacon, we'll get stuck in an infinite loop at
278 * console_unlock(). So make here we touch the VGA MSR register, making
279 * sure vgacon can keep working normally without triggering interrupts
280 * and error messages.
281 */
282 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
283 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
284 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
285
286 if (IS_BROADWELL(dev))
287 gen8_irq_power_well_post_enable(dev_priv,
288 1 << PIPE_C | 1 << PIPE_B);
289 }
290
291 static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv)
292 {
293 if (IS_BROADWELL(dev_priv))
294 gen8_irq_power_well_pre_disable(dev_priv,
295 1 << PIPE_C | 1 << PIPE_B);
296 }
297
298 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
299 struct i915_power_well *power_well)
300 {
301 struct drm_device *dev = dev_priv->dev;
302
303 /*
304 * After we re-enable the power well, if we touch VGA register 0x3d5
305 * we'll get unclaimed register interrupts. This stops after we write
306 * anything to the VGA MSR register. The vgacon module uses this
307 * register all the time, so if we unbind our driver and, as a
308 * consequence, bind vgacon, we'll get stuck in an infinite loop at
309 * console_unlock(). So make here we touch the VGA MSR register, making
310 * sure vgacon can keep working normally without triggering interrupts
311 * and error messages.
312 */
313 if (power_well->data == SKL_DISP_PW_2) {
314 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
315 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
316 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
317
318 gen8_irq_power_well_post_enable(dev_priv,
319 1 << PIPE_C | 1 << PIPE_B);
320 }
321 }
322
323 static void skl_power_well_pre_disable(struct drm_i915_private *dev_priv,
324 struct i915_power_well *power_well)
325 {
326 if (power_well->data == SKL_DISP_PW_2)
327 gen8_irq_power_well_pre_disable(dev_priv,
328 1 << PIPE_C | 1 << PIPE_B);
329 }
330
331 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
332 struct i915_power_well *power_well, bool enable)
333 {
334 bool is_enabled, enable_requested;
335 uint32_t tmp;
336
337 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
338 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
339 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
340
341 if (enable) {
342 if (!enable_requested)
343 I915_WRITE(HSW_PWR_WELL_DRIVER,
344 HSW_PWR_WELL_ENABLE_REQUEST);
345
346 if (!is_enabled) {
347 DRM_DEBUG_KMS("Enabling power well\n");
348 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
349 HSW_PWR_WELL_STATE_ENABLED), 20))
350 DRM_ERROR("Timeout enabling power well\n");
351 hsw_power_well_post_enable(dev_priv);
352 }
353
354 } else {
355 if (enable_requested) {
356 hsw_power_well_pre_disable(dev_priv);
357 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
358 POSTING_READ(HSW_PWR_WELL_DRIVER);
359 DRM_DEBUG_KMS("Requesting to disable the power well\n");
360 }
361 }
362 }
363
364 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
365 BIT(POWER_DOMAIN_TRANSCODER_A) | \
366 BIT(POWER_DOMAIN_PIPE_B) | \
367 BIT(POWER_DOMAIN_TRANSCODER_B) | \
368 BIT(POWER_DOMAIN_PIPE_C) | \
369 BIT(POWER_DOMAIN_TRANSCODER_C) | \
370 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
371 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
372 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
373 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
374 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
375 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
376 BIT(POWER_DOMAIN_AUX_B) | \
377 BIT(POWER_DOMAIN_AUX_C) | \
378 BIT(POWER_DOMAIN_AUX_D) | \
379 BIT(POWER_DOMAIN_AUDIO) | \
380 BIT(POWER_DOMAIN_VGA) | \
381 BIT(POWER_DOMAIN_INIT))
382 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \
383 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
384 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
385 BIT(POWER_DOMAIN_INIT))
386 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \
387 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
388 BIT(POWER_DOMAIN_INIT))
389 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \
390 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
391 BIT(POWER_DOMAIN_INIT))
392 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \
393 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
394 BIT(POWER_DOMAIN_INIT))
395 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
396 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
397 BIT(POWER_DOMAIN_MODESET) | \
398 BIT(POWER_DOMAIN_AUX_A) | \
399 BIT(POWER_DOMAIN_INIT))
400
401 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
402 BIT(POWER_DOMAIN_TRANSCODER_A) | \
403 BIT(POWER_DOMAIN_PIPE_B) | \
404 BIT(POWER_DOMAIN_TRANSCODER_B) | \
405 BIT(POWER_DOMAIN_PIPE_C) | \
406 BIT(POWER_DOMAIN_TRANSCODER_C) | \
407 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
408 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
409 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
410 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
411 BIT(POWER_DOMAIN_AUX_B) | \
412 BIT(POWER_DOMAIN_AUX_C) | \
413 BIT(POWER_DOMAIN_AUDIO) | \
414 BIT(POWER_DOMAIN_VGA) | \
415 BIT(POWER_DOMAIN_GMBUS) | \
416 BIT(POWER_DOMAIN_INIT))
417 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS ( \
418 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
419 BIT(POWER_DOMAIN_MODESET) | \
420 BIT(POWER_DOMAIN_AUX_A) | \
421 BIT(POWER_DOMAIN_INIT))
422
423 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
424 {
425 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
426 "DC9 already programmed to be enabled.\n");
427 WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
428 "DC5 still not disabled to enable DC9.\n");
429 WARN_ONCE(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
430 WARN_ONCE(intel_irqs_enabled(dev_priv),
431 "Interrupts not disabled yet.\n");
432
433 /*
434 * TODO: check for the following to verify the conditions to enter DC9
435 * state are satisfied:
436 * 1] Check relevant display engine registers to verify if mode set
437 * disable sequence was followed.
438 * 2] Check if display uninitialize sequence is initialized.
439 */
440 }
441
442 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
443 {
444 WARN_ONCE(intel_irqs_enabled(dev_priv),
445 "Interrupts not disabled yet.\n");
446 WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
447 "DC5 still not disabled.\n");
448
449 /*
450 * TODO: check for the following to verify DC9 state was indeed
451 * entered before programming to disable it:
452 * 1] Check relevant display engine registers to verify if mode
453 * set disable sequence was followed.
454 * 2] Check if display uninitialize sequence is initialized.
455 */
456 }
457
458 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
459 u32 state)
460 {
461 int rewrites = 0;
462 int rereads = 0;
463 u32 v;
464
465 I915_WRITE(DC_STATE_EN, state);
466
467 /* It has been observed that disabling the dc6 state sometimes
468 * doesn't stick and dmc keeps returning old value. Make sure
469 * the write really sticks enough times and also force rewrite until
470 * we are confident that state is exactly what we want.
