Merge branch 'cpuidle' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_runtime_pm.c
1 /*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 * Daniel Vetter <daniel.vetter@ffwll.ch>
26 *
27 */
28
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34
35 /**
36 * DOC: runtime pm
37 *
38 * The i915 driver supports dynamic enabling and disabling of entire hardware
39 * blocks at runtime. This is especially important on the display side where
40 * software is supposed to control many power gates manually on recent hardware,
41 * since on the GT side a lot of the power management is done by the hardware.
42 * But even there some manual control at the device level is required.
43 *
44 * Since i915 supports a diverse set of platforms with a unified codebase and
45 * hardware engineers just love to shuffle functionality around between power
46 * domains there's a sizeable amount of indirection required. This file provides
47 * generic functions to the driver for grabbing and releasing references for
48 * abstract power domains. It then maps those to the actual power wells
49 * present for a given platform.
50 */
51
52 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
53 for (i = 0; \
54 i < (power_domains)->power_well_count && \
55 ((power_well) = &(power_domains)->power_wells[i]); \
56 i++) \
57 for_each_if ((power_well)->domains & (domain_mask))
58
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 for (i = (power_domains)->power_well_count - 1; \
61 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 i--) \
63 for_each_if ((power_well)->domains & (domain_mask))
64
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 int power_well_id);
67
68 const char *
69 intel_display_power_domain_str(enum intel_display_power_domain domain)
70 {
71 switch (domain) {
72 case POWER_DOMAIN_PIPE_A:
73 return "PIPE_A";
74 case POWER_DOMAIN_PIPE_B:
75 return "PIPE_B";
76 case POWER_DOMAIN_PIPE_C:
77 return "PIPE_C";
78 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
79 return "PIPE_A_PANEL_FITTER";
80 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
81 return "PIPE_B_PANEL_FITTER";
82 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
83 return "PIPE_C_PANEL_FITTER";
84 case POWER_DOMAIN_TRANSCODER_A:
85 return "TRANSCODER_A";
86 case POWER_DOMAIN_TRANSCODER_B:
87 return "TRANSCODER_B";
88 case POWER_DOMAIN_TRANSCODER_C:
89 return "TRANSCODER_C";
90 case POWER_DOMAIN_TRANSCODER_EDP:
91 return "TRANSCODER_EDP";
92 case POWER_DOMAIN_PORT_DDI_A_LANES:
93 return "PORT_DDI_A_LANES";
94 case POWER_DOMAIN_PORT_DDI_B_LANES:
95 return "PORT_DDI_B_LANES";
96 case POWER_DOMAIN_PORT_DDI_C_LANES:
97 return "PORT_DDI_C_LANES";
98 case POWER_DOMAIN_PORT_DDI_D_LANES:
99 return "PORT_DDI_D_LANES";
100 case POWER_DOMAIN_PORT_DDI_E_LANES:
101 return "PORT_DDI_E_LANES";
102 case POWER_DOMAIN_PORT_DSI:
103 return "PORT_DSI";
104 case POWER_DOMAIN_PORT_CRT:
105 return "PORT_CRT";
106 case POWER_DOMAIN_PORT_OTHER:
107 return "PORT_OTHER";
108 case POWER_DOMAIN_VGA:
109 return "VGA";
110 case POWER_DOMAIN_AUDIO:
111 return "AUDIO";
112 case POWER_DOMAIN_PLLS:
113 return "PLLS";
114 case POWER_DOMAIN_AUX_A:
115 return "AUX_A";
116 case POWER_DOMAIN_AUX_B:
117 return "AUX_B";
118 case POWER_DOMAIN_AUX_C:
119 return "AUX_C";
120 case POWER_DOMAIN_AUX_D:
121 return "AUX_D";
122 case POWER_DOMAIN_GMBUS:
123 return "GMBUS";
124 case POWER_DOMAIN_INIT:
125 return "INIT";
126 case POWER_DOMAIN_MODESET:
127 return "MODESET";
128 default:
129 MISSING_CASE(domain);
130 return "?";
131 }
132 }
133
134 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
135 struct i915_power_well *power_well)
136 {
137 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
138 power_well->ops->enable(dev_priv, power_well);
139 power_well->hw_enabled = true;
140 }
141
142 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
143 struct i915_power_well *power_well)
144 {
145 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
146 power_well->hw_enabled = false;
147 power_well->ops->disable(dev_priv, power_well);
148 }
149
150 /*
151 * We should only use the power well if we explicitly asked the hardware to
152 * enable it, so check if it's enabled and also check if we've requested it to
153 * be enabled.
154 */
155 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
156 struct i915_power_well *power_well)
157 {
158 return I915_READ(HSW_PWR_WELL_DRIVER) ==
159 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
160 }
161
162 /**
163 * __intel_display_power_is_enabled - unlocked check for a power domain
164 * @dev_priv: i915 device instance
165 * @domain: power domain to check
166 *
167 * This is the unlocked version of intel_display_power_is_enabled() and should
168 * only be used from error capture and recovery code where deadlocks are
169 * possible.
170 *
171 * Returns:
172 * True when the power domain is enabled, false otherwise.
173 */
174 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
175 enum intel_display_power_domain domain)
176 {
177 struct i915_power_domains *power_domains;
178 struct i915_power_well *power_well;
179 bool is_enabled;
180 int i;
181
182 if (dev_priv->pm.suspended)
183 return false;
184
185 power_domains = &dev_priv->power_domains;
186
187 is_enabled = true;
188
189 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
190 if (power_well->always_on)
191 continue;
192
193 if (!power_well->hw_enabled) {
194 is_enabled = false;
195 break;
196 }
197 }
198
199 return is_enabled;
200 }
201
202 /**
203 * intel_display_power_is_enabled - check for a power domain
204 * @dev_priv: i915 device instance
205 * @domain: power domain to check
206 *
207 * This function can be used to check the hw power domain state. It is mostly
208 * used in hardware state readout functions. Everywhere else code should rely
209 * upon explicit power domain reference counting to ensure that the hardware
210 * block is powered up before accessing it.
211 *
212 * Callers must hold the relevant modesetting locks to ensure that concurrent
213 * threads can't disable the power well while the caller tries to read a few
214 * registers.
215 *
216 * Returns:
217 * True when the power domain is enabled, false otherwise.
218 */
219 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
220 enum intel_display_power_domain domain)
221 {
222 struct i915_power_domains *power_domains;
223 bool ret;
224
225 power_domains = &dev_priv->power_domains;
226
227 mutex_lock(&power_domains->lock);
228 ret = __intel_display_power_is_enabled(dev_priv, domain);
229 mutex_unlock(&power_domains->lock);
230
231 return ret;
232 }
233
234 /**
235 * intel_display_set_init_power - set the initial power domain state
236 * @dev_priv: i915 device instance
237 * @enable: whether to enable or disable the initial power domain state
238 *
239 * For simplicity our driver load/unload and system suspend/resume code assumes
240 * that all power domains are always enabled. This functions controls the state
241 * of this little hack. While the initial power domain state is enabled runtime
242 * pm is effectively disabled.
243 */
244 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
245 bool enable)
246 {
247 if (dev_priv->power_domains.init_power_on == enable)
248 return;
249
250 if (enable)
251 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
252 else
253 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
254
255 dev_priv->power_domains.init_power_on = enable;
256 }
257
258 /*
259 * Starting with Haswell, we have a "Power Down Well" that can be turned off
260 * when not needed anymore. We have 4 registers that can request the power well
261 * to be enabled, and it will only be disabled if none of the registers is
262 * requesting it to be enabled.
263 */
264 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
265 {
266 struct drm_device *dev = dev_priv->dev;
267
268 /*
269 * After we re-enable the power well, if we touch VGA register 0x3d5
270 * we'll get unclaimed register interrupts. This stops after we write
271 * anything to the VGA MSR register. The vgacon module uses this
272 * register all the time, so if we unbind our driver and, as a
273 * consequence, bind vgacon, we'll get stuck in an infinite loop at
274 * console_unlock(). So make here we touch the VGA MSR register, making
275 * sure vgacon can keep working normally without triggering interrupts
276 * and error messages.
