Merge branch 'for-linus' into for-next
[deliverable/linux.git] / drivers / gpu / drm / mgag200 / mgag200_mode.c
1 /*
2 * Copyright 2010 Matt Turner.
3 * Copyright 2012 Red Hat
4 *
5 * This file is subject to the terms and conditions of the GNU General
6 * Public License version 2. See the file COPYING in the main
7 * directory of this archive for more details.
8 *
9 * Authors: Matthew Garrett
10 * Matt Turner
11 * Dave Airlie
12 */
13
14 #include <linux/delay.h>
15
16 #include "drmP.h"
17 #include "drm.h"
18 #include "drm_crtc_helper.h"
19
20 #include "mgag200_drv.h"
21
22 #define MGAG200_LUT_SIZE 256
23
24 /*
25 * This file contains setup code for the CRTC.
26 */
27
28 static void mga_crtc_load_lut(struct drm_crtc *crtc)
29 {
30 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
31 struct drm_device *dev = crtc->dev;
32 struct mga_device *mdev = dev->dev_private;
33 int i;
34
35 if (!crtc->enabled)
36 return;
37
38 WREG8(DAC_INDEX + MGA1064_INDEX, 0);
39
40 for (i = 0; i < MGAG200_LUT_SIZE; i++) {
41 /* VGA registers */
42 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]);
43 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
44 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]);
45 }
46 }
47
48 static inline void mga_wait_vsync(struct mga_device *mdev)
49 {
50 unsigned int count = 0;
51 unsigned int status = 0;
52
53 do {
54 status = RREG32(MGAREG_Status);
55 count++;
56 } while ((status & 0x08) && (count < 250000));
57 count = 0;
58 status = 0;
59 do {
60 status = RREG32(MGAREG_Status);
61 count++;
62 } while (!(status & 0x08) && (count < 250000));
63 }
64
65 static inline void mga_wait_busy(struct mga_device *mdev)
66 {
67 unsigned int count = 0;
68 unsigned int status = 0;
69 do {
70 status = RREG8(MGAREG_Status + 2);
71 count++;
72 } while ((status & 0x01) && (count < 500000));
73 }
74
75 /*
76 * The core passes the desired mode to the CRTC code to see whether any
77 * CRTC-specific modifications need to be made to it. We're in a position
78 * to just pass that straight through, so this does nothing
79 */
80 static bool mga_crtc_mode_fixup(struct drm_crtc *crtc,
81 const struct drm_display_mode *mode,
82 struct drm_display_mode *adjusted_mode)
83 {
84 return true;
85 }
86
87 static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
88 {
89 unsigned int vcomax, vcomin, pllreffreq;
90 unsigned int delta, tmpdelta, permitteddelta;
91 unsigned int testp, testm, testn;
92 unsigned int p, m, n;
93 unsigned int computed;
94
95 m = n = p = 0;
96 vcomax = 320000;
97 vcomin = 160000;
98 pllreffreq = 25000;
99
100 delta = 0xffffffff;
101 permitteddelta = clock * 5 / 1000;
102
103 for (testp = 8; testp > 0; testp /= 2) {
104 if (clock * testp > vcomax)
105 continue;
106 if (clock * testp < vcomin)
107 continue;
108
109 for (testn = 17; testn < 256; testn++) {
110 for (testm = 1; testm < 32; testm++) {
111 computed = (pllreffreq * testn) /
112 (testm * testp);
113 if (computed > clock)
114 tmpdelta = computed - clock;
115 else
116 tmpdelta = clock - computed;
117 if (tmpdelta < delta) {
118 delta = tmpdelta;
119 m = testm - 1;
120 n = testn - 1;
121 p = testp - 1;
122 }
123 }
124 }
125 }
126
127 if (delta > permitteddelta) {
128 printk(KERN_WARNING "PLL delta too large\n");
129 return 1;
130 }
131
132 WREG_DAC(MGA1064_PIX_PLLC_M, m);
133 WREG_DAC(MGA1064_PIX_PLLC_N, n);
134 WREG_DAC(MGA1064_PIX_PLLC_P, p);
135 return 0;
136 }
137
138 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
139 {
140 unsigned int vcomax, vcomin, pllreffreq;
141 unsigned int delta, tmpdelta, permitteddelta;
142 unsigned int testp, testm, testn;
143 unsigned int p, m, n;
144 unsigned int computed;
145 int i, j, tmpcount, vcount;
146 bool pll_locked = false;
147 u8 tmp;
148
149 m = n = p = 0;
150 vcomax = 550000;
151 vcomin = 150000;
152 pllreffreq = 48000;
153
154 delta = 0xffffffff;
155 permitteddelta = clock * 5 / 1000;
156
157 for (testp = 1; testp < 9; testp++) {
158 if (clock * testp > vcomax)
159 continue;
160 if (clock * testp < vcomin)
161 continue;
162
163 for (testm = 1; testm < 17; testm++) {
164 for (testn = 1; testn < 151; testn++) {
165 computed = (pllreffreq * testn) /
166 (testm * testp);
167 if (computed > clock)
168 tmpdelta = computed - clock;
169 else
170 tmpdelta = clock - computed;
171 if (tmpdelta < delta) {
172 delta = tmpdelta;
173 n = testn - 1;
174 m = (testm - 1) | ((n >> 1) & 0x80);
175 p = testp - 1;
176 }
177 }
178 }
179 }
180
181 for (i = 0; i <= 32 && pll_locked == false; i++) {
182 if (i > 0) {
183 WREG8(MGAREG_CRTC_INDEX, 0x1e);
184 tmp = RREG8(MGAREG_CRTC_DATA);
185 if (tmp < 0xff)
186 WREG8(MGAREG_CRTC_DATA, tmp+1);
187 }
188
189 /* set pixclkdis to 1 */
190 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
191 tmp = RREG8(DAC_DATA);
192 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
193 WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp);
194
195 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
196 tmp = RREG8(DAC_DATA);
197 tmp |= MGA1064_REMHEADCTL_CLKDIS;
198 WREG_DAC(MGA1064_REMHEADCTL, tmp);
199
200 /* select PLL Set C */
201 tmp = RREG8(MGAREG_MEM_MISC_READ);
202 tmp |= 0x3 << 2;
203 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
204
205 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