471 */
472 do {
473 v = I915_READ(DC_STATE_EN);
474
475 if (v != state) {
476 I915_WRITE(DC_STATE_EN, state);
477 rewrites++;
478 rereads = 0;
479 } else if (rereads++ > 5) {
480 break;
481 }
482
483 } while (rewrites < 100);
484
485 if (v != state)
486 DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
487 state, v);
488
489 /* Most of the times we need one retry, avoid spam */
490 if (rewrites > 1)
491 DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
492 state, rewrites);
493 }
494
495 static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
496 {
497 u32 mask;
498
499 mask = DC_STATE_EN_UPTO_DC5;
500 if (IS_BROXTON(dev_priv))
501 mask |= DC_STATE_EN_DC9;
502 else
503 mask |= DC_STATE_EN_UPTO_DC6;
504
505 return mask;
506 }
507
508 void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv)
509 {
510 u32 val;
511
512 val = I915_READ(DC_STATE_EN) & gen9_dc_mask(dev_priv);
513
514 DRM_DEBUG_KMS("Resetting DC state tracking from %02x to %02x\n",
515 dev_priv->csr.dc_state, val);
516 dev_priv->csr.dc_state = val;
517 }
518
519 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
520 {
521 uint32_t val;
522 uint32_t mask;
523
524 if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
525 state &= dev_priv->csr.allowed_dc_mask;
526
527 val = I915_READ(DC_STATE_EN);
528 mask = gen9_dc_mask(dev_priv);
529 DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
530 val & mask, state);
531
532 /* Check if DMC is ignoring our DC state requests */
533 if ((val & mask) != dev_priv->csr.dc_state)
534 DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
535 dev_priv->csr.dc_state, val & mask);
536
537 val &= ~mask;
538 val |= state;
539
540 gen9_write_dc_state(dev_priv, val);
541
542 dev_priv->csr.dc_state = val & mask;
543 }
544
545 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
546 {
547 assert_can_enable_dc9(dev_priv);
548
549 DRM_DEBUG_KMS("Enabling DC9\n");
550
551 gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
552 }
553
554 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
555 {
556 assert_can_disable_dc9(dev_priv);
557
558 DRM_DEBUG_KMS("Disabling DC9\n");
559
560 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
561 }
562
563 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
564 {
565 WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
566 "CSR program storage start is NULL\n");
567 WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
568 WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
569 }
570
571 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
572 {
573 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
574 SKL_DISP_PW_2);
575
576 WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
577
578 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
579 "DC5 already programmed to be enabled.\n");
580 assert_rpm_wakelock_held(dev_priv);
581
582 assert_csr_loaded(dev_priv);
583 }
584
585 void gen9_enable_dc5(struct drm_i915_private *dev_priv)
586 {
587 assert_can_enable_dc5(dev_priv);
588
589 DRM_DEBUG_KMS("Enabling DC5\n");
590
591 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
592 }
593
594 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
595 {
596 WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
597 "Backlight is not disabled.\n");
598 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
599 "DC6 already programmed to be enabled.\n");
600
601 assert_csr_loaded(dev_priv);
602 }
603
604 void skl_enable_dc6(struct drm_i915_private *dev_priv)
605 {
606 assert_can_enable_dc6(dev_priv);
607
608 DRM_DEBUG_KMS("Enabling DC6\n");
609
610 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
611
612 }
613
614 void skl_disable_dc6(struct drm_i915_private *dev_priv)
615 {
616 DRM_DEBUG_KMS("Disabling DC6\n");
617
618 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
619 }
620
621 static void
622 gen9_sanitize_power_well_requests(struct drm_i915_private *dev_priv,
623 struct i915_power_well *power_well)
624 {
625 enum skl_disp_power_wells power_well_id = power_well->data;
626 u32 val;
627 u32 mask;
628
629 mask = SKL_POWER_WELL_REQ(power_well_id);
630
631 val = I915_READ(HSW_PWR_WELL_KVMR);
632 if (WARN_ONCE(val & mask, "Clearing unexpected KVMR request for %s\n",
633 power_well->name))
634 I915_WRITE(HSW_PWR_WELL_KVMR, val & ~mask);
635
636 val = I915_READ(HSW_PWR_WELL_BIOS);
637 val |= I915_READ(HSW_PWR_WELL_DEBUG);
638
639 if (!(val & mask))
640 return;
641
642 /*
643 * DMC is known to force on the request bits for power well 1 on SKL
644 * and BXT and the misc IO power well on SKL but we don't expect any
645 * other request bits to be set, so WARN for those.
646 */
647 if (power_well_id == SKL_DISP_PW_1 ||
648 ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
649 power_well_id == SKL_DISP_PW_MISC_IO))
650 DRM_DEBUG_DRIVER("Clearing auxiliary requests for %s forced on "
651 "by DMC\n", power_well->name);
652 else
653 WARN_ONCE(1, "Clearing unexpected auxiliary requests for %s\n",
654 power_well->name);
655
656 I915_WRITE(HSW_PWR_WELL_BIOS, val & ~mask);
657 I915_WRITE(HSW_PWR_WELL_DEBUG, val & ~mask);
658 }
659
660 static void skl_set_power_well(struct drm_i915_private *dev_priv,
661 struct i915_power_well *power_well, bool enable)
662 {
663 uint32_t tmp, fuse_status;
664 uint32_t req_mask, state_mask;
665 bool is_enabled, enable_requested, check_fuse_status = false;
666
667 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
668 fuse_status = I915_READ(SKL_FUSE_STATUS);
669
670 switch (power_well->data) {
671 case SKL_DISP_PW_1:
672 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
673 SKL_FUSE_PG0_DIST_STATUS), 1)) {
674 DRM_ERROR("PG0 not enabled\n");
675 return;
676 }
677 break;
678 case SKL_DISP_PW_2:
679 if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
680 DRM_ERROR("PG1 in disabled state\n");
681 return;
682 }
683 break;
684 case SKL_DISP_PW_DDI_A_E:
685 case SKL_DISP_PW_DDI_B:
686 case SKL_DISP_PW_DDI_C:
687 case SKL_DISP_PW_DDI_D:
688 case SKL_DISP_PW_MISC_IO:
689 break;
690 default:
691 WARN(1, "Unknown power well %lu\n", power_well->data);
692 return;
693 }
694
695 req_mask = SKL_POWER_WELL_REQ(power_well->data);
696 enable_requested = tmp & req_mask;
697 state_mask = SKL_POWER_WELL_STATE(power_well->data);
698 is_enabled = tmp & state_mask;
699
700 if (!enable && enable_requested)
701 skl_power_well_pre_disable(dev_priv, power_well);
702
703 if (enable) {
704 if (!enable_requested) {
705 WARN((tmp & state_mask) &&
706 !I915_READ(HSW_PWR_WELL_BIOS),
707 "Invalid for power well status to be enabled, unless done by the BIOS, \
708 when request is to disable!\n");
709 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
710 }
711
712 if (!is_enabled) {
713 DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
714 check_fuse_status = true;
715 }
716 } else {
717 if (enable_requested) {
718 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask);
719 POSTING_READ(HSW_PWR_WELL_DRIVER);
720 DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
721 }
722
723 if (IS_GEN9(dev_priv))
724 gen9_sanitize_power_well_requests(dev_priv, power_well);
725 }
726
727 if (wait_for(!!(I915_READ(HSW_PWR_WELL_DRIVER) & state_mask) == enable,
728 1))
729 DRM_ERROR("%s %s timeout\n",
730 power_well->name, enable ? "enable" : "disable");
731
732 if (check_fuse_status) {
733 if (power_well->data == SKL_DISP_PW_1) {
734 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
735 SKL_FUSE_PG1_DIST_STATUS), 1))
736 DRM_ERROR("PG1 distributing status timeout\n");
737 } else if (power_well->data == SKL_DISP_PW_2) {
738 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
739 SKL_FUSE_PG2_DIST_STATUS), 1))
740 DRM_ERROR("PG2 distributing status timeout\n");
741 }
742 }
743
744 if (enable && !is_enabled)
745 skl_power_well_post_enable(dev_priv, power_well);
746 }
747
748 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
749 struct i915_power_well *power_well)
750 {
751 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
752
753 /*
754 * We're taking over the BIOS, so clear any requests made by it since
755 * the driver is in charge now.
756 */
757 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
758 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
759 }
760
761 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
762 struct i915_power_well *power_well)
763 {
764 hsw_set_power_well(dev_priv, power_well, true);
765 }
766
767 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
768 struct i915_power_well *power_well)
769 {
770 hsw_set_power_well(dev_priv, power_well, false);
771 }
772
773 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
774 struct i915_power_well *power_well)
775 {
776 uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
777 SKL_POWER_WELL_STATE(power_well->data);
778
779 return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
780 }
781
782 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
783 struct i915_power_well *power_well)
784 {
785 skl_set_power_well(dev_priv, power_well, power_well->count > 0);
786
787 /* Clear any request made by BIOS as driver is taking over */
788 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
789 }
790
791 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
792 struct i915_power_well *power_well)
793 {
794 skl_set_power_well(dev_priv, power_well, true);
795 }
796
797 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
798 struct i915_power_well *power_well)
799 {
800 skl_set_power_well(dev_priv, power_well, false);
801 }
802
803 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
804 struct i915_power_well *power_well)
805 {
806 return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
807 }
808
809 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
810 struct i915_power_well *power_well)
811 {
812 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
813
814 if (IS_BROXTON(dev_priv)) {
815 broxton_cdclk_verify_state(dev_priv);
816 broxton_ddi_phy_verify_state(dev_priv);
817 }
818 }
819
820 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
821 struct i915_power_well *power_well)
822 {
823 if (!dev_priv->csr.dmc_payload)
824 return;
825
826 if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
827 skl_enable_dc6(dev_priv);
828 else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
829 gen9_enable_dc5(dev_priv);
830 }
831
832 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
833 struct i915_power_well *power_well)
834 {
835 if (power_well->count > 0)
836 gen9_dc_off_power_well_enable(dev_priv, power_well);
837 else
838 gen9_dc_off_power_well_disable(dev_priv, power_well);
839 }
840
841 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
842 struct i915_power_well *power_well)
843 {
844 }
845
846 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
847 struct i915_power_well *power_well)
848 {
849 return true;
850 }
851
852 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
853 struct i915_power_well *power_well, bool enable)
854 {
855 enum punit_power_well power_well_id = power_well->data;
856 u32 mask;
857 u32 state;
858 u32 ctrl;
859
860 mask = PUNIT_PWRGT_MASK(power_well_id);
861 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
862 PUNIT_PWRGT_PWR_GATE(power_well_id);
863
864 mutex_lock(&dev_priv->rps.hw_lock);
865
866 #define COND \
867 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
868
869 if (COND)
870 goto out;
871
872 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
873 ctrl &= ~mask;
874 ctrl |= state;
875 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
876
877 if (wait_for(COND, 100))
878 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
879 state,
880 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
881
882 #undef COND
883
884 out:
885 mutex_unlock(&dev_priv->rps.hw_lock);
886 }
887
888 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
889 struct i915_power_well *power_well)
890 {
891 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
892 }
893
894 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
895 struct i915_power_well *power_well)
896 {
897 vlv_set_power_well(dev_priv, power_well, true);
898 }
899
900 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
901 struct i915_power_well *power_well)
902 {
903 vlv_set_power_well(dev_priv, power_well, false);
904 }
905
906 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
907 struct i915_power_well *power_well)
908 {
909 int power_well_id = power_well->data;
910 bool enabled = false;
911 u32 mask;
912 u32 state;
913 u32 ctrl;
914
915 mask = PUNIT_PWRGT_MASK(power_well_id);
916 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
917
918 mutex_lock(&dev_priv->rps.hw_lock);
919
920 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
921 /*
922 * We only ever set the power-on and power-gate states, anything
923 * else is unexpected.
