Merge tag 'firewire-update2' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee139...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_runtime_pm.c
1 /*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 * Daniel Vetter <daniel.vetter@ffwll.ch>
26 *
27 */
28
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34
35 /**
36 * DOC: runtime pm
37 *
38 * The i915 driver supports dynamic enabling and disabling of entire hardware
39 * blocks at runtime. This is especially important on the display side where
40 * software is supposed to control many power gates manually on recent hardware,
41 * since on the GT side a lot of the power management is done by the hardware.
42 * But even there some manual control at the device level is required.
43 *
44 * Since i915 supports a diverse set of platforms with a unified codebase and
45 * hardware engineers just love to shuffle functionality around between power
46 * domains there's a sizeable amount of indirection required. This file provides
47 * generic functions to the driver for grabbing and releasing references for
48 * abstract power domains. It then maps those to the actual power wells
49 * present for a given platform.
50 */
51
52 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
53 for (i = 0; \
54 i < (power_domains)->power_well_count && \
55 ((power_well) = &(power_domains)->power_wells[i]); \
56 i++) \
57 for_each_if ((power_well)->domains & (domain_mask))
58
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 for (i = (power_domains)->power_well_count - 1; \
61 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 i--) \
63 for_each_if ((power_well)->domains & (domain_mask))
64
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 int power_well_id);
67
68 const char *
69 intel_display_power_domain_str(enum intel_display_power_domain domain)
70 {
71 switch (domain) {
72 case POWER_DOMAIN_PIPE_A:
73 return "PIPE_A";
74 case POWER_DOMAIN_PIPE_B:
75 return "PIPE_B";
76 case POWER_DOMAIN_PIPE_C:
77 return "PIPE_C";
78 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
79 return "PIPE_A_PANEL_FITTER";
80 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
81 return "PIPE_B_PANEL_FITTER";
82 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
83 return "PIPE_C_PANEL_FITTER";
84 case POWER_DOMAIN_TRANSCODER_A:
85 return "TRANSCODER_A";
86 case POWER_DOMAIN_TRANSCODER_B:
87 return "TRANSCODER_B";
88 case POWER_DOMAIN_TRANSCODER_C:
89 return "TRANSCODER_C";
90 case POWER_DOMAIN_TRANSCODER_EDP:
91 return "TRANSCODER_EDP";
92 case POWER_DOMAIN_PORT_DDI_A_LANES:
93 return "PORT_DDI_A_LANES";
94 case POWER_DOMAIN_PORT_DDI_B_LANES:
95 return "PORT_DDI_B_LANES";
96 case POWER_DOMAIN_PORT_DDI_C_LANES:
97 return "PORT_DDI_C_LANES";
98 case POWER_DOMAIN_PORT_DDI_D_LANES:
99 return "PORT_DDI_D_LANES";
100 case POWER_DOMAIN_PORT_DDI_E_LANES:
101 return "PORT_DDI_E_LANES";
102 case POWER_DOMAIN_PORT_DSI:
103 return "PORT_DSI";
104 case POWER_DOMAIN_PORT_CRT:
105 return "PORT_CRT";
106 case POWER_DOMAIN_PORT_OTHER:
107 return "PORT_OTHER";
108 case POWER_DOMAIN_VGA:
109 return "VGA";
110 case POWER_DOMAIN_AUDIO:
111 return "AUDIO";
112 case POWER_DOMAIN_PLLS:
113 return "PLLS";
114 case POWER_DOMAIN_AUX_A:
115 return "AUX_A";
116 case POWER_DOMAIN_AUX_B:
117 return "AUX_B";
118 case POWER_DOMAIN_AUX_C:
119 return "AUX_C";
120 case POWER_DOMAIN_AUX_D:
121 return "AUX_D";
122 case POWER_DOMAIN_GMBUS:
123 return "GMBUS";
124 case POWER_DOMAIN_INIT:
125 return "INIT";
126 case POWER_DOMAIN_MODESET:
127 return "MODESET";
128 default:
129 MISSING_CASE(domain);
130 return "?";
131 }
132 }
133
134 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
135 struct i915_power_well *power_well)
136 {
137 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
138 power_well->ops->enable(dev_priv, power_well);
139 power_well->hw_enabled = true;
140 }
141
142 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
143 struct i915_power_well *power_well)
144 {
145 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
146 power_well->hw_enabled = false;
147 power_well->ops->disable(dev_priv, power_well);
148 }
149
150 /*
151 * We should only use the power well if we explicitly asked the hardware to
152 * enable it, so check if it's enabled and also check if we've requested it to
153 * be enabled.
154 */
155 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
156 struct i915_power_well *power_well)
157 {
158 return I915_READ(HSW_PWR_WELL_DRIVER) ==
159 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
160 }
161
162 /**
163 * __intel_display_power_is_enabled - unlocked check for a power domain
164 * @dev_priv: i915 device instance
165 * @domain: power domain to check
166 *
167 * This is the unlocked version of intel_display_power_is_enabled() and should
168 * only be used from error capture and recovery code where deadlocks are
169 * possible.
170 *
171 * Returns:
172 * True when the power domain is enabled, false otherwise.
173 */
174 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
175 enum intel_display_power_domain domain)
176 {
177 struct i915_power_domains *power_domains;
178 struct i915_power_well *power_well;
179 bool is_enabled;
180 int i;
181
182 if (dev_priv->pm.suspended)
183 return false;
184
185 power_domains = &dev_priv->power_domains;
186
187 is_enabled = true;
188
189 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
190 if (power_well->always_on)
191 continue;
192
193 if (!power_well->hw_enabled) {
194 is_enabled = false;
195 break;
196 }
197 }
198
199 return is_enabled;
200 }
201
202 /**
203 * intel_display_power_is_enabled - check for a power domain
204 * @dev_priv: i915 device instance
205 * @domain: power domain to check
206 *
207 * This function can be used to check the hw power domain state. It is mostly
208 * used in hardware state readout functions. Everywhere else code should rely
209 * upon explicit power domain reference counting to ensure that the hardware
210 * block is powered up before accessing it.
211 *
212 * Callers must hold the relevant modesetting locks to ensure that concurrent
213 * threads can't disable the power well while the caller tries to read a few
214 * registers.
215 *
216 * Returns:
217 * True when the power domain is enabled, false otherwise.
218 */
219 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
220 enum intel_display_power_domain domain)
221 {
222 struct i915_power_domains *power_domains;
223 bool ret;
224
225 power_domains = &dev_priv->power_domains;
226
227 mutex_lock(&power_domains->lock);
228 ret = __intel_display_power_is_enabled(dev_priv, domain);
229 mutex_unlock(&power_domains->lock);
230
231 return ret;
232 }
233
234 /**
235 * intel_display_set_init_power - set the initial power domain state
236 * @dev_priv: i915 device instance
237 * @enable: whether to enable or disable the initial power domain state
238 *
239 * For simplicity our driver load/unload and system suspend/resume code assumes
240 * that all power domains are always enabled. This functions controls the state
241 * of this little hack. While the initial power domain state is enabled runtime
242 * pm is effectively disabled.
243 */
244 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
245 bool enable)
246 {
247 if (dev_priv->power_domains.init_power_on == enable)
248 return;
249
250 if (enable)
251 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
252 else
253 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
254
255 dev_priv->power_domains.init_power_on = enable;
256 }
257
258 /*
259 * Starting with Haswell, we have a "Power Down Well" that can be turned off
260 * when not needed anymore. We have 4 registers that can request the power well
261 * to be enabled, and it will only be disabled if none of the registers is
262 * requesting it to be enabled.
263 */
264 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
265 {
266 struct drm_device *dev = dev_priv->dev;
267
268 /*
269 * After we re-enable the power well, if we touch VGA register 0x3d5
270 * we'll get unclaimed register interrupts. This stops after we write
271 * anything to the VGA MSR register. The vgacon module uses this
272 * register all the time, so if we unbind our driver and, as a
273 * consequence, bind vgacon, we'll get stuck in an infinite loop at
274 * console_unlock(). So make here we touch the VGA MSR register, making
275 * sure vgacon can keep working normally without triggering interrupts
276 * and error messages.
277 */
278 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
279 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
280 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
281
282 if (IS_BROADWELL(dev))
283 gen8_irq_power_well_post_enable(dev_priv,
284 1 << PIPE_C | 1 << PIPE_B);
285 }
286
287 static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv)
288 {
289 if (IS_BROADWELL(dev_priv))
290 gen8_irq_power_well_pre_disable(dev_priv,
291 1 << PIPE_C | 1 << PIPE_B);
292 }
293
294 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
295 struct i915_power_well *power_well)
296 {
297 struct drm_device *dev = dev_priv->dev;
298
299 /*
300 * After we re-enable the power well, if we touch VGA register 0x3d5
301 * we'll get unclaimed register interrupts. This stops after we write
302 * anything to the VGA MSR register. The vgacon module uses this
303 * register all the time, so if we unbind our driver and, as a
304 * consequence, bind vgacon, we'll get stuck in an infinite loop at
305 * console_unlock(). So make here we touch the VGA MSR register, making
306 * sure vgacon can keep working normally without triggering interrupts
307 * and error messages.
