b90aa5c1f90a1790cc5a2b83cdc40f006a6663b9
[deliverable/linux.git] / drivers / gpu / drm / nouveau / dispnv04 / crtc.c
1 /*
2 * Copyright 1993-2003 NVIDIA, Corporation
3 * Copyright 2006 Dave Airlie
4 * Copyright 2007 Maarten Maathuis
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25 #include <linux/pm_runtime.h>
26
27 #include <drm/drmP.h>
28 #include <drm/drm_crtc_helper.h>
29
30 #include "nouveau_drm.h"
31 #include "nouveau_reg.h"
32 #include "nouveau_bo.h"
33 #include "nouveau_gem.h"
34 #include "nouveau_encoder.h"
35 #include "nouveau_connector.h"
36 #include "nouveau_crtc.h"
37 #include "hw.h"
38 #include "nvreg.h"
39 #include "nouveau_fbcon.h"
40 #include "disp.h"
41
42 #include <subdev/bios/pll.h>
43 #include <subdev/clock.h>
44
45 static int
46 nv04_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
47 struct drm_framebuffer *old_fb);
48
49 static void
50 crtc_wr_cio_state(struct drm_crtc *crtc, struct nv04_crtc_reg *crtcstate, int index)
51 {
52 NVWriteVgaCrtc(crtc->dev, nouveau_crtc(crtc)->index, index,
53 crtcstate->CRTC[index]);
54 }
55
56 static void nv_crtc_set_digital_vibrance(struct drm_crtc *crtc, int level)
57 {
58 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
59 struct drm_device *dev = crtc->dev;
60 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
61
62 regp->CRTC[NV_CIO_CRE_CSB] = nv_crtc->saturation = level;
63 if (nv_crtc->saturation && nv_gf4_disp_arch(crtc->dev)) {
64 regp->CRTC[NV_CIO_CRE_CSB] = 0x80;
65 regp->CRTC[NV_CIO_CRE_5B] = nv_crtc->saturation << 2;
66 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_5B);
67 }
68 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_CSB);
69 }
70
71 static void nv_crtc_set_image_sharpening(struct drm_crtc *crtc, int level)
72 {
73 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
74 struct drm_device *dev = crtc->dev;
75 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
76
77 nv_crtc->sharpness = level;
78 if (level < 0) /* blur is in hw range 0x3f -> 0x20 */
79 level += 0x40;
80 regp->ramdac_634 = level;
81 NVWriteRAMDAC(crtc->dev, nv_crtc->index, NV_PRAMDAC_634, regp->ramdac_634);
82 }
83
84 #define PLLSEL_VPLL1_MASK \
85 (NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_VPLL \
86 | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK_RATIO_DB2)
87 #define PLLSEL_VPLL2_MASK \
88 (NV_PRAMDAC_PLL_COEFF_SELECT_PLL_SOURCE_VPLL2 \
89 | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK2_RATIO_DB2)
90 #define PLLSEL_TV_MASK \
91 (NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK1 \
92 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK1 \
93 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK2 \
94 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK2)
95
96 /* NV4x 0x40.. pll notes:
97 * gpu pll: 0x4000 + 0x4004
98 * ?gpu? pll: 0x4008 + 0x400c
99 * vpll1: 0x4010 + 0x4014
100 * vpll2: 0x4018 + 0x401c
101 * mpll: 0x4020 + 0x4024
102 * mpll: 0x4038 + 0x403c
103 *
104 * the first register of each pair has some unknown details:
105 * bits 0-7: redirected values from elsewhere? (similar to PLL_SETUP_CONTROL?)
106 * bits 20-23: (mpll) something to do with post divider?
107 * bits 28-31: related to single stage mode? (bit 8/12)
108 */
109
110 static void nv_crtc_calc_state_ext(struct drm_crtc *crtc, struct drm_display_mode * mode, int dot_clock)
111 {
112 struct drm_device *dev = crtc->dev;
113 struct nouveau_drm *drm = nouveau_drm(dev);
114 struct nouveau_bios *bios = nvkm_bios(&drm->device);
115 struct nouveau_clock *clk = nvkm_clock(&drm->device);
116 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
117 struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
118 struct nv04_crtc_reg *regp = &state->crtc_reg[nv_crtc->index];
119 struct nouveau_pll_vals *pv = &regp->pllvals;
120 struct nvbios_pll pll_lim;
121
122 if (nvbios_pll_parse(bios, nv_crtc->index ? PLL_VPLL1 : PLL_VPLL0,
123 &pll_lim))
124 return;
125
126 /* NM2 == 0 is used to determine single stage mode on two stage plls */
127 pv->NM2 = 0;
128
129 /* for newer nv4x the blob uses only the first stage of the vpll below a
130 * certain clock. for a certain nv4b this is 150MHz. since the max
131 * output frequency of the first stage for this card is 300MHz, it is
132 * assumed the threshold is given by vco1 maxfreq/2
133 */
134 /* for early nv4x, specifically nv40 and *some* nv43 (devids 0 and 6,
135 * not 8, others unknown), the blob always uses both plls. no problem
136 * has yet been observed in allowing the use a single stage pll on all
137 * nv43 however. the behaviour of single stage use is untested on nv40
138 */
139 if (drm->device.info.chipset > 0x40 && dot_clock <= (pll_lim.vco1.max_freq / 2))