277 */
278 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
279 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
280 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
281
282 if (IS_BROADWELL(dev))
283 gen8_irq_power_well_post_enable(dev_priv,
284 1 << PIPE_C | 1 << PIPE_B);
285 }
286
287 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
288 struct i915_power_well *power_well)
289 {
290 struct drm_device *dev = dev_priv->dev;
291
292 /*
293 * After we re-enable the power well, if we touch VGA register 0x3d5
294 * we'll get unclaimed register interrupts. This stops after we write
295 * anything to the VGA MSR register. The vgacon module uses this
296 * register all the time, so if we unbind our driver and, as a
297 * consequence, bind vgacon, we'll get stuck in an infinite loop at
298 * console_unlock(). So make here we touch the VGA MSR register, making
299 * sure vgacon can keep working normally without triggering interrupts
300 * and error messages.
301 */
302 if (power_well->data == SKL_DISP_PW_2) {
303 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
304 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
305 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
306
307 gen8_irq_power_well_post_enable(dev_priv,
308 1 << PIPE_C | 1 << PIPE_B);
309 }
310 }
311
312 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
313 struct i915_power_well *power_well, bool enable)
314 {
315 bool is_enabled, enable_requested;
316 uint32_t tmp;
317
318 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
319 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
320 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
321
322 if (enable) {
323 if (!enable_requested)
324 I915_WRITE(HSW_PWR_WELL_DRIVER,
325 HSW_PWR_WELL_ENABLE_REQUEST);
326
327 if (!is_enabled) {
328 DRM_DEBUG_KMS("Enabling power well\n");
329 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
330 HSW_PWR_WELL_STATE_ENABLED), 20))
331 DRM_ERROR("Timeout enabling power well\n");
332 hsw_power_well_post_enable(dev_priv);
333 }
334
335 } else {
336 if (enable_requested) {
337 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
338 POSTING_READ(HSW_PWR_WELL_DRIVER);
339 DRM_DEBUG_KMS("Requesting to disable the power well\n");
340 }
341 }
342 }
343
344 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
345 BIT(POWER_DOMAIN_TRANSCODER_A) | \
346 BIT(POWER_DOMAIN_PIPE_B) | \
347 BIT(POWER_DOMAIN_TRANSCODER_B) | \
348 BIT(POWER_DOMAIN_PIPE_C) | \
349 BIT(POWER_DOMAIN_TRANSCODER_C) | \
350 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
351 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
352 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
353 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
354 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
355 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
356 BIT(POWER_DOMAIN_AUX_B) | \
357 BIT(POWER_DOMAIN_AUX_C) | \
358 BIT(POWER_DOMAIN_AUX_D) | \
359 BIT(POWER_DOMAIN_AUDIO) | \
360 BIT(POWER_DOMAIN_VGA) | \
361 BIT(POWER_DOMAIN_INIT))
362 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \
363 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
364 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
365 BIT(POWER_DOMAIN_INIT))
366 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \
367 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
368 BIT(POWER_DOMAIN_INIT))
369 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \
370 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
371 BIT(POWER_DOMAIN_INIT))
372 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \
373 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
374 BIT(POWER_DOMAIN_INIT))
375 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
376 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
377 BIT(POWER_DOMAIN_MODESET) | \
378 BIT(POWER_DOMAIN_AUX_A) | \
379 BIT(POWER_DOMAIN_INIT))
380 #define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
381 (POWER_DOMAIN_MASK & ~( \
382 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
383 SKL_DISPLAY_DC_OFF_POWER_DOMAINS)) | \
384 BIT(POWER_DOMAIN_INIT))
385
386 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
387 BIT(POWER_DOMAIN_TRANSCODER_A) | \
388 BIT(POWER_DOMAIN_PIPE_B) | \
389 BIT(POWER_DOMAIN_TRANSCODER_B) | \
390 BIT(POWER_DOMAIN_PIPE_C) | \
391 BIT(POWER_DOMAIN_TRANSCODER_C) | \
392 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
393 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
394 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
395 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
396 BIT(POWER_DOMAIN_AUX_B) | \
397 BIT(POWER_DOMAIN_AUX_C) | \
398 BIT(POWER_DOMAIN_AUDIO) | \
399 BIT(POWER_DOMAIN_VGA) | \
400 BIT(POWER_DOMAIN_GMBUS) | \
401 BIT(POWER_DOMAIN_INIT))
402 #define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \
403 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
404 BIT(POWER_DOMAIN_PIPE_A) | \
405 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
406 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
407 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
408 BIT(POWER_DOMAIN_AUX_A) | \
409 BIT(POWER_DOMAIN_PLLS) | \
410 BIT(POWER_DOMAIN_INIT))
411 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS ( \
412 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
413 BIT(POWER_DOMAIN_MODESET) | \
414 BIT(POWER_DOMAIN_AUX_A) | \
415 BIT(POWER_DOMAIN_INIT))
416 #define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
417 (POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS | \
418 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) | \
419 BIT(POWER_DOMAIN_INIT))
420
421 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
422 {
423 struct drm_device *dev = dev_priv->dev;
424
425 WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n");
426 WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
427 "DC9 already programmed to be enabled.\n");
428 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
429 "DC5 still not disabled to enable DC9.\n");
430 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
431 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
432
433 /*
434 * TODO: check for the following to verify the conditions to enter DC9
435 * state are satisfied:
436 * 1] Check relevant display engine registers to verify if mode set
437 * disable sequence was followed.
438 * 2] Check if display uninitialize sequence is initialized.
439 */
440 }
441
442 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
443 {
444 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
445 WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
446 "DC9 already programmed to be disabled.\n");
447 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
448 "DC5 still not disabled.\n");
449
450 /*
451 * TODO: check for the following to verify DC9 state was indeed
452 * entered before programming to disable it:
453 * 1] Check relevant display engine registers to verify if mode
454 * set disable sequence was followed.
455 * 2] Check if display uninitialize sequence is initialized.
456 */
457 }
458
459 static void gen9_set_dc_state_debugmask_memory_up(
460 struct drm_i915_private *dev_priv)
461 {
462 uint32_t val;
463
464 /* The below bit doesn't need to be cleared ever afterwards */
465 val = I915_READ(DC_STATE_DEBUG);
466 if (!(val & DC_STATE_DEBUG_MASK_MEMORY_UP)) {
467 val |= DC_STATE_DEBUG_MASK_MEMORY_UP;
468 I915_WRITE(DC_STATE_DEBUG, val);
469 POSTING_READ(DC_STATE_DEBUG);
470 }
471 }
472
473 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
474 {
475 uint32_t val;
476 uint32_t mask;
477
478 mask = DC_STATE_EN_UPTO_DC5;
479 if (IS_BROXTON(dev_priv))
480 mask |= DC_STATE_EN_DC9;
481 else
482 mask |= DC_STATE_EN_UPTO_DC6;
483
484 WARN_ON_ONCE(state & ~mask);
485
486 if (i915.enable_dc == 0)
487 state = DC_STATE_DISABLE;
488 else if (i915.enable_dc == 1 && state > DC_STATE_EN_UPTO_DC5)
489 state = DC_STATE_EN_UPTO_DC5;
490
491 if (state & DC_STATE_EN_UPTO_DC5_DC6_MASK)
492 gen9_set_dc_state_debugmask_memory_up(dev_priv);
493
494 val = I915_READ(DC_STATE_EN);
495 DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
496 val & mask, state);
497 val &= ~mask;
498 val |= state;
499 I915_WRITE(DC_STATE_EN, val);
500 POSTING_READ(DC_STATE_EN);
501 }
502
503 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
504 {
505 assert_can_enable_dc9(dev_priv);
506
507 DRM_DEBUG_KMS("Enabling DC9\n");
508
509 gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
510 }
511
512 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
513 {
514 assert_can_disable_dc9(dev_priv);
515
516 DRM_DEBUG_KMS("Disabling DC9\n");
517
518 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
519 }
520
521 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
522 {
523 WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
524 "CSR program storage start is NULL\n");
525 WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
526 WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
527 }
528
529 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
530 {
531 struct drm_device *dev = dev_priv->dev;
532 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
533 SKL_DISP_PW_2);
534
535 WARN_ONCE(!IS_SKYLAKE(dev), "Platform doesn't support DC5.\n");
536 WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
537 WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
538
539 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
540 "DC5 already programmed to be enabled.\n");
541 assert_rpm_wakelock_held(dev_priv);
542
543 assert_csr_loaded(dev_priv);
544 }
545
546 static void assert_can_disable_dc5(struct drm_i915_private *dev_priv)
547 {
548 /*
549 * During initialization, the firmware may not be loaded yet.
550 * We still want to make sure that the DC enabling flag is cleared.