924 */
925 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
926 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
927 if (state == ctrl)
928 enabled = true;
929
930 /*
931 * A transient state at this point would mean some unexpected party
932 * is poking at the power controls too.
933 */
934 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
935 WARN_ON(ctrl != state);
936
937 mutex_unlock(&dev_priv->rps.hw_lock);
938
939 return enabled;
940 }
941
942 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
943 {
944 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
945
946 /*
947 * Disable trickle feed and enable pnd deadline calculation
948 */
949 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
950 I915_WRITE(CBR1_VLV, 0);
951
952 WARN_ON(dev_priv->rawclk_freq == 0);
953
954 I915_WRITE(RAWCLK_FREQ_VLV,
955 DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 1000));
956 }
957
958 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
959 {
960 enum pipe pipe;
961
962 /*
963 * Enable the CRI clock source so we can get at the
964 * display and the reference clock for VGA
965 * hotplug / manual detection. Supposedly DSI also
966 * needs the ref clock up and running.
967 *
968 * CHV DPLL B/C have some issues if VGA mode is enabled.
969 */
970 for_each_pipe(dev_priv->dev, pipe) {
971 u32 val = I915_READ(DPLL(pipe));
972
973 val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
974 if (pipe != PIPE_A)
975 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
976
977 I915_WRITE(DPLL(pipe), val);
978 }
979
980 vlv_init_display_clock_gating(dev_priv);
981
982 spin_lock_irq(&dev_priv->irq_lock);
983 valleyview_enable_display_irqs(dev_priv);
984 spin_unlock_irq(&dev_priv->irq_lock);
985
986 /*
987 * During driver initialization/resume we can avoid restoring the
988 * part of the HW/SW state that will be inited anyway explicitly.
989 */
990 if (dev_priv->power_domains.initializing)
991 return;
992
993 intel_hpd_init(dev_priv);
994
995 i915_redisable_vga_power_on(dev_priv->dev);
996 }
997
998 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
999 {
1000 spin_lock_irq(&dev_priv->irq_lock);
1001 valleyview_disable_display_irqs(dev_priv);
1002 spin_unlock_irq(&dev_priv->irq_lock);
1003
1004 /* make sure we're done processing display irqs */
1005 synchronize_irq(dev_priv->dev->irq);
1006
1007 vlv_power_sequencer_reset(dev_priv);
1008 }
1009
1010 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1011 struct i915_power_well *power_well)
1012 {
1013 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1014
1015 vlv_set_power_well(dev_priv, power_well, true);
1016
1017 vlv_display_power_well_init(dev_priv);
1018 }
1019
1020 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1021 struct i915_power_well *power_well)
1022 {
1023 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1024
1025 vlv_display_power_well_deinit(dev_priv);
1026
1027 vlv_set_power_well(dev_priv, power_well, false);
1028 }
1029
1030 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1031 struct i915_power_well *power_well)
1032 {
1033 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1034
1035 /* since ref/cri clock was enabled */
1036 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1037
1038 vlv_set_power_well(dev_priv, power_well, true);
1039
1040 /*
1041 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1042 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
1043 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
1044 * b. The other bits such as sfr settings / modesel may all
1045 * be set to 0.
1046 *
1047 * This should only be done on init and resume from S3 with
1048 * both PLLs disabled, or we risk losing DPIO and PLL
1049 * synchronization.
1050 */
1051 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1052 }
1053
1054 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1055 struct i915_power_well *power_well)
1056 {
1057 enum pipe pipe;
1058
1059 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1060
1061 for_each_pipe(dev_priv, pipe)
1062 assert_pll_disabled(dev_priv, pipe);
1063
1064 /* Assert common reset */
1065 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1066
1067 vlv_set_power_well(dev_priv, power_well, false);
1068 }
1069
1070 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1071
1072 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1073 int power_well_id)
1074 {
1075 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1076 int i;
1077
1078 for (i = 0; i < power_domains->power_well_count; i++) {
1079 struct i915_power_well *power_well;
1080
1081 power_well = &power_domains->power_wells[i];
1082 if (power_well->data == power_well_id)
1083 return power_well;
1084 }
1085
1086 return NULL;
1087 }
1088
1089 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1090
1091 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1092 {
1093 struct i915_power_well *cmn_bc =
1094 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1095 struct i915_power_well *cmn_d =
1096 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1097 u32 phy_control = dev_priv->chv_phy_control;
1098 u32 phy_status = 0;
1099 u32 phy_status_mask = 0xffffffff;
1100 u32 tmp;
1101
1102 /*
1103 * The BIOS can leave the PHY is some weird state
1104 * where it doesn't fully power down some parts.
1105 * Disable the asserts until the PHY has been fully
1106 * reset (ie. the power well has been disabled at
1107 * least once).
1108 */
1109 if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1110 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1111 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1112 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1113 PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1114 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1115 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1116
1117 if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1118 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1119 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1120 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1121
1122 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1123 phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1124
1125 /* this assumes override is only used to enable lanes */
1126 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1127 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1128
1129 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1130 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1131
1132 /* CL1 is on whenever anything is on in either channel */
1133 if (BITS_SET(phy_control,
1134 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1135 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1136 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1137
1138 /*
1139 * The DPLLB check accounts for the pipe B + port A usage
1140 * with CL2 powered up but all the lanes in the second channel
1141 * powered down.
1142 */
1143 if (BITS_SET(phy_control,
1144 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1145 (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1146 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1147
1148 if (BITS_SET(phy_control,
1149 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1150 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1151 if (BITS_SET(phy_control,
1152 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1153 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1154
1155 if (BITS_SET(phy_control,
1156 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1157 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1158 if (BITS_SET(phy_control,
1159 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1160 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1161 }
1162
1163 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1164 phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1165
1166 /* this assumes override is only used to enable lanes */
1167 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1168 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1169
1170 if (BITS_SET(phy_control,
1171 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1172 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1173
1174 if (BITS_SET(phy_control,
1175 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1176 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1177 if (BITS_SET(phy_control,
1178 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1179 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1180 }
1181
1182 phy_status &= phy_status_mask;
1183
1184 /*
1185 * The PHY may be busy with some initial calibration and whatnot,
1186 * so the power state can take a while to actually change.
1187 */
1188 if (wait_for((tmp = I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask) == phy_status, 10))
1189 WARN(phy_status != tmp,
1190 "Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1191 tmp, phy_status, dev_priv->chv_phy_control);
1192 }
1193
1194 #undef BITS_SET
1195
1196 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1197 struct i915_power_well *power_well)
1198 {
1199 enum dpio_phy phy;
1200 enum pipe pipe;
1201 uint32_t tmp;
1202
1203 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1204 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1205
1206 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1207 pipe = PIPE_A;
1208 phy = DPIO_PHY0;
1209 } else {
1210 pipe = PIPE_C;
1211 phy = DPIO_PHY1;
1212 }
1213
1214 /* since ref/cri clock was enabled */
1215 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1216 vlv_set_power_well(dev_priv, power_well, true);
1217
1218 /* Poll for phypwrgood signal */
1219 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
1220 DRM_ERROR("Display PHY %d is not power up\n", phy);
1221
1222 mutex_lock(&dev_priv->sb_lock);
1223
1224 /* Enable dynamic power down */
1225 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1226 tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1227 DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1228 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1229
1230 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1231 tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1232 tmp |= DPIO_DYNPWRDOWNEN_CH1;
1233 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1234 } else {
1235 /*
1236 * Force the non-existing CL2 off. BXT does this
1237 * too, so maybe it saves some power even though
1238 * CL2 doesn't exist?