206 tmp = RREG8(DAC_DATA);
207 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
208 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
209
210 udelay(500);
211
212 /* reset the PLL */
213 WREG8(DAC_INDEX, MGA1064_VREF_CTL);
214 tmp = RREG8(DAC_DATA);
215 tmp &= ~0x04;
216 WREG_DAC(MGA1064_VREF_CTL, tmp);
217
218 udelay(50);
219
220 /* program pixel pll register */
221 WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
222 WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
223 WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
224
225 udelay(50);
226
227 /* turn pll on */
228 WREG8(DAC_INDEX, MGA1064_VREF_CTL);
229 tmp = RREG8(DAC_DATA);
230 tmp |= 0x04;
231 WREG_DAC(MGA1064_VREF_CTL, tmp);
232
233 udelay(500);
234
235 /* select the pixel pll */
236 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
237 tmp = RREG8(DAC_DATA);
238 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
239 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
240 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
241
242 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
243 tmp = RREG8(DAC_DATA);
244 tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
245 tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
246 WREG_DAC(MGA1064_REMHEADCTL, tmp);
247
248 /* reset dotclock rate bit */
249 WREG8(MGAREG_SEQ_INDEX, 1);
250 tmp = RREG8(MGAREG_SEQ_DATA);
251 tmp &= ~0x8;
252 WREG8(MGAREG_SEQ_DATA, tmp);
253
254 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
255 tmp = RREG8(DAC_DATA);
256 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
257 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
258
259 vcount = RREG8(MGAREG_VCOUNT);
260
261 for (j = 0; j < 30 && pll_locked == false; j++) {
262 tmpcount = RREG8(MGAREG_VCOUNT);
263 if (tmpcount < vcount)
264 vcount = 0;
265 if ((tmpcount - vcount) > 2)
266 pll_locked = true;
267 else
268 udelay(5);
269 }
270 }
271 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
272 tmp = RREG8(DAC_DATA);
273 tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
274 WREG_DAC(MGA1064_REMHEADCTL, tmp);
275 return 0;
276 }
277
278 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
279 {
280 unsigned int vcomax, vcomin, pllreffreq;
281 unsigned int delta, tmpdelta, permitteddelta;
282 unsigned int testp, testm, testn;
283 unsigned int p, m, n;
284 unsigned int computed;
285 u8 tmp;
286
287 m = n = p = 0;
288 vcomax = 550000;
289 vcomin = 150000;
290 pllreffreq = 50000;
291
292 delta = 0xffffffff;
293 permitteddelta = clock * 5 / 1000;
294
295 for (testp = 16; testp > 0; testp--) {
296 if (clock * testp > vcomax)
297 continue;
298 if (clock * testp < vcomin)
299 continue;
300
301 for (testn = 1; testn < 257; testn++) {
302 for (testm = 1; testm < 17; testm++) {
303 computed = (pllreffreq * testn) /
304 (testm * testp);
305 if (computed > clock)
306 tmpdelta = computed - clock;
307 else
308 tmpdelta = clock - computed;
309 if (tmpdelta < delta) {
310 delta = tmpdelta;
311 n = testn - 1;
312 m = testm - 1;
313 p = testp - 1;
314 }
315 }
316 }
317 }
318
319 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
320 tmp = RREG8(DAC_DATA);
321 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
322 WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp);
323
324 tmp = RREG8(MGAREG_MEM_MISC_READ);
325 tmp |= 0x3 << 2;
326 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
327
328 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
329 tmp = RREG8(DAC_DATA);
330 WREG_DAC(MGA1064_PIX_PLL_STAT, tmp & ~0x40);
331
332 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
333 tmp = RREG8(DAC_DATA);
334 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
335 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
336
337 WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
338 WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
339 WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
340
341 udelay(50);
342
343 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
344 tmp = RREG8(DAC_DATA);
345 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
346 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
347
348 udelay(500);
349
350 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
351 tmp = RREG8(DAC_DATA);
352 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
353 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
354 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
355
356 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
357 tmp = RREG8(DAC_DATA);
358 WREG_DAC(MGA1064_PIX_PLL_STAT, tmp | 0x40);
359
360 tmp = RREG8(MGAREG_MEM_MISC_READ);
361 tmp |= (0x3 << 2);
362 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
363
364 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
365 tmp = RREG8(DAC_DATA);
366 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
367 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
368
369 return 0;
370 }
371
372 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
373 {
374 unsigned int vcomax, vcomin, pllreffreq;
375 unsigned int delta, tmpdelta, permitteddelta;
376 unsigned int testp, testm, testn;
377 unsigned int p, m, n;
378 unsigned int computed;
379 int i, j, tmpcount, vcount;
380 u8 tmp;
381 bool pll_locked = false;
382
383 m = n = p = 0;
