drm/nouveau: require reservations for nouveau_fence_sync and nouveau_bo_fence
[deliverable/linux.git] / drivers / gpu / drm / nouveau / nouveau_bo.c
1 /*
2 * Copyright 2007 Dave Airlied
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24 /*
25 * Authors: Dave Airlied <airlied@linux.ie>
26 * Ben Skeggs <darktama@iinet.net.au>
27 * Jeremy Kolb <jkolb@brandeis.edu>
28 */
29
30 #include <linux/dma-mapping.h>
31 #include <linux/swiotlb.h>
32
33 #include "nouveau_drm.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fence.h"
36
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
40
41 /*
42 * NV10-NV40 tiling helpers
43 */
44
45 static void
46 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
47 u32 addr, u32 size, u32 pitch, u32 flags)
48 {
49 struct nouveau_drm *drm = nouveau_drm(dev);
50 int i = reg - drm->tile.reg;
51 struct nouveau_fb *pfb = nvkm_fb(&drm->device);
52 struct nouveau_fb_tile *tile = &pfb->tile.region[i];
53 struct nouveau_engine *engine;
54
55 nouveau_fence_unref(&reg->fence);
56
57 if (tile->pitch)
58 pfb->tile.fini(pfb, i, tile);
59
60 if (pitch)
61 pfb->tile.init(pfb, i, addr, size, pitch, flags, tile);
62
63 pfb->tile.prog(pfb, i, tile);
64
65 if ((engine = nouveau_engine(pfb, NVDEV_ENGINE_GR)))
66 engine->tile_prog(engine, i);
67 if ((engine = nouveau_engine(pfb, NVDEV_ENGINE_MPEG)))
68 engine->tile_prog(engine, i);
69 }
70
71 static struct nouveau_drm_tile *
72 nv10_bo_get_tile_region(struct drm_device *dev, int i)
73 {
74 struct nouveau_drm *drm = nouveau_drm(dev);
75 struct nouveau_drm_tile *tile = &drm->tile.reg[i];
76
77 spin_lock(&drm->tile.lock);
78
79 if (!tile->used &&
80 (!tile->fence || nouveau_fence_done(tile->fence)))
81 tile->used = true;
82 else
83 tile = NULL;
84
85 spin_unlock(&drm->tile.lock);
86 return tile;
87 }
88
89 static void
90 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
91 struct nouveau_fence *fence)
92 {
93 struct nouveau_drm *drm = nouveau_drm(dev);
94
95 if (tile) {
96 spin_lock(&drm->tile.lock);
97 tile->fence = nouveau_fence_ref(fence);
98 tile->used = false;
99 spin_unlock(&drm->tile.lock);
100 }
101 }
102
103 static struct nouveau_drm_tile *
104 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
105 u32 size, u32 pitch, u32 flags)
106 {
107 struct nouveau_drm *drm = nouveau_drm(dev);
108 struct nouveau_fb *pfb = nvkm_fb(&drm->device);
109 struct nouveau_drm_tile *tile, *found = NULL;
110 int i;
111
112 for (i = 0; i < pfb->tile.regions; i++) {
113 tile = nv10_bo_get_tile_region(dev, i);
114
115 if (pitch && !found) {
116 found = tile;
117 continue;
118
119 } else if (tile && pfb->tile.region[i].pitch) {
120 /* Kill an unused tile region. */
121 nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
122 }
123
124 nv10_bo_put_tile_region(dev, tile, NULL);
125 }
126
127 if (found)
128 nv10_bo_update_tile_region(dev, found, addr, size,
129 pitch, flags);
130 return found;
131 }
132
133 static void
134 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
135 {
136 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
137 struct drm_device *dev = drm->dev;
138 struct nouveau_bo *nvbo = nouveau_bo(bo);
139
140 if (unlikely(nvbo->gem.filp))
141 DRM_ERROR("bo %p still attached to GEM object\n", bo);
142 WARN_ON(nvbo->pin_refcnt > 0);
143 nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
144 kfree(nvbo);
145 }
146
147 static void
148 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, u32 flags,
149 int *align, int *size)
150 {
151 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