1239 */
1240 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1241 tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1242 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1243 }
1244
1245 mutex_unlock(&dev_priv->sb_lock);
1246
1247 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1248 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1249
1250 DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1251 phy, dev_priv->chv_phy_control);
1252
1253 assert_chv_phy_status(dev_priv);
1254 }
1255
1256 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1257 struct i915_power_well *power_well)
1258 {
1259 enum dpio_phy phy;
1260
1261 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1262 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1263
1264 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1265 phy = DPIO_PHY0;
1266 assert_pll_disabled(dev_priv, PIPE_A);
1267 assert_pll_disabled(dev_priv, PIPE_B);
1268 } else {
1269 phy = DPIO_PHY1;
1270 assert_pll_disabled(dev_priv, PIPE_C);
1271 }
1272
1273 dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1274 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1275
1276 vlv_set_power_well(dev_priv, power_well, false);
1277
1278 DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1279 phy, dev_priv->chv_phy_control);
1280
1281 /* PHY is fully reset now, so we can enable the PHY state asserts */
1282 dev_priv->chv_phy_assert[phy] = true;
1283
1284 assert_chv_phy_status(dev_priv);
1285 }
1286
1287 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1288 enum dpio_channel ch, bool override, unsigned int mask)
1289 {
1290 enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1291 u32 reg, val, expected, actual;
1292
1293 /*
1294 * The BIOS can leave the PHY is some weird state
1295 * where it doesn't fully power down some parts.
1296 * Disable the asserts until the PHY has been fully
1297 * reset (ie. the power well has been disabled at
1298 * least once).
1299 */
1300 if (!dev_priv->chv_phy_assert[phy])
1301 return;
1302
1303 if (ch == DPIO_CH0)
1304 reg = _CHV_CMN_DW0_CH0;
1305 else
1306 reg = _CHV_CMN_DW6_CH1;
1307
1308 mutex_lock(&dev_priv->sb_lock);
1309 val = vlv_dpio_read(dev_priv, pipe, reg);
1310 mutex_unlock(&dev_priv->sb_lock);
1311
1312 /*
1313 * This assumes !override is only used when the port is disabled.
1314 * All lanes should power down even without the override when
1315 * the port is disabled.
1316 */
1317 if (!override || mask == 0xf) {
1318 expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1319 /*
1320 * If CH1 common lane is not active anymore
1321 * (eg. for pipe B DPLL) the entire channel will
1322 * shut down, which causes the common lane registers
1323 * to read as 0. That means we can't actually check
1324 * the lane power down status bits, but as the entire
1325 * register reads as 0 it's a good indication that the
1326 * channel is indeed entirely powered down.
1327 */
1328 if (ch == DPIO_CH1 && val == 0)
1329 expected = 0;
1330 } else if (mask != 0x0) {
1331 expected = DPIO_ANYDL_POWERDOWN;
1332 } else {
1333 expected = 0;
1334 }
1335
1336 if (ch == DPIO_CH0)
1337 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1338 else
1339 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1340 actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1341
1342 WARN(actual != expected,
1343 "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1344 !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1345 !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1346 reg, val);
1347 }
1348
1349 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1350 enum dpio_channel ch, bool override)
1351 {
1352 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1353 bool was_override;
1354
1355 mutex_lock(&power_domains->lock);
1356
1357 was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1358
1359 if (override == was_override)
1360 goto out;
1361
1362 if (override)
1363 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1364 else
1365 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1366
1367 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1368
1369 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1370 phy, ch, dev_priv->chv_phy_control);
1371
1372 assert_chv_phy_status(dev_priv);
1373
1374 out:
1375 mutex_unlock(&power_domains->lock);
1376
1377 return was_override;
1378 }
1379
1380 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1381 bool override, unsigned int mask)
1382 {
1383 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1384 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1385 enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1386 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1387
1388 mutex_lock(&power_domains->lock);
1389
1390 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1391 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1392
1393 if (override)
1394 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1395 else
1396 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1397
1398 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1399
1400 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1401 phy, ch, mask, dev_priv->chv_phy_control);
1402
1403 assert_chv_phy_status(dev_priv);
1404
1405 assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1406
1407 mutex_unlock(&power_domains->lock);
1408 }
1409
1410 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1411 struct i915_power_well *power_well)
1412 {
1413 enum pipe pipe = power_well->data;
1414 bool enabled;
1415 u32 state, ctrl;
1416
1417 mutex_lock(&dev_priv->rps.hw_lock);
1418
1419 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1420 /*
1421 * We only ever set the power-on and power-gate states, anything
1422 * else is unexpected.
1423 */
1424 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1425 enabled = state == DP_SSS_PWR_ON(pipe);
1426
1427 /*
1428 * A transient state at this point would mean some unexpected party
1429 * is poking at the power controls too.
1430 */
1431 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1432 WARN_ON(ctrl << 16 != state);
1433
1434 mutex_unlock(&dev_priv->rps.hw_lock);
1435
1436 return enabled;
1437 }
1438
1439 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1440 struct i915_power_well *power_well,
1441 bool enable)
1442 {
1443 enum pipe pipe = power_well->data;
1444 u32 state;
1445 u32 ctrl;
1446
1447 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1448
1449 mutex_lock(&dev_priv->rps.hw_lock);
1450
1451 #define COND \
1452 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1453
1454 if (COND)
1455 goto out;
1456
1457 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1458 ctrl &= ~DP_SSC_MASK(pipe);
1459 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1460 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1461
1462 if (wait_for(COND, 100))
1463 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1464 state,
1465 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1466
1467 #undef COND
1468
1469 out:
1470 mutex_unlock(&dev_priv->rps.hw_lock);
1471 }
1472
1473 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1474 struct i915_power_well *power_well)
1475 {
1476 WARN_ON_ONCE(power_well->data != PIPE_A);
1477
1478 chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1479 }
1480
1481 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1482 struct i915_power_well *power_well)
1483 {
1484 WARN_ON_ONCE(power_well->data != PIPE_A);
1485
1486 chv_set_pipe_power_well(dev_priv, power_well, true);
1487
1488 vlv_display_power_well_init(dev_priv);
1489 }
1490
1491 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1492 struct i915_power_well *power_well)
1493 {
1494 WARN_ON_ONCE(power_well->data != PIPE_A);
1495
1496 vlv_display_power_well_deinit(dev_priv);
1497
1498 chv_set_pipe_power_well(dev_priv, power_well, false);
1499 }
1500
1501 static void
1502 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1503 enum intel_display_power_domain domain)
1504 {
1505 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1506 struct i915_power_well *power_well;
1507 int i;
1508
1509 for_each_power_well(i, power_well, BIT(domain), power_domains) {
1510 if (!power_well->count++)
1511 intel_power_well_enable(dev_priv, power_well);
1512 }
1513
1514 power_domains->domain_use_count[domain]++;
1515 }
1516
1517 /**
1518 * intel_display_power_get - grab a power domain reference
1519 * @dev_priv: i915 device instance
1520 * @domain: power domain to reference
1521 *
1522 * This function grabs a power domain reference for @domain and ensures that the
1523 * power domain and all its parents are powered up. Therefore users should only
1524 * grab a reference to the innermost power domain they need.
1525 *
1526 * Any power domain reference obtained by this function must have a symmetric
1527 * call to intel_display_power_put() to release the reference again.
1528 */
1529 void intel_display_power_get(struct drm_i915_private *dev_priv,
1530 enum intel_display_power_domain domain)
1531 {
1532 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1533
1534 intel_runtime_pm_get(dev_priv);
1535
1536 mutex_lock(&power_domains->lock);
1537
1538 __intel_display_power_get_domain(dev_priv, domain);
1539
1540 mutex_unlock(&power_domains->lock);
1541 }
1542
1543 /**
1544 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1545 * @dev_priv: i915 device instance
1546 * @domain: power domain to reference
1547 *
1548 * This function grabs a power domain reference for @domain and ensures that the
1549 * power domain and all its parents are powered up. Therefore users should only
1550 * grab a reference to the innermost power domain they need.