551 */
552 if (dev_priv->power_domains.initializing)
553 return;
554
555 assert_rpm_wakelock_held(dev_priv);
556 }
557
558 static void gen9_enable_dc5(struct drm_i915_private *dev_priv)
559 {
560 assert_can_enable_dc5(dev_priv);
561
562 DRM_DEBUG_KMS("Enabling DC5\n");
563
564 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
565 }
566
567 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
568 {
569 struct drm_device *dev = dev_priv->dev;
570
571 WARN_ONCE(!IS_SKYLAKE(dev), "Platform doesn't support DC6.\n");
572 WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
573 WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
574 "Backlight is not disabled.\n");
575 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
576 "DC6 already programmed to be enabled.\n");
577
578 assert_csr_loaded(dev_priv);
579 }
580
581 static void assert_can_disable_dc6(struct drm_i915_private *dev_priv)
582 {
583 /*
584 * During initialization, the firmware may not be loaded yet.
585 * We still want to make sure that the DC enabling flag is cleared.
586 */
587 if (dev_priv->power_domains.initializing)
588 return;
589
590 WARN_ONCE(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
591 "DC6 already programmed to be disabled.\n");
592 }
593
594 static void gen9_disable_dc5_dc6(struct drm_i915_private *dev_priv)
595 {
596 assert_can_disable_dc5(dev_priv);
597
598 if (IS_SKYLAKE(dev_priv) && i915.enable_dc != 0 && i915.enable_dc != 1)
599 assert_can_disable_dc6(dev_priv);
600
601 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
602 }
603
604 void skl_enable_dc6(struct drm_i915_private *dev_priv)
605 {
606 assert_can_enable_dc6(dev_priv);
607
608 DRM_DEBUG_KMS("Enabling DC6\n");
609
610 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
611
612 }
613
614 void skl_disable_dc6(struct drm_i915_private *dev_priv)
615 {
616 assert_can_disable_dc6(dev_priv);
617
618 DRM_DEBUG_KMS("Disabling DC6\n");
619
620 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
621 }
622
623 static void skl_set_power_well(struct drm_i915_private *dev_priv,
624 struct i915_power_well *power_well, bool enable)
625 {
626 struct drm_device *dev = dev_priv->dev;
627 uint32_t tmp, fuse_status;
628 uint32_t req_mask, state_mask;
629 bool is_enabled, enable_requested, check_fuse_status = false;
630
631 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
632 fuse_status = I915_READ(SKL_FUSE_STATUS);
633
634 switch (power_well->data) {
635 case SKL_DISP_PW_1:
636 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
637 SKL_FUSE_PG0_DIST_STATUS), 1)) {
638 DRM_ERROR("PG0 not enabled\n");
639 return;
640 }
641 break;
642 case SKL_DISP_PW_2:
643 if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
644 DRM_ERROR("PG1 in disabled state\n");
645 return;
646 }
647 break;
648 case SKL_DISP_PW_DDI_A_E:
649 case SKL_DISP_PW_DDI_B:
650 case SKL_DISP_PW_DDI_C:
651 case SKL_DISP_PW_DDI_D:
652 case SKL_DISP_PW_MISC_IO:
653 break;
654 default:
655 WARN(1, "Unknown power well %lu\n", power_well->data);
656 return;
657 }
658
659 req_mask = SKL_POWER_WELL_REQ(power_well->data);
660 enable_requested = tmp & req_mask;
661 state_mask = SKL_POWER_WELL_STATE(power_well->data);
662 is_enabled = tmp & state_mask;
663
664 if (enable) {
665 if (!enable_requested) {
666 WARN((tmp & state_mask) &&
667 !I915_READ(HSW_PWR_WELL_BIOS),
668 "Invalid for power well status to be enabled, unless done by the BIOS, \
669 when request is to disable!\n");
670 if (power_well->data == SKL_DISP_PW_2) {
671 /*
672 * DDI buffer programming unnecessary during
673 * driver-load/resume as it's already done
674 * during modeset initialization then. It's
675 * also invalid here as encoder list is still
676 * uninitialized.
677 */
678 if (!dev_priv->power_domains.initializing)
679 intel_prepare_ddi(dev);
680 }
681 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
682 }
683
684 if (!is_enabled) {
685 DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
686 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
687 state_mask), 1))
688 DRM_ERROR("%s enable timeout\n",
689 power_well->name);
690 check_fuse_status = true;
691 }
692 } else {
693 if (enable_requested) {
694 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask);
695 POSTING_READ(HSW_PWR_WELL_DRIVER);
696 DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
697 }
698 }
699
700 if (check_fuse_status) {
701 if (power_well->data == SKL_DISP_PW_1) {
702 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
703 SKL_FUSE_PG1_DIST_STATUS), 1))
704 DRM_ERROR("PG1 distributing status timeout\n");
705 } else if (power_well->data == SKL_DISP_PW_2) {
706 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
707 SKL_FUSE_PG2_DIST_STATUS), 1))
708 DRM_ERROR("PG2 distributing status timeout\n");
709 }
710 }
711
712 if (enable && !is_enabled)
713 skl_power_well_post_enable(dev_priv, power_well);
714 }
715
716 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
717 struct i915_power_well *power_well)
718 {
719 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
720
721 /*
722 * We're taking over the BIOS, so clear any requests made by it since
723 * the driver is in charge now.
724 */
725 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
726 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
727 }
728
729 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
730 struct i915_power_well *power_well)
731 {
732 hsw_set_power_well(dev_priv, power_well, true);
733 }
734
735 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
736 struct i915_power_well *power_well)
737 {
738 hsw_set_power_well(dev_priv, power_well, false);
739 }
740
741 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
742 struct i915_power_well *power_well)
743 {
744 uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
745 SKL_POWER_WELL_STATE(power_well->data);
746
747 return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
748 }
749
750 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
751 struct i915_power_well *power_well)
752 {
753 skl_set_power_well(dev_priv, power_well, power_well->count > 0);
754
755 /* Clear any request made by BIOS as driver is taking over */
756 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
757 }
758
759 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
760 struct i915_power_well *power_well)
761 {
762 skl_set_power_well(dev_priv, power_well, true);
763 }
764
765 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
766 struct i915_power_well *power_well)
767 {
768 skl_set_power_well(dev_priv, power_well, false);
769 }
770
771 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
772 struct i915_power_well *power_well)
773 {
774 return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
775 }
776
777 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
778 struct i915_power_well *power_well)
779 {
780 gen9_disable_dc5_dc6(dev_priv);
781 }
782
783 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
784 struct i915_power_well *power_well)
785 {
786 if (IS_SKYLAKE(dev_priv) && i915.enable_dc != 0 && i915.enable_dc != 1)
787 skl_enable_dc6(dev_priv);
788 else
789 gen9_enable_dc5(dev_priv);
790 }
791
792 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
793 struct i915_power_well *power_well)
794 {
795 if (power_well->count > 0) {
796 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
797 } else {
798 if (IS_SKYLAKE(dev_priv) && i915.enable_dc != 0 &&
799 i915.enable_dc != 1)
800 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
801 else
802 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
803 }
804 }
805
806 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
807 struct i915_power_well *power_well)
808 {
809 }
810
811 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
812 struct i915_power_well *power_well)
813 {
814 return true;
815 }
816
817 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
818 struct i915_power_well *power_well, bool enable)
819 {
820 enum punit_power_well power_well_id = power_well->data;
821 u32 mask;
822 u32 state;
823 u32 ctrl;
824
825 mask = PUNIT_PWRGT_MASK(power_well_id);
826 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
827 PUNIT_PWRGT_PWR_GATE(power_well_id);
828
829 mutex_lock(&dev_priv->rps.hw_lock);
830
831 #define COND \
832 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
833
834 if (COND)
835 goto out;
836
837 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
838 ctrl &= ~mask;
839 ctrl |= state;
840 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
841
842 if (wait_for(COND, 100))
843 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
844 state,
845 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
846
847 #undef COND
848
849 out:
850 mutex_unlock(&dev_priv->rps.hw_lock);
851 }
852
853 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
854 struct i915_power_well *power_well)
855 {
856 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
857 }
858
859 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
860 struct i915_power_well *power_well)
861 {
862 vlv_set_power_well(dev_priv, power_well, true);
863 }
864
865 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
866 struct i915_power_well *power_well)
867 {
868 vlv_set_power_well(dev_priv, power_well, false);
869 }
870
871 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
872 struct i915_power_well *power_well)
873 {
874 int power_well_id = power_well->data;
875 bool enabled = false;
876 u32 mask;
877 u32 state;
878 u32 ctrl;
879
880 mask = PUNIT_PWRGT_MASK(power_well_id);
881 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
882
883 mutex_lock(&dev_priv->rps.hw_lock);
884
885 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
886 /*
887 * We only ever set the power-on and power-gate states, anything
888 * else is unexpected.