152 struct nvif_device *device = &drm->device;
153
154 if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
155 if (nvbo->tile_mode) {
156 if (device->info.chipset >= 0x40) {
157 *align = 65536;
158 *size = roundup(*size, 64 * nvbo->tile_mode);
159
160 } else if (device->info.chipset >= 0x30) {
161 *align = 32768;
162 *size = roundup(*size, 64 * nvbo->tile_mode);
163
164 } else if (device->info.chipset >= 0x20) {
165 *align = 16384;
166 *size = roundup(*size, 64 * nvbo->tile_mode);
167
168 } else if (device->info.chipset >= 0x10) {
169 *align = 16384;
170 *size = roundup(*size, 32 * nvbo->tile_mode);
171 }
172 }
173 } else {
174 *size = roundup(*size, (1 << nvbo->page_shift));
175 *align = max((1 << nvbo->page_shift), *align);
176 }
177
178 *size = roundup(*size, PAGE_SIZE);
179 }
180
181 int
182 nouveau_bo_new(struct drm_device *dev, int size, int align,
183 uint32_t flags, uint32_t tile_mode, uint32_t tile_flags,
184 struct sg_table *sg,
185 struct nouveau_bo **pnvbo)
186 {
187 struct nouveau_drm *drm = nouveau_drm(dev);
188 struct nouveau_bo *nvbo;
189 size_t acc_size;
190 int ret;
191 int type = ttm_bo_type_device;
192 int lpg_shift = 12;
193 int max_size;
194
195 if (drm->client.vm)
196 lpg_shift = drm->client.vm->vmm->lpg_shift;
197 max_size = INT_MAX & ~((1 << lpg_shift) - 1);
198
199 if (size <= 0 || size > max_size) {
200 NV_WARN(drm, "skipped size %x\n", (u32)size);
201 return -EINVAL;
202 }
203
204 if (sg)
205 type = ttm_bo_type_sg;
206
207 nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
208 if (!nvbo)
209 return -ENOMEM;
210 INIT_LIST_HEAD(&nvbo->head);
211 INIT_LIST_HEAD(&nvbo->entry);
212 INIT_LIST_HEAD(&nvbo->vma_list);
213 nvbo->tile_mode = tile_mode;
214 nvbo->tile_flags = tile_flags;
215 nvbo->bo.bdev = &drm->ttm.bdev;
216
217 nvbo->page_shift = 12;
218 if (drm->client.vm) {
219 if (!(flags & TTM_PL_FLAG_TT) && size > 256 * 1024)
220 nvbo->page_shift = drm->client.vm->vmm->lpg_shift;
221 }
222
223 nouveau_bo_fixup_align(nvbo, flags, &align, &size);
224 nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
225 nouveau_bo_placement_set(nvbo, flags, 0);
226
227 acc_size = ttm_bo_dma_acc_size(&drm->ttm.bdev, size,
228 sizeof(struct nouveau_bo));
229
230 ret = ttm_bo_init(&drm->ttm.bdev, &nvbo->bo, size,
231 type, &nvbo->placement,
232 align >> PAGE_SHIFT, false, NULL, acc_size, sg,
233 nouveau_bo_del_ttm);
234 if (ret) {
235 /* ttm will call nouveau_bo_del_ttm if it fails.. */
236 return ret;
237 }
238
239 *pnvbo = nvbo;
240 return 0;
241 }
242
243 static void
244 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t type, uint32_t flags)
245 {
246 *n = 0;
247
248 if (type & TTM_PL_FLAG_VRAM)
249 pl[(*n)++].flags = TTM_PL_FLAG_VRAM | flags;
250 if (type & TTM_PL_FLAG_TT)
251 pl[(*n)++].flags = TTM_PL_FLAG_TT | flags;
252 if (type & TTM_PL_FLAG_SYSTEM)
253 pl[(*n)++].flags = TTM_PL_FLAG_SYSTEM | flags;
254 }
255
256 static void
257 set_placement_range(struct nouveau_bo *nvbo, uint32_t type)
258 {
259 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
260 u32 vram_pages = drm->device.info.ram_size >> PAGE_SHIFT;
261 unsigned i, fpfn, lpfn;
262
263 if (drm->device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
264 nvbo->tile_mode && (type & TTM_PL_FLAG_VRAM) &&
265 nvbo->bo.mem.num_pages < vram_pages / 4) {
266 /*
267 * Make sure that the color and depth buffers are handled
268 * by independent memory controller units. Up to a 9x
269 * speed up when alpha-blending and depth-test are enabled
270 * at the same time.