1551 *
1552 * Any power domain reference obtained by this function must have a symmetric
1553 * call to intel_display_power_put() to release the reference again.
1554 */
1555 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1556 enum intel_display_power_domain domain)
1557 {
1558 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1559 bool is_enabled;
1560
1561 if (!intel_runtime_pm_get_if_in_use(dev_priv))
1562 return false;
1563
1564 mutex_lock(&power_domains->lock);
1565
1566 if (__intel_display_power_is_enabled(dev_priv, domain)) {
1567 __intel_display_power_get_domain(dev_priv, domain);
1568 is_enabled = true;
1569 } else {
1570 is_enabled = false;
1571 }
1572
1573 mutex_unlock(&power_domains->lock);
1574
1575 if (!is_enabled)
1576 intel_runtime_pm_put(dev_priv);
1577
1578 return is_enabled;
1579 }
1580
1581 /**
1582 * intel_display_power_put - release a power domain reference
1583 * @dev_priv: i915 device instance
1584 * @domain: power domain to reference
1585 *
1586 * This function drops the power domain reference obtained by
1587 * intel_display_power_get() and might power down the corresponding hardware
1588 * block right away if this is the last reference.
1589 */
1590 void intel_display_power_put(struct drm_i915_private *dev_priv,
1591 enum intel_display_power_domain domain)
1592 {
1593 struct i915_power_domains *power_domains;
1594 struct i915_power_well *power_well;
1595 int i;
1596
1597 power_domains = &dev_priv->power_domains;
1598
1599 mutex_lock(&power_domains->lock);
1600
1601 WARN(!power_domains->domain_use_count[domain],
1602 "Use count on domain %s is already zero\n",
1603 intel_display_power_domain_str(domain));
1604 power_domains->domain_use_count[domain]--;
1605
1606 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
1607 WARN(!power_well->count,
1608 "Use count on power well %s is already zero",
1609 power_well->name);
1610
1611 if (!--power_well->count)
1612 intel_power_well_disable(dev_priv, power_well);
1613 }
1614
1615 mutex_unlock(&power_domains->lock);
1616
1617 intel_runtime_pm_put(dev_priv);
1618 }
1619
1620 #define HSW_DISPLAY_POWER_DOMAINS ( \
1621 BIT(POWER_DOMAIN_PIPE_B) | \
1622 BIT(POWER_DOMAIN_PIPE_C) | \
1623 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1624 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1625 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1626 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1627 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1628 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1629 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1630 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1631 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1632 BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
1633 BIT(POWER_DOMAIN_VGA) | \
1634 BIT(POWER_DOMAIN_AUDIO) | \
1635 BIT(POWER_DOMAIN_INIT))
1636
1637 #define BDW_DISPLAY_POWER_DOMAINS ( \
1638 BIT(POWER_DOMAIN_PIPE_B) | \
1639 BIT(POWER_DOMAIN_PIPE_C) | \
1640 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1641 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1642 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1643 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1644 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1645 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1646 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1647 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1648 BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
1649 BIT(POWER_DOMAIN_VGA) | \
1650 BIT(POWER_DOMAIN_AUDIO) | \
1651 BIT(POWER_DOMAIN_INIT))
1652
1653 #define VLV_DISPLAY_POWER_DOMAINS ( \
1654 BIT(POWER_DOMAIN_PIPE_A) | \
1655 BIT(POWER_DOMAIN_PIPE_B) | \
1656 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1657 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1658 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1659 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1660 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1661 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1662 BIT(POWER_DOMAIN_PORT_DSI) | \
1663 BIT(POWER_DOMAIN_PORT_CRT) | \
1664 BIT(POWER_DOMAIN_VGA) | \
1665 BIT(POWER_DOMAIN_AUDIO) | \
1666 BIT(POWER_DOMAIN_AUX_B) | \
1667 BIT(POWER_DOMAIN_AUX_C) | \
1668 BIT(POWER_DOMAIN_GMBUS) | \
1669 BIT(POWER_DOMAIN_INIT))
1670
1671 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
1672 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1673 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1674 BIT(POWER_DOMAIN_PORT_CRT) | \
1675 BIT(POWER_DOMAIN_AUX_B) | \
1676 BIT(POWER_DOMAIN_AUX_C) | \
1677 BIT(POWER_DOMAIN_INIT))
1678
1679 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
1680 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1681 BIT(POWER_DOMAIN_AUX_B) | \
1682 BIT(POWER_DOMAIN_INIT))
1683
1684 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
1685 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1686 BIT(POWER_DOMAIN_AUX_B) | \
1687 BIT(POWER_DOMAIN_INIT))
1688
1689 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
1690 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1691 BIT(POWER_DOMAIN_AUX_C) | \
1692 BIT(POWER_DOMAIN_INIT))
1693
1694 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
1695 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1696 BIT(POWER_DOMAIN_AUX_C) | \
1697 BIT(POWER_DOMAIN_INIT))
1698
1699 #define CHV_DISPLAY_POWER_DOMAINS ( \
1700 BIT(POWER_DOMAIN_PIPE_A) | \
1701 BIT(POWER_DOMAIN_PIPE_B) | \
1702 BIT(POWER_DOMAIN_PIPE_C) | \
1703 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1704 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1705 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1706 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1707 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1708 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1709 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1710 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1711 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1712 BIT(POWER_DOMAIN_PORT_DSI) | \
1713 BIT(POWER_DOMAIN_VGA) | \
1714 BIT(POWER_DOMAIN_AUDIO) | \
1715 BIT(POWER_DOMAIN_AUX_B) | \
1716 BIT(POWER_DOMAIN_AUX_C) | \
1717 BIT(POWER_DOMAIN_AUX_D) | \
1718 BIT(POWER_DOMAIN_GMBUS) | \
1719 BIT(POWER_DOMAIN_INIT))
1720
1721 #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
1722 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1723 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1724 BIT(POWER_DOMAIN_AUX_B) | \
1725 BIT(POWER_DOMAIN_AUX_C) | \
1726 BIT(POWER_DOMAIN_INIT))
1727
1728 #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
1729 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1730 BIT(POWER_DOMAIN_AUX_D) | \
1731 BIT(POWER_DOMAIN_INIT))
1732
1733 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1734 .sync_hw = i9xx_always_on_power_well_noop,
1735 .enable = i9xx_always_on_power_well_noop,
1736 .disable = i9xx_always_on_power_well_noop,
1737 .is_enabled = i9xx_always_on_power_well_enabled,
1738 };
1739
1740 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1741 .sync_hw = chv_pipe_power_well_sync_hw,
1742 .enable = chv_pipe_power_well_enable,
1743 .disable = chv_pipe_power_well_disable,
1744 .is_enabled = chv_pipe_power_well_enabled,
1745 };
1746
1747 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1748 .sync_hw = vlv_power_well_sync_hw,
1749 .enable = chv_dpio_cmn_power_well_enable,
1750 .disable = chv_dpio_cmn_power_well_disable,
1751 .is_enabled = vlv_power_well_enabled,
1752 };
1753
1754 static struct i915_power_well i9xx_always_on_power_well[] = {
1755 {
1756 .name = "always-on",
1757 .always_on = 1,
1758 .domains = POWER_DOMAIN_MASK,
1759 .ops = &i9xx_always_on_power_well_ops,
1760 },
1761 };
1762
1763 static const struct i915_power_well_ops hsw_power_well_ops = {
1764 .sync_hw = hsw_power_well_sync_hw,
1765 .enable = hsw_power_well_enable,
1766 .disable = hsw_power_well_disable,
1767 .is_enabled = hsw_power_well_enabled,
1768 };
1769
1770 static const struct i915_power_well_ops skl_power_well_ops = {
1771 .sync_hw = skl_power_well_sync_hw,
1772 .enable = skl_power_well_enable,