889 */
890 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
891 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
892 if (state == ctrl)
893 enabled = true;
894
895 /*
896 * A transient state at this point would mean some unexpected party
897 * is poking at the power controls too.
898 */
899 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
900 WARN_ON(ctrl != state);
901
902 mutex_unlock(&dev_priv->rps.hw_lock);
903
904 return enabled;
905 }
906
907 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
908 {
909 enum pipe pipe;
910
911 /*
912 * Enable the CRI clock source so we can get at the
913 * display and the reference clock for VGA
914 * hotplug / manual detection. Supposedly DSI also
915 * needs the ref clock up and running.
916 *
917 * CHV DPLL B/C have some issues if VGA mode is enabled.
918 */
919 for_each_pipe(dev_priv->dev, pipe) {
920 u32 val = I915_READ(DPLL(pipe));
921
922 val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
923 if (pipe != PIPE_A)
924 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
925
926 I915_WRITE(DPLL(pipe), val);
927 }
928
929 spin_lock_irq(&dev_priv->irq_lock);
930 valleyview_enable_display_irqs(dev_priv);
931 spin_unlock_irq(&dev_priv->irq_lock);
932
933 /*
934 * During driver initialization/resume we can avoid restoring the
935 * part of the HW/SW state that will be inited anyway explicitly.
936 */
937 if (dev_priv->power_domains.initializing)
938 return;
939
940 intel_hpd_init(dev_priv);
941
942 i915_redisable_vga_power_on(dev_priv->dev);
943 }
944
945 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
946 {
947 spin_lock_irq(&dev_priv->irq_lock);
948 valleyview_disable_display_irqs(dev_priv);
949 spin_unlock_irq(&dev_priv->irq_lock);
950
951 vlv_power_sequencer_reset(dev_priv);
952 }
953
954 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
955 struct i915_power_well *power_well)
956 {
957 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
958
959 vlv_set_power_well(dev_priv, power_well, true);
960
961 vlv_display_power_well_init(dev_priv);
962 }
963
964 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
965 struct i915_power_well *power_well)
966 {
967 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
968
969 vlv_display_power_well_deinit(dev_priv);
970
971 vlv_set_power_well(dev_priv, power_well, false);
972 }
973
974 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
975 struct i915_power_well *power_well)
976 {
977 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
978
979 /* since ref/cri clock was enabled */
980 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
981
982 vlv_set_power_well(dev_priv, power_well, true);
983
984 /*
985 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
986 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
987 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
988 * b. The other bits such as sfr settings / modesel may all
989 * be set to 0.
990 *
991 * This should only be done on init and resume from S3 with
992 * both PLLs disabled, or we risk losing DPIO and PLL
993 * synchronization.
994 */
995 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
996 }
997
998 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
999 struct i915_power_well *power_well)
1000 {
1001 enum pipe pipe;
1002
1003 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1004
1005 for_each_pipe(dev_priv, pipe)
1006 assert_pll_disabled(dev_priv, pipe);
1007
1008 /* Assert common reset */
1009 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1010
1011 vlv_set_power_well(dev_priv, power_well, false);
1012 }
1013
1014 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1015
1016 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1017 int power_well_id)
1018 {
1019 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1020 int i;
1021
1022 for (i = 0; i < power_domains->power_well_count; i++) {
1023 struct i915_power_well *power_well;
1024
1025 power_well = &power_domains->power_wells[i];
1026 if (power_well->data == power_well_id)
1027 return power_well;
1028 }
1029
1030 return NULL;
1031 }
1032
1033 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1034
1035 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1036 {
1037 struct i915_power_well *cmn_bc =
1038 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1039 struct i915_power_well *cmn_d =
1040 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1041 u32 phy_control = dev_priv->chv_phy_control;
1042 u32 phy_status = 0;
1043 u32 phy_status_mask = 0xffffffff;
1044 u32 tmp;
1045
1046 /*
1047 * The BIOS can leave the PHY is some weird state
1048 * where it doesn't fully power down some parts.
1049 * Disable the asserts until the PHY has been fully
1050 * reset (ie. the power well has been disabled at
1051 * least once).
1052 */
1053 if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1054 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1055 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1056 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1057 PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1058 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1059 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1060
1061 if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1062 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1063 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1064 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1065
1066 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1067 phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1068
1069 /* this assumes override is only used to enable lanes */
1070 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1071 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1072
1073 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1074 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1075
1076 /* CL1 is on whenever anything is on in either channel */
1077 if (BITS_SET(phy_control,
1078 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1079 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1080 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1081
1082 /*
1083 * The DPLLB check accounts for the pipe B + port A usage
1084 * with CL2 powered up but all the lanes in the second channel
1085 * powered down.
1086 */
1087 if (BITS_SET(phy_control,
1088 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1089 (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1090 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1091
1092 if (BITS_SET(phy_control,
1093 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1094 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1095 if (BITS_SET(phy_control,
1096 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1097 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1098
1099 if (BITS_SET(phy_control,
1100 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1101 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1102 if (BITS_SET(phy_control,
1103 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1104 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1105 }
1106
1107 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1108 phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1109
1110 /* this assumes override is only used to enable lanes */
1111 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1112 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1113
1114 if (BITS_SET(phy_control,
1115 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1116 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1117
1118 if (BITS_SET(phy_control,
1119 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1120 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1121 if (BITS_SET(phy_control,
1122 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1123 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1124 }
1125
1126 phy_status &= phy_status_mask;
1127
1128 /*
1129 * The PHY may be busy with some initial calibration and whatnot,
1130 * so the power state can take a while to actually change.
1131 */
1132 if (wait_for((tmp = I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask) == phy_status, 10))
1133 WARN(phy_status != tmp,
1134 "Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1135 tmp, phy_status, dev_priv->chv_phy_control);
1136 }
1137
1138 #undef BITS_SET
1139
1140 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1141 struct i915_power_well *power_well)
1142 {
1143 enum dpio_phy phy;
1144 enum pipe pipe;
1145 uint32_t tmp;
1146
1147 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1148 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1149
1150 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1151 pipe = PIPE_A;
1152 phy = DPIO_PHY0;
1153 } else {
1154 pipe = PIPE_C;
1155 phy = DPIO_PHY1;
1156 }
1157
1158 /* since ref/cri clock was enabled */
1159 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1160 vlv_set_power_well(dev_priv, power_well, true);
1161
1162 /* Poll for phypwrgood signal */
1163 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
1164 DRM_ERROR("Display PHY %d is not power up\n", phy);
1165
1166 mutex_lock(&dev_priv->sb_lock);
1167
1168 /* Enable dynamic power down */
1169 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1170 tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1171 DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1172 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1173
1174 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1175 tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1176 tmp |= DPIO_DYNPWRDOWNEN_CH1;
1177 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1178 } else {
1179 /*
1180 * Force the non-existing CL2 off. BXT does this
1181 * too, so maybe it saves some power even though
1182 * CL2 doesn't exist?
1183 */
1184 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1185 tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1186 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1187 }
1188
1189 mutex_unlock(&dev_priv->sb_lock);
1190
1191 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1192 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1193
1194 DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1195 phy, dev_priv->chv_phy_control);
1196
1197 assert_chv_phy_status(dev_priv);
1198 }
1199
1200 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1201 struct i915_power_well *power_well)
1202 {
1203 enum dpio_phy phy;
1204
1205 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1206 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1207
1208 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1209 phy = DPIO_PHY0;
1210 assert_pll_disabled(dev_priv, PIPE_A);
1211 assert_pll_disabled(dev_priv, PIPE_B);
1212 } else {
1213 phy = DPIO_PHY1;
1214 assert_pll_disabled(dev_priv, PIPE_C);
1215 }
1216
1217 dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1218 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1219
1220 vlv_set_power_well(dev_priv, power_well, false);
1221
1222 DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1223 phy, dev_priv->chv_phy_control);
1224
1225 /* PHY is fully reset now, so we can enable the PHY state asserts */
1226 dev_priv->chv_phy_assert[phy] = true;
1227
1228 assert_chv_phy_status(dev_priv);
1229 }
1230
1231 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1232 enum dpio_channel ch, bool override, unsigned int mask)
1233 {
1234 enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1235 u32 reg, val, expected, actual;
1236
1237 /*
1238 * The BIOS can leave the PHY is some weird state
1239 * where it doesn't fully power down some parts.