271 */
272 if (nvbo->tile_flags & NOUVEAU_GEM_TILE_ZETA) {
273 fpfn = vram_pages / 2;
274 lpfn = ~0;
275 } else {
276 fpfn = 0;
277 lpfn = vram_pages / 2;
278 }
279 for (i = 0; i < nvbo->placement.num_placement; ++i) {
280 nvbo->placements[i].fpfn = fpfn;
281 nvbo->placements[i].lpfn = lpfn;
282 }
283 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
284 nvbo->busy_placements[i].fpfn = fpfn;
285 nvbo->busy_placements[i].lpfn = lpfn;
286 }
287 }
288 }
289
290 void
291 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t type, uint32_t busy)
292 {
293 struct ttm_placement *pl = &nvbo->placement;
294 uint32_t flags = TTM_PL_MASK_CACHING |
295 (nvbo->pin_refcnt ? TTM_PL_FLAG_NO_EVICT : 0);
296
297 pl->placement = nvbo->placements;
298 set_placement_list(nvbo->placements, &pl->num_placement,
299 type, flags);
300
301 pl->busy_placement = nvbo->busy_placements;
302 set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
303 type | busy, flags);
304
305 set_placement_range(nvbo, type);
306 }
307
308 int
309 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t memtype)
310 {
311 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
312 struct ttm_buffer_object *bo = &nvbo->bo;
313 int ret;
314
315 ret = ttm_bo_reserve(bo, false, false, false, NULL);
316 if (ret)
317 goto out;
318
319 if (nvbo->pin_refcnt && !(memtype & (1 << bo->mem.mem_type))) {
320 NV_ERROR(drm, "bo %p pinned elsewhere: 0x%08x vs 0x%08x\n", bo,
321 1 << bo->mem.mem_type, memtype);
322 ret = -EINVAL;
323 goto out;
324 }
325
326 if (nvbo->pin_refcnt++)
327 goto out;
328
329 nouveau_bo_placement_set(nvbo, memtype, 0);
330
331 ret = nouveau_bo_validate(nvbo, false, false);
332 if (ret == 0) {
333 switch (bo->mem.mem_type) {
334 case TTM_PL_VRAM:
335 drm->gem.vram_available -= bo->mem.size;
336 break;
337 case TTM_PL_TT:
338 drm->gem.gart_available -= bo->mem.size;
339 break;
340 default:
341 break;
342 }
343 }
344 out:
345 ttm_bo_unreserve(bo);
346 return ret;
347 }
348
349 int
350 nouveau_bo_unpin(struct nouveau_bo *nvbo)
351 {
352 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
353 struct ttm_buffer_object *bo = &nvbo->bo;
354 int ret, ref;
355
356 ret = ttm_bo_reserve(bo, false, false, false, NULL);
357 if (ret)
358 return ret;
359
360 ref = --nvbo->pin_refcnt;
361 WARN_ON_ONCE(ref < 0);
362 if (ref)
363 goto out;
364
365 nouveau_bo_placement_set(nvbo, bo->mem.placement, 0);
366
367 ret = nouveau_bo_validate(nvbo, false, false);
368 if (ret == 0) {
369 switch (bo->mem.mem_type) {
370 case TTM_PL_VRAM:
371 drm->gem.vram_available += bo->mem.size;
372 break;
373 case TTM_PL_TT:
374 drm->gem.gart_available += bo->mem.size;
375 break;
376 default:
377 break;
378 }
379 }
380
381 out:
382 ttm_bo_unreserve(bo);
383 return ret;
384 }
385
386 int
387 nouveau_bo_map(struct nouveau_bo *nvbo)
388 {
389 int ret;
390
391 ret = ttm_bo_reserve(&nvbo->bo, false, false, false, NULL);
392 if (ret)
393 return ret;
394
395 ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages, &nvbo->kmap);
396 ttm_bo_unreserve(&nvbo->bo);
397 return ret;
398 }
399
400 void
401 nouveau_bo_unmap(struct nouveau_bo *nvbo)
402 {
403 if (nvbo)
404 ttm_bo_kunmap(&nvbo->kmap);
405 }
406
407 int
408 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
409 bool no_wait_gpu)
410 {
411 int ret;
412
413 ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement,
414 interruptible, no_wait_gpu);
415 if (ret)
416 return ret;
417
418 return 0;
419 }
420
421 u16
422 nouveau_bo_rd16(struct nouveau_bo *nvbo, unsigned index)
423 {
424 bool is_iomem;
425 u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
426 mem = &mem[index];
427 if (is_iomem)
428 return ioread16_native((void __force __iomem *)mem);
429 else
430 return *mem;