140 memset(&pll_lim.vco2, 0, sizeof(pll_lim.vco2));
141
142
143 if (!clk->pll_calc(clk, &pll_lim, dot_clock, pv))
144 return;
145
146 state->pllsel &= PLLSEL_VPLL1_MASK | PLLSEL_VPLL2_MASK | PLLSEL_TV_MASK;
147
148 /* The blob uses this always, so let's do the same */
149 if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE)
150 state->pllsel |= NV_PRAMDAC_PLL_COEFF_SELECT_USE_VPLL2_TRUE;
151 /* again nv40 and some nv43 act more like nv3x as described above */
152 if (drm->device.info.chipset < 0x41)
153 state->pllsel |= NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_MPLL |
154 NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_NVPLL;
155 state->pllsel |= nv_crtc->index ? PLLSEL_VPLL2_MASK : PLLSEL_VPLL1_MASK;
156
157 if (pv->NM2)
158 NV_DEBUG(drm, "vpll: n1 %d n2 %d m1 %d m2 %d log2p %d\n",
159 pv->N1, pv->N2, pv->M1, pv->M2, pv->log2P);
160 else
161 NV_DEBUG(drm, "vpll: n %d m %d log2p %d\n",
162 pv->N1, pv->M1, pv->log2P);
163
164 nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.offset);
165 }
166
167 static void
168 nv_crtc_dpms(struct drm_crtc *crtc, int mode)
169 {
170 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
171 struct drm_device *dev = crtc->dev;
172 struct nouveau_drm *drm = nouveau_drm(dev);
173 unsigned char seq1 = 0, crtc17 = 0;
174 unsigned char crtc1A;
175
176 NV_DEBUG(drm, "Setting dpms mode %d on CRTC %d\n", mode,
177 nv_crtc->index);
178
179 if (nv_crtc->last_dpms == mode) /* Don't do unnecessary mode changes. */
180 return;
181
182 nv_crtc->last_dpms = mode;
183
184 if (nv_two_heads(dev))
185 NVSetOwner(dev, nv_crtc->index);
186
187 /* nv4ref indicates these two RPC1 bits inhibit h/v sync */
188 crtc1A = NVReadVgaCrtc(dev, nv_crtc->index,
189 NV_CIO_CRE_RPC1_INDEX) & ~0xC0;
190 switch (mode) {
191 case DRM_MODE_DPMS_STANDBY:
192 /* Screen: Off; HSync: Off, VSync: On -- Not Supported */
193 seq1 = 0x20;
194 crtc17 = 0x80;
195 crtc1A |= 0x80;
196 break;
197 case DRM_MODE_DPMS_SUSPEND:
198 /* Screen: Off; HSync: On, VSync: Off -- Not Supported */
199 seq1 = 0x20;
200 crtc17 = 0x80;
201 crtc1A |= 0x40;
202 break;
203 case DRM_MODE_DPMS_OFF:
204 /* Screen: Off; HSync: Off, VSync: Off */
205 seq1 = 0x20;
206 crtc17 = 0x00;
207 crtc1A |= 0xC0;
208 break;
209 case DRM_MODE_DPMS_ON:
210 default:
211 /* Screen: On; HSync: On, VSync: On */
212 seq1 = 0x00;
213 crtc17 = 0x80;
214 break;
215 }
216
217 NVVgaSeqReset(dev, nv_crtc->index, true);
218 /* Each head has it's own sequencer, so we can turn it off when we want */
219 seq1 |= (NVReadVgaSeq(dev, nv_crtc->index, NV_VIO_SR_CLOCK_INDEX) & ~0x20);
220 NVWriteVgaSeq(dev, nv_crtc->index, NV_VIO_SR_CLOCK_INDEX, seq1);
221 crtc17 |= (NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CR_MODE_INDEX) & ~0x80);
222 mdelay(10);
223 NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CR_MODE_INDEX, crtc17);
224 NVVgaSeqReset(dev, nv_crtc->index, false);
225
226 NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RPC1_INDEX, crtc1A);
227 }
228
229 static bool
230 nv_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode,
231 struct drm_display_mode *adjusted_mode)
232 {
233 return true;
234 }
235
236 static void
237 nv_crtc_mode_set_vga(struct drm_crtc *crtc, struct drm_display_mode *mode)
238 {
239 struct drm_device *dev = crtc->dev;
240 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
241 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
242 struct drm_framebuffer *fb = crtc->primary->fb;
243
244 /* Calculate our timings */
245 int horizDisplay = (mode->crtc_hdisplay >> 3) - 1;
246 int horizStart = (mode->crtc_hsync_start >> 3) + 1;
247 int horizEnd = (mode->crtc_hsync_end >> 3) + 1;
248 int horizTotal = (mode->crtc_htotal >> 3) - 5;
249 int horizBlankStart = (mode->crtc_hdisplay >> 3) - 1;
250 int horizBlankEnd = (mode->crtc_htotal >> 3) - 1;
251 int vertDisplay = mode->crtc_vdisplay - 1;
252 int vertStart = mode->crtc_vsync_start - 1;
253 int vertEnd = mode->crtc_vsync_end - 1;
254 int vertTotal = mode->crtc_vtotal - 2;
255 int vertBlankStart = mode->crtc_vdisplay - 1;
256 int vertBlankEnd = mode->crtc_vtotal - 1;
257
258 struct drm_encoder *encoder;
259 bool fp_output = false;
260
261 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
262 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
263
264 if (encoder->crtc == crtc &&
265 (nv_encoder->dcb->type == DCB_OUTPUT_LVDS ||
266 nv_encoder->dcb->type == DCB_OUTPUT_TMDS))
267 fp_output = true;
268 }
269
270 if (fp_output) {
271 vertStart = vertTotal - 3;
272 vertEnd = vertTotal - 2;
273 vertBlankStart = vertStart;
274 horizStart = horizTotal - 5;
275 horizEnd = horizTotal - 2;
276 horizBlankEnd = horizTotal + 4;
277 #if 0