1240 * Disable the asserts until the PHY has been fully
1241 * reset (ie. the power well has been disabled at
1242 * least once).
1243 */
1244 if (!dev_priv->chv_phy_assert[phy])
1245 return;
1246
1247 if (ch == DPIO_CH0)
1248 reg = _CHV_CMN_DW0_CH0;
1249 else
1250 reg = _CHV_CMN_DW6_CH1;
1251
1252 mutex_lock(&dev_priv->sb_lock);
1253 val = vlv_dpio_read(dev_priv, pipe, reg);
1254 mutex_unlock(&dev_priv->sb_lock);
1255
1256 /*
1257 * This assumes !override is only used when the port is disabled.
1258 * All lanes should power down even without the override when
1259 * the port is disabled.
1260 */
1261 if (!override || mask == 0xf) {
1262 expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1263 /*
1264 * If CH1 common lane is not active anymore
1265 * (eg. for pipe B DPLL) the entire channel will
1266 * shut down, which causes the common lane registers
1267 * to read as 0. That means we can't actually check
1268 * the lane power down status bits, but as the entire
1269 * register reads as 0 it's a good indication that the
1270 * channel is indeed entirely powered down.
1271 */
1272 if (ch == DPIO_CH1 && val == 0)
1273 expected = 0;
1274 } else if (mask != 0x0) {
1275 expected = DPIO_ANYDL_POWERDOWN;
1276 } else {
1277 expected = 0;
1278 }
1279
1280 if (ch == DPIO_CH0)
1281 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1282 else
1283 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1284 actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1285
1286 WARN(actual != expected,
1287 "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1288 !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1289 !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1290 reg, val);
1291 }
1292
1293 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1294 enum dpio_channel ch, bool override)
1295 {
1296 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1297 bool was_override;
1298
1299 mutex_lock(&power_domains->lock);
1300
1301 was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1302
1303 if (override == was_override)
1304 goto out;
1305
1306 if (override)
1307 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1308 else
1309 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1310
1311 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1312
1313 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1314 phy, ch, dev_priv->chv_phy_control);
1315
1316 assert_chv_phy_status(dev_priv);
1317
1318 out:
1319 mutex_unlock(&power_domains->lock);
1320
1321 return was_override;
1322 }
1323
1324 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1325 bool override, unsigned int mask)
1326 {
1327 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1328 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1329 enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1330 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1331
1332 mutex_lock(&power_domains->lock);
1333
1334 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1335 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1336
1337 if (override)
1338 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1339 else
1340 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1341
1342 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1343
1344 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1345 phy, ch, mask, dev_priv->chv_phy_control);
1346
1347 assert_chv_phy_status(dev_priv);
1348
1349 assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1350
1351 mutex_unlock(&power_domains->lock);
1352 }
1353
1354 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1355 struct i915_power_well *power_well)
1356 {
1357 enum pipe pipe = power_well->data;
1358 bool enabled;
1359 u32 state, ctrl;
1360
1361 mutex_lock(&dev_priv->rps.hw_lock);
1362
1363 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1364 /*
1365 * We only ever set the power-on and power-gate states, anything
1366 * else is unexpected.
1367 */
1368 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1369 enabled = state == DP_SSS_PWR_ON(pipe);
1370
1371 /*
1372 * A transient state at this point would mean some unexpected party
1373 * is poking at the power controls too.
1374 */
1375 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1376 WARN_ON(ctrl << 16 != state);
1377
1378 mutex_unlock(&dev_priv->rps.hw_lock);
1379
1380 return enabled;
1381 }
1382
1383 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1384 struct i915_power_well *power_well,
1385 bool enable)
1386 {
1387 enum pipe pipe = power_well->data;
1388 u32 state;
1389 u32 ctrl;
1390
1391 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1392
1393 mutex_lock(&dev_priv->rps.hw_lock);
1394
1395 #define COND \
1396 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1397
1398 if (COND)
1399 goto out;
1400
1401 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1402 ctrl &= ~DP_SSC_MASK(pipe);
1403 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1404 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1405
1406 if (wait_for(COND, 100))
1407 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1408 state,
1409 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1410
1411 #undef COND
1412
1413 out:
1414 mutex_unlock(&dev_priv->rps.hw_lock);
1415 }
1416
1417 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1418 struct i915_power_well *power_well)
1419 {
1420 WARN_ON_ONCE(power_well->data != PIPE_A);
1421
1422 chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1423 }
1424
1425 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1426 struct i915_power_well *power_well)
1427 {
1428 WARN_ON_ONCE(power_well->data != PIPE_A);
1429
1430 chv_set_pipe_power_well(dev_priv, power_well, true);
1431
1432 vlv_display_power_well_init(dev_priv);
1433 }
1434
1435 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1436 struct i915_power_well *power_well)
1437 {
1438 WARN_ON_ONCE(power_well->data != PIPE_A);
1439
1440 vlv_display_power_well_deinit(dev_priv);
1441
1442 chv_set_pipe_power_well(dev_priv, power_well, false);
1443 }
1444
1445 /**
1446 * intel_display_power_get - grab a power domain reference
1447 * @dev_priv: i915 device instance
1448 * @domain: power domain to reference
1449 *
1450 * This function grabs a power domain reference for @domain and ensures that the
1451 * power domain and all its parents are powered up. Therefore users should only
1452 * grab a reference to the innermost power domain they need.
1453 *
1454 * Any power domain reference obtained by this function must have a symmetric
1455 * call to intel_display_power_put() to release the reference again.
1456 */
1457 void intel_display_power_get(struct drm_i915_private *dev_priv,
1458 enum intel_display_power_domain domain)
1459 {
1460 struct i915_power_domains *power_domains;
1461 struct i915_power_well *power_well;
1462 int i;
1463
1464 intel_runtime_pm_get(dev_priv);
1465
1466 power_domains = &dev_priv->power_domains;
1467
1468 mutex_lock(&power_domains->lock);
1469
1470 for_each_power_well(i, power_well, BIT(domain), power_domains) {
1471 if (!power_well->count++)
1472 intel_power_well_enable(dev_priv, power_well);
1473 }
1474
1475 power_domains->domain_use_count[domain]++;
1476
1477 mutex_unlock(&power_domains->lock);
1478 }
1479
1480 /**
1481 * intel_display_power_put - release a power domain reference
1482 * @dev_priv: i915 device instance
1483 * @domain: power domain to reference
1484 *
1485 * This function drops the power domain reference obtained by
1486 * intel_display_power_get() and might power down the corresponding hardware
1487 * block right away if this is the last reference.