384 vcomax = 800000;
385 vcomin = 400000;
386 pllreffreq = 3333;
387
388 delta = 0xffffffff;
389 permitteddelta = clock * 5 / 1000;
390
391 for (testp = 16; testp > 0; testp--) {
392 if (clock * testp > vcomax)
393 continue;
394 if (clock * testp < vcomin)
395 continue;
396
397 for (testm = 1; testm < 33; testm++) {
398 for (testn = 1; testn < 257; testn++) {
399 computed = (pllreffreq * testn) /
400 (testm * testp);
401 if (computed > clock)
402 tmpdelta = computed - clock;
403 else
404 tmpdelta = clock - computed;
405 if (tmpdelta < delta) {
406 delta = tmpdelta;
407 n = testn - 1;
408 m = (testm - 1) | ((n >> 1) & 0x80);
409 p = testp - 1;
410 }
411 if ((clock * testp) >= 600000)
412 p |= 80;
413 }
414 }
415 }
416 for (i = 0; i <= 32 && pll_locked == false; i++) {
417 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
418 tmp = RREG8(DAC_DATA);
419 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
420 WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp);
421
422 tmp = RREG8(MGAREG_MEM_MISC_READ);
423 tmp |= 0x3 << 2;
424 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
425
426 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
427 tmp = RREG8(DAC_DATA);
428 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
429 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
430
431 udelay(500);
432
433 WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
434 WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
435 WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
436
437 udelay(500);
438
439 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
440 tmp = RREG8(DAC_DATA);
441 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
442 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
443 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
444
445 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
446 tmp = RREG8(DAC_DATA);
447 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
448 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
449 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
450
451 vcount = RREG8(MGAREG_VCOUNT);
452
453 for (j = 0; j < 30 && pll_locked == false; j++) {
454 tmpcount = RREG8(MGAREG_VCOUNT);
455 if (tmpcount < vcount)
456 vcount = 0;
457 if ((tmpcount - vcount) > 2)
458 pll_locked = true;
459 else
460 udelay(5);
461 }
462 }
463
464 return 0;
465 }
466
467 static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
468 {
469 unsigned int vcomax, vcomin, pllreffreq;
470 unsigned int delta, tmpdelta;
471 int testr, testn, testm, testo;
472 unsigned int p, m, n;
473 unsigned int computed, vco;
474 int tmp;
475 const unsigned int m_div_val[] = { 1, 2, 4, 8 };
476
477 m = n = p = 0;
478 vcomax = 1488000;
479 vcomin = 1056000;
480 pllreffreq = 48000;
481
482 delta = 0xffffffff;
483
484 for (testr = 0; testr < 4; testr++) {
485 if (delta == 0)
486 break;
487 for (testn = 5; testn < 129; testn++) {
488 if (delta == 0)
489 break;
490 for (testm = 3; testm >= 0; testm--) {
491 if (delta == 0)
492 break;
493 for (testo = 5; testo < 33; testo++) {
494 vco = pllreffreq * (testn + 1) /
495 (testr + 1);
496 if (vco < vcomin)
497 continue;
498 if (vco > vcomax)
499 continue;
500 computed = vco / (m_div_val[testm] * (testo + 1));
501 if (computed > clock)
502 tmpdelta = computed - clock;
503 else
504 tmpdelta = clock - computed;
505 if (tmpdelta < delta) {
506 delta = tmpdelta;
507 m = testm | (testo << 3);
508 n = testn;
509 p = testr | (testr << 3);
510 }
511 }
512 }
513 }
514 }
515
516 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
517 tmp = RREG8(DAC_DATA);
518 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
519 WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp);
520
521 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
522 tmp = RREG8(DAC_DATA);
523 tmp |= MGA1064_REMHEADCTL_CLKDIS;
524 WREG_DAC(MGA1064_REMHEADCTL, tmp);
525
526 tmp = RREG8(MGAREG_MEM_MISC_READ);
527 tmp |= (0x3<<2) | 0xc0;
528 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
529
530 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
531 tmp = RREG8(DAC_DATA);
532 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
533 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
534 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
535
536 udelay(500);
537
538 WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
539 WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
540 WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
541
542 udelay(50);
543
544 return 0;
545 }
546
547 static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
548 {
549 switch(mdev->type) {
550 case G200_SE_A:
551 case G200_SE_B:
552 return mga_g200se_set_plls(mdev, clock);
553 break;
554 case G200_WB:
555 return mga_g200wb_set_plls(mdev, clock);
556 break;
557 case G200_EV:
558 return mga_g200ev_set_plls(mdev, clock);
559 break;
560 case G200_EH:
561 return mga_g200eh_set_plls(mdev, clock);
562 break;
563 case G200_ER:
564 return mga_g200er_set_plls(mdev, clock);
565 break;
566 }
567 return 0;
568 }
569
570 static void mga_g200wb_prepare(struct drm_crtc *crtc)
571 {
572 struct mga_device *mdev = crtc->dev->dev_private;
573 u8 tmp;
574 int iter_max;
575
576 /* 1- The first step is to warn the BMC of an upcoming mode change.