278 if (dev->overlayAdaptor && drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
279 /* This reportedly works around some video overlay bandwidth problems */
280 horizTotal += 2;
281 #endif
282 }
283
284 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
285 vertTotal |= 1;
286
287 #if 0
288 ErrorF("horizDisplay: 0x%X \n", horizDisplay);
289 ErrorF("horizStart: 0x%X \n", horizStart);
290 ErrorF("horizEnd: 0x%X \n", horizEnd);
291 ErrorF("horizTotal: 0x%X \n", horizTotal);
292 ErrorF("horizBlankStart: 0x%X \n", horizBlankStart);
293 ErrorF("horizBlankEnd: 0x%X \n", horizBlankEnd);
294 ErrorF("vertDisplay: 0x%X \n", vertDisplay);
295 ErrorF("vertStart: 0x%X \n", vertStart);
296 ErrorF("vertEnd: 0x%X \n", vertEnd);
297 ErrorF("vertTotal: 0x%X \n", vertTotal);
298 ErrorF("vertBlankStart: 0x%X \n", vertBlankStart);
299 ErrorF("vertBlankEnd: 0x%X \n", vertBlankEnd);
300 #endif
301
302 /*
303 * compute correct Hsync & Vsync polarity
304 */
305 if ((mode->flags & (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))
306 && (mode->flags & (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) {
307
308 regp->MiscOutReg = 0x23;
309 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
310 regp->MiscOutReg |= 0x40;
311 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
312 regp->MiscOutReg |= 0x80;
313 } else {
314 int vdisplay = mode->vdisplay;
315 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
316 vdisplay *= 2;
317 if (mode->vscan > 1)
318 vdisplay *= mode->vscan;
319 if (vdisplay < 400)
320 regp->MiscOutReg = 0xA3; /* +hsync -vsync */
321 else if (vdisplay < 480)
322 regp->MiscOutReg = 0x63; /* -hsync +vsync */
323 else if (vdisplay < 768)
324 regp->MiscOutReg = 0xE3; /* -hsync -vsync */
325 else
326 regp->MiscOutReg = 0x23; /* +hsync +vsync */
327 }
328
329 /*
330 * Time Sequencer
331 */
332 regp->Sequencer[NV_VIO_SR_RESET_INDEX] = 0x00;
333 /* 0x20 disables the sequencer */
334 if (mode->flags & DRM_MODE_FLAG_CLKDIV2)
335 regp->Sequencer[NV_VIO_SR_CLOCK_INDEX] = 0x29;
336 else
337 regp->Sequencer[NV_VIO_SR_CLOCK_INDEX] = 0x21;
338 regp->Sequencer[NV_VIO_SR_PLANE_MASK_INDEX] = 0x0F;
339 regp->Sequencer[NV_VIO_SR_CHAR_MAP_INDEX] = 0x00;
340 regp->Sequencer[NV_VIO_SR_MEM_MODE_INDEX] = 0x0E;
341
342 /*
343 * CRTC
344 */
345 regp->CRTC[NV_CIO_CR_HDT_INDEX] = horizTotal;
346 regp->CRTC[NV_CIO_CR_HDE_INDEX] = horizDisplay;
347 regp->CRTC[NV_CIO_CR_HBS_INDEX] = horizBlankStart;
348 regp->CRTC[NV_CIO_CR_HBE_INDEX] = (1 << 7) |
349 XLATE(horizBlankEnd, 0, NV_CIO_CR_HBE_4_0);
350 regp->CRTC[NV_CIO_CR_HRS_INDEX] = horizStart;
351 regp->CRTC[NV_CIO_CR_HRE_INDEX] = XLATE(horizBlankEnd, 5, NV_CIO_CR_HRE_HBE_5) |
352 XLATE(horizEnd, 0, NV_CIO_CR_HRE_4_0);
353 regp->CRTC[NV_CIO_CR_VDT_INDEX] = vertTotal;
354 regp->CRTC[NV_CIO_CR_OVL_INDEX] = XLATE(vertStart, 9, NV_CIO_CR_OVL_VRS_9) |
355 XLATE(vertDisplay, 9, NV_CIO_CR_OVL_VDE_9) |
356 XLATE(vertTotal, 9, NV_CIO_CR_OVL_VDT_9) |
357 (1 << 4) |
358 XLATE(vertBlankStart, 8, NV_CIO_CR_OVL_VBS_8) |
359 XLATE(vertStart, 8, NV_CIO_CR_OVL_VRS_8) |
360 XLATE(vertDisplay, 8, NV_CIO_CR_OVL_VDE_8) |
361 XLATE(vertTotal, 8, NV_CIO_CR_OVL_VDT_8);
362 regp->CRTC[NV_CIO_CR_RSAL_INDEX] = 0x00;
363 regp->CRTC[NV_CIO_CR_CELL_HT_INDEX] = ((mode->flags & DRM_MODE_FLAG_DBLSCAN) ? MASK(NV_CIO_CR_CELL_HT_SCANDBL) : 0) |
364 1 << 6 |
365 XLATE(vertBlankStart, 9, NV_CIO_CR_CELL_HT_VBS_9);
366 regp->CRTC[NV_CIO_CR_CURS_ST_INDEX] = 0x00;
367 regp->CRTC[NV_CIO_CR_CURS_END_INDEX] = 0x00;
368 regp->CRTC[NV_CIO_CR_SA_HI_INDEX] = 0x00;
369 regp->CRTC[NV_CIO_CR_SA_LO_INDEX] = 0x00;
370 regp->CRTC[NV_CIO_CR_TCOFF_HI_INDEX] = 0x00;
371 regp->CRTC[NV_CIO_CR_TCOFF_LO_INDEX] = 0x00;
372 regp->CRTC[NV_CIO_CR_VRS_INDEX] = vertStart;
373 regp->CRTC[NV_CIO_CR_VRE_INDEX] = 1 << 5 | XLATE(vertEnd, 0, NV_CIO_CR_VRE_3_0);
374 regp->CRTC[NV_CIO_CR_VDE_INDEX] = vertDisplay;
375 /* framebuffer can be larger than crtc scanout area. */
376 regp->CRTC[NV_CIO_CR_OFFSET_INDEX] = fb->pitches[0] / 8;
377 regp->CRTC[NV_CIO_CR_ULINE_INDEX] = 0x00;
378 regp->CRTC[NV_CIO_CR_VBS_INDEX] = vertBlankStart;
379 regp->CRTC[NV_CIO_CR_VBE_INDEX] = vertBlankEnd;
380 regp->CRTC[NV_CIO_CR_MODE_INDEX] = 0x43;
381 regp->CRTC[NV_CIO_CR_LCOMP_INDEX] = 0xff;
382
383 /*
384 * Some extended CRTC registers (they are not saved with the rest of the vga regs).
385 */
386
387 /* framebuffer can be larger than crtc scanout area. */
388 regp->CRTC[NV_CIO_CRE_RPC0_INDEX] =
389 XLATE(fb->pitches[0] / 8, 8, NV_CIO_CRE_RPC0_OFFSET_10_8);
390 regp->CRTC[NV_CIO_CRE_42] =
391 XLATE(fb->pitches[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11);
392 regp->CRTC[NV_CIO_CRE_RPC1_INDEX] = mode->crtc_hdisplay < 1280 ?