1488 */
1489 void intel_display_power_put(struct drm_i915_private *dev_priv,
1490 enum intel_display_power_domain domain)
1491 {
1492 struct i915_power_domains *power_domains;
1493 struct i915_power_well *power_well;
1494 int i;
1495
1496 power_domains = &dev_priv->power_domains;
1497
1498 mutex_lock(&power_domains->lock);
1499
1500 WARN(!power_domains->domain_use_count[domain],
1501 "Use count on domain %s is already zero\n",
1502 intel_display_power_domain_str(domain));
1503 power_domains->domain_use_count[domain]--;
1504
1505 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
1506 WARN(!power_well->count,
1507 "Use count on power well %s is already zero",
1508 power_well->name);
1509
1510 if (!--power_well->count)
1511 intel_power_well_disable(dev_priv, power_well);
1512 }
1513
1514 mutex_unlock(&power_domains->lock);
1515
1516 intel_runtime_pm_put(dev_priv);
1517 }
1518
1519 #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
1520 BIT(POWER_DOMAIN_PIPE_A) | \
1521 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
1522 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
1523 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1524 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1525 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1526 BIT(POWER_DOMAIN_PORT_CRT) | \
1527 BIT(POWER_DOMAIN_PLLS) | \
1528 BIT(POWER_DOMAIN_AUX_A) | \
1529 BIT(POWER_DOMAIN_AUX_B) | \
1530 BIT(POWER_DOMAIN_AUX_C) | \
1531 BIT(POWER_DOMAIN_AUX_D) | \
1532 BIT(POWER_DOMAIN_GMBUS) | \
1533 BIT(POWER_DOMAIN_INIT))
1534 #define HSW_DISPLAY_POWER_DOMAINS ( \
1535 (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
1536 BIT(POWER_DOMAIN_INIT))
1537
1538 #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
1539 HSW_ALWAYS_ON_POWER_DOMAINS | \
1540 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
1541 #define BDW_DISPLAY_POWER_DOMAINS ( \
1542 (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
1543 BIT(POWER_DOMAIN_INIT))
1544
1545 #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
1546 #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
1547
1548 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
1549 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1550 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1551 BIT(POWER_DOMAIN_PORT_CRT) | \
1552 BIT(POWER_DOMAIN_AUX_B) | \
1553 BIT(POWER_DOMAIN_AUX_C) | \
1554 BIT(POWER_DOMAIN_INIT))
1555
1556 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
1557 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1558 BIT(POWER_DOMAIN_AUX_B) | \
1559 BIT(POWER_DOMAIN_INIT))
1560
1561 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
1562 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1563 BIT(POWER_DOMAIN_AUX_B) | \
1564 BIT(POWER_DOMAIN_INIT))
1565
1566 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
1567 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1568 BIT(POWER_DOMAIN_AUX_C) | \
1569 BIT(POWER_DOMAIN_INIT))
1570
1571 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
1572 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1573 BIT(POWER_DOMAIN_AUX_C) | \
1574 BIT(POWER_DOMAIN_INIT))
1575
1576 #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
1577 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1578 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1579 BIT(POWER_DOMAIN_AUX_B) | \
1580 BIT(POWER_DOMAIN_AUX_C) | \
1581 BIT(POWER_DOMAIN_INIT))
1582
1583 #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
1584 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1585 BIT(POWER_DOMAIN_AUX_D) | \
1586 BIT(POWER_DOMAIN_INIT))
1587
1588 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1589 .sync_hw = i9xx_always_on_power_well_noop,
1590 .enable = i9xx_always_on_power_well_noop,
1591 .disable = i9xx_always_on_power_well_noop,
1592 .is_enabled = i9xx_always_on_power_well_enabled,
1593 };
1594
1595 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1596 .sync_hw = chv_pipe_power_well_sync_hw,
1597 .enable = chv_pipe_power_well_enable,
1598 .disable = chv_pipe_power_well_disable,
1599 .is_enabled = chv_pipe_power_well_enabled,
1600 };
1601
1602 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1603 .sync_hw = vlv_power_well_sync_hw,
1604 .enable = chv_dpio_cmn_power_well_enable,
1605 .disable = chv_dpio_cmn_power_well_disable,
1606 .is_enabled = vlv_power_well_enabled,
1607 };
1608
1609 static struct i915_power_well i9xx_always_on_power_well[] = {
1610 {
1611 .name = "always-on",
1612 .always_on = 1,
1613 .domains = POWER_DOMAIN_MASK,
1614 .ops = &i9xx_always_on_power_well_ops,
1615 },
1616 };
1617
1618 static const struct i915_power_well_ops hsw_power_well_ops = {
1619 .sync_hw = hsw_power_well_sync_hw,
1620 .enable = hsw_power_well_enable,
1621 .disable = hsw_power_well_disable,
1622 .is_enabled = hsw_power_well_enabled,
1623 };
1624
1625 static const struct i915_power_well_ops skl_power_well_ops = {
1626 .sync_hw = skl_power_well_sync_hw,
1627 .enable = skl_power_well_enable,
1628 .disable = skl_power_well_disable,
1629 .is_enabled = skl_power_well_enabled,
1630 };
1631
1632 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1633 .sync_hw = gen9_dc_off_power_well_sync_hw,
1634 .enable = gen9_dc_off_power_well_enable,
1635 .disable = gen9_dc_off_power_well_disable,
1636 .is_enabled = gen9_dc_off_power_well_enabled,
1637 };
1638
1639 static struct i915_power_well hsw_power_wells[] = {
1640 {
1641 .name = "always-on",
1642 .always_on = 1,
1643 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
1644 .ops = &i9xx_always_on_power_well_ops,
1645 },
1646 {
1647 .name = "display",
1648 .domains = HSW_DISPLAY_POWER_DOMAINS,
1649 .ops = &hsw_power_well_ops,
1650 },
1651 };
1652
1653 static struct i915_power_well bdw_power_wells[] = {
1654 {
1655 .name = "always-on",
1656 .always_on = 1,
1657 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
1658 .ops = &i9xx_always_on_power_well_ops,
1659 },
1660 {
1661 .name = "display",
1662 .domains = BDW_DISPLAY_POWER_DOMAINS,
1663 .ops = &hsw_power_well_ops,
1664 },
1665 };
1666
1667 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1668 .sync_hw = vlv_power_well_sync_hw,
1669 .enable = vlv_display_power_well_enable,
1670 .disable = vlv_display_power_well_disable,
1671 .is_enabled = vlv_power_well_enabled,
1672 };
1673
1674 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1675 .sync_hw = vlv_power_well_sync_hw,
1676 .enable = vlv_dpio_cmn_power_well_enable,
1677 .disable = vlv_dpio_cmn_power_well_disable,
1678 .is_enabled = vlv_power_well_enabled,
1679 };
1680
1681 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1682 .sync_hw = vlv_power_well_sync_hw,
1683 .enable = vlv_power_well_enable,
1684 .disable = vlv_power_well_disable,
1685 .is_enabled = vlv_power_well_enabled,
1686 };
1687
1688 static struct i915_power_well vlv_power_wells[] = {
1689 {
1690 .name = "always-on",
1691 .always_on = 1,
1692 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1693 .ops = &i9xx_always_on_power_well_ops,
1694 .data = PUNIT_POWER_WELL_ALWAYS_ON,
1695 },
1696 {
1697 .name = "display",
1698 .domains = VLV_DISPLAY_POWER_DOMAINS,
1699 .data = PUNIT_POWER_WELL_DISP2D,
1700 .ops = &vlv_display_power_well_ops,
1701 },
1702 {
1703 .name = "dpio-tx-b-01",
1704 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1705 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1706 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1707 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1708 .ops = &vlv_dpio_power_well_ops,
1709 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1710 },
1711 {
1712 .name = "dpio-tx-b-23",
1713 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1714 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1715 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1716 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1717 .ops = &vlv_dpio_power_well_ops,
1718 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
1719 },
1720 {
1721 .name = "dpio-tx-c-01",
1722 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1723 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1724 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1725 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1726 .ops = &vlv_dpio_power_well_ops,
1727 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
1728 },
1729 {
1730 .name = "dpio-tx-c-23",
1731 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1732 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1733 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1734 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1735 .ops = &vlv_dpio_power_well_ops,
1736 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
1737 },
1738 {
1739 .name = "dpio-common",
1740 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
1741 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1742 .ops = &vlv_dpio_cmn_power_well_ops,
1743 },
1744 };
1745
1746 static struct i915_power_well chv_power_wells[] = {
1747 {
1748 .name = "always-on",
1749 .always_on = 1,
1750 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1751 .ops = &i9xx_always_on_power_well_ops,
1752 },
1753 {
1754 .name = "display",
1755 /*
1756 * Pipe A power well is the new disp2d well. Pipe B and C
1757 * power wells don't actually exist. Pipe A power well is
1758 * required for any pipe to work.