308 */
309 if (power_well->data == SKL_DISP_PW_2) {
310 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
311 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
312 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
313
314 gen8_irq_power_well_post_enable(dev_priv,
315 1 << PIPE_C | 1 << PIPE_B);
316 }
317 }
318
319 static void skl_power_well_pre_disable(struct drm_i915_private *dev_priv,
320 struct i915_power_well *power_well)
321 {
322 if (power_well->data == SKL_DISP_PW_2)
323 gen8_irq_power_well_pre_disable(dev_priv,
324 1 << PIPE_C | 1 << PIPE_B);
325 }
326
327 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
328 struct i915_power_well *power_well, bool enable)
329 {
330 bool is_enabled, enable_requested;
331 uint32_t tmp;
332
333 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
334 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
335 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
336
337 if (enable) {
338 if (!enable_requested)
339 I915_WRITE(HSW_PWR_WELL_DRIVER,
340 HSW_PWR_WELL_ENABLE_REQUEST);
341
342 if (!is_enabled) {
343 DRM_DEBUG_KMS("Enabling power well\n");
344 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
345 HSW_PWR_WELL_STATE_ENABLED), 20))
346 DRM_ERROR("Timeout enabling power well\n");
347 hsw_power_well_post_enable(dev_priv);
348 }
349
350 } else {
351 if (enable_requested) {
352 hsw_power_well_pre_disable(dev_priv);
353 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
354 POSTING_READ(HSW_PWR_WELL_DRIVER);
355 DRM_DEBUG_KMS("Requesting to disable the power well\n");
356 }
357 }
358 }
359
360 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
361 BIT(POWER_DOMAIN_TRANSCODER_A) | \
362 BIT(POWER_DOMAIN_PIPE_B) | \
363 BIT(POWER_DOMAIN_TRANSCODER_B) | \
364 BIT(POWER_DOMAIN_PIPE_C) | \
365 BIT(POWER_DOMAIN_TRANSCODER_C) | \
366 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
367 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
368 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
369 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
370 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
371 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
372 BIT(POWER_DOMAIN_AUX_B) | \
373 BIT(POWER_DOMAIN_AUX_C) | \
374 BIT(POWER_DOMAIN_AUX_D) | \
375 BIT(POWER_DOMAIN_AUDIO) | \
376 BIT(POWER_DOMAIN_VGA) | \
377 BIT(POWER_DOMAIN_INIT))
378 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \
379 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
380 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
381 BIT(POWER_DOMAIN_INIT))
382 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \
383 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
384 BIT(POWER_DOMAIN_INIT))
385 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \
386 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
387 BIT(POWER_DOMAIN_INIT))
388 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \
389 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
390 BIT(POWER_DOMAIN_INIT))
391 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
392 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
393 BIT(POWER_DOMAIN_MODESET) | \
394 BIT(POWER_DOMAIN_AUX_A) | \
395 BIT(POWER_DOMAIN_INIT))
396 #define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
397 (POWER_DOMAIN_MASK & ~( \
398 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
399 SKL_DISPLAY_DC_OFF_POWER_DOMAINS)) | \
400 BIT(POWER_DOMAIN_INIT))
401
402 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
403 BIT(POWER_DOMAIN_TRANSCODER_A) | \
404 BIT(POWER_DOMAIN_PIPE_B) | \
405 BIT(POWER_DOMAIN_TRANSCODER_B) | \
406 BIT(POWER_DOMAIN_PIPE_C) | \
407 BIT(POWER_DOMAIN_TRANSCODER_C) | \
408 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
409 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
410 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
411 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
412 BIT(POWER_DOMAIN_AUX_B) | \
413 BIT(POWER_DOMAIN_AUX_C) | \
414 BIT(POWER_DOMAIN_AUDIO) | \
415 BIT(POWER_DOMAIN_VGA) | \
416 BIT(POWER_DOMAIN_GMBUS) | \
417 BIT(POWER_DOMAIN_INIT))
418 #define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \
419 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
420 BIT(POWER_DOMAIN_PIPE_A) | \
421 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
422 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
423 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
424 BIT(POWER_DOMAIN_AUX_A) | \
425 BIT(POWER_DOMAIN_PLLS) | \
426 BIT(POWER_DOMAIN_INIT))
427 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS ( \
428 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
429 BIT(POWER_DOMAIN_MODESET) | \
430 BIT(POWER_DOMAIN_AUX_A) | \
431 BIT(POWER_DOMAIN_INIT))
432 #define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
433 (POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS | \
434 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) | \
435 BIT(POWER_DOMAIN_INIT))
436
437 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
438 {
439 struct drm_device *dev = dev_priv->dev;
440
441 WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n");
442 WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
443 "DC9 already programmed to be enabled.\n");
444 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
445 "DC5 still not disabled to enable DC9.\n");
446 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
447 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
448
449 /*
450 * TODO: check for the following to verify the conditions to enter DC9
451 * state are satisfied:
452 * 1] Check relevant display engine registers to verify if mode set
453 * disable sequence was followed.
454 * 2] Check if display uninitialize sequence is initialized.
455 */
456 }
457
458 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
459 {
460 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
461 WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
462 "DC9 already programmed to be disabled.\n");
463 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
464 "DC5 still not disabled.\n");
465
466 /*
467 * TODO: check for the following to verify DC9 state was indeed
468 * entered before programming to disable it:
469 * 1] Check relevant display engine registers to verify if mode
470 * set disable sequence was followed.
471 * 2] Check if display uninitialize sequence is initialized.
472 */
473 }
474
475 static void gen9_set_dc_state_debugmask(struct drm_i915_private *dev_priv)
476 {
477 uint32_t val, mask;
478
479 mask = DC_STATE_DEBUG_MASK_MEMORY_UP;
480
481 if (IS_BROXTON(dev_priv))
482 mask |= DC_STATE_DEBUG_MASK_CORES;
483
484 /* The below bit doesn't need to be cleared ever afterwards */
485 val = I915_READ(DC_STATE_DEBUG);
486 if ((val & mask) != mask) {
487 val |= mask;
488 I915_WRITE(DC_STATE_DEBUG, val);
489 POSTING_READ(DC_STATE_DEBUG);
490 }
491 }
492
493 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
494 u32 state)
495 {
496 int rewrites = 0;
497 int rereads = 0;
498 u32 v;
499
500 I915_WRITE(DC_STATE_EN, state);
501
502 /* It has been observed that disabling the dc6 state sometimes
503 * doesn't stick and dmc keeps returning old value. Make sure
504 * the write really sticks enough times and also force rewrite until
505 * we are confident that state is exactly what we want.
506 */
507 do {
508 v = I915_READ(DC_STATE_EN);
509
510 if (v != state) {
511 I915_WRITE(DC_STATE_EN, state);
512 rewrites++;
513 rereads = 0;
514 } else if (rereads++ > 5) {
515 break;
516 }
517
518 } while (rewrites < 100);
519
520 if (v != state)
521 DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
522 state, v);
523
524 /* Most of the times we need one retry, avoid spam */
525 if (rewrites > 1)
526 DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
527 state, rewrites);
528 }
529
530 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
531 {
532 uint32_t val;
533 uint32_t mask;
534
535 mask = DC_STATE_EN_UPTO_DC5;
536 if (IS_BROXTON(dev_priv))
537 mask |= DC_STATE_EN_DC9;
538 else
539 mask |= DC_STATE_EN_UPTO_DC6;
540
541 WARN_ON_ONCE(state & ~mask);
542
543 if (i915.enable_dc == 0)
544 state = DC_STATE_DISABLE;
545 else if (i915.enable_dc == 1 && state > DC_STATE_EN_UPTO_DC5)
546 state = DC_STATE_EN_UPTO_DC5;
547
548 val = I915_READ(DC_STATE_EN);
549 DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
550 val & mask, state);
551
552 /* Check if DMC is ignoring our DC state requests */
553 if ((val & mask) != dev_priv->csr.dc_state)
554 DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
555 dev_priv->csr.dc_state, val & mask);
556
557 val &= ~mask;
558 val |= state;
559
560 gen9_write_dc_state(dev_priv, val);
561
562 dev_priv->csr.dc_state = val & mask;
563 }
564
565 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
566 {
567 assert_can_enable_dc9(dev_priv);
568
569 DRM_DEBUG_KMS("Enabling DC9\n");
570
571 gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
572 }
573
574 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
575 {
576 assert_can_disable_dc9(dev_priv);
577
578 DRM_DEBUG_KMS("Disabling DC9\n");
579
580 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
581 }
582
583 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
584 {
585 WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
586 "CSR program storage start is NULL\n");
587 WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
588 WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
589 }
590
591 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
592 {
593 struct drm_device *dev = dev_priv->dev;
594 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
595 SKL_DISP_PW_2);
596
597 WARN_ONCE(!IS_SKYLAKE(dev) && !IS_KABYLAKE(dev),
598 "Platform doesn't support DC5.\n");
599 WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
600 WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
601
602 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
603 "DC5 already programmed to be enabled.\n");
604 assert_rpm_wakelock_held(dev_priv);
605
606 assert_csr_loaded(dev_priv);
607 }
608
609 static void assert_can_disable_dc5(struct drm_i915_private *dev_priv)
610 {
611 /*
612 * During initialization, the firmware may not be loaded yet.