393 MASK(NV_CIO_CRE_RPC1_LARGE) : 0x00;
394 regp->CRTC[NV_CIO_CRE_LSR_INDEX] = XLATE(horizBlankEnd, 6, NV_CIO_CRE_LSR_HBE_6) |
395 XLATE(vertBlankStart, 10, NV_CIO_CRE_LSR_VBS_10) |
396 XLATE(vertStart, 10, NV_CIO_CRE_LSR_VRS_10) |
397 XLATE(vertDisplay, 10, NV_CIO_CRE_LSR_VDE_10) |
398 XLATE(vertTotal, 10, NV_CIO_CRE_LSR_VDT_10);
399 regp->CRTC[NV_CIO_CRE_HEB__INDEX] = XLATE(horizStart, 8, NV_CIO_CRE_HEB_HRS_8) |
400 XLATE(horizBlankStart, 8, NV_CIO_CRE_HEB_HBS_8) |
401 XLATE(horizDisplay, 8, NV_CIO_CRE_HEB_HDE_8) |
402 XLATE(horizTotal, 8, NV_CIO_CRE_HEB_HDT_8);
403 regp->CRTC[NV_CIO_CRE_EBR_INDEX] = XLATE(vertBlankStart, 11, NV_CIO_CRE_EBR_VBS_11) |
404 XLATE(vertStart, 11, NV_CIO_CRE_EBR_VRS_11) |
405 XLATE(vertDisplay, 11, NV_CIO_CRE_EBR_VDE_11) |
406 XLATE(vertTotal, 11, NV_CIO_CRE_EBR_VDT_11);
407
408 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
409 horizTotal = (horizTotal >> 1) & ~1;
410 regp->CRTC[NV_CIO_CRE_ILACE__INDEX] = horizTotal;
411 regp->CRTC[NV_CIO_CRE_HEB__INDEX] |= XLATE(horizTotal, 8, NV_CIO_CRE_HEB_ILC_8);
412 } else
413 regp->CRTC[NV_CIO_CRE_ILACE__INDEX] = 0xff; /* interlace off */
414
415 /*
416 * Graphics Display Controller
417 */
418 regp->Graphics[NV_VIO_GX_SR_INDEX] = 0x00;
419 regp->Graphics[NV_VIO_GX_SREN_INDEX] = 0x00;
420 regp->Graphics[NV_VIO_GX_CCOMP_INDEX] = 0x00;
421 regp->Graphics[NV_VIO_GX_ROP_INDEX] = 0x00;
422 regp->Graphics[NV_VIO_GX_READ_MAP_INDEX] = 0x00;
423 regp->Graphics[NV_VIO_GX_MODE_INDEX] = 0x40; /* 256 color mode */
424 regp->Graphics[NV_VIO_GX_MISC_INDEX] = 0x05; /* map 64k mem + graphic mode */
425 regp->Graphics[NV_VIO_GX_DONT_CARE_INDEX] = 0x0F;
426 regp->Graphics[NV_VIO_GX_BIT_MASK_INDEX] = 0xFF;
427
428 regp->Attribute[0] = 0x00; /* standard colormap translation */
429 regp->Attribute[1] = 0x01;
430 regp->Attribute[2] = 0x02;
431 regp->Attribute[3] = 0x03;
432 regp->Attribute[4] = 0x04;
433 regp->Attribute[5] = 0x05;
434 regp->Attribute[6] = 0x06;
435 regp->Attribute[7] = 0x07;
436 regp->Attribute[8] = 0x08;
437 regp->Attribute[9] = 0x09;
438 regp->Attribute[10] = 0x0A;
439 regp->Attribute[11] = 0x0B;
440 regp->Attribute[12] = 0x0C;
441 regp->Attribute[13] = 0x0D;
442 regp->Attribute[14] = 0x0E;
443 regp->Attribute[15] = 0x0F;
444 regp->Attribute[NV_CIO_AR_MODE_INDEX] = 0x01; /* Enable graphic mode */
445 /* Non-vga */
446 regp->Attribute[NV_CIO_AR_OSCAN_INDEX] = 0x00;
447 regp->Attribute[NV_CIO_AR_PLANE_INDEX] = 0x0F; /* enable all color planes */
448 regp->Attribute[NV_CIO_AR_HPP_INDEX] = 0x00;
449 regp->Attribute[NV_CIO_AR_CSEL_INDEX] = 0x00;
450 }
451
452 /**
453 * Sets up registers for the given mode/adjusted_mode pair.
454 *
455 * The clocks, CRTCs and outputs attached to this CRTC must be off.
456 *
457 * This shouldn't enable any clocks, CRTCs, or outputs, but they should
458 * be easily turned on/off after this.
459 */
460 static void
461 nv_crtc_mode_set_regs(struct drm_crtc *crtc, struct drm_display_mode * mode)
462 {
463 struct drm_device *dev = crtc->dev;
464 struct nouveau_drm *drm = nouveau_drm(dev);
465 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
466 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
467 struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index];
468 struct drm_encoder *encoder;
469 bool lvds_output = false, tmds_output = false, tv_output = false,
470 off_chip_digital = false;
471
472 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
473 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
474 bool digital = false;
475
476 if (encoder->crtc != crtc)
477 continue;
478
479 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS)
480 digital = lvds_output = true;
481 if (nv_encoder->dcb->type == DCB_OUTPUT_TV)
482 tv_output = true;
483 if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS)
484 digital = tmds_output = true;
485 if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP && digital)
486 off_chip_digital = true;
487 }
488
489 /* Registers not directly related to the (s)vga mode */
490
491 /* What is the meaning of this register? */
492 /* A few popular values are 0x18, 0x1c, 0x38, 0x3c */
493 regp->CRTC[NV_CIO_CRE_ENH_INDEX] = savep->CRTC[NV_CIO_CRE_ENH_INDEX] & ~(1<<5);
494
495 regp->crtc_eng_ctrl = 0;
496 /* Except for rare conditions I2C is enabled on the primary crtc */
497 if (nv_crtc->index == 0)
498 regp->crtc_eng_ctrl |= NV_CRTC_FSEL_I2C;
499 #if 0
500 /* Set overlay to desired crtc. */
501 if (dev->overlayAdaptor) {
502 NVPortPrivPtr pPriv = GET_OVERLAY_PRIVATE(dev);
503 if (pPriv->overlayCRTC == nv_crtc->index)
504 regp->crtc_eng_ctrl |= NV_CRTC_FSEL_OVERLAY;
505 }
506 #endif
507
508 /* ADDRESS_SPACE_PNVM is the same as setting HCUR_ASI */
509 regp->cursor_cfg = NV_PCRTC_CURSOR_CONFIG_CUR_LINES_64 |