1759 */
1760 .domains = VLV_DISPLAY_POWER_DOMAINS,
1761 .data = PIPE_A,
1762 .ops = &chv_pipe_power_well_ops,
1763 },
1764 {
1765 .name = "dpio-common-bc",
1766 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
1767 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1768 .ops = &chv_dpio_cmn_power_well_ops,
1769 },
1770 {
1771 .name = "dpio-common-d",
1772 .domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
1773 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
1774 .ops = &chv_dpio_cmn_power_well_ops,
1775 },
1776 };
1777
1778 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
1779 int power_well_id)
1780 {
1781 struct i915_power_well *power_well;
1782 bool ret;
1783
1784 power_well = lookup_power_well(dev_priv, power_well_id);
1785 ret = power_well->ops->is_enabled(dev_priv, power_well);
1786
1787 return ret;
1788 }
1789
1790 static struct i915_power_well skl_power_wells[] = {
1791 {
1792 .name = "always-on",
1793 .always_on = 1,
1794 .domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1795 .ops = &i9xx_always_on_power_well_ops,
1796 .data = SKL_DISP_PW_ALWAYS_ON,
1797 },
1798 {
1799 .name = "power well 1",
1800 /* Handled by the DMC firmware */
1801 .domains = 0,
1802 .ops = &skl_power_well_ops,
1803 .data = SKL_DISP_PW_1,
1804 },
1805 {
1806 .name = "MISC IO power well",
1807 /* Handled by the DMC firmware */
1808 .domains = 0,
1809 .ops = &skl_power_well_ops,
1810 .data = SKL_DISP_PW_MISC_IO,
1811 },
1812 {
1813 .name = "DC off",
1814 .domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
1815 .ops = &gen9_dc_off_power_well_ops,
1816 .data = SKL_DISP_PW_DC_OFF,
1817 },
1818 {
1819 .name = "power well 2",
1820 .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1821 .ops = &skl_power_well_ops,
1822 .data = SKL_DISP_PW_2,
1823 },
1824 {
1825 .name = "DDI A/E power well",
1826 .domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
1827 .ops = &skl_power_well_ops,
1828 .data = SKL_DISP_PW_DDI_A_E,
1829 },
1830 {
1831 .name = "DDI B power well",
1832 .domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
1833 .ops = &skl_power_well_ops,
1834 .data = SKL_DISP_PW_DDI_B,
1835 },
1836 {
1837 .name = "DDI C power well",
1838 .domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
1839 .ops = &skl_power_well_ops,
1840 .data = SKL_DISP_PW_DDI_C,
1841 },
1842 {
1843 .name = "DDI D power well",
1844 .domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
1845 .ops = &skl_power_well_ops,
1846 .data = SKL_DISP_PW_DDI_D,
1847 },
1848 };
1849
1850 void skl_pw1_misc_io_init(struct drm_i915_private *dev_priv)
1851 {
1852 struct i915_power_well *well;
1853
1854 if (!IS_SKYLAKE(dev_priv))
1855 return;
1856
1857 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1858 intel_power_well_enable(dev_priv, well);
1859
1860 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1861 intel_power_well_enable(dev_priv, well);
1862 }
1863
1864 void skl_pw1_misc_io_fini(struct drm_i915_private *dev_priv)
1865 {
1866 struct i915_power_well *well;
1867
1868 if (!IS_SKYLAKE(dev_priv))
1869 return;
1870
1871 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1872 intel_power_well_disable(dev_priv, well);
1873
1874 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1875 intel_power_well_disable(dev_priv, well);
1876 }
1877
1878 static struct i915_power_well bxt_power_wells[] = {
1879 {
1880 .name = "always-on",
1881 .always_on = 1,
1882 .domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1883 .ops = &i9xx_always_on_power_well_ops,
1884 },
1885 {
1886 .name = "power well 1",
1887 .domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS,
1888 .ops = &skl_power_well_ops,
1889 .data = SKL_DISP_PW_1,
1890 },
1891 {
1892 .name = "DC off",
1893 .domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
1894 .ops = &gen9_dc_off_power_well_ops,
1895 .data = SKL_DISP_PW_DC_OFF,
1896 },
1897 {
1898 .name = "power well 2",
1899 .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1900 .ops = &skl_power_well_ops,
1901 .data = SKL_DISP_PW_2,
1902 },
1903 };
1904
1905 static int
1906 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
1907 int disable_power_well)
1908 {
1909 if (disable_power_well >= 0)
1910 return !!disable_power_well;
1911
1912 if (IS_BROXTON(dev_priv)) {
1913 DRM_DEBUG_KMS("Disabling display power well support\n");
1914 return 0;
1915 }
1916
1917 return 1;
1918 }
1919
1920 #define set_power_wells(power_domains, __power_wells) ({ \
1921 (power_domains)->power_wells = (__power_wells); \
1922 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
1923 })
1924
1925 /**
1926 * intel_power_domains_init - initializes the power domain structures
1927 * @dev_priv: i915 device instance
1928 *
1929 * Initializes the power domain structures for @dev_priv depending upon the
1930 * supported platform.
1931 */
1932 int intel_power_domains_init(struct drm_i915_private *dev_priv)
1933 {
1934 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1935
1936 i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
1937 i915.disable_power_well);
1938
1939 BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
1940
1941 mutex_init(&power_domains->lock);
1942
1943 /*
1944 * The enabling order will be from lower to higher indexed wells,
1945 * the disabling order is reversed.
1946 */
1947 if (IS_HASWELL(dev_priv->dev)) {
1948 set_power_wells(power_domains, hsw_power_wells);
1949 } else if (IS_BROADWELL(dev_priv->dev)) {
1950 set_power_wells(power_domains, bdw_power_wells);
1951 } else if (IS_SKYLAKE(dev_priv->dev) || IS_KABYLAKE(dev_priv->dev)) {
1952 set_power_wells(power_domains, skl_power_wells);
1953 } else if (IS_BROXTON(dev_priv->dev)) {
1954 set_power_wells(power_domains, bxt_power_wells);
1955 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1956 set_power_wells(power_domains, chv_power_wells);
1957 } else if (IS_VALLEYVIEW(dev_priv->dev)) {
1958 set_power_wells(power_domains, vlv_power_wells);
1959 } else {
1960 set_power_wells(power_domains, i9xx_always_on_power_well);
1961 }
1962
1963 return 0;
1964 }
1965
1966 /**
1967 * intel_power_domains_fini - finalizes the power domain structures
1968 * @dev_priv: i915 device instance
1969 *
1970 * Finalizes the power domain structures for @dev_priv depending upon the
1971 * supported platform. This function also disables runtime pm and ensures that
1972 * the device stays powered up so that the driver can be reloaded.
1973 */
1974 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
1975 {
1976 struct device *device = &dev_priv->dev->pdev->dev;
1977
1978 /*
1979 * The i915.ko module is still not prepared to be loaded when
1980 * the power well is not enabled, so just enable it in case
1981 * we're going to unload/reload.
1982 * The following also reacquires the RPM reference the core passed
1983 * to the driver during loading, which is dropped in
1984 * intel_runtime_pm_enable(). We have to hand back the control of the
1985 * device to the core with this reference held.
1986 */
1987 intel_display_set_init_power(dev_priv, true);
1988
1989 /* Remove the refcount we took to keep power well support disabled. */
1990 if (!i915.disable_power_well)
1991 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1992
1993 /*
1994 * Remove the refcount we took in intel_runtime_pm_enable() in case
1995 * the platform doesn't support runtime PM.
1996 */
1997 if (!HAS_RUNTIME_PM(dev_priv))
1998 pm_runtime_put(device);
1999 }
2000
2001 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2002 {
2003 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2004 struct i915_power_well *power_well;
2005 int i;
2006
2007 mutex_lock(&power_domains->lock);
2008 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2009 power_well->ops->sync_hw(dev_priv, power_well);
2010 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2011 power_well);
2012 }
2013 mutex_unlock(&power_domains->lock);
2014 }
2015
2016 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2017 bool resume)
2018 {
2019 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2020 uint32_t val;
2021
2022 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2023
2024 /* enable PCH reset handshake */
2025 val = I915_READ(HSW_NDE_RSTWRN_OPT);
2026 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2027
2028 /* enable PG1 and Misc I/O */
2029 mutex_lock(&power_domains->lock);
2030 skl_pw1_misc_io_init(dev_priv);
2031 mutex_unlock(&power_domains->lock);
2032
2033 if (!resume)
2034 return;
2035
2036 skl_init_cdclk(dev_priv);
2037
2038 if (dev_priv->csr.dmc_payload)
2039 intel_csr_load_program(dev_priv);
2040 }
2041
2042 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2043 {
2044 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2045
2046 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2047
2048 skl_uninit_cdclk(dev_priv);
2049
2050 /* The spec doesn't call for removing the reset handshake flag */
2051 /* disable PG1 and Misc I/O */
2052 mutex_lock(&power_domains->lock);
2053 skl_pw1_misc_io_fini(dev_priv);
2054 mutex_unlock(&power_domains->lock);
2055 }
2056
2057 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2058 {
2059 struct i915_power_well *cmn_bc =
2060 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2061 struct i915_power_well *cmn_d =
2062 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2063
2064 /*
2065 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2066 * workaround never ever read DISPLAY_PHY_CONTROL, and
2067 * instead maintain a shadow copy ourselves. Use the actual
2068 * power well state and lane status to reconstruct the
2069 * expected initial value.