431 }
432
433 void
434 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
435 {
436 bool is_iomem;
437 u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
438 mem = &mem[index];
439 if (is_iomem)
440 iowrite16_native(val, (void __force __iomem *)mem);
441 else
442 *mem = val;
443 }
444
445 u32
446 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
447 {
448 bool is_iomem;
449 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
450 mem = &mem[index];
451 if (is_iomem)
452 return ioread32_native((void __force __iomem *)mem);
453 else
454 return *mem;
455 }
456
457 void
458 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
459 {
460 bool is_iomem;
461 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
462 mem = &mem[index];
463 if (is_iomem)
464 iowrite32_native(val, (void __force __iomem *)mem);
465 else
466 *mem = val;
467 }
468
469 static struct ttm_tt *
470 nouveau_ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
471 uint32_t page_flags, struct page *dummy_read)
472 {
473 #if __OS_HAS_AGP
474 struct nouveau_drm *drm = nouveau_bdev(bdev);
475 struct drm_device *dev = drm->dev;
476
477 if (drm->agp.stat == ENABLED) {
478 return ttm_agp_tt_create(bdev, dev->agp->bridge, size,
479 page_flags, dummy_read);
480 }
481 #endif
482
483 return nouveau_sgdma_create_ttm(bdev, size, page_flags, dummy_read);
484 }
485
486 static int
487 nouveau_bo_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
488 {
489 /* We'll do this from user space. */
490 return 0;
491 }
492
493 static int
494 nouveau_bo_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
495 struct ttm_mem_type_manager *man)
496 {
497 struct nouveau_drm *drm = nouveau_bdev(bdev);
498
499 switch (type) {
500 case TTM_PL_SYSTEM:
501 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
502 man->available_caching = TTM_PL_MASK_CACHING;
503 man->default_caching = TTM_PL_FLAG_CACHED;
504 break;
505 case TTM_PL_VRAM:
506 man->flags = TTM_MEMTYPE_FLAG_FIXED |
507 TTM_MEMTYPE_FLAG_MAPPABLE;
508 man->available_caching = TTM_PL_FLAG_UNCACHED |
509 TTM_PL_FLAG_WC;
510 man->default_caching = TTM_PL_FLAG_WC;
511
512 if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
513 /* Some BARs do not support being ioremapped WC */
514 if (nvkm_bar(&drm->device)->iomap_uncached) {
515 man->available_caching = TTM_PL_FLAG_UNCACHED;
516 man->default_caching = TTM_PL_FLAG_UNCACHED;
517 }
518
519 man->func = &nouveau_vram_manager;
520 man->io_reserve_fastpath = false;
521 man->use_io_reserve_lru = true;
522 } else {
523 man->func = &ttm_bo_manager_func;
524 }
525 break;
526 case TTM_PL_TT:
527 if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA)
528 man->func = &nouveau_gart_manager;
529 else
530 if (drm->agp.stat != ENABLED)
531 man->func = &nv04_gart_manager;
532 else
533 man->func = &ttm_bo_manager_func;
534
535 if (drm->agp.stat == ENABLED) {
536 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
537 man->available_caching = TTM_PL_FLAG_UNCACHED |
538 TTM_PL_FLAG_WC;
539 man->default_caching = TTM_PL_FLAG_WC;
540 } else {
541 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE |
542 TTM_MEMTYPE_FLAG_CMA;
543 man->available_caching = TTM_PL_MASK_CACHING;
544 man->default_caching = TTM_PL_FLAG_CACHED;
545 }
546
547 break;
548 default:
549 return -EINVAL;
550 }
551 return 0;
552 }
553
554 static void
555 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
556 {
557 struct nouveau_bo *nvbo = nouveau_bo(bo);
558
559 switch (bo->mem.mem_type) {
560 case TTM_PL_VRAM:
561 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT,
562 TTM_PL_FLAG_SYSTEM);
563 break;
564 default:
565 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_SYSTEM, 0);
566 break;
567 }
568
569 *pl = nvbo->placement;