510 NV_PCRTC_CURSOR_CONFIG_CUR_PIXELS_64 |
511 NV_PCRTC_CURSOR_CONFIG_ADDRESS_SPACE_PNVM;
512 if (drm->device.info.chipset >= 0x11)
513 regp->cursor_cfg |= NV_PCRTC_CURSOR_CONFIG_CUR_BPP_32;
514 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
515 regp->cursor_cfg |= NV_PCRTC_CURSOR_CONFIG_DOUBLE_SCAN_ENABLE;
516
517 /* Unblock some timings */
518 regp->CRTC[NV_CIO_CRE_53] = 0;
519 regp->CRTC[NV_CIO_CRE_54] = 0;
520
521 /* 0x00 is disabled, 0x11 is lvds, 0x22 crt and 0x88 tmds */
522 if (lvds_output)
523 regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x11;
524 else if (tmds_output)
525 regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x88;
526 else
527 regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x22;
528
529 /* These values seem to vary */
530 /* This register seems to be used by the bios to make certain decisions on some G70 cards? */
531 regp->CRTC[NV_CIO_CRE_SCRATCH4__INDEX] = savep->CRTC[NV_CIO_CRE_SCRATCH4__INDEX];
532
533 nv_crtc_set_digital_vibrance(crtc, nv_crtc->saturation);
534
535 /* probably a scratch reg, but kept for cargo-cult purposes:
536 * bit0: crtc0?, head A
537 * bit6: lvds, head A
538 * bit7: (only in X), head A
539 */
540 if (nv_crtc->index == 0)
541 regp->CRTC[NV_CIO_CRE_4B] = savep->CRTC[NV_CIO_CRE_4B] | 0x80;
542
543 /* The blob seems to take the current value from crtc 0, add 4 to that
544 * and reuse the old value for crtc 1 */
545 regp->CRTC[NV_CIO_CRE_TVOUT_LATENCY] = nv04_display(dev)->saved_reg.crtc_reg[0].CRTC[NV_CIO_CRE_TVOUT_LATENCY];
546 if (!nv_crtc->index)
547 regp->CRTC[NV_CIO_CRE_TVOUT_LATENCY] += 4;
548
549 /* the blob sometimes sets |= 0x10 (which is the same as setting |=
550 * 1 << 30 on 0x60.830), for no apparent reason */
551 regp->CRTC[NV_CIO_CRE_59] = off_chip_digital;
552
553 if (drm->device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
554 regp->CRTC[0x9f] = off_chip_digital ? 0x11 : 0x1;
555
556 regp->crtc_830 = mode->crtc_vdisplay - 3;
557 regp->crtc_834 = mode->crtc_vdisplay - 1;
558
559 if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE)
560 /* This is what the blob does */
561 regp->crtc_850 = NVReadCRTC(dev, 0, NV_PCRTC_850);
562
563 if (drm->device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
564 regp->gpio_ext = NVReadCRTC(dev, 0, NV_PCRTC_GPIO_EXT);
565
566 if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
567 regp->crtc_cfg = NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC;
568 else
569 regp->crtc_cfg = NV04_PCRTC_CONFIG_START_ADDRESS_HSYNC;
570
571 /* Some misc regs */
572 if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE) {
573 regp->CRTC[NV_CIO_CRE_85] = 0xFF;
574 regp->CRTC[NV_CIO_CRE_86] = 0x1;
575 }
576
577 regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] = (crtc->primary->fb->depth + 1) / 8;
578 /* Enable slaved mode (called MODE_TV in nv4ref.h) */
579 if (lvds_output || tmds_output || tv_output)
580 regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] |= (1 << 7);
581
582 /* Generic PRAMDAC regs */
583
584 if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
585 /* Only bit that bios and blob set. */
586 regp->nv10_cursync = (1 << 25);
587
588 regp->ramdac_gen_ctrl = NV_PRAMDAC_GENERAL_CONTROL_BPC_8BITS |
589 NV_PRAMDAC_GENERAL_CONTROL_VGA_STATE_SEL |
590 NV_PRAMDAC_GENERAL_CONTROL_PIXMIX_ON;
591 if (crtc->primary->fb->depth == 16)
592 regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
593 if (drm->device.info.chipset >= 0x11)
594 regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_PIPE_LONG;
595
596 regp->ramdac_630 = 0; /* turn off green mode (tv test pattern?) */
597 regp->tv_setup = 0;
598
599 nv_crtc_set_image_sharpening(crtc, nv_crtc->sharpness);
600
601 /* Some values the blob sets */
602 regp->ramdac_8c0 = 0x100;
603 regp->ramdac_a20 = 0x0;
604 regp->ramdac_a24 = 0xfffff;
605 regp->ramdac_a34 = 0x1;
606 }
607
608 static int
609 nv_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
610 {
611 struct nv04_display *disp = nv04_display(crtc->dev);
612 struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->primary->fb);
613 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
614 int ret;
615
616 ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
617 if (ret == 0) {
618 if (disp->image[nv_crtc->index])
619 nouveau_bo_unpin(disp->image[nv_crtc->index]);
620 nouveau_bo_ref(nvfb->nvbo, &disp->image[nv_crtc->index]);
621 }
622
623 return ret;
624 }
625
626 /**
627 * Sets up registers for the given mode/adjusted_mode pair.
628 *
629 * The clocks, CRTCs and outputs attached to this CRTC must be off.
630 *
631 * This shouldn't enable any clocks, CRTCs, or outputs, but they should
632 * be easily turned on/off after this.