577 * We are putting the misc<0> to output.*/
578
579 WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
580 tmp = RREG8(DAC_DATA);
581 tmp |= 0x10;
582 WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
583
584 /* we are putting a 1 on the misc<0> line */
585 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
586 tmp = RREG8(DAC_DATA);
587 tmp |= 0x10;
588 WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
589
590 /* 2- Second step to mask and further scan request
591 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
592 */
593 WREG8(DAC_INDEX, MGA1064_SPAREREG);
594 tmp = RREG8(DAC_DATA);
595 tmp |= 0x80;
596 WREG_DAC(MGA1064_SPAREREG, tmp);
597
598 /* 3a- the third step is to verifu if there is an active scan
599 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
600 */
601 iter_max = 300;
602 while (!(tmp & 0x1) && iter_max) {
603 WREG8(DAC_INDEX, MGA1064_SPAREREG);
604 tmp = RREG8(DAC_DATA);
605 udelay(1000);
606 iter_max--;
607 }
608
609 /* 3b- this step occurs only if the remove is actually scanning
610 * we are waiting for the end of the frame which is a 1 on
611 * remvsyncsts (XSPAREREG<1>)
612 */
613 if (iter_max) {
614 iter_max = 300;
615 while ((tmp & 0x2) && iter_max) {
616 WREG8(DAC_INDEX, MGA1064_SPAREREG);
617 tmp = RREG8(DAC_DATA);
618 udelay(1000);
619 iter_max--;
620 }
621 }
622 }
623
624 static void mga_g200wb_commit(struct drm_crtc *crtc)
625 {
626 u8 tmp;
627 struct mga_device *mdev = crtc->dev->dev_private;
628
629 /* 1- The first step is to ensure that the vrsten and hrsten are set */
630 WREG8(MGAREG_CRTCEXT_INDEX, 1);
631 tmp = RREG8(MGAREG_CRTCEXT_DATA);
632 WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
633
634 /* 2- second step is to assert the rstlvl2 */
635 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
636 tmp = RREG8(DAC_DATA);
637 tmp |= 0x8;
638 WREG8(DAC_DATA, tmp);
639
640 /* wait 10 us */
641 udelay(10);
642
643 /* 3- deassert rstlvl2 */
644 tmp &= ~0x08;
645 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
646 WREG8(DAC_DATA, tmp);
647
648 /* 4- remove mask of scan request */
649 WREG8(DAC_INDEX, MGA1064_SPAREREG);
650 tmp = RREG8(DAC_DATA);
651 tmp &= ~0x80;
652 WREG8(DAC_DATA, tmp);
653
654 /* 5- put back a 0 on the misc<0> line */
655 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
656 tmp = RREG8(DAC_DATA);
657 tmp &= ~0x10;
658 WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
659 }
660
661
662 void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
663 {
664 struct mga_device *mdev = crtc->dev->dev_private;
665 u32 addr;
666 int count;
667
668 while (RREG8(0x1fda) & 0x08);
669 while (!(RREG8(0x1fda) & 0x08));
670
671 count = RREG8(MGAREG_VCOUNT) + 2;
672 while (RREG8(MGAREG_VCOUNT) < count);
673
674 addr = offset >> 2;
675 WREG_CRT(0x0d, (u8)(addr & 0xff));
676 WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
677 WREG_CRT(0xaf, (u8)(addr >> 16) & 0xf);
678 }
679
680
681 /* ast is different - we will force move buffers out of VRAM */
682 static int mga_crtc_do_set_base(struct drm_crtc *crtc,
683 struct drm_framebuffer *fb,
684 int x, int y, int atomic)
685 {
686 struct mga_device *mdev = crtc->dev->dev_private;
687 struct drm_gem_object *obj;
688 struct mga_framebuffer *mga_fb;
689 struct mgag200_bo *bo;
690 int ret;
691 u64 gpu_addr;
692
693 /* push the previous fb to system ram */
694 if (!atomic && fb) {
695 mga_fb = to_mga_framebuffer(fb);
696 obj = mga_fb->obj;
697 bo = gem_to_mga_bo(obj);
698 ret = mgag200_bo_reserve(bo, false);
699 if (ret)
700 return ret;
701 mgag200_bo_push_sysram(bo);
702 mgag200_bo_unreserve(bo);
703 }
704
705 mga_fb = to_mga_framebuffer(crtc->fb);
706 obj = mga_fb->obj;
707 bo = gem_to_mga_bo(obj);
708
709 ret = mgag200_bo_reserve(bo, false);
710 if (ret)
711 return ret;
712
713 ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr);
714 if (ret) {
715 mgag200_bo_unreserve(bo);
716 return ret;
717 }
718
719 if (&mdev->mfbdev->mfb == mga_fb) {
720 /* if pushing console in kmap it */
721 ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap);
722 if (ret)
723 DRM_ERROR("failed to kmap fbcon\n");
724
725 }
726 mgag200_bo_unreserve(bo);
727
728 DRM_INFO("mga base %llx\n", gpu_addr);
729
730 mga_set_start_address(crtc, (u32)gpu_addr);
731
732 return 0;
733 }
734
735 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
736 struct drm_framebuffer *old_fb)
737 {
738 return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
739 }
740
741 static int mga_crtc_mode_set(struct drm_crtc *crtc,
742 struct drm_display_mode *mode,
743 struct drm_display_mode *adjusted_mode,
744 int x, int y, struct drm_framebuffer *old_fb)
745 {
746 struct drm_device *dev = crtc->dev;
747 struct mga_device *mdev = dev->dev_private;
748 int hdisplay, hsyncstart, hsyncend, htotal;
749 int vdisplay, vsyncstart, vsyncend, vtotal;
750 int pitch;
751 int option = 0, option2 = 0;
752 int i;
753 unsigned char misc = 0;
754 unsigned char ext_vga[6];
755 unsigned char ext_vga_index24;
756 unsigned char dac_index90 = 0;
757 u8 bppshift;
758
759 static unsigned char dacvalue[] = {
760 /* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0,
761 /* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0,
762 /* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0,
763 /* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