1773 .disable = skl_power_well_disable,
1774 .is_enabled = skl_power_well_enabled,
1775 };
1776
1777 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1778 .sync_hw = gen9_dc_off_power_well_sync_hw,
1779 .enable = gen9_dc_off_power_well_enable,
1780 .disable = gen9_dc_off_power_well_disable,
1781 .is_enabled = gen9_dc_off_power_well_enabled,
1782 };
1783
1784 static struct i915_power_well hsw_power_wells[] = {
1785 {
1786 .name = "always-on",
1787 .always_on = 1,
1788 .domains = POWER_DOMAIN_MASK,
1789 .ops = &i9xx_always_on_power_well_ops,
1790 },
1791 {
1792 .name = "display",
1793 .domains = HSW_DISPLAY_POWER_DOMAINS,
1794 .ops = &hsw_power_well_ops,
1795 },
1796 };
1797
1798 static struct i915_power_well bdw_power_wells[] = {
1799 {
1800 .name = "always-on",
1801 .always_on = 1,
1802 .domains = POWER_DOMAIN_MASK,
1803 .ops = &i9xx_always_on_power_well_ops,
1804 },
1805 {
1806 .name = "display",
1807 .domains = BDW_DISPLAY_POWER_DOMAINS,
1808 .ops = &hsw_power_well_ops,
1809 },
1810 };
1811
1812 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1813 .sync_hw = vlv_power_well_sync_hw,
1814 .enable = vlv_display_power_well_enable,
1815 .disable = vlv_display_power_well_disable,
1816 .is_enabled = vlv_power_well_enabled,
1817 };
1818
1819 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1820 .sync_hw = vlv_power_well_sync_hw,
1821 .enable = vlv_dpio_cmn_power_well_enable,
1822 .disable = vlv_dpio_cmn_power_well_disable,
1823 .is_enabled = vlv_power_well_enabled,
1824 };
1825
1826 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1827 .sync_hw = vlv_power_well_sync_hw,
1828 .enable = vlv_power_well_enable,
1829 .disable = vlv_power_well_disable,
1830 .is_enabled = vlv_power_well_enabled,
1831 };
1832
1833 static struct i915_power_well vlv_power_wells[] = {
1834 {
1835 .name = "always-on",
1836 .always_on = 1,
1837 .domains = POWER_DOMAIN_MASK,
1838 .ops = &i9xx_always_on_power_well_ops,
1839 .data = PUNIT_POWER_WELL_ALWAYS_ON,
1840 },
1841 {
1842 .name = "display",
1843 .domains = VLV_DISPLAY_POWER_DOMAINS,
1844 .data = PUNIT_POWER_WELL_DISP2D,
1845 .ops = &vlv_display_power_well_ops,
1846 },
1847 {
1848 .name = "dpio-tx-b-01",
1849 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1850 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1851 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1852 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1853 .ops = &vlv_dpio_power_well_ops,
1854 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1855 },
1856 {
1857 .name = "dpio-tx-b-23",
1858 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1859 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1860 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1861 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1862 .ops = &vlv_dpio_power_well_ops,
1863 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
1864 },
1865 {
1866 .name = "dpio-tx-c-01",
1867 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1868 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1869 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1870 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1871 .ops = &vlv_dpio_power_well_ops,
1872 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
1873 },
1874 {
1875 .name = "dpio-tx-c-23",
1876 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1877 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1878 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1879 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1880 .ops = &vlv_dpio_power_well_ops,
1881 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
1882 },
1883 {
1884 .name = "dpio-common",
1885 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
1886 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1887 .ops = &vlv_dpio_cmn_power_well_ops,
1888 },
1889 };
1890
1891 static struct i915_power_well chv_power_wells[] = {
1892 {
1893 .name = "always-on",
1894 .always_on = 1,
1895 .domains = POWER_DOMAIN_MASK,
1896 .ops = &i9xx_always_on_power_well_ops,
1897 },
1898 {
1899 .name = "display",
1900 /*
1901 * Pipe A power well is the new disp2d well. Pipe B and C
1902 * power wells don't actually exist. Pipe A power well is
1903 * required for any pipe to work.
1904 */
1905 .domains = CHV_DISPLAY_POWER_DOMAINS,
1906 .data = PIPE_A,
1907 .ops = &chv_pipe_power_well_ops,
1908 },
1909 {
1910 .name = "dpio-common-bc",
1911 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
1912 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1913 .ops = &chv_dpio_cmn_power_well_ops,
1914 },
1915 {
1916 .name = "dpio-common-d",
1917 .domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
1918 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
1919 .ops = &chv_dpio_cmn_power_well_ops,
1920 },
1921 };
1922
1923 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
1924 int power_well_id)
1925 {
1926 struct i915_power_well *power_well;
1927 bool ret;
1928
1929 power_well = lookup_power_well(dev_priv, power_well_id);
1930 ret = power_well->ops->is_enabled(dev_priv, power_well);
1931
1932 return ret;
1933 }
1934
1935 static struct i915_power_well skl_power_wells[] = {
1936 {
1937 .name = "always-on",
1938 .always_on = 1,
1939 .domains = POWER_DOMAIN_MASK,
1940 .ops = &i9xx_always_on_power_well_ops,
1941 .data = SKL_DISP_PW_ALWAYS_ON,
1942 },
1943 {
1944 .name = "power well 1",
1945 /* Handled by the DMC firmware */
1946 .domains = 0,
1947 .ops = &skl_power_well_ops,
1948 .data = SKL_DISP_PW_1,
1949 },
1950 {
1951 .name = "MISC IO power well",
1952 /* Handled by the DMC firmware */
1953 .domains = 0,
1954 .ops = &skl_power_well_ops,
1955 .data = SKL_DISP_PW_MISC_IO,
1956 },
1957 {
1958 .name = "DC off",
1959 .domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
1960 .ops = &gen9_dc_off_power_well_ops,
1961 .data = SKL_DISP_PW_DC_OFF,
1962 },
1963 {
1964 .name = "power well 2",
1965 .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1966 .ops = &skl_power_well_ops,
1967 .data = SKL_DISP_PW_2,
1968 },
1969 {
1970 .name = "DDI A/E power well",
1971 .domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
1972 .ops = &skl_power_well_ops,
1973 .data = SKL_DISP_PW_DDI_A_E,
1974 },
1975 {
1976 .name = "DDI B power well",
1977 .domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
1978 .ops = &skl_power_well_ops,
1979 .data = SKL_DISP_PW_DDI_B,
1980 },
1981 {
1982 .name = "DDI C power well",
1983 .domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
1984 .ops = &skl_power_well_ops,
1985 .data = SKL_DISP_PW_DDI_C,
1986 },
1987 {
1988 .name = "DDI D power well",
1989 .domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
1990 .ops = &skl_power_well_ops,
1991 .data = SKL_DISP_PW_DDI_D,
1992 },
1993 };
1994
1995 static struct i915_power_well bxt_power_wells[] = {
1996 {
1997 .name = "always-on",
1998 .always_on = 1,
1999 .domains = POWER_DOMAIN_MASK,
2000 .ops = &i9xx_always_on_power_well_ops,
2001 },
2002 {
2003 .name = "power well 1",
2004 .domains = 0,
2005 .ops = &skl_power_well_ops,
2006 .data = SKL_DISP_PW_1,
2007 },
2008 {
2009 .name = "DC off",
2010 .domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
2011 .ops = &gen9_dc_off_power_well_ops,
2012 .data = SKL_DISP_PW_DC_OFF,
2013 },
2014 {
2015 .name = "power well 2",
2016 .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2017 .ops = &skl_power_well_ops,
2018 .data = SKL_DISP_PW_2,
2019 },
2020 };
2021
2022 static int
2023 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2024 int disable_power_well)
2025 {
2026 if (disable_power_well >= 0)
2027 return !!disable_power_well;
2028
2029 return 1;
2030 }
2031
2032 static uint32_t get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
2033 int enable_dc)
2034 {
2035 uint32_t mask;
2036 int requested_dc;
2037 int max_dc;
2038
2039 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2040 max_dc = 2;
2041 mask = 0;
2042 } else if (IS_BROXTON(dev_priv)) {
2043 max_dc = 1;
2044 /*
2045 * DC9 has a separate HW flow from the rest of the DC states,
2046 * not depending on the DMC firmware. It's needed by system
2047 * suspend/resume, so allow it unconditionally.