633 */
634 static int
635 nv_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode,
636 struct drm_display_mode *adjusted_mode,
637 int x, int y, struct drm_framebuffer *old_fb)
638 {
639 struct drm_device *dev = crtc->dev;
640 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
641 struct nouveau_drm *drm = nouveau_drm(dev);
642 int ret;
643
644 NV_DEBUG(drm, "CTRC mode on CRTC %d:\n", nv_crtc->index);
645 drm_mode_debug_printmodeline(adjusted_mode);
646
647 ret = nv_crtc_swap_fbs(crtc, old_fb);
648 if (ret)
649 return ret;
650
651 /* unlock must come after turning off FP_TG_CONTROL in output_prepare */
652 nv_lock_vga_crtc_shadow(dev, nv_crtc->index, -1);
653
654 nv_crtc_mode_set_vga(crtc, adjusted_mode);
655 /* calculated in nv04_dfp_prepare, nv40 needs it written before calculating PLLs */
656 if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE)
657 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk);
658 nv_crtc_mode_set_regs(crtc, adjusted_mode);
659 nv_crtc_calc_state_ext(crtc, mode, adjusted_mode->clock);
660 return 0;
661 }
662
663 static void nv_crtc_save(struct drm_crtc *crtc)
664 {
665 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
666 struct drm_device *dev = crtc->dev;
667 struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
668 struct nv04_crtc_reg *crtc_state = &state->crtc_reg[nv_crtc->index];
669 struct nv04_mode_state *saved = &nv04_display(dev)->saved_reg;
670 struct nv04_crtc_reg *crtc_saved = &saved->crtc_reg[nv_crtc->index];
671
672 if (nv_two_heads(crtc->dev))
673 NVSetOwner(crtc->dev, nv_crtc->index);
674
675 nouveau_hw_save_state(crtc->dev, nv_crtc->index, saved);
676
677 /* init some state to saved value */
678 state->sel_clk = saved->sel_clk & ~(0x5 << 16);
679 crtc_state->CRTC[NV_CIO_CRE_LCD__INDEX] = crtc_saved->CRTC[NV_CIO_CRE_LCD__INDEX];
680 state->pllsel = saved->pllsel & ~(PLLSEL_VPLL1_MASK | PLLSEL_VPLL2_MASK | PLLSEL_TV_MASK);
681 crtc_state->gpio_ext = crtc_saved->gpio_ext;
682 }
683
684 static void nv_crtc_restore(struct drm_crtc *crtc)
685 {
686 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
687 struct drm_device *dev = crtc->dev;
688 int head = nv_crtc->index;
689 uint8_t saved_cr21 = nv04_display(dev)->saved_reg.crtc_reg[head].CRTC[NV_CIO_CRE_21];
690
691 if (nv_two_heads(crtc->dev))
692 NVSetOwner(crtc->dev, head);
693
694 nouveau_hw_load_state(crtc->dev, head, &nv04_display(dev)->saved_reg);
695 nv_lock_vga_crtc_shadow(crtc->dev, head, saved_cr21);
696
697 nv_crtc->last_dpms = NV_DPMS_CLEARED;
698 }
699
700 static void nv_crtc_prepare(struct drm_crtc *crtc)
701 {
702 struct drm_device *dev = crtc->dev;
703 struct nouveau_drm *drm = nouveau_drm(dev);
704 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
705 struct drm_crtc_helper_funcs *funcs = crtc->helper_private;
706
707 if (nv_two_heads(dev))
708 NVSetOwner(dev, nv_crtc->index);
709
710 drm_vblank_pre_modeset(dev, nv_crtc->index);
711 funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
712
713 NVBlankScreen(dev, nv_crtc->index, true);
714
715 /* Some more preparation. */
716 NVWriteCRTC(dev, nv_crtc->index, NV_PCRTC_CONFIG, NV_PCRTC_CONFIG_START_ADDRESS_NON_VGA);
717 if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE) {
718 uint32_t reg900 = NVReadRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_900);
719 NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_900, reg900 & ~0x10000);
720 }
721 }
722
723 static void nv_crtc_commit(struct drm_crtc *crtc)
724 {
725 struct drm_device *dev = crtc->dev;
726 struct drm_crtc_helper_funcs *funcs = crtc->helper_private;
727 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
728
729 nouveau_hw_load_state(dev, nv_crtc->index, &nv04_display(dev)->mode_reg);
730 nv04_crtc_mode_set_base(crtc, crtc->x, crtc->y, NULL);
731
732 #ifdef __BIG_ENDIAN
733 /* turn on LFB swapping */
734 {
735 uint8_t tmp = NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RCR);
736 tmp |= MASK(NV_CIO_CRE_RCR_ENDIAN_BIG);
737 NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RCR, tmp);
738 }
739 #endif
740
741 funcs->dpms(crtc, DRM_MODE_DPMS_ON);
742 drm_vblank_post_modeset(dev, nv_crtc->index);
743 }
744
745 static void nv_crtc_destroy(struct drm_crtc *crtc)
746 {
747 struct nv04_display *disp = nv04_display(crtc->dev);
748 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
749
750 if (!nv_crtc)
751 return;
752
753 drm_crtc_cleanup(crtc);
754
755 if (disp->image[nv_crtc->index])
756 nouveau_bo_unpin(disp->image[nv_crtc->index]);
757 nouveau_bo_ref(NULL, &disp->image[nv_crtc->index]);
758
759 nouveau_bo_unmap(nv_crtc->cursor.nvbo);
760 nouveau_bo_unpin(nv_crtc->cursor.nvbo);
761 nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
762 kfree(nv_crtc);
763 }
764
765 static void
766 nv_crtc_gamma_load(struct drm_crtc *crtc)
767 {
768 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
769 struct drm_device *dev = nv_crtc->base.dev;
770 struct rgb { uint8_t r, g, b; } __attribute__((packed)) *rgbs;
771 int i;
772
773 rgbs = (struct rgb *)nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].DAC;
774 for (i = 0; i < 256; i++) {
775 rgbs[i].r = nv_crtc->lut.r[i] >> 8;
776 rgbs[i].g = nv_crtc->lut.g[i] >> 8;
777 rgbs[i].b = nv_crtc->lut.b[i] >> 8;
778 }
779
780 nouveau_hw_load_state_palette(dev, nv_crtc->index, &nv04_display(dev)->mode_reg);
781 }
782
783 static void
784 nv_crtc_disable(struct drm_crtc *crtc)
785 {
786 struct nv04_display *disp = nv04_display(crtc->dev);
787 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
788 if (disp->image[nv_crtc->index])
789 nouveau_bo_unpin(disp->image[nv_crtc->index]);
790 nouveau_bo_ref(NULL, &disp->image[nv_crtc->index]);
791 }
792
793 static void
794 nv_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, uint32_t start,
795 uint32_t size)
796 {
797 int end = (start + size > 256) ? 256 : start + size, i;
798 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
799
800 for (i = start; i < end; i++) {
801 nv_crtc->lut.r[i] = r[i];
802 nv_crtc->lut.g[i] = g[i];
803 nv_crtc->lut.b[i] = b[i];
804 }
805
806 /* We need to know the depth before we upload, but it's possible to
807 * get called before a framebuffer is bound. If this is the case,
808 * mark the lut values as dirty by setting depth==0, and it'll be
809 * uploaded on the first mode_set_base()
810 */
811 if (!nv_crtc->base.primary->fb) {
812 nv_crtc->lut.depth = 0;
813 return;
814 }
815
816 nv_crtc_gamma_load(crtc);
817 }
818
819 static int
820 nv04_crtc_do_mode_set_base(struct drm_crtc *crtc,
821 struct drm_framebuffer *passed_fb,
822 int x, int y, bool atomic)
823 {
824 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
825 struct drm_device *dev = crtc->dev;
826 struct nouveau_drm *drm = nouveau_drm(dev);
827 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
828 struct drm_framebuffer *drm_fb;
829 struct nouveau_framebuffer *fb;
830 int arb_burst, arb_lwm;
831
832 NV_DEBUG(drm, "index %d\n", nv_crtc->index);
833
834 /* no fb bound */
835 if (!atomic && !crtc->primary->fb) {
836 NV_DEBUG(drm, "No FB bound\n");
837 return 0;
838 }
839
840 /* If atomic, we want to switch to the fb we were passed, so
841 * now we update pointers to do that.