613 * We still want to make sure that the DC enabling flag is cleared.
614 */
615 if (dev_priv->power_domains.initializing)
616 return;
617
618 assert_rpm_wakelock_held(dev_priv);
619 }
620
621 static void gen9_enable_dc5(struct drm_i915_private *dev_priv)
622 {
623 assert_can_enable_dc5(dev_priv);
624
625 DRM_DEBUG_KMS("Enabling DC5\n");
626
627 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
628 }
629
630 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
631 {
632 struct drm_device *dev = dev_priv->dev;
633
634 WARN_ONCE(!IS_SKYLAKE(dev) && !IS_KABYLAKE(dev),
635 "Platform doesn't support DC6.\n");
636 WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
637 WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
638 "Backlight is not disabled.\n");
639 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
640 "DC6 already programmed to be enabled.\n");
641
642 assert_csr_loaded(dev_priv);
643 }
644
645 static void assert_can_disable_dc6(struct drm_i915_private *dev_priv)
646 {
647 /*
648 * During initialization, the firmware may not be loaded yet.
649 * We still want to make sure that the DC enabling flag is cleared.
650 */
651 if (dev_priv->power_domains.initializing)
652 return;
653
654 WARN_ONCE(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
655 "DC6 already programmed to be disabled.\n");
656 }
657
658 static void gen9_disable_dc5_dc6(struct drm_i915_private *dev_priv)
659 {
660 assert_can_disable_dc5(dev_priv);
661
662 if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
663 i915.enable_dc != 0 && i915.enable_dc != 1)
664 assert_can_disable_dc6(dev_priv);
665
666 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
667 }
668
669 void skl_enable_dc6(struct drm_i915_private *dev_priv)
670 {
671 assert_can_enable_dc6(dev_priv);
672
673 DRM_DEBUG_KMS("Enabling DC6\n");
674
675 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
676
677 }
678
679 void skl_disable_dc6(struct drm_i915_private *dev_priv)
680 {
681 assert_can_disable_dc6(dev_priv);
682
683 DRM_DEBUG_KMS("Disabling DC6\n");
684
685 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
686 }
687
688 static void skl_set_power_well(struct drm_i915_private *dev_priv,
689 struct i915_power_well *power_well, bool enable)
690 {
691 uint32_t tmp, fuse_status;
692 uint32_t req_mask, state_mask;
693 bool is_enabled, enable_requested, check_fuse_status = false;
694
695 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
696 fuse_status = I915_READ(SKL_FUSE_STATUS);
697
698 switch (power_well->data) {
699 case SKL_DISP_PW_1:
700 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
701 SKL_FUSE_PG0_DIST_STATUS), 1)) {
702 DRM_ERROR("PG0 not enabled\n");
703 return;
704 }
705 break;
706 case SKL_DISP_PW_2:
707 if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
708 DRM_ERROR("PG1 in disabled state\n");
709 return;
710 }
711 break;
712 case SKL_DISP_PW_DDI_A_E:
713 case SKL_DISP_PW_DDI_B:
714 case SKL_DISP_PW_DDI_C:
715 case SKL_DISP_PW_DDI_D:
716 case SKL_DISP_PW_MISC_IO:
717 break;
718 default:
719 WARN(1, "Unknown power well %lu\n", power_well->data);
720 return;
721 }
722
723 req_mask = SKL_POWER_WELL_REQ(power_well->data);
724 enable_requested = tmp & req_mask;
725 state_mask = SKL_POWER_WELL_STATE(power_well->data);
726 is_enabled = tmp & state_mask;
727
728 if (!enable && enable_requested)
729 skl_power_well_pre_disable(dev_priv, power_well);
730
731 if (enable) {
732 if (!enable_requested) {
733 WARN((tmp & state_mask) &&
734 !I915_READ(HSW_PWR_WELL_BIOS),
735 "Invalid for power well status to be enabled, unless done by the BIOS, \
736 when request is to disable!\n");
737 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
738 }
739
740 if (!is_enabled) {
741 DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
742 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
743 state_mask), 1))
744 DRM_ERROR("%s enable timeout\n",
745 power_well->name);
746 check_fuse_status = true;
747 }
748 } else {
749 if (enable_requested) {
750 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask);
751 POSTING_READ(HSW_PWR_WELL_DRIVER);
752 DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
753 }
754 }
755
756 if (check_fuse_status) {
757 if (power_well->data == SKL_DISP_PW_1) {
758 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
759 SKL_FUSE_PG1_DIST_STATUS), 1))
760 DRM_ERROR("PG1 distributing status timeout\n");
761 } else if (power_well->data == SKL_DISP_PW_2) {
762 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
763 SKL_FUSE_PG2_DIST_STATUS), 1))
764 DRM_ERROR("PG2 distributing status timeout\n");
765 }
766 }
767
768 if (enable && !is_enabled)
769 skl_power_well_post_enable(dev_priv, power_well);
770 }
771
772 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
773 struct i915_power_well *power_well)
774 {
775 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
776
777 /*
778 * We're taking over the BIOS, so clear any requests made by it since
779 * the driver is in charge now.
780 */
781 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
782 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
783 }
784
785 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
786 struct i915_power_well *power_well)
787 {
788 hsw_set_power_well(dev_priv, power_well, true);
789 }
790
791 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
792 struct i915_power_well *power_well)
793 {
794 hsw_set_power_well(dev_priv, power_well, false);
795 }
796
797 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
798 struct i915_power_well *power_well)
799 {
800 uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
801 SKL_POWER_WELL_STATE(power_well->data);
802
803 return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
804 }
805
806 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
807 struct i915_power_well *power_well)
808 {
809 skl_set_power_well(dev_priv, power_well, power_well->count > 0);
810
811 /* Clear any request made by BIOS as driver is taking over */
812 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
813 }
814
815 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
816 struct i915_power_well *power_well)
817 {
818 skl_set_power_well(dev_priv, power_well, true);
819 }
820
821 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
822 struct i915_power_well *power_well)
823 {
824 skl_set_power_well(dev_priv, power_well, false);
825 }
826
827 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
828 struct i915_power_well *power_well)
829 {
830 return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
831 }
832
833 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
834 struct i915_power_well *power_well)
835 {
836 gen9_disable_dc5_dc6(dev_priv);
837 }
838
839 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
840 struct i915_power_well *power_well)
841 {
842 if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
843 i915.enable_dc != 0 && i915.enable_dc != 1)
844 skl_enable_dc6(dev_priv);
845 else
846 gen9_enable_dc5(dev_priv);
847 }
848
849 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
850 struct i915_power_well *power_well)
851 {
852 if (power_well->count > 0) {
853 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
854 } else {
855 if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
856 i915.enable_dc != 0 &&
857 i915.enable_dc != 1)
858 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
859 else
860 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
861 }
862 }
863
864 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
865 struct i915_power_well *power_well)
866 {
867 }
868
869 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
870 struct i915_power_well *power_well)
871 {
872 return true;
873 }
874
875 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
876 struct i915_power_well *power_well, bool enable)
877 {
878 enum punit_power_well power_well_id = power_well->data;
879 u32 mask;
880 u32 state;
881 u32 ctrl;
882
883 mask = PUNIT_PWRGT_MASK(power_well_id);
884 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
885 PUNIT_PWRGT_PWR_GATE(power_well_id);
886
887 mutex_lock(&dev_priv->rps.hw_lock);
888
889 #define COND \
890 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
891
892 if (COND)
893 goto out;
894
895 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
896 ctrl &= ~mask;
897 ctrl |= state;
898 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
899
900 if (wait_for(COND, 100))
901 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
902 state,
903 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
904
905 #undef COND
906
907 out:
908 mutex_unlock(&dev_priv->rps.hw_lock);
909 }
910
911 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
912 struct i915_power_well *power_well)
913 {
914 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
915 }
916
917 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
918 struct i915_power_well *power_well)
919 {
920 vlv_set_power_well(dev_priv, power_well, true);
921 }
922
923 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
924 struct i915_power_well *power_well)
925 {
926 vlv_set_power_well(dev_priv, power_well, false);
927 }
928
929 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
930 struct i915_power_well *power_well)
931 {
932 int power_well_id = power_well->data;
933 bool enabled = false;
934 u32 mask;
935 u32 state;
936 u32 ctrl;
937
938 mask = PUNIT_PWRGT_MASK(power_well_id);
939 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
940
941 mutex_lock(&dev_priv->rps.hw_lock);
942
943 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
944 /*
945 * We only ever set the power-on and power-gate states, anything
946 * else is unexpected.