2048 */
2049 mask = DC_STATE_EN_DC9;
2050 } else {
2051 max_dc = 0;
2052 mask = 0;
2053 }
2054
2055 if (!i915.disable_power_well)
2056 max_dc = 0;
2057
2058 if (enable_dc >= 0 && enable_dc <= max_dc) {
2059 requested_dc = enable_dc;
2060 } else if (enable_dc == -1) {
2061 requested_dc = max_dc;
2062 } else if (enable_dc > max_dc && enable_dc <= 2) {
2063 DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
2064 enable_dc, max_dc);
2065 requested_dc = max_dc;
2066 } else {
2067 DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
2068 requested_dc = max_dc;
2069 }
2070
2071 if (requested_dc > 1)
2072 mask |= DC_STATE_EN_UPTO_DC6;
2073 if (requested_dc > 0)
2074 mask |= DC_STATE_EN_UPTO_DC5;
2075
2076 DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
2077
2078 return mask;
2079 }
2080
2081 #define set_power_wells(power_domains, __power_wells) ({ \
2082 (power_domains)->power_wells = (__power_wells); \
2083 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
2084 })
2085
2086 /**
2087 * intel_power_domains_init - initializes the power domain structures
2088 * @dev_priv: i915 device instance
2089 *
2090 * Initializes the power domain structures for @dev_priv depending upon the
2091 * supported platform.
2092 */
2093 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2094 {
2095 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2096
2097 i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2098 i915.disable_power_well);
2099 dev_priv->csr.allowed_dc_mask = get_allowed_dc_mask(dev_priv,
2100 i915.enable_dc);
2101
2102 BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2103
2104 mutex_init(&power_domains->lock);
2105
2106 /*
2107 * The enabling order will be from lower to higher indexed wells,
2108 * the disabling order is reversed.
2109 */
2110 if (IS_HASWELL(dev_priv)) {
2111 set_power_wells(power_domains, hsw_power_wells);
2112 } else if (IS_BROADWELL(dev_priv)) {
2113 set_power_wells(power_domains, bdw_power_wells);
2114 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2115 set_power_wells(power_domains, skl_power_wells);
2116 } else if (IS_BROXTON(dev_priv)) {
2117 set_power_wells(power_domains, bxt_power_wells);
2118 } else if (IS_CHERRYVIEW(dev_priv)) {
2119 set_power_wells(power_domains, chv_power_wells);
2120 } else if (IS_VALLEYVIEW(dev_priv)) {
2121 set_power_wells(power_domains, vlv_power_wells);
2122 } else {
2123 set_power_wells(power_domains, i9xx_always_on_power_well);
2124 }
2125
2126 return 0;
2127 }
2128
2129 /**
2130 * intel_power_domains_fini - finalizes the power domain structures
2131 * @dev_priv: i915 device instance
2132 *
2133 * Finalizes the power domain structures for @dev_priv depending upon the
2134 * supported platform. This function also disables runtime pm and ensures that
2135 * the device stays powered up so that the driver can be reloaded.
2136 */
2137 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2138 {
2139 struct device *device = &dev_priv->dev->pdev->dev;
2140
2141 /*
2142 * The i915.ko module is still not prepared to be loaded when
2143 * the power well is not enabled, so just enable it in case
2144 * we're going to unload/reload.
2145 * The following also reacquires the RPM reference the core passed
2146 * to the driver during loading, which is dropped in
2147 * intel_runtime_pm_enable(). We have to hand back the control of the
2148 * device to the core with this reference held.
2149 */
2150 intel_display_set_init_power(dev_priv, true);
2151
2152 /* Remove the refcount we took to keep power well support disabled. */
2153 if (!i915.disable_power_well)
2154 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2155
2156 /*
2157 * Remove the refcount we took in intel_runtime_pm_enable() in case
2158 * the platform doesn't support runtime PM.
2159 */
2160 if (!HAS_RUNTIME_PM(dev_priv))
2161 pm_runtime_put(device);
2162 }
2163
2164 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2165 {
2166 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2167 struct i915_power_well *power_well;
2168 int i;
2169
2170 mutex_lock(&power_domains->lock);
2171 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2172 power_well->ops->sync_hw(dev_priv, power_well);
2173 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2174 power_well);
2175 }
2176 mutex_unlock(&power_domains->lock);
2177 }
2178
2179 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2180 bool resume)
2181 {
2182 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2183 struct i915_power_well *well;
2184 uint32_t val;
2185
2186 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2187
2188 /* enable PCH reset handshake */
2189 val = I915_READ(HSW_NDE_RSTWRN_OPT);
2190 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2191
2192 /* enable PG1 and Misc I/O */
2193 mutex_lock(&power_domains->lock);
2194
2195 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2196 intel_power_well_enable(dev_priv, well);
2197
2198 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2199 intel_power_well_enable(dev_priv, well);
2200
2201 mutex_unlock(&power_domains->lock);
2202
2203 skl_init_cdclk(dev_priv);
2204
2205 if (resume && dev_priv->csr.dmc_payload)
2206 intel_csr_load_program(dev_priv);
2207 }
2208
2209 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2210 {
2211 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2212 struct i915_power_well *well;
2213
2214 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2215
2216 skl_uninit_cdclk(dev_priv);
2217
2218 /* The spec doesn't call for removing the reset handshake flag */
2219 /* disable PG1 and Misc I/O */
2220
2221 mutex_lock(&power_domains->lock);
2222
2223 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2224 intel_power_well_disable(dev_priv, well);
2225
2226 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2227 intel_power_well_disable(dev_priv, well);
2228
2229 mutex_unlock(&power_domains->lock);
2230 }
2231
2232 void bxt_display_core_init(struct drm_i915_private *dev_priv,
2233 bool resume)
2234 {
2235 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2236 struct i915_power_well *well;
2237 uint32_t val;
2238
2239 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2240
2241 /*
2242 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
2243 * or else the reset will hang because there is no PCH to respond.
2244 * Move the handshake programming to initialization sequence.
2245 * Previously was left up to BIOS.
2246 */
2247 val = I915_READ(HSW_NDE_RSTWRN_OPT);
2248 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
2249 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
2250
2251 /* Enable PG1 */
2252 mutex_lock(&power_domains->lock);
2253
2254 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2255 intel_power_well_enable(dev_priv, well);
2256
2257 mutex_unlock(&power_domains->lock);
2258
2259 broxton_init_cdclk(dev_priv);
2260 broxton_ddi_phy_init(dev_priv);
2261
2262 broxton_cdclk_verify_state(dev_priv);
2263 broxton_ddi_phy_verify_state(dev_priv);
2264
2265 if (resume && dev_priv->csr.dmc_payload)
2266 intel_csr_load_program(dev_priv);
2267 }
2268
2269 void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
2270 {
2271 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2272 struct i915_power_well *well;
2273
2274 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2275
2276 broxton_ddi_phy_uninit(dev_priv);
2277 broxton_uninit_cdclk(dev_priv);
2278
2279 /* The spec doesn't call for removing the reset handshake flag */
2280
2281 /* Disable PG1 */
2282 mutex_lock(&power_domains->lock);
2283
2284 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2285 intel_power_well_disable(dev_priv, well);
2286
2287 mutex_unlock(&power_domains->lock);
2288 }
2289
2290 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2291 {
2292 struct i915_power_well *cmn_bc =
2293 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2294 struct i915_power_well *cmn_d =
2295 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2296
2297 /*
2298 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2299 * workaround never ever read DISPLAY_PHY_CONTROL, and
2300 * instead maintain a shadow copy ourselves. Use the actual
2301 * power well state and lane status to reconstruct the
2302 * expected initial value.
2303 */
2304 dev_priv->chv_phy_control =
2305 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2306 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2307 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2308 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2309 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2310
2311 /*
2312 * If all lanes are disabled we leave the override disabled
2313 * with all power down bits cleared to match the state we
2314 * would use after disabling the port. Otherwise enable the
2315 * override and set the lane powerdown bits accding to the
2316 * current lane status.
2317 */
2318 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2319 uint32_t status = I915_READ(DPLL(PIPE_A));
2320 unsigned int mask;
2321
2322 mask = status & DPLL_PORTB_READY_MASK;
2323 if (mask == 0xf)
2324 mask = 0x0;
2325 else
2326 dev_priv->chv_phy_control |=
2327 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2328
2329 dev_priv->chv_phy_control |=
2330 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2331
2332 mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2333 if (mask == 0xf)
2334 mask = 0x0;
2335 else
2336 dev_priv->chv_phy_control |=
2337 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2338
2339 dev_priv->chv_phy_control |=
2340 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2341
2342 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2343
2344 dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2345 } else {
2346 dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2347 }
2348
2349 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2350 uint32_t status = I915_READ(DPIO_PHY_STATUS);
2351 unsigned int mask;
2352
2353 mask = status & DPLL_PORTD_READY_MASK;
2354
2355 if (mask == 0xf)
2356 mask = 0x0;
2357 else
2358 dev_priv->chv_phy_control |=
2359 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2360
2361 dev_priv->chv_phy_control |=
2362 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2363
2364 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2365
2366 dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2367 } else {
2368 dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2369 }
2370
2371 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2372
2373 DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2374 dev_priv->chv_phy_control);
2375 }
2376
2377 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2378 {
2379 struct i915_power_well *cmn =
2380 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2381 struct i915_power_well *disp2d =
2382 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2383
2384 /* If the display might be already active skip this */
2385 if (cmn->ops->is_enabled(dev_priv, cmn) &&
2386 disp2d->ops->is_enabled(dev_priv, disp2d) &&
2387 I915_READ(DPIO_CTL) & DPIO_CMNRST)
2388 return;
2389
2390 DRM_DEBUG_KMS("toggling display PHY side reset\n");
2391
2392 /* cmnlane needs DPLL registers */
2393 disp2d->ops->enable(dev_priv, disp2d);
2394
2395 /*
2396 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2397 * Need to assert and de-assert PHY SB reset by gating the
2398 * common lane power, then un-gating it.