764 /* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
765 /* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40,
766 /* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
767 /* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
768 /* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0,
769 /* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0
770 };
771
772 bppshift = mdev->bpp_shifts[(crtc->fb->bits_per_pixel >> 3) - 1];
773
774 switch (mdev->type) {
775 case G200_SE_A:
776 case G200_SE_B:
777 dacvalue[MGA1064_VREF_CTL] = 0x03;
778 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
779 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
780 MGA1064_MISC_CTL_VGA8 |
781 MGA1064_MISC_CTL_DAC_RAM_CS;
782 if (mdev->has_sdram)
783 option = 0x40049120;
784 else
785 option = 0x4004d120;
786 option2 = 0x00008000;
787 break;
788 case G200_WB:
789 dacvalue[MGA1064_VREF_CTL] = 0x07;
790 option = 0x41049120;
791 option2 = 0x0000b000;
792 break;
793 case G200_EV:
794 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
795 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
796 MGA1064_MISC_CTL_DAC_RAM_CS;
797 option = 0x00000120;
798 option2 = 0x0000b000;
799 break;
800 case G200_EH:
801 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
802 MGA1064_MISC_CTL_DAC_RAM_CS;
803 option = 0x00000120;
804 option2 = 0x0000b000;
805 break;
806 case G200_ER:
807 dac_index90 = 0;
808 break;
809 }
810
811 switch (crtc->fb->bits_per_pixel) {
812 case 8:
813 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
814 break;
815 case 16:
816 if (crtc->fb->depth == 15)
817 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
818 else
819 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
820 break;
821 case 24:
822 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
823 break;
824 case 32:
825 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
826 break;
827 }
828
829 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
830 misc |= 0x40;
831 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
832 misc |= 0x80;
833
834
835 for (i = 0; i < sizeof(dacvalue); i++) {
836 if ((i <= 0x03) ||
837 (i == 0x07) ||
838 (i == 0x0b) ||
839 (i == 0x0f) ||
840 ((i >= 0x13) && (i <= 0x17)) ||
841 (i == 0x1b) ||
842 (i == 0x1c) ||
843 ((i >= 0x1f) && (i <= 0x29)) ||
844 ((i >= 0x30) && (i <= 0x37)))
845 continue;
846 if (IS_G200_SE(mdev) &&
847 ((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
848 continue;
849 if ((mdev->type == G200_EV || mdev->type == G200_WB || mdev->type == G200_EH) &&
850 (i >= 0x44) && (i <= 0x4e))
851 continue;
852
853 WREG_DAC(i, dacvalue[i]);
854 }
855
856 if (mdev->type == G200_ER) {
857 WREG_DAC(0x90, dac_index90);
858 }
859
860
861 if (option)
862 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
863 if (option2)
864 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
865
866 WREG_SEQ(2, 0xf);
867 WREG_SEQ(3, 0);
868 WREG_SEQ(4, 0xe);
869
870 pitch = crtc->fb->pitches[0] / (crtc->fb->bits_per_pixel / 8);
871 if (crtc->fb->bits_per_pixel == 24)
872 pitch = pitch >> (4 - bppshift);
873 else
874 pitch = pitch >> (4 - bppshift);
875
876 hdisplay = mode->hdisplay / 8 - 1;
877 hsyncstart = mode->hsync_start / 8 - 1;
878 hsyncend = mode->hsync_end / 8 - 1;
879 htotal = mode->htotal / 8 - 1;
880
881 /* Work around hardware quirk */
882 if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
883 htotal++;
884
885 vdisplay = mode->vdisplay - 1;
886 vsyncstart = mode->vsync_start - 1;
887 vsyncend = mode->vsync_end - 1;
888 vtotal = mode->vtotal - 2;
889
890 WREG_GFX(0, 0);
891 WREG_GFX(1, 0);
892 WREG_GFX(2, 0);
893 WREG_GFX(3, 0);
894 WREG_GFX(4, 0);
895 WREG_GFX(5, 0x40);
896 WREG_GFX(6, 0x5);
897 WREG_GFX(7, 0xf);
898 WREG_GFX(8, 0xf);
899
900 WREG_CRT(0, htotal - 4);
901 WREG_CRT(1, hdisplay);
902 WREG_CRT(2, hdisplay);
903 WREG_CRT(3, (htotal & 0x1F) | 0x80);
904 WREG_CRT(4, hsyncstart);
905 WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
906 WREG_CRT(6, vtotal & 0xFF);
907 WREG_CRT(7, ((vtotal & 0x100) >> 8) |
908 ((vdisplay & 0x100) >> 7) |
909 ((vsyncstart & 0x100) >> 6) |
910 ((vdisplay & 0x100) >> 5) |
911 ((vdisplay & 0x100) >> 4) | /* linecomp */
912 ((vtotal & 0x200) >> 4)|
913 ((vdisplay & 0x200) >> 3) |
914 ((vsyncstart & 0x200) >> 2));
915 WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
916 ((vdisplay & 0x200) >> 3));
917 WREG_CRT(10, 0);
918 WREG_CRT(11, 0);
919 WREG_CRT(12, 0);
920 WREG_CRT(13, 0);
921 WREG_CRT(14, 0);
922 WREG_CRT(15, 0);
923 WREG_CRT(16, vsyncstart & 0xFF);
924 WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
925 WREG_CRT(18, vdisplay & 0xFF);
926 WREG_CRT(19, pitch & 0xFF);
927 WREG_CRT(20, 0);
928 WREG_CRT(21, vdisplay & 0xFF);
929 WREG_CRT(22, (vtotal + 1) & 0xFF);
930 WREG_CRT(23, 0xc3);
931 WREG_CRT(24, vdisplay & 0xFF);
932
933 ext_vga[0] = 0;
934 ext_vga[5] = 0;
935
936 /* TODO interlace */
937
938 ext_vga[0] |= (pitch & 0x300) >> 4;
939 ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
940 ((hdisplay & 0x100) >> 7) |
941 ((hsyncstart & 0x100) >> 6) |
942 (htotal & 0x40);
943 ext_vga[2] = ((vtotal & 0xc00) >> 10) |
944 ((vdisplay & 0x400) >> 8) |
945 ((vdisplay & 0xc00) >> 7) |
946 ((vsyncstart & 0xc00) >> 5) |
947 ((vdisplay & 0x400) >> 3);
948 if (crtc->fb->bits_per_pixel == 24)