947 */
948 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
949 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
950 if (state == ctrl)
951 enabled = true;
952
953 /*
954 * A transient state at this point would mean some unexpected party
955 * is poking at the power controls too.
956 */
957 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
958 WARN_ON(ctrl != state);
959
960 mutex_unlock(&dev_priv->rps.hw_lock);
961
962 return enabled;
963 }
964
965 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
966 {
967 enum pipe pipe;
968
969 /*
970 * Enable the CRI clock source so we can get at the
971 * display and the reference clock for VGA
972 * hotplug / manual detection. Supposedly DSI also
973 * needs the ref clock up and running.
974 *
975 * CHV DPLL B/C have some issues if VGA mode is enabled.
976 */
977 for_each_pipe(dev_priv->dev, pipe) {
978 u32 val = I915_READ(DPLL(pipe));
979
980 val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
981 if (pipe != PIPE_A)
982 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
983
984 I915_WRITE(DPLL(pipe), val);
985 }
986
987 spin_lock_irq(&dev_priv->irq_lock);
988 valleyview_enable_display_irqs(dev_priv);
989 spin_unlock_irq(&dev_priv->irq_lock);
990
991 /*
992 * During driver initialization/resume we can avoid restoring the
993 * part of the HW/SW state that will be inited anyway explicitly.
994 */
995 if (dev_priv->power_domains.initializing)
996 return;
997
998 intel_hpd_init(dev_priv);
999
1000 i915_redisable_vga_power_on(dev_priv->dev);
1001 }
1002
1003 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
1004 {
1005 spin_lock_irq(&dev_priv->irq_lock);
1006 valleyview_disable_display_irqs(dev_priv);
1007 spin_unlock_irq(&dev_priv->irq_lock);
1008
1009 /* make sure we're done processing display irqs */
1010 synchronize_irq(dev_priv->dev->irq);
1011
1012 vlv_power_sequencer_reset(dev_priv);
1013 }
1014
1015 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1016 struct i915_power_well *power_well)
1017 {
1018 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1019
1020 vlv_set_power_well(dev_priv, power_well, true);
1021
1022 vlv_display_power_well_init(dev_priv);
1023 }
1024
1025 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1026 struct i915_power_well *power_well)
1027 {
1028 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1029
1030 vlv_display_power_well_deinit(dev_priv);
1031
1032 vlv_set_power_well(dev_priv, power_well, false);
1033 }
1034
1035 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1036 struct i915_power_well *power_well)
1037 {
1038 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1039
1040 /* since ref/cri clock was enabled */
1041 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1042
1043 vlv_set_power_well(dev_priv, power_well, true);
1044
1045 /*
1046 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1047 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
1048 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
1049 * b. The other bits such as sfr settings / modesel may all
1050 * be set to 0.
1051 *
1052 * This should only be done on init and resume from S3 with
1053 * both PLLs disabled, or we risk losing DPIO and PLL
1054 * synchronization.
1055 */
1056 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1057 }
1058
1059 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1060 struct i915_power_well *power_well)
1061 {
1062 enum pipe pipe;
1063
1064 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1065
1066 for_each_pipe(dev_priv, pipe)
1067 assert_pll_disabled(dev_priv, pipe);
1068
1069 /* Assert common reset */
1070 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1071
1072 vlv_set_power_well(dev_priv, power_well, false);
1073 }
1074
1075 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1076
1077 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1078 int power_well_id)
1079 {
1080 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1081 int i;
1082
1083 for (i = 0; i < power_domains->power_well_count; i++) {
1084 struct i915_power_well *power_well;
1085
1086 power_well = &power_domains->power_wells[i];
1087 if (power_well->data == power_well_id)
1088 return power_well;
1089 }
1090
1091 return NULL;
1092 }
1093
1094 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1095
1096 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1097 {
1098 struct i915_power_well *cmn_bc =
1099 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1100 struct i915_power_well *cmn_d =
1101 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1102 u32 phy_control = dev_priv->chv_phy_control;
1103 u32 phy_status = 0;
1104 u32 phy_status_mask = 0xffffffff;
1105 u32 tmp;
1106
1107 /*
1108 * The BIOS can leave the PHY is some weird state
1109 * where it doesn't fully power down some parts.
1110 * Disable the asserts until the PHY has been fully
1111 * reset (ie. the power well has been disabled at
1112 * least once).
1113 */
1114 if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1115 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1116 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1117 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1118 PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1119 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1120 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1121
1122 if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1123 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1124 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1125 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1126
1127 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1128 phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1129
1130 /* this assumes override is only used to enable lanes */
1131 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1132 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1133
1134 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1135 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1136
1137 /* CL1 is on whenever anything is on in either channel */
1138 if (BITS_SET(phy_control,
1139 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1140 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1141 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1142
1143 /*
1144 * The DPLLB check accounts for the pipe B + port A usage
1145 * with CL2 powered up but all the lanes in the second channel
1146 * powered down.
1147 */
1148 if (BITS_SET(phy_control,
1149 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1150 (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1151 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1152
1153 if (BITS_SET(phy_control,
1154 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1155 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1156 if (BITS_SET(phy_control,
1157 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1158 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1159
1160 if (BITS_SET(phy_control,
1161 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1162 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1163 if (BITS_SET(phy_control,
1164 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1165 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1166 }
1167
1168 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1169 phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1170
1171 /* this assumes override is only used to enable lanes */
1172 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1173 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1174
1175 if (BITS_SET(phy_control,
1176 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1177 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1178
1179 if (BITS_SET(phy_control,
1180 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1181 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1182 if (BITS_SET(phy_control,
1183 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1184 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1185 }
1186
1187 phy_status &= phy_status_mask;
1188
1189 /*
1190 * The PHY may be busy with some initial calibration and whatnot,
1191 * so the power state can take a while to actually change.
1192 */
1193 if (wait_for((tmp = I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask) == phy_status, 10))
1194 WARN(phy_status != tmp,
1195 "Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1196 tmp, phy_status, dev_priv->chv_phy_control);
1197 }
1198
1199 #undef BITS_SET
1200
1201 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1202 struct i915_power_well *power_well)
1203 {
1204 enum dpio_phy phy;
1205 enum pipe pipe;
1206 uint32_t tmp;
1207
1208 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1209 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1210
1211 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1212 pipe = PIPE_A;
1213 phy = DPIO_PHY0;
1214 } else {
1215 pipe = PIPE_C;
1216 phy = DPIO_PHY1;
1217 }
1218
1219 /* since ref/cri clock was enabled */
1220 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1221 vlv_set_power_well(dev_priv, power_well, true);
1222
1223 /* Poll for phypwrgood signal */
1224 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
1225 DRM_ERROR("Display PHY %d is not power up\n", phy);
1226
1227 mutex_lock(&dev_priv->sb_lock);
1228
1229 /* Enable dynamic power down */
1230 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1231 tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1232 DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1233 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1234
1235 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1236 tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1237 tmp |= DPIO_DYNPWRDOWNEN_CH1;
1238 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1239 } else {
1240 /*
1241 * Force the non-existing CL2 off. BXT does this
1242 * too, so maybe it saves some power even though
1243 * CL2 doesn't exist?
1244 */
1245 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1246 tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1247 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1248 }
1249
1250 mutex_unlock(&dev_priv->sb_lock);
1251
1252 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1253 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1254
1255 DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1256 phy, dev_priv->chv_phy_control);
1257
1258 assert_chv_phy_status(dev_priv);
1259 }
1260
1261 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1262 struct i915_power_well *power_well)
1263 {
1264 enum dpio_phy phy;
1265
1266 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1267 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1268
1269 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1270 phy = DPIO_PHY0;
1271 assert_pll_disabled(dev_priv, PIPE_A);
1272 assert_pll_disabled(dev_priv, PIPE_B);
1273 } else {
1274 phy = DPIO_PHY1;
1275 assert_pll_disabled(dev_priv, PIPE_C);
1276 }
1277
1278 dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1279 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1280
1281 vlv_set_power_well(dev_priv, power_well, false);
1282
1283 DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1284 phy, dev_priv->chv_phy_control);
1285
1286 /* PHY is fully reset now, so we can enable the PHY state asserts */
1287 dev_priv->chv_phy_assert[phy] = true;
1288
1289 assert_chv_phy_status(dev_priv);
1290 }
1291
1292 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1293 enum dpio_channel ch, bool override, unsigned int mask)
1294 {
1295 enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1296 u32 reg, val, expected, actual;
1297
1298 /*
1299 * The BIOS can leave the PHY is some weird state
1300 * where it doesn't fully power down some parts.