2399 * Simply ungating isn't enough to reset the PHY enough to get
2400 * ports and lanes running.
2401 */
2402 cmn->ops->disable(dev_priv, cmn);
2403 }
2404
2405 /**
2406 * intel_power_domains_init_hw - initialize hardware power domain state
2407 * @dev_priv: i915 device instance
2408 *
2409 * This function initializes the hardware power domain state and enables all
2410 * power domains using intel_display_set_init_power().
2411 */
2412 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2413 {
2414 struct drm_device *dev = dev_priv->dev;
2415 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2416
2417 power_domains->initializing = true;
2418
2419 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2420 skl_display_core_init(dev_priv, resume);
2421 } else if (IS_BROXTON(dev)) {
2422 bxt_display_core_init(dev_priv, resume);
2423 } else if (IS_CHERRYVIEW(dev)) {
2424 mutex_lock(&power_domains->lock);
2425 chv_phy_control_init(dev_priv);
2426 mutex_unlock(&power_domains->lock);
2427 } else if (IS_VALLEYVIEW(dev)) {
2428 mutex_lock(&power_domains->lock);
2429 vlv_cmnlane_wa(dev_priv);
2430 mutex_unlock(&power_domains->lock);
2431 }
2432
2433 /* For now, we need the power well to be always enabled. */
2434 intel_display_set_init_power(dev_priv, true);
2435 /* Disable power support if the user asked so. */
2436 if (!i915.disable_power_well)
2437 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2438 intel_power_domains_sync_hw(dev_priv);
2439 power_domains->initializing = false;
2440 }
2441
2442 /**
2443 * intel_power_domains_suspend - suspend power domain state
2444 * @dev_priv: i915 device instance
2445 *
2446 * This function prepares the hardware power domain state before entering
2447 * system suspend. It must be paired with intel_power_domains_init_hw().
2448 */
2449 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2450 {
2451 /*
2452 * Even if power well support was disabled we still want to disable
2453 * power wells while we are system suspended.
2454 */
2455 if (!i915.disable_power_well)
2456 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2457
2458 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2459 skl_display_core_uninit(dev_priv);
2460 else if (IS_BROXTON(dev_priv))
2461 bxt_display_core_uninit(dev_priv);
2462 }
2463
2464 /**
2465 * intel_runtime_pm_get - grab a runtime pm reference
2466 * @dev_priv: i915 device instance
2467 *
2468 * This function grabs a device-level runtime pm reference (mostly used for GEM
2469 * code to ensure the GTT or GT is on) and ensures that it is powered up.
2470 *
2471 * Any runtime pm reference obtained by this function must have a symmetric
2472 * call to intel_runtime_pm_put() to release the reference again.
2473 */
2474 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2475 {
2476 struct drm_device *dev = dev_priv->dev;
2477 struct device *device = &dev->pdev->dev;
2478
2479 pm_runtime_get_sync(device);
2480
2481 atomic_inc(&dev_priv->pm.wakeref_count);
2482 assert_rpm_wakelock_held(dev_priv);
2483 }
2484
2485 /**
2486 * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2487 * @dev_priv: i915 device instance
2488 *
2489 * This function grabs a device-level runtime pm reference if the device is
2490 * already in use and ensures that it is powered up.
2491 *
2492 * Any runtime pm reference obtained by this function must have a symmetric
2493 * call to intel_runtime_pm_put() to release the reference again.
2494 */
2495 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2496 {
2497 struct drm_device *dev = dev_priv->dev;
2498 struct device *device = &dev->pdev->dev;
2499
2500 if (IS_ENABLED(CONFIG_PM)) {
2501 int ret = pm_runtime_get_if_in_use(device);
2502
2503 /*
2504 * In cases runtime PM is disabled by the RPM core and we get
2505 * an -EINVAL return value we are not supposed to call this
2506 * function, since the power state is undefined. This applies
2507 * atm to the late/early system suspend/resume handlers.
2508 */
2509 WARN_ON_ONCE(ret < 0);
2510 if (ret <= 0)
2511 return false;
2512 }
2513
2514 atomic_inc(&dev_priv->pm.wakeref_count);
2515 assert_rpm_wakelock_held(dev_priv);
2516
2517 return true;
2518 }
2519
2520 /**
2521 * intel_runtime_pm_get_noresume - grab a runtime pm reference
2522 * @dev_priv: i915 device instance
2523 *
2524 * This function grabs a device-level runtime pm reference (mostly used for GEM
2525 * code to ensure the GTT or GT is on).
2526 *
2527 * It will _not_ power up the device but instead only check that it's powered
2528 * on. Therefore it is only valid to call this functions from contexts where
2529 * the device is known to be powered up and where trying to power it up would
2530 * result in hilarity and deadlocks. That pretty much means only the system
2531 * suspend/resume code where this is used to grab runtime pm references for
2532 * delayed setup down in work items.
2533 *
2534 * Any runtime pm reference obtained by this function must have a symmetric
2535 * call to intel_runtime_pm_put() to release the reference again.
2536 */
2537 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2538 {
2539 struct drm_device *dev = dev_priv->dev;
2540 struct device *device = &dev->pdev->dev;
2541
2542 assert_rpm_wakelock_held(dev_priv);
2543 pm_runtime_get_noresume(device);
2544
2545 atomic_inc(&dev_priv->pm.wakeref_count);
2546 }
2547
2548 /**
2549 * intel_runtime_pm_put - release a runtime pm reference
2550 * @dev_priv: i915 device instance
2551 *
2552 * This function drops the device-level runtime pm reference obtained by
2553 * intel_runtime_pm_get() and might power down the corresponding
2554 * hardware block right away if this is the last reference.
2555 */
2556 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2557 {
2558 struct drm_device *dev = dev_priv->dev;
2559 struct device *device = &dev->pdev->dev;
2560
2561 assert_rpm_wakelock_held(dev_priv);
2562 if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2563 atomic_inc(&dev_priv->pm.atomic_seq);
2564
2565 pm_runtime_mark_last_busy(device);
2566 pm_runtime_put_autosuspend(device);
2567 }
2568
2569 /**
2570 * intel_runtime_pm_enable - enable runtime pm
2571 * @dev_priv: i915 device instance
2572 *
2573 * This function enables runtime pm at the end of the driver load sequence.
2574 *
2575 * Note that this function does currently not enable runtime pm for the
2576 * subordinate display power domains. That is only done on the first modeset
2577 * using intel_display_set_init_power().
2578 */
2579 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2580 {
2581 struct drm_device *dev = dev_priv->dev;
2582 struct device *device = &dev->pdev->dev;
2583
2584 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2585 pm_runtime_mark_last_busy(device);
2586
2587 /*
2588 * Take a permanent reference to disable the RPM functionality and drop
2589 * it only when unloading the driver. Use the low level get/put helpers,
2590 * so the driver's own RPM reference tracking asserts also work on
2591 * platforms without RPM support.
2592 */
2593 if (!HAS_RUNTIME_PM(dev)) {
2594 pm_runtime_dont_use_autosuspend(device);
2595 pm_runtime_get_sync(device);
2596 } else {
2597 pm_runtime_use_autosuspend(device);
2598 }
2599
2600 /*
2601 * The core calls the driver load handler with an RPM reference held.
2602 * We drop that here and will reacquire it during unloading in
2603 * intel_power_domains_fini().
2604 */
2605 pm_runtime_put_autosuspend(device);
2606 }
2607
This page took 0.114457 seconds and 5 git commands to generate.