949 ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
950 else
951 ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
952 ext_vga[4] = 0;
953 if (mdev->type == G200_WB)
954 ext_vga[1] |= 0x88;
955
956 ext_vga_index24 = 0x05;
957
958 /* Set pixel clocks */
959 misc = 0x2d;
960 WREG8(MGA_MISC_OUT, misc);
961
962 mga_crtc_set_plls(mdev, mode->clock);
963
964 for (i = 0; i < 6; i++) {
965 WREG_ECRT(i, ext_vga[i]);
966 }
967
968 if (mdev->type == G200_ER)
969 WREG_ECRT(24, ext_vga_index24);
970
971 if (mdev->type == G200_EV) {
972 WREG_ECRT(6, 0);
973 }
974
975 WREG_ECRT(0, ext_vga[0]);
976 /* Enable mga pixel clock */
977 misc = 0x2d;
978
979 WREG8(MGA_MISC_OUT, misc);
980
981 if (adjusted_mode)
982 memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
983
984 mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
985
986 /* reset tagfifo */
987 if (mdev->type == G200_ER) {
988 u32 mem_ctl = RREG32(MGAREG_MEMCTL);
989 u8 seq1;
990
991 /* screen off */
992 WREG8(MGAREG_SEQ_INDEX, 0x01);
993 seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
994 WREG8(MGAREG_SEQ_DATA, seq1);
995
996 WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
997 udelay(1000);
998 WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
999
1000 WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
1001 }
1002
1003
1004 if (IS_G200_SE(mdev)) {
1005 if (mdev->reg_1e24 >= 0x02) {
1006 u8 hi_pri_lvl;
1007 u32 bpp;
1008 u32 mb;
1009
1010 if (crtc->fb->bits_per_pixel > 16)
1011 bpp = 32;
1012 else if (crtc->fb->bits_per_pixel > 8)
1013 bpp = 16;
1014 else
1015 bpp = 8;
1016
1017 mb = (mode->clock * bpp) / 1000;
1018 if (mb > 3100)
1019 hi_pri_lvl = 0;
1020 else if (mb > 2600)
1021 hi_pri_lvl = 1;
1022 else if (mb > 1900)
1023 hi_pri_lvl = 2;
1024 else if (mb > 1160)
1025 hi_pri_lvl = 3;
1026 else if (mb > 440)
1027 hi_pri_lvl = 4;
1028 else
1029 hi_pri_lvl = 5;
1030
1031 WREG8(0x1fde, 0x06);
1032 WREG8(0x1fdf, hi_pri_lvl);
1033 } else {
1034 if (mdev->reg_1e24 >= 0x01)
1035 WREG8(0x1fdf, 0x03);
1036 else
1037 WREG8(0x1fdf, 0x04);
1038 }
1039 }
1040 return 0;
1041 }
1042
1043 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1044 static int mga_suspend(struct drm_crtc *crtc)
1045 {
1046 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1047 struct drm_device *dev = crtc->dev;
1048 struct mga_device *mdev = dev->dev_private;
1049 struct pci_dev *pdev = dev->pdev;
1050 int option;
1051
1052 if (mdev->suspended)
1053 return 0;
1054
1055 WREG_SEQ(1, 0x20);
1056 WREG_ECRT(1, 0x30);
1057 /* Disable the pixel clock */
1058 WREG_DAC(0x1a, 0x05);
1059 /* Power down the DAC */
1060 WREG_DAC(0x1e, 0x18);
1061 /* Power down the pixel PLL */
1062 WREG_DAC(0x1a, 0x0d);
1063
1064 /* Disable PLLs and clocks */
1065 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1066 option &= ~(0x1F8024);
1067 pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1068 pci_set_power_state(pdev, PCI_D3hot);
1069 pci_disable_device(pdev);
1070
1071 mdev->suspended = true;
1072
1073 return 0;
1074 }
1075
1076 static int mga_resume(struct drm_crtc *crtc)
1077 {
1078 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1079 struct drm_device *dev = crtc->dev;
1080 struct mga_device *mdev = dev->dev_private;
1081 struct pci_dev *pdev = dev->pdev;
1082 int option;
1083
1084 if (!mdev->suspended)
1085 return 0;
1086
1087 pci_set_power_state(pdev, PCI_D0);
1088 pci_enable_device(pdev);
1089
1090 /* Disable sysclk */
1091 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1092 option &= ~(0x4);
1093 pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1094
1095 mdev->suspended = false;
1096
1097 return 0;
1098 }
1099
1100 #endif
1101
1102 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
1103 {
1104 struct drm_device *dev = crtc->dev;
1105 struct mga_device *mdev = dev->dev_private;
1106 u8 seq1 = 0, crtcext1 = 0;
1107
1108 switch (mode) {
1109 case DRM_MODE_DPMS_ON:
1110 seq1 = 0;
1111 crtcext1 = 0;
1112 mga_crtc_load_lut(crtc);
1113 break;
1114 case DRM_MODE_DPMS_STANDBY:
1115 seq1 = 0x20;
1116 crtcext1 = 0x10;
1117 break;
1118 case DRM_MODE_DPMS_SUSPEND:
1119 seq1 = 0x20;
1120 crtcext1 = 0x20;
1121 break;
1122 case DRM_MODE_DPMS_OFF:
1123 seq1 = 0x20;
1124 crtcext1 = 0x30;
1125 break;
1126 }
1127
1128 #if 0
1129 if (mode == DRM_MODE_DPMS_OFF) {
1130 mga_suspend(crtc);
1131 }
1132 #endif
1133 WREG8(MGAREG_SEQ_INDEX, 0x01);
1134 seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
1135 mga_wait_vsync(mdev);
1136 mga_wait_busy(mdev);
1137 WREG8(MGAREG_SEQ_DATA, seq1);
1138 msleep(20);
1139 WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
1140 crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
1141 WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
1142
1143 #if 0
1144 if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
1145 mga_resume(crtc);
1146 drm_helper_resume_force_mode(dev);
1147 }
1148 #endif
1149 }
1150
1151 /*
1152 * This is called before a mode is programmed. A typical use might be to
1153 * enable DPMS during the programming to avoid seeing intermediate stages,
1154 * but that's not relevant to us
1155 */
1156 static void mga_crtc_prepare(struct drm_crtc *crtc)
1157 {
1158 struct drm_device *dev = crtc->dev;
1159 struct mga_device *mdev = dev->dev_private;
1160 u8 tmp;
1161
1162 /* mga_resume(crtc);*/
1163