1301 * Disable the asserts until the PHY has been fully
1302 * reset (ie. the power well has been disabled at
1303 * least once).
1304 */
1305 if (!dev_priv->chv_phy_assert[phy])
1306 return;
1307
1308 if (ch == DPIO_CH0)
1309 reg = _CHV_CMN_DW0_CH0;
1310 else
1311 reg = _CHV_CMN_DW6_CH1;
1312
1313 mutex_lock(&dev_priv->sb_lock);
1314 val = vlv_dpio_read(dev_priv, pipe, reg);
1315 mutex_unlock(&dev_priv->sb_lock);
1316
1317 /*
1318 * This assumes !override is only used when the port is disabled.
1319 * All lanes should power down even without the override when
1320 * the port is disabled.
1321 */
1322 if (!override || mask == 0xf) {
1323 expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1324 /*
1325 * If CH1 common lane is not active anymore
1326 * (eg. for pipe B DPLL) the entire channel will
1327 * shut down, which causes the common lane registers
1328 * to read as 0. That means we can't actually check
1329 * the lane power down status bits, but as the entire
1330 * register reads as 0 it's a good indication that the
1331 * channel is indeed entirely powered down.
1332 */
1333 if (ch == DPIO_CH1 && val == 0)
1334 expected = 0;
1335 } else if (mask != 0x0) {
1336 expected = DPIO_ANYDL_POWERDOWN;
1337 } else {
1338 expected = 0;
1339 }
1340
1341 if (ch == DPIO_CH0)
1342 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1343 else
1344 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1345 actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1346
1347 WARN(actual != expected,
1348 "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1349 !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1350 !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1351 reg, val);
1352 }
1353
1354 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1355 enum dpio_channel ch, bool override)
1356 {
1357 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1358 bool was_override;
1359
1360 mutex_lock(&power_domains->lock);
1361
1362 was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1363
1364 if (override == was_override)
1365 goto out;
1366
1367 if (override)
1368 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1369 else
1370 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1371
1372 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1373
1374 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1375 phy, ch, dev_priv->chv_phy_control);
1376
1377 assert_chv_phy_status(dev_priv);
1378
1379 out:
1380 mutex_unlock(&power_domains->lock);
1381
1382 return was_override;
1383 }
1384
1385 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1386 bool override, unsigned int mask)
1387 {
1388 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1389 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1390 enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1391 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1392
1393 mutex_lock(&power_domains->lock);
1394
1395 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1396 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1397
1398 if (override)
1399 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1400 else
1401 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1402
1403 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1404
1405 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1406 phy, ch, mask, dev_priv->chv_phy_control);
1407
1408 assert_chv_phy_status(dev_priv);
1409
1410 assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1411
1412 mutex_unlock(&power_domains->lock);
1413 }
1414
1415 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1416 struct i915_power_well *power_well)
1417 {
1418 enum pipe pipe = power_well->data;
1419 bool enabled;
1420 u32 state, ctrl;
1421
1422 mutex_lock(&dev_priv->rps.hw_lock);
1423
1424 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1425 /*
1426 * We only ever set the power-on and power-gate states, anything
1427 * else is unexpected.
1428 */
1429 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1430 enabled = state == DP_SSS_PWR_ON(pipe);
1431
1432 /*
1433 * A transient state at this point would mean some unexpected party
1434 * is poking at the power controls too.
1435 */
1436 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1437 WARN_ON(ctrl << 16 != state);
1438
1439 mutex_unlock(&dev_priv->rps.hw_lock);
1440
1441 return enabled;
1442 }
1443
1444 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1445 struct i915_power_well *power_well,
1446 bool enable)
1447 {
1448 enum pipe pipe = power_well->data;
1449 u32 state;
1450 u32 ctrl;
1451
1452 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1453
1454 mutex_lock(&dev_priv->rps.hw_lock);
1455
1456 #define COND \
1457 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1458
1459 if (COND)
1460 goto out;
1461
1462 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1463 ctrl &= ~DP_SSC_MASK(pipe);
1464 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1465 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1466
1467 if (wait_for(COND, 100))
1468 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1469 state,
1470 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1471
1472 #undef COND
1473
1474 out:
1475 mutex_unlock(&dev_priv->rps.hw_lock);
1476 }
1477
1478 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1479 struct i915_power_well *power_well)
1480 {
1481 WARN_ON_ONCE(power_well->data != PIPE_A);
1482
1483 chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1484 }
1485
1486 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1487 struct i915_power_well *power_well)
1488 {
1489 WARN_ON_ONCE(power_well->data != PIPE_A);
1490
1491 chv_set_pipe_power_well(dev_priv, power_well, true);
1492
1493 vlv_display_power_well_init(dev_priv);
1494 }
1495
1496 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1497 struct i915_power_well *power_well)
1498 {
1499 WARN_ON_ONCE(power_well->data != PIPE_A);
1500
1501 vlv_display_power_well_deinit(dev_priv);
1502
1503 chv_set_pipe_power_well(dev_priv, power_well, false);
1504 }
1505
1506 static void
1507 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1508 enum intel_display_power_domain domain)
1509 {
1510 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1511 struct i915_power_well *power_well;
1512 int i;
1513
1514 for_each_power_well(i, power_well, BIT(domain), power_domains) {
1515 if (!power_well->count++)
1516 intel_power_well_enable(dev_priv, power_well);
1517 }
1518
1519 power_domains->domain_use_count[domain]++;
1520 }
1521
1522 /**
1523 * intel_display_power_get - grab a power domain reference
1524 * @dev_priv: i915 device instance
1525 * @domain: power domain to reference
1526 *
1527 * This function grabs a power domain reference for @domain and ensures that the
1528 * power domain and all its parents are powered up. Therefore users should only
1529 * grab a reference to the innermost power domain they need.
1530 *
1531 * Any power domain reference obtained by this function must have a symmetric
1532 * call to intel_display_power_put() to release the reference again.
1533 */
1534 void intel_display_power_get(struct drm_i915_private *dev_priv,
1535 enum intel_display_power_domain domain)
1536 {
1537 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1538
1539 intel_runtime_pm_get(dev_priv);
1540
1541 mutex_lock(&power_domains->lock);
1542
1543 __intel_display_power_get_domain(dev_priv, domain);
1544
1545 mutex_unlock(&power_domains->lock);
1546 }
1547
1548 /**
1549 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1550 * @dev_priv: i915 device instance
1551 * @domain: power domain to reference
1552 *
1553 * This function grabs a power domain reference for @domain and ensures that the
1554 * power domain and all its parents are powered up. Therefore users should only
1555 * grab a reference to the innermost power domain they need.
1556 *
1557 * Any power domain reference obtained by this function must have a symmetric
1558 * call to intel_display_power_put() to release the reference again.
1559 */
1560 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1561 enum intel_display_power_domain domain)
1562 {
1563 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1564 bool is_enabled;
1565
1566 if (!intel_runtime_pm_get_if_in_use(dev_priv))
1567 return false;
1568
1569 mutex_lock(&power_domains->lock);
1570
1571 if (__intel_display_power_is_enabled(dev_priv, domain)) {
1572 __intel_display_power_get_domain(dev_priv, domain);
1573 is_enabled = true;
1574 } else {
1575 is_enabled = false;
1576 }
1577
1578 mutex_unlock(&power_domains->lock);
1579
1580 if (!is_enabled)
1581 intel_runtime_pm_put(dev_priv);
1582
1583 return is_enabled;
1584 }
1585
1586 /**
1587 * intel_display_power_put - release a power domain reference
1588 * @dev_priv: i915 device instance
1589 * @domain: power domain to reference
1590 *
1591 * This function drops the power domain reference obtained by
1592 * intel_display_power_get() and might power down the corresponding hardware
1593 * block right away if this is the last reference.