842 */
843 if (atomic) {
844 drm_fb = passed_fb;
845 fb = nouveau_framebuffer(passed_fb);
846 } else {
847 drm_fb = crtc->primary->fb;
848 fb = nouveau_framebuffer(crtc->primary->fb);
849 }
850
851 nv_crtc->fb.offset = fb->nvbo->bo.offset;
852
853 if (nv_crtc->lut.depth != drm_fb->depth) {
854 nv_crtc->lut.depth = drm_fb->depth;
855 nv_crtc_gamma_load(crtc);
856 }
857
858 /* Update the framebuffer format. */
859 regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] &= ~3;
860 regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] |= (crtc->primary->fb->depth + 1) / 8;
861 regp->ramdac_gen_ctrl &= ~NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
862 if (crtc->primary->fb->depth == 16)
863 regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
864 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_PIXEL_INDEX);
865 NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_GENERAL_CONTROL,
866 regp->ramdac_gen_ctrl);
867
868 regp->CRTC[NV_CIO_CR_OFFSET_INDEX] = drm_fb->pitches[0] >> 3;
869 regp->CRTC[NV_CIO_CRE_RPC0_INDEX] =
870 XLATE(drm_fb->pitches[0] >> 3, 8, NV_CIO_CRE_RPC0_OFFSET_10_8);
871 regp->CRTC[NV_CIO_CRE_42] =
872 XLATE(drm_fb->pitches[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11);
873 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_RPC0_INDEX);
874 crtc_wr_cio_state(crtc, regp, NV_CIO_CR_OFFSET_INDEX);
875 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_42);
876
877 /* Update the framebuffer location. */
878 regp->fb_start = nv_crtc->fb.offset & ~3;
879 regp->fb_start += (y * drm_fb->pitches[0]) + (x * drm_fb->bits_per_pixel / 8);
880 nv_set_crtc_base(dev, nv_crtc->index, regp->fb_start);
881
882 /* Update the arbitration parameters. */
883 nouveau_calc_arb(dev, crtc->mode.clock, drm_fb->bits_per_pixel,
884 &arb_burst, &arb_lwm);
885
886 regp->CRTC[NV_CIO_CRE_FF_INDEX] = arb_burst;
887 regp->CRTC[NV_CIO_CRE_FFLWM__INDEX] = arb_lwm & 0xff;
888 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_FF_INDEX);
889 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_FFLWM__INDEX);
890
891 if (drm->device.info.family >= NV_DEVICE_INFO_V0_KELVIN) {
892 regp->CRTC[NV_CIO_CRE_47] = arb_lwm >> 8;
893 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_47);
894 }
895
896 return 0;
897 }
898
899 static int
900 nv04_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
901 struct drm_framebuffer *old_fb)
902 {
903 int ret = nv_crtc_swap_fbs(crtc, old_fb);
904 if (ret)
905 return ret;
906 return nv04_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
907 }
908
909 static int
910 nv04_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
911 struct drm_framebuffer *fb,
912 int x, int y, enum mode_set_atomic state)
913 {
914 struct nouveau_drm *drm = nouveau_drm(crtc->dev);
915 struct drm_device *dev = drm->dev;
916
917 if (state == ENTER_ATOMIC_MODE_SET)
918 nouveau_fbcon_accel_save_disable(dev);
919 else
920 nouveau_fbcon_accel_restore(dev);
921
922 return nv04_crtc_do_mode_set_base(crtc, fb, x, y, true);
923 }
924
925 static void nv04_cursor_upload(struct drm_device *dev, struct nouveau_bo *src,
926 struct nouveau_bo *dst)
927 {
928 int width = nv_cursor_width(dev);
929 uint32_t pixel;
930 int i, j;
931
932 for (i = 0; i < width; i++) {
933 for (j = 0; j < width; j++) {
934 pixel = nouveau_bo_rd32(src, i*64 + j);
935
936 nouveau_bo_wr16(dst, i*width + j, (pixel & 0x80000000) >> 16
937 | (pixel & 0xf80000) >> 9
938 | (pixel & 0xf800) >> 6
939 | (pixel & 0xf8) >> 3);
940 }
941 }
942 }
943
944 static void nv11_cursor_upload(struct drm_device *dev, struct nouveau_bo *src,
945 struct nouveau_bo *dst)
946 {
947 uint32_t pixel;
948 int alpha, i;
949
950 /* nv11+ supports premultiplied (PM), or non-premultiplied (NPM) alpha
951 * cursors (though NPM in combination with fp dithering may not work on
952 * nv11, from "nv" driver history)
953 * NPM mode needs NV_PCRTC_CURSOR_CONFIG_ALPHA_BLEND set and is what the
954 * blob uses, however we get given PM cursors so we use PM mode
955 */
956 for (i = 0; i < 64 * 64; i++) {
957 pixel = nouveau_bo_rd32(src, i);
958
959 /* hw gets unhappy if alpha <= rgb values. for a PM image "less
960 * than" shouldn't happen; fix "equal to" case by adding one to
961 * alpha channel (slightly inaccurate, but so is attempting to
962 * get back to NPM images, due to limits of integer precision)
963 */
964 alpha = pixel >> 24;
965 if (alpha > 0 && alpha < 255)
966 pixel = (pixel & 0x00ffffff) | ((alpha + 1) << 24);
967
968 #ifdef __BIG_ENDIAN
969 {
970 struct nouveau_drm *drm = nouveau_drm(dev);
971
972 if (drm->device.info.chipset == 0x11) {
973 pixel = ((pixel & 0x000000ff) << 24) |
974 ((pixel & 0x0000ff00) << 8) |
975 ((pixel & 0x00ff0000) >> 8) |
976 ((pixel & 0xff000000) >> 24);
977 }
978 }
979 #endif
980
981 nouveau_bo_wr32(dst, i, pixel);