1164 WREG8(MGAREG_CRTC_INDEX, 0x11);
1165 tmp = RREG8(MGAREG_CRTC_DATA);
1166 WREG_CRT(0x11, tmp | 0x80);
1167
1168 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1169 WREG_SEQ(0, 1);
1170 msleep(50);
1171 WREG_SEQ(1, 0x20);
1172 msleep(20);
1173 } else {
1174 WREG8(MGAREG_SEQ_INDEX, 0x1);
1175 tmp = RREG8(MGAREG_SEQ_DATA);
1176
1177 /* start sync reset */
1178 WREG_SEQ(0, 1);
1179 WREG_SEQ(1, tmp | 0x20);
1180 }
1181
1182 if (mdev->type == G200_WB)
1183 mga_g200wb_prepare(crtc);
1184
1185 WREG_CRT(17, 0);
1186 }
1187
1188 /*
1189 * This is called after a mode is programmed. It should reverse anything done
1190 * by the prepare function
1191 */
1192 static void mga_crtc_commit(struct drm_crtc *crtc)
1193 {
1194 struct drm_device *dev = crtc->dev;
1195 struct mga_device *mdev = dev->dev_private;
1196 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1197 u8 tmp;
1198
1199 if (mdev->type == G200_WB)
1200 mga_g200wb_commit(crtc);
1201
1202 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1203 msleep(50);
1204 WREG_SEQ(1, 0x0);
1205 msleep(20);
1206 WREG_SEQ(0, 0x3);
1207 } else {
1208 WREG8(MGAREG_SEQ_INDEX, 0x1);
1209 tmp = RREG8(MGAREG_SEQ_DATA);
1210
1211 tmp &= ~0x20;
1212 WREG_SEQ(0x1, tmp);
1213 WREG_SEQ(0, 3);
1214 }
1215 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1216 }
1217
1218 /*
1219 * The core can pass us a set of gamma values to program. We actually only
1220 * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1221 * but it's a requirement that we provide the function
1222 */
1223 static void mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1224 u16 *blue, uint32_t start, uint32_t size)
1225 {
1226 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1227 int end = (start + size > MGAG200_LUT_SIZE) ? MGAG200_LUT_SIZE : start + size;
1228 int i;
1229
1230 for (i = start; i < end; i++) {
1231 mga_crtc->lut_r[i] = red[i] >> 8;
1232 mga_crtc->lut_g[i] = green[i] >> 8;
1233 mga_crtc->lut_b[i] = blue[i] >> 8;
1234 }
1235 mga_crtc_load_lut(crtc);
1236 }
1237
1238 /* Simple cleanup function */
1239 static void mga_crtc_destroy(struct drm_crtc *crtc)
1240 {
1241 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1242
1243 drm_crtc_cleanup(crtc);
1244 kfree(mga_crtc);
1245 }
1246
1247 /* These provide the minimum set of functions required to handle a CRTC */
1248 static const struct drm_crtc_funcs mga_crtc_funcs = {
1249 .gamma_set = mga_crtc_gamma_set,
1250 .set_config = drm_crtc_helper_set_config,
1251 .destroy = mga_crtc_destroy,
1252 };
1253
1254 static const struct drm_crtc_helper_funcs mga_helper_funcs = {
1255 .dpms = mga_crtc_dpms,
1256 .mode_fixup = mga_crtc_mode_fixup,
1257 .mode_set = mga_crtc_mode_set,
1258 .mode_set_base = mga_crtc_mode_set_base,
1259 .prepare = mga_crtc_prepare,
1260 .commit = mga_crtc_commit,
1261 .load_lut = mga_crtc_load_lut,
1262 };
1263
1264 /* CRTC setup */
1265 static void mga_crtc_init(struct drm_device *dev)
1266 {
1267 struct mga_device *mdev = dev->dev_private;
1268 struct mga_crtc *mga_crtc;
1269 int i;
1270
1271 mga_crtc = kzalloc(sizeof(struct mga_crtc) +
1272 (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
1273 GFP_KERNEL);
1274
1275 if (mga_crtc == NULL)
1276 return;
1277
1278 drm_crtc_init(dev, &mga_crtc->base, &mga_crtc_funcs);
1279
1280 drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
1281 mdev->mode_info.crtc = mga_crtc;
1282
1283 for (i = 0; i < MGAG200_LUT_SIZE; i++) {
1284 mga_crtc->lut_r[i] = i;
1285 mga_crtc->lut_g[i] = i;
1286 mga_crtc->lut_b[i] = i;
1287 }
1288
1289 drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
1290 }
1291
1292 /** Sets the color ramps on behalf of fbcon */
1293 void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1294 u16 blue, int regno)
1295 {
1296 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1297
1298 mga_crtc->lut_r[regno] = red >> 8;
1299 mga_crtc->lut_g[regno] = green >> 8;
1300 mga_crtc->lut_b[regno] = blue >> 8;
1301 }
1302
1303 /** Gets the color ramps on behalf of fbcon */
1304 void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
1305 u16 *blue, int regno)
1306 {
1307 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1308
1309 *red = (u16)mga_crtc->lut_r[regno] << 8;
1310 *green = (u16)mga_crtc->lut_g[regno] << 8;
1311 *blue = (u16)mga_crtc->lut_b[regno] << 8;
1312 }
1313
1314 /*
1315 * The encoder comes after the CRTC in the output pipeline, but before
1316 * the connector. It's responsible for ensuring that the digital
1317 * stream is appropriately converted into the output format. Setup is
1318 * very simple in this case - all we have to do is inform qemu of the
1319 * colour depth in order to ensure that it displays appropriately
1320 */
1321
1322 /*
1323 * These functions are analagous to those in the CRTC code, but are intended
1324 * to handle any encoder-specific limitations
1325 */
1326 static bool mga_encoder_mode_fixup(struct drm_encoder *encoder,
1327 const struct drm_display_mode *mode,
1328 struct drm_display_mode *adjusted_mode)
1329 {
1330 return true;
1331 }
1332
1333 static void mga_encoder_mode_set(struct drm_encoder *encoder,
1334 struct drm_display_mode *mode,
1335 struct drm_display_mode *adjusted_mode)
1336 {
1337
1338 }
1339
1340 static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
1341 {
1342 return;
1343 }
1344