1594 */
1595 void intel_display_power_put(struct drm_i915_private *dev_priv,
1596 enum intel_display_power_domain domain)
1597 {
1598 struct i915_power_domains *power_domains;
1599 struct i915_power_well *power_well;
1600 int i;
1601
1602 power_domains = &dev_priv->power_domains;
1603
1604 mutex_lock(&power_domains->lock);
1605
1606 WARN(!power_domains->domain_use_count[domain],
1607 "Use count on domain %s is already zero\n",
1608 intel_display_power_domain_str(domain));
1609 power_domains->domain_use_count[domain]--;
1610
1611 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
1612 WARN(!power_well->count,
1613 "Use count on power well %s is already zero",
1614 power_well->name);
1615
1616 if (!--power_well->count)
1617 intel_power_well_disable(dev_priv, power_well);
1618 }
1619
1620 mutex_unlock(&power_domains->lock);
1621
1622 intel_runtime_pm_put(dev_priv);
1623 }
1624
1625 #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
1626 BIT(POWER_DOMAIN_PIPE_A) | \
1627 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
1628 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
1629 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1630 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1631 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1632 BIT(POWER_DOMAIN_PORT_CRT) | \
1633 BIT(POWER_DOMAIN_PLLS) | \
1634 BIT(POWER_DOMAIN_AUX_A) | \
1635 BIT(POWER_DOMAIN_AUX_B) | \
1636 BIT(POWER_DOMAIN_AUX_C) | \
1637 BIT(POWER_DOMAIN_AUX_D) | \
1638 BIT(POWER_DOMAIN_GMBUS) | \
1639 BIT(POWER_DOMAIN_INIT))
1640 #define HSW_DISPLAY_POWER_DOMAINS ( \
1641 (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
1642 BIT(POWER_DOMAIN_INIT))
1643
1644 #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
1645 HSW_ALWAYS_ON_POWER_DOMAINS | \
1646 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
1647 #define BDW_DISPLAY_POWER_DOMAINS ( \
1648 (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
1649 BIT(POWER_DOMAIN_INIT))
1650
1651 #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
1652 #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
1653
1654 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
1655 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1656 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1657 BIT(POWER_DOMAIN_PORT_CRT) | \
1658 BIT(POWER_DOMAIN_AUX_B) | \
1659 BIT(POWER_DOMAIN_AUX_C) | \
1660 BIT(POWER_DOMAIN_INIT))
1661
1662 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
1663 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1664 BIT(POWER_DOMAIN_AUX_B) | \
1665 BIT(POWER_DOMAIN_INIT))
1666
1667 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
1668 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1669 BIT(POWER_DOMAIN_AUX_B) | \
1670 BIT(POWER_DOMAIN_INIT))
1671
1672 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
1673 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1674 BIT(POWER_DOMAIN_AUX_C) | \
1675 BIT(POWER_DOMAIN_INIT))
1676
1677 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
1678 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1679 BIT(POWER_DOMAIN_AUX_C) | \
1680 BIT(POWER_DOMAIN_INIT))
1681
1682 #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
1683 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1684 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1685 BIT(POWER_DOMAIN_AUX_B) | \
1686 BIT(POWER_DOMAIN_AUX_C) | \
1687 BIT(POWER_DOMAIN_INIT))
1688
1689 #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
1690 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1691 BIT(POWER_DOMAIN_AUX_D) | \
1692 BIT(POWER_DOMAIN_INIT))
1693
1694 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1695 .sync_hw = i9xx_always_on_power_well_noop,
1696 .enable = i9xx_always_on_power_well_noop,
1697 .disable = i9xx_always_on_power_well_noop,
1698 .is_enabled = i9xx_always_on_power_well_enabled,
1699 };
1700
1701 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1702 .sync_hw = chv_pipe_power_well_sync_hw,
1703 .enable = chv_pipe_power_well_enable,
1704 .disable = chv_pipe_power_well_disable,
1705 .is_enabled = chv_pipe_power_well_enabled,
1706 };
1707
1708 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1709 .sync_hw = vlv_power_well_sync_hw,
1710 .enable = chv_dpio_cmn_power_well_enable,
1711 .disable = chv_dpio_cmn_power_well_disable,
1712 .is_enabled = vlv_power_well_enabled,
1713 };
1714
1715 static struct i915_power_well i9xx_always_on_power_well[] = {
1716 {
1717 .name = "always-on",
1718 .always_on = 1,
1719 .domains = POWER_DOMAIN_MASK,
1720 .ops = &i9xx_always_on_power_well_ops,
1721 },
1722 };
1723
1724 static const struct i915_power_well_ops hsw_power_well_ops = {
1725 .sync_hw = hsw_power_well_sync_hw,
1726 .enable = hsw_power_well_enable,
1727 .disable = hsw_power_well_disable,
1728 .is_enabled = hsw_power_well_enabled,
1729 };
1730
1731 static const struct i915_power_well_ops skl_power_well_ops = {
1732 .sync_hw = skl_power_well_sync_hw,
1733 .enable = skl_power_well_enable,
1734 .disable = skl_power_well_disable,
1735 .is_enabled = skl_power_well_enabled,
1736 };
1737
1738 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1739 .sync_hw = gen9_dc_off_power_well_sync_hw,
1740 .enable = gen9_dc_off_power_well_enable,
1741 .disable = gen9_dc_off_power_well_disable,
1742 .is_enabled = gen9_dc_off_power_well_enabled,
1743 };
1744
1745 static struct i915_power_well hsw_power_wells[] = {
1746 {
1747 .name = "always-on",
1748 .always_on = 1,
1749 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
1750 .ops = &i9xx_always_on_power_well_ops,
1751 },
1752 {
1753 .name = "display",
1754 .domains = HSW_DISPLAY_POWER_DOMAINS,
1755 .ops = &hsw_power_well_ops,
1756 },
1757 };
1758
1759 static struct i915_power_well bdw_power_wells[] = {
1760 {
1761 .name = "always-on",
1762 .always_on = 1,
1763 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
1764 .ops = &i9xx_always_on_power_well_ops,
1765 },
1766 {
1767 .name = "display",
1768 .domains = BDW_DISPLAY_POWER_DOMAINS,
1769 .ops = &hsw_power_well_ops,
1770 },
1771 };
1772
1773 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1774 .sync_hw = vlv_power_well_sync_hw,
1775 .enable = vlv_display_power_well_enable,
1776 .disable = vlv_display_power_well_disable,
1777 .is_enabled = vlv_power_well_enabled,
1778 };
1779
1780 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1781 .sync_hw = vlv_power_well_sync_hw,
1782 .enable = vlv_dpio_cmn_power_well_enable,
1783 .disable = vlv_dpio_cmn_power_well_disable,
1784 .is_enabled = vlv_power_well_enabled,
1785 };
1786
1787 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1788 .sync_hw = vlv_power_well_sync_hw,
1789 .enable = vlv_power_well_enable,
1790 .disable = vlv_power_well_disable,
1791 .is_enabled = vlv_power_well_enabled,
1792 };
1793
1794 static struct i915_power_well vlv_power_wells[] = {
1795 {
1796 .name = "always-on",
1797 .always_on = 1,
1798 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1799 .ops = &i9xx_always_on_power_well_ops,
1800 .data = PUNIT_POWER_WELL_ALWAYS_ON,
1801 },
1802 {
1803 .name = "display",
1804 .domains = VLV_DISPLAY_POWER_DOMAINS,
1805 .data = PUNIT_POWER_WELL_DISP2D,
1806 .ops = &vlv_display_power_well_ops,
1807 },
1808 {
1809 .name = "dpio-tx-b-01",
1810 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1811 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1812 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1813 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1814 .ops = &vlv_dpio_power_well_ops,
1815 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1816 },
1817 {
1818 .name = "dpio-tx-b-23",
1819 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1820 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1821 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1822 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1823 .ops = &vlv_dpio_power_well_ops,
1824 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
1825 },
1826 {
1827 .name = "dpio-tx-c-01",
1828 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1829 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1830 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1831 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1832 .ops = &vlv_dpio_power_well_ops,
1833 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
1834 },
1835 {
1836 .name = "dpio-tx-c-23",
1837 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1838 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1839 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1840 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1841 .ops = &vlv_dpio_power_well_ops,
1842 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
1843 },
1844 {
1845 .name = "dpio-common",
1846 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
1847 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1848 .ops = &vlv_dpio_cmn_power_well_ops,
1849 },
1850 };
1851
1852 static struct i915_power_well chv_power_wells[] = {
1853 {
1854 .name = "always-on",
1855 .always_on = 1,
1856 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1857 .ops = &i9xx_always_on_power_well_ops,
1858 },
1859 {
1860 .name = "display",
1861 /*
1862 * Pipe A power well is the new disp2d well. Pipe B and C
1863 * power wells don't actually exist. Pipe A power well is
1864 * required for any pipe to work.