982 }
983 }
984
985 static int
986 nv04_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
987 uint32_t buffer_handle, uint32_t width, uint32_t height)
988 {
989 struct nouveau_drm *drm = nouveau_drm(crtc->dev);
990 struct drm_device *dev = drm->dev;
991 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
992 struct nouveau_bo *cursor = NULL;
993 struct drm_gem_object *gem;
994 int ret = 0;
995
996 if (!buffer_handle) {
997 nv_crtc->cursor.hide(nv_crtc, true);
998 return 0;
999 }
1000
1001 if (width != 64 || height != 64)
1002 return -EINVAL;
1003
1004 gem = drm_gem_object_lookup(dev, file_priv, buffer_handle);
1005 if (!gem)
1006 return -ENOENT;
1007 cursor = nouveau_gem_object(gem);
1008
1009 ret = nouveau_bo_map(cursor);
1010 if (ret)
1011 goto out;
1012
1013 if (drm->device.info.chipset >= 0x11)
1014 nv11_cursor_upload(dev, cursor, nv_crtc->cursor.nvbo);
1015 else
1016 nv04_cursor_upload(dev, cursor, nv_crtc->cursor.nvbo);
1017
1018 nouveau_bo_unmap(cursor);
1019 nv_crtc->cursor.offset = nv_crtc->cursor.nvbo->bo.offset;
1020 nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.offset);
1021 nv_crtc->cursor.show(nv_crtc, true);
1022 out:
1023 drm_gem_object_unreference_unlocked(gem);
1024 return ret;
1025 }
1026
1027 static int
1028 nv04_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1029 {
1030 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1031
1032 nv_crtc->cursor.set_pos(nv_crtc, x, y);
1033 return 0;
1034 }
1035
1036 int
1037 nouveau_crtc_set_config(struct drm_mode_set *set)
1038 {
1039 struct drm_device *dev;
1040 struct nouveau_drm *drm;
1041 int ret;
1042 struct drm_crtc *crtc;
1043 bool active = false;
1044 if (!set || !set->crtc)
1045 return -EINVAL;
1046
1047 dev = set->crtc->dev;
1048
1049 /* get a pm reference here */
1050 ret = pm_runtime_get_sync(dev->dev);
1051 if (ret < 0 && ret != -EACCES)
1052 return ret;
1053
1054 ret = drm_crtc_helper_set_config(set);
1055
1056 drm = nouveau_drm(dev);
1057
1058 /* if we get here with no crtcs active then we can drop a reference */
1059 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1060 if (crtc->enabled)
1061 active = true;
1062 }
1063
1064 pm_runtime_mark_last_busy(dev->dev);
1065 /* if we have active crtcs and we don't have a power ref,
1066 take the current one */
1067 if (active && !drm->have_disp_power_ref) {
1068 drm->have_disp_power_ref = true;
1069 return ret;
1070 }
1071 /* if we have no active crtcs, then drop the power ref
1072 we got before */
1073 if (!active && drm->have_disp_power_ref) {
1074 pm_runtime_put_autosuspend(dev->dev);
1075 drm->have_disp_power_ref = false;
1076 }
1077 /* drop the power reference we got coming in here */
1078 pm_runtime_put_autosuspend(dev->dev);
1079 return ret;
1080 }
1081
1082 static const struct drm_crtc_funcs nv04_crtc_funcs = {
1083 .save = nv_crtc_save,
1084 .restore = nv_crtc_restore,
1085 .cursor_set = nv04_crtc_cursor_set,
1086 .cursor_move = nv04_crtc_cursor_move,
1087 .gamma_set = nv_crtc_gamma_set,
1088 .set_config = nouveau_crtc_set_config,
1089 .page_flip = nouveau_crtc_page_flip,
1090 .destroy = nv_crtc_destroy,
1091 };
1092
1093 static const struct drm_crtc_helper_funcs nv04_crtc_helper_funcs = {
1094 .dpms = nv_crtc_dpms,
1095 .prepare = nv_crtc_prepare,
1096 .commit = nv_crtc_commit,
1097 .mode_fixup = nv_crtc_mode_fixup,
1098 .mode_set = nv_crtc_mode_set,
1099 .mode_set_base = nv04_crtc_mode_set_base,
1100 .mode_set_base_atomic = nv04_crtc_mode_set_base_atomic,
1101 .load_lut = nv_crtc_gamma_load,
1102 .disable = nv_crtc_disable,
1103 };
1104
1105 int
1106 nv04_crtc_create(struct drm_device *dev, int crtc_num)
1107 {
1108 struct nouveau_crtc *nv_crtc;
1109 int ret, i;
1110
1111 nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
1112 if (!nv_crtc)
1113 return -ENOMEM;
1114
1115 for (i = 0; i < 256; i++) {
1116 nv_crtc->lut.r[i] = i << 8;
1117 nv_crtc->lut.g[i] = i << 8;
1118 nv_crtc->lut.b[i] = i << 8;
1119 }
1120 nv_crtc->lut.depth = 0;
1121
1122 nv_crtc->index = crtc_num;
1123 nv_crtc->last_dpms = NV_DPMS_CLEARED;
1124
1125 drm_crtc_init(dev, &nv_crtc->base, &nv04_crtc_funcs);
1126 drm_crtc_helper_add(&nv_crtc->base, &nv04_crtc_helper_funcs);
1127 drm_mode_crtc_set_gamma_size(&nv_crtc->base, 256);
1128
1129 ret = nouveau_bo_new(dev, 64*64*4, 0x100, TTM_PL_FLAG_VRAM,
1130 0, 0x0000, NULL, &nv_crtc->cursor.nvbo);
1131 if (!ret) {
1132 ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
1133 if (!ret) {
1134 ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
1135 if (ret)
1136 nouveau_bo_unpin(nv_crtc->cursor.nvbo);
1137 }
1138 if (ret)
1139 nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
1140 }
1141
1142 nv04_cursor_init(nv_crtc);
1143
1144 return 0;
1145 }
This page took 0.077088 seconds and 4 git commands to generate.