1345 static void mga_encoder_prepare(struct drm_encoder *encoder)
1346 {
1347 }
1348
1349 static void mga_encoder_commit(struct drm_encoder *encoder)
1350 {
1351 }
1352
1353 void mga_encoder_destroy(struct drm_encoder *encoder)
1354 {
1355 struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
1356 drm_encoder_cleanup(encoder);
1357 kfree(mga_encoder);
1358 }
1359
1360 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
1361 .dpms = mga_encoder_dpms,
1362 .mode_fixup = mga_encoder_mode_fixup,
1363 .mode_set = mga_encoder_mode_set,
1364 .prepare = mga_encoder_prepare,
1365 .commit = mga_encoder_commit,
1366 };
1367
1368 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
1369 .destroy = mga_encoder_destroy,
1370 };
1371
1372 static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
1373 {
1374 struct drm_encoder *encoder;
1375 struct mga_encoder *mga_encoder;
1376
1377 mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
1378 if (!mga_encoder)
1379 return NULL;
1380
1381 encoder = &mga_encoder->base;
1382 encoder->possible_crtcs = 0x1;
1383
1384 drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
1385 DRM_MODE_ENCODER_DAC);
1386 drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
1387
1388 return encoder;
1389 }
1390
1391
1392 static int mga_vga_get_modes(struct drm_connector *connector)
1393 {
1394 struct mga_connector *mga_connector = to_mga_connector(connector);
1395 struct edid *edid;
1396 int ret = 0;
1397
1398 edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
1399 if (edid) {
1400 drm_mode_connector_update_edid_property(connector, edid);
1401 ret = drm_add_edid_modes(connector, edid);
1402 connector->display_info.raw_edid = NULL;
1403 kfree(edid);
1404 }
1405 return ret;
1406 }
1407
1408 static int mga_vga_mode_valid(struct drm_connector *connector,
1409 struct drm_display_mode *mode)
1410 {
1411 /* FIXME: Add bandwidth and g200se limitations */
1412
1413 if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
1414 mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
1415 mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
1416 mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
1417 return MODE_BAD;
1418 }
1419
1420 return MODE_OK;
1421 }
1422
1423 struct drm_encoder *mga_connector_best_encoder(struct drm_connector
1424 *connector)
1425 {
1426 int enc_id = connector->encoder_ids[0];
1427 struct drm_mode_object *obj;
1428 struct drm_encoder *encoder;
1429
1430 /* pick the encoder ids */
1431 if (enc_id) {
1432 obj =
1433 drm_mode_object_find(connector->dev, enc_id,
1434 DRM_MODE_OBJECT_ENCODER);
1435 if (!obj)
1436 return NULL;
1437 encoder = obj_to_encoder(obj);
1438 return encoder;
1439 }
1440 return NULL;
1441 }
1442
1443 static enum drm_connector_status mga_vga_detect(struct drm_connector
1444 *connector, bool force)
1445 {
1446 return connector_status_connected;
1447 }
1448
1449 static void mga_connector_destroy(struct drm_connector *connector)
1450 {
1451 struct mga_connector *mga_connector = to_mga_connector(connector);
1452 mgag200_i2c_destroy(mga_connector->i2c);
1453 drm_connector_cleanup(connector);
1454 kfree(connector);
1455 }
1456
1457 struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
1458 .get_modes = mga_vga_get_modes,
1459 .mode_valid = mga_vga_mode_valid,
1460 .best_encoder = mga_connector_best_encoder,
1461 };
1462
1463 struct drm_connector_funcs mga_vga_connector_funcs = {
1464 .dpms = drm_helper_connector_dpms,
1465 .detect = mga_vga_detect,
1466 .fill_modes = drm_helper_probe_single_connector_modes,
1467 .destroy = mga_connector_destroy,
1468 };
1469
1470 static struct drm_connector *mga_vga_init(struct drm_device *dev)
1471 {
1472 struct drm_connector *connector;
1473 struct mga_connector *mga_connector;
1474
1475 mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
1476 if (!mga_connector)
1477 return NULL;
1478
1479 connector = &mga_connector->base;
1480
1481 drm_connector_init(dev, connector,
1482 &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1483
1484 drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
1485
1486 mga_connector->i2c = mgag200_i2c_create(dev);
1487 if (!mga_connector->i2c)
1488 DRM_ERROR("failed to add ddc bus\n");
1489
1490 return connector;
1491 }
1492
1493
1494 int mgag200_modeset_init(struct mga_device *mdev)
1495 {
1496 struct drm_encoder *encoder;
1497 struct drm_connector *connector;
1498 int ret;
1499
1500 mdev->mode_info.mode_config_initialized = true;
1501
1502 mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
1503 mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
1504
1505 mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
1506
1507 mga_crtc_init(mdev->dev);
1508
1509 encoder = mga_encoder_init(mdev->dev);
1510 if (!encoder) {
1511 DRM_ERROR("mga_encoder_init failed\n");
1512 return -1;
1513 }
1514
1515 connector = mga_vga_init(mdev->dev);
1516 if (!connector) {
1517 DRM_ERROR("mga_vga_init failed\n");
1518 return -1;
1519 }
1520
1521 drm_mode_connector_attach_encoder(connector, encoder);
1522
1523 ret = mgag200_fbdev_init(mdev);
1524 if (ret) {
1525 DRM_ERROR("mga_fbdev_init failed\n");
1526 return ret;
1527 }
1528
1529 return 0;
1530 }
1531
1532 void mgag200_modeset_fini(struct mga_device *mdev)
1533 {
1534
1535 }
This page took 0.085758 seconds and 5 git commands to generate.