1865 */
1866 .domains = VLV_DISPLAY_POWER_DOMAINS,
1867 .data = PIPE_A,
1868 .ops = &chv_pipe_power_well_ops,
1869 },
1870 {
1871 .name = "dpio-common-bc",
1872 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
1873 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1874 .ops = &chv_dpio_cmn_power_well_ops,
1875 },
1876 {
1877 .name = "dpio-common-d",
1878 .domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
1879 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
1880 .ops = &chv_dpio_cmn_power_well_ops,
1881 },
1882 };
1883
1884 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
1885 int power_well_id)
1886 {
1887 struct i915_power_well *power_well;
1888 bool ret;
1889
1890 power_well = lookup_power_well(dev_priv, power_well_id);
1891 ret = power_well->ops->is_enabled(dev_priv, power_well);
1892
1893 return ret;
1894 }
1895
1896 static struct i915_power_well skl_power_wells[] = {
1897 {
1898 .name = "always-on",
1899 .always_on = 1,
1900 .domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1901 .ops = &i9xx_always_on_power_well_ops,
1902 .data = SKL_DISP_PW_ALWAYS_ON,
1903 },
1904 {
1905 .name = "power well 1",
1906 /* Handled by the DMC firmware */
1907 .domains = 0,
1908 .ops = &skl_power_well_ops,
1909 .data = SKL_DISP_PW_1,
1910 },
1911 {
1912 .name = "MISC IO power well",
1913 /* Handled by the DMC firmware */
1914 .domains = 0,
1915 .ops = &skl_power_well_ops,
1916 .data = SKL_DISP_PW_MISC_IO,
1917 },
1918 {
1919 .name = "DC off",
1920 .domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
1921 .ops = &gen9_dc_off_power_well_ops,
1922 .data = SKL_DISP_PW_DC_OFF,
1923 },
1924 {
1925 .name = "power well 2",
1926 .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1927 .ops = &skl_power_well_ops,
1928 .data = SKL_DISP_PW_2,
1929 },
1930 {
1931 .name = "DDI A/E power well",
1932 .domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
1933 .ops = &skl_power_well_ops,
1934 .data = SKL_DISP_PW_DDI_A_E,
1935 },
1936 {
1937 .name = "DDI B power well",
1938 .domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
1939 .ops = &skl_power_well_ops,
1940 .data = SKL_DISP_PW_DDI_B,
1941 },
1942 {
1943 .name = "DDI C power well",
1944 .domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
1945 .ops = &skl_power_well_ops,
1946 .data = SKL_DISP_PW_DDI_C,
1947 },
1948 {
1949 .name = "DDI D power well",
1950 .domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
1951 .ops = &skl_power_well_ops,
1952 .data = SKL_DISP_PW_DDI_D,
1953 },
1954 };
1955
1956 void skl_pw1_misc_io_init(struct drm_i915_private *dev_priv)
1957 {
1958 struct i915_power_well *well;
1959
1960 if (!(IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)))
1961 return;
1962
1963 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1964 intel_power_well_enable(dev_priv, well);
1965
1966 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1967 intel_power_well_enable(dev_priv, well);
1968 }
1969
1970 void skl_pw1_misc_io_fini(struct drm_i915_private *dev_priv)
1971 {
1972 struct i915_power_well *well;
1973
1974 if (!(IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)))
1975 return;
1976
1977 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1978 intel_power_well_disable(dev_priv, well);
1979
1980 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1981 intel_power_well_disable(dev_priv, well);
1982 }
1983
1984 static struct i915_power_well bxt_power_wells[] = {
1985 {
1986 .name = "always-on",
1987 .always_on = 1,
1988 .domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1989 .ops = &i9xx_always_on_power_well_ops,
1990 },
1991 {
1992 .name = "power well 1",
1993 .domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS,
1994 .ops = &skl_power_well_ops,
1995 .data = SKL_DISP_PW_1,
1996 },
1997 {
1998 .name = "DC off",
1999 .domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
2000 .ops = &gen9_dc_off_power_well_ops,
2001 .data = SKL_DISP_PW_DC_OFF,
2002 },
2003 {
2004 .name = "power well 2",
2005 .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2006 .ops = &skl_power_well_ops,
2007 .data = SKL_DISP_PW_2,
2008 },
2009 };
2010
2011 static int
2012 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2013 int disable_power_well)
2014 {
2015 if (disable_power_well >= 0)
2016 return !!disable_power_well;
2017
2018 if (IS_BROXTON(dev_priv)) {
2019 DRM_DEBUG_KMS("Disabling display power well support\n");
2020 return 0;
2021 }
2022
2023 return 1;
2024 }
2025
2026 #define set_power_wells(power_domains, __power_wells) ({ \
2027 (power_domains)->power_wells = (__power_wells); \
2028 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
2029 })
2030
2031 /**
2032 * intel_power_domains_init - initializes the power domain structures
2033 * @dev_priv: i915 device instance
2034 *
2035 * Initializes the power domain structures for @dev_priv depending upon the
2036 * supported platform.
2037 */
2038 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2039 {
2040 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2041
2042 i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2043 i915.disable_power_well);
2044
2045 BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2046
2047 mutex_init(&power_domains->lock);
2048
2049 /*
2050 * The enabling order will be from lower to higher indexed wells,
2051 * the disabling order is reversed.
2052 */
2053 if (IS_HASWELL(dev_priv->dev)) {
2054 set_power_wells(power_domains, hsw_power_wells);
2055 } else if (IS_BROADWELL(dev_priv->dev)) {
2056 set_power_wells(power_domains, bdw_power_wells);
2057 } else if (IS_SKYLAKE(dev_priv->dev) || IS_KABYLAKE(dev_priv->dev)) {
2058 set_power_wells(power_domains, skl_power_wells);
2059 } else if (IS_BROXTON(dev_priv->dev)) {
2060 set_power_wells(power_domains, bxt_power_wells);
2061 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
2062 set_power_wells(power_domains, chv_power_wells);
2063 } else if (IS_VALLEYVIEW(dev_priv->dev)) {
2064 set_power_wells(power_domains, vlv_power_wells);
2065 } else {
2066 set_power_wells(power_domains, i9xx_always_on_power_well);
2067 }
2068
2069 return 0;
2070 }
2071
2072 /**
2073 * intel_power_domains_fini - finalizes the power domain structures
2074 * @dev_priv: i915 device instance
2075 *
2076 * Finalizes the power domain structures for @dev_priv depending upon the
2077 * supported platform. This function also disables runtime pm and ensures that
2078 * the device stays powered up so that the driver can be reloaded.
2079 */
2080 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2081 {
2082 struct device *device = &dev_priv->dev->pdev->dev;
2083
2084 /*
2085 * The i915.ko module is still not prepared to be loaded when
2086 * the power well is not enabled, so just enable it in case
2087 * we're going to unload/reload.
2088 * The following also reacquires the RPM reference the core passed
2089 * to the driver during loading, which is dropped in
2090 * intel_runtime_pm_enable(). We have to hand back the control of the
2091 * device to the core with this reference held.
2092 */
2093 intel_display_set_init_power(dev_priv, true);
2094
2095 /* Remove the refcount we took to keep power well support disabled. */
2096 if (!i915.disable_power_well)
2097 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2098
2099 /*
2100 * Remove the refcount we took in intel_runtime_pm_enable() in case
2101 * the platform doesn't support runtime PM.
2102 */
2103 if (!HAS_RUNTIME_PM(dev_priv))
2104 pm_runtime_put(device);
2105 }
2106
2107 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2108 {
2109 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2110 struct i915_power_well *power_well;
2111 int i;
2112
2113 mutex_lock(&power_domains->lock);
2114 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2115 power_well->ops->sync_hw(dev_priv, power_well);
2116 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2117 power_well);
2118 }
2119 mutex_unlock(&power_domains->lock);
2120 }
2121
2122 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2123 bool resume)
2124 {
2125 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2126 uint32_t val;
2127
2128 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2129
2130 /* enable PCH reset handshake */
2131 val = I915_READ(HSW_NDE_RSTWRN_OPT);
2132 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2133
2134 /* enable PG1 and Misc I/O */
2135 mutex_lock(&power_domains->lock);
2136 skl_pw1_misc_io_init(dev_priv);
2137 mutex_unlock(&power_domains->lock);
2138
2139 if (!resume)
2140 return;
2141
2142 skl_init_cdclk(dev_priv);
2143
2144 if (dev_priv->csr.dmc_payload && intel_csr_load_program(dev_priv))
2145 gen9_set_dc_state_debugmask(dev_priv);
2146 }
2147
2148 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2149 {
2150 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2151
2152 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2153
2154 skl_uninit_cdclk(dev_priv);
2155
2156 /* The spec doesn't call for removing the reset handshake flag */
2157 /* disable PG1 and Misc I/O */
2158 mutex_lock(&power_domains->lock);
2159 skl_pw1_misc_io_fini(dev_priv);
2160 mutex_unlock(&power_domains->lock);
2161 }
2162
2163 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2164 {
2165 struct i915_power_well *cmn_bc =
2166 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2167 struct i915_power_well *cmn_d =
2168 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2169
2170 /*
2171 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2172 * workaround never ever read DISPLAY_PHY_CONTROL, and
2173 * instead maintain a shadow copy ourselves. Use the actual
2174 * power well state and lane status to reconstruct the
2175 * expected initial value.
2176 */
2177 dev_priv->chv_phy_control =
2178 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2179 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2180 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2181 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2182 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2183
2184 /*
2185 * If all lanes are disabled we leave the override disabled
2186 * with all power down bits cleared to match the state we
2187 * would use after disabling the port. Otherwise enable the
2188 * override and set the lane powerdown bits accding to the
2189 * current lane status.