2070 */
2071 dev_priv->chv_phy_control =
2072 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2073 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2074 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2075 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2076 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2077
2078 /*
2079 * If all lanes are disabled we leave the override disabled
2080 * with all power down bits cleared to match the state we
2081 * would use after disabling the port. Otherwise enable the
2082 * override and set the lane powerdown bits accding to the
2083 * current lane status.
2084 */
2085 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2086 uint32_t status = I915_READ(DPLL(PIPE_A));
2087 unsigned int mask;
2088
2089 mask = status & DPLL_PORTB_READY_MASK;
2090 if (mask == 0xf)
2091 mask = 0x0;
2092 else
2093 dev_priv->chv_phy_control |=
2094 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2095
2096 dev_priv->chv_phy_control |=
2097 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2098
2099 mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2100 if (mask == 0xf)
2101 mask = 0x0;
2102 else
2103 dev_priv->chv_phy_control |=
2104 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2105
2106 dev_priv->chv_phy_control |=
2107 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2108
2109 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2110
2111 dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2112 } else {
2113 dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2114 }
2115
2116 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2117 uint32_t status = I915_READ(DPIO_PHY_STATUS);
2118 unsigned int mask;
2119
2120 mask = status & DPLL_PORTD_READY_MASK;
2121
2122 if (mask == 0xf)
2123 mask = 0x0;
2124 else
2125 dev_priv->chv_phy_control |=
2126 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2127
2128 dev_priv->chv_phy_control |=
2129 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2130
2131 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2132
2133 dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2134 } else {
2135 dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2136 }
2137
2138 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2139
2140 DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2141 dev_priv->chv_phy_control);
2142 }
2143
2144 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2145 {
2146 struct i915_power_well *cmn =
2147 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2148 struct i915_power_well *disp2d =
2149 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2150
2151 /* If the display might be already active skip this */
2152 if (cmn->ops->is_enabled(dev_priv, cmn) &&
2153 disp2d->ops->is_enabled(dev_priv, disp2d) &&
2154 I915_READ(DPIO_CTL) & DPIO_CMNRST)
2155 return;
2156
2157 DRM_DEBUG_KMS("toggling display PHY side reset\n");
2158
2159 /* cmnlane needs DPLL registers */
2160 disp2d->ops->enable(dev_priv, disp2d);
2161
2162 /*
2163 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2164 * Need to assert and de-assert PHY SB reset by gating the
2165 * common lane power, then un-gating it.
2166 * Simply ungating isn't enough to reset the PHY enough to get
2167 * ports and lanes running.
2168 */
2169 cmn->ops->disable(dev_priv, cmn);
2170 }
2171
2172 /**
2173 * intel_power_domains_init_hw - initialize hardware power domain state
2174 * @dev_priv: i915 device instance
2175 *
2176 * This function initializes the hardware power domain state and enables all
2177 * power domains using intel_display_set_init_power().
2178 */
2179 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2180 {
2181 struct drm_device *dev = dev_priv->dev;
2182 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2183
2184 power_domains->initializing = true;
2185
2186 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2187 skl_display_core_init(dev_priv, resume);
2188 } else if (IS_CHERRYVIEW(dev)) {
2189 mutex_lock(&power_domains->lock);
2190 chv_phy_control_init(dev_priv);
2191 mutex_unlock(&power_domains->lock);
2192 } else if (IS_VALLEYVIEW(dev)) {
2193 mutex_lock(&power_domains->lock);
2194 vlv_cmnlane_wa(dev_priv);
2195 mutex_unlock(&power_domains->lock);
2196 }
2197
2198 /* For now, we need the power well to be always enabled. */
2199 intel_display_set_init_power(dev_priv, true);
2200 /* Disable power support if the user asked so. */
2201 if (!i915.disable_power_well)
2202 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2203 intel_power_domains_sync_hw(dev_priv);
2204 power_domains->initializing = false;
2205 }
2206
2207 /**
2208 * intel_power_domains_suspend - suspend power domain state
2209 * @dev_priv: i915 device instance
2210 *
2211 * This function prepares the hardware power domain state before entering
2212 * system suspend. It must be paired with intel_power_domains_init_hw().
2213 */
2214 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2215 {
2216 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2217 skl_display_core_uninit(dev_priv);
2218
2219 /*
2220 * Even if power well support was disabled we still want to disable
2221 * power wells while we are system suspended.
2222 */
2223 if (!i915.disable_power_well)
2224 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2225 }
2226
2227 /**
2228 * intel_runtime_pm_get - grab a runtime pm reference
2229 * @dev_priv: i915 device instance
2230 *
2231 * This function grabs a device-level runtime pm reference (mostly used for GEM
2232 * code to ensure the GTT or GT is on) and ensures that it is powered up.
2233 *
2234 * Any runtime pm reference obtained by this function must have a symmetric
2235 * call to intel_runtime_pm_put() to release the reference again.
2236 */
2237 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2238 {
2239 struct drm_device *dev = dev_priv->dev;
2240 struct device *device = &dev->pdev->dev;
2241
2242 pm_runtime_get_sync(device);
2243
2244 atomic_inc(&dev_priv->pm.wakeref_count);
2245 assert_rpm_wakelock_held(dev_priv);
2246 }
2247
2248 /**
2249 * intel_runtime_pm_get_noresume - grab a runtime pm reference
2250 * @dev_priv: i915 device instance
2251 *
2252 * This function grabs a device-level runtime pm reference (mostly used for GEM
2253 * code to ensure the GTT or GT is on).
2254 *
2255 * It will _not_ power up the device but instead only check that it's powered
2256 * on. Therefore it is only valid to call this functions from contexts where
2257 * the device is known to be powered up and where trying to power it up would
2258 * result in hilarity and deadlocks. That pretty much means only the system
2259 * suspend/resume code where this is used to grab runtime pm references for
2260 * delayed setup down in work items.
2261 *
2262 * Any runtime pm reference obtained by this function must have a symmetric
2263 * call to intel_runtime_pm_put() to release the reference again.
2264 */
2265 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2266 {
2267 struct drm_device *dev = dev_priv->dev;
2268 struct device *device = &dev->pdev->dev;
2269
2270 assert_rpm_wakelock_held(dev_priv);
2271 pm_runtime_get_noresume(device);
2272
2273 atomic_inc(&dev_priv->pm.wakeref_count);
2274 }
2275
2276 /**
2277 * intel_runtime_pm_put - release a runtime pm reference
2278 * @dev_priv: i915 device instance
2279 *
2280 * This function drops the device-level runtime pm reference obtained by
2281 * intel_runtime_pm_get() and might power down the corresponding
2282 * hardware block right away if this is the last reference.
2283 */
2284 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2285 {
2286 struct drm_device *dev = dev_priv->dev;
2287 struct device *device = &dev->pdev->dev;
2288
2289 assert_rpm_wakelock_held(dev_priv);
2290 if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2291 atomic_inc(&dev_priv->pm.atomic_seq);
2292
2293 pm_runtime_mark_last_busy(device);
2294 pm_runtime_put_autosuspend(device);
2295 }
2296
2297 /**
2298 * intel_runtime_pm_enable - enable runtime pm
2299 * @dev_priv: i915 device instance
2300 *
2301 * This function enables runtime pm at the end of the driver load sequence.
2302 *
2303 * Note that this function does currently not enable runtime pm for the
2304 * subordinate display power domains. That is only done on the first modeset
2305 * using intel_display_set_init_power().
2306 */
2307 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2308 {
2309 struct drm_device *dev = dev_priv->dev;
2310 struct device *device = &dev->pdev->dev;
2311
2312 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2313 pm_runtime_mark_last_busy(device);
2314
2315 /*
2316 * Take a permanent reference to disable the RPM functionality and drop
2317 * it only when unloading the driver. Use the low level get/put helpers,
2318 * so the driver's own RPM reference tracking asserts also work on
2319 * platforms without RPM support.
2320 */
2321 if (!HAS_RUNTIME_PM(dev)) {
2322 pm_runtime_dont_use_autosuspend(device);
2323 pm_runtime_get_sync(device);
2324 } else {
2325 pm_runtime_use_autosuspend(device);
2326 }
2327
2328 /*
2329 * The core calls the driver load handler with an RPM reference held.
2330 * We drop that here and will reacquire it during unloading in
2331 * intel_power_domains_fini().
2332 */
2333 pm_runtime_put_autosuspend(device);
2334 }
2335
This page took 0.097238 seconds and 6 git commands to generate.