2190 */
2191 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2192 uint32_t status = I915_READ(DPLL(PIPE_A));
2193 unsigned int mask;
2194
2195 mask = status & DPLL_PORTB_READY_MASK;
2196 if (mask == 0xf)
2197 mask = 0x0;
2198 else
2199 dev_priv->chv_phy_control |=
2200 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2201
2202 dev_priv->chv_phy_control |=
2203 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2204
2205 mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2206 if (mask == 0xf)
2207 mask = 0x0;
2208 else
2209 dev_priv->chv_phy_control |=
2210 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2211
2212 dev_priv->chv_phy_control |=
2213 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2214
2215 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2216
2217 dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2218 } else {
2219 dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2220 }
2221
2222 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2223 uint32_t status = I915_READ(DPIO_PHY_STATUS);
2224 unsigned int mask;
2225
2226 mask = status & DPLL_PORTD_READY_MASK;
2227
2228 if (mask == 0xf)
2229 mask = 0x0;
2230 else
2231 dev_priv->chv_phy_control |=
2232 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2233
2234 dev_priv->chv_phy_control |=
2235 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2236
2237 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2238
2239 dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2240 } else {
2241 dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2242 }
2243
2244 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2245
2246 DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2247 dev_priv->chv_phy_control);
2248 }
2249
2250 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2251 {
2252 struct i915_power_well *cmn =
2253 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2254 struct i915_power_well *disp2d =
2255 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2256
2257 /* If the display might be already active skip this */
2258 if (cmn->ops->is_enabled(dev_priv, cmn) &&
2259 disp2d->ops->is_enabled(dev_priv, disp2d) &&
2260 I915_READ(DPIO_CTL) & DPIO_CMNRST)
2261 return;
2262
2263 DRM_DEBUG_KMS("toggling display PHY side reset\n");
2264
2265 /* cmnlane needs DPLL registers */
2266 disp2d->ops->enable(dev_priv, disp2d);
2267
2268 /*
2269 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2270 * Need to assert and de-assert PHY SB reset by gating the
2271 * common lane power, then un-gating it.
2272 * Simply ungating isn't enough to reset the PHY enough to get
2273 * ports and lanes running.
2274 */
2275 cmn->ops->disable(dev_priv, cmn);
2276 }
2277
2278 /**
2279 * intel_power_domains_init_hw - initialize hardware power domain state
2280 * @dev_priv: i915 device instance
2281 *
2282 * This function initializes the hardware power domain state and enables all
2283 * power domains using intel_display_set_init_power().
2284 */
2285 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2286 {
2287 struct drm_device *dev = dev_priv->dev;
2288 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2289
2290 power_domains->initializing = true;
2291
2292 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2293 skl_display_core_init(dev_priv, resume);
2294 } else if (IS_CHERRYVIEW(dev)) {
2295 mutex_lock(&power_domains->lock);
2296 chv_phy_control_init(dev_priv);
2297 mutex_unlock(&power_domains->lock);
2298 } else if (IS_VALLEYVIEW(dev)) {
2299 mutex_lock(&power_domains->lock);
2300 vlv_cmnlane_wa(dev_priv);
2301 mutex_unlock(&power_domains->lock);
2302 }
2303
2304 /* For now, we need the power well to be always enabled. */
2305 intel_display_set_init_power(dev_priv, true);
2306 /* Disable power support if the user asked so. */
2307 if (!i915.disable_power_well)
2308 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2309 intel_power_domains_sync_hw(dev_priv);
2310 power_domains->initializing = false;
2311 }
2312
2313 /**
2314 * intel_power_domains_suspend - suspend power domain state
2315 * @dev_priv: i915 device instance
2316 *
2317 * This function prepares the hardware power domain state before entering
2318 * system suspend. It must be paired with intel_power_domains_init_hw().
2319 */
2320 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2321 {
2322 /*
2323 * Even if power well support was disabled we still want to disable
2324 * power wells while we are system suspended.
2325 */
2326 if (!i915.disable_power_well)
2327 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2328
2329 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2330 skl_display_core_uninit(dev_priv);
2331 }
2332
2333 /**
2334 * intel_runtime_pm_get - grab a runtime pm reference
2335 * @dev_priv: i915 device instance
2336 *
2337 * This function grabs a device-level runtime pm reference (mostly used for GEM
2338 * code to ensure the GTT or GT is on) and ensures that it is powered up.
2339 *
2340 * Any runtime pm reference obtained by this function must have a symmetric
2341 * call to intel_runtime_pm_put() to release the reference again.
2342 */
2343 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2344 {
2345 struct drm_device *dev = dev_priv->dev;
2346 struct device *device = &dev->pdev->dev;
2347
2348 pm_runtime_get_sync(device);
2349
2350 atomic_inc(&dev_priv->pm.wakeref_count);
2351 assert_rpm_wakelock_held(dev_priv);
2352 }
2353
2354 /**
2355 * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2356 * @dev_priv: i915 device instance
2357 *
2358 * This function grabs a device-level runtime pm reference if the device is
2359 * already in use and ensures that it is powered up.
2360 *
2361 * Any runtime pm reference obtained by this function must have a symmetric
2362 * call to intel_runtime_pm_put() to release the reference again.
2363 */
2364 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2365 {
2366 struct drm_device *dev = dev_priv->dev;
2367 struct device *device = &dev->pdev->dev;
2368
2369 if (IS_ENABLED(CONFIG_PM)) {
2370 int ret = pm_runtime_get_if_in_use(device);
2371
2372 /*
2373 * In cases runtime PM is disabled by the RPM core and we get
2374 * an -EINVAL return value we are not supposed to call this
2375 * function, since the power state is undefined. This applies
2376 * atm to the late/early system suspend/resume handlers.
2377 */
2378 WARN_ON_ONCE(ret < 0);
2379 if (ret <= 0)
2380 return false;
2381 }
2382
2383 atomic_inc(&dev_priv->pm.wakeref_count);
2384 assert_rpm_wakelock_held(dev_priv);
2385
2386 return true;
2387 }
2388
2389 /**
2390 * intel_runtime_pm_get_noresume - grab a runtime pm reference
2391 * @dev_priv: i915 device instance
2392 *
2393 * This function grabs a device-level runtime pm reference (mostly used for GEM
2394 * code to ensure the GTT or GT is on).
2395 *
2396 * It will _not_ power up the device but instead only check that it's powered
2397 * on. Therefore it is only valid to call this functions from contexts where
2398 * the device is known to be powered up and where trying to power it up would
2399 * result in hilarity and deadlocks. That pretty much means only the system
2400 * suspend/resume code where this is used to grab runtime pm references for
2401 * delayed setup down in work items.
2402 *
2403 * Any runtime pm reference obtained by this function must have a symmetric
2404 * call to intel_runtime_pm_put() to release the reference again.
2405 */
2406 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2407 {
2408 struct drm_device *dev = dev_priv->dev;
2409 struct device *device = &dev->pdev->dev;
2410
2411 assert_rpm_wakelock_held(dev_priv);
2412 pm_runtime_get_noresume(device);
2413
2414 atomic_inc(&dev_priv->pm.wakeref_count);
2415 }
2416
2417 /**
2418 * intel_runtime_pm_put - release a runtime pm reference
2419 * @dev_priv: i915 device instance
2420 *
2421 * This function drops the device-level runtime pm reference obtained by
2422 * intel_runtime_pm_get() and might power down the corresponding
2423 * hardware block right away if this is the last reference.
2424 */
2425 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2426 {
2427 struct drm_device *dev = dev_priv->dev;
2428 struct device *device = &dev->pdev->dev;
2429
2430 assert_rpm_wakelock_held(dev_priv);
2431 if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2432 atomic_inc(&dev_priv->pm.atomic_seq);
2433
2434 pm_runtime_mark_last_busy(device);
2435 pm_runtime_put_autosuspend(device);
2436 }
2437
2438 /**
2439 * intel_runtime_pm_enable - enable runtime pm
2440 * @dev_priv: i915 device instance
2441 *
2442 * This function enables runtime pm at the end of the driver load sequence.
2443 *
2444 * Note that this function does currently not enable runtime pm for the
2445 * subordinate display power domains. That is only done on the first modeset
2446 * using intel_display_set_init_power().
2447 */
2448 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2449 {
2450 struct drm_device *dev = dev_priv->dev;
2451 struct device *device = &dev->pdev->dev;
2452
2453 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2454 pm_runtime_mark_last_busy(device);
2455
2456 /*
2457 * Take a permanent reference to disable the RPM functionality and drop
2458 * it only when unloading the driver. Use the low level get/put helpers,
2459 * so the driver's own RPM reference tracking asserts also work on
2460 * platforms without RPM support.
2461 */
2462 if (!HAS_RUNTIME_PM(dev)) {
2463 pm_runtime_dont_use_autosuspend(device);
2464 pm_runtime_get_sync(device);
2465 } else {
2466 pm_runtime_use_autosuspend(device);
2467 }
2468
2469 /*
2470 * The core calls the driver load handler with an RPM reference held.
2471 * We drop that here and will reacquire it during unloading in
2472 * intel_power_domains_fini().
2473 */
2474 pm_runtime_put_autosuspend(device);
2475 }
2476
This page took 0.086926 seconds and 6 git commands to generate.