570 }
571
572
573 static int
574 nve0_bo_move_init(struct nouveau_channel *chan, u32 handle)
575 {
576 int ret = RING_SPACE(chan, 2);
577 if (ret == 0) {
578 BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
579 OUT_RING (chan, handle & 0x0000ffff);
580 FIRE_RING (chan);
581 }
582 return ret;
583 }
584
585 static int
586 nve0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
587 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
588 {
589 struct nouveau_mem *node = old_mem->mm_node;
590 int ret = RING_SPACE(chan, 10);
591 if (ret == 0) {
592 BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
593 OUT_RING (chan, upper_32_bits(node->vma[0].offset));
594 OUT_RING (chan, lower_32_bits(node->vma[0].offset));
595 OUT_RING (chan, upper_32_bits(node->vma[1].offset));
596 OUT_RING (chan, lower_32_bits(node->vma[1].offset));
597 OUT_RING (chan, PAGE_SIZE);
598 OUT_RING (chan, PAGE_SIZE);
599 OUT_RING (chan, PAGE_SIZE);
600 OUT_RING (chan, new_mem->num_pages);
601 BEGIN_IMC0(chan, NvSubCopy, 0x0300, 0x0386);
602 }
603 return ret;
604 }
605
606 static int
607 nvc0_bo_move_init(struct nouveau_channel *chan, u32 handle)
608 {
609 int ret = RING_SPACE(chan, 2);
610 if (ret == 0) {
611 BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
612 OUT_RING (chan, handle);
613 }
614 return ret;
615 }
616
617 static int
618 nvc0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
619 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
620 {
621 struct nouveau_mem *node = old_mem->mm_node;
622 u64 src_offset = node->vma[0].offset;
623 u64 dst_offset = node->vma[1].offset;
624 u32 page_count = new_mem->num_pages;
625 int ret;
626
627 page_count = new_mem->num_pages;
628 while (page_count) {
629 int line_count = (page_count > 8191) ? 8191 : page_count;
630
631 ret = RING_SPACE(chan, 11);
632 if (ret)
633 return ret;
634
635 BEGIN_NVC0(chan, NvSubCopy, 0x030c, 8);
636 OUT_RING (chan, upper_32_bits(src_offset));
637 OUT_RING (chan, lower_32_bits(src_offset));
638 OUT_RING (chan, upper_32_bits(dst_offset));
639 OUT_RING (chan, lower_32_bits(dst_offset));
640 OUT_RING (chan, PAGE_SIZE);
641 OUT_RING (chan, PAGE_SIZE);
642 OUT_RING (chan, PAGE_SIZE);
643 OUT_RING (chan, line_count);
644 BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
645 OUT_RING (chan, 0x00000110);
646
647 page_count -= line_count;
648 src_offset += (PAGE_SIZE * line_count);
649 dst_offset += (PAGE_SIZE * line_count);
650 }
651
652 return 0;
653 }
654
655 static int
656 nvc0_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
657 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
658 {
659 struct nouveau_mem *node = old_mem->mm_node;
660 u64 src_offset = node->vma[0].offset;
661 u64 dst_offset = node->vma[1].offset;
662 u32 page_count = new_mem->num_pages;
663 int ret;
664
665 page_count = new_mem->num_pages;
666 while (page_count) {
667 int line_count = (page_count > 2047) ? 2047 : page_count;
668
669 ret = RING_SPACE(chan, 12);
670 if (ret)
671 return ret;
672
673 BEGIN_NVC0(chan, NvSubCopy, 0x0238, 2);
674 OUT_RING (chan, upper_32_bits(dst_offset));
675 OUT_RING (chan, lower_32_bits(dst_offset));
676 BEGIN_NVC0(chan, NvSubCopy, 0x030c, 6);
677 OUT_RING (chan, upper_32_bits(src_offset));
678 OUT_RING (chan, lower_32_bits(src_offset));
679 OUT_RING (chan, PAGE_SIZE); /* src_pitch */
680 OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
681 OUT_RING (chan, PAGE_SIZE); /* line_length */
682 OUT_RING (chan, line_count);
683 BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
684 OUT_RING (chan, 0x00100110);
685
686 page_count -= line_count;
687 src_offset += (PAGE_SIZE * line_count);
688 dst_offset += (PAGE_SIZE * line_count);
689 }
690
691 return 0;
692 }
693
694 static int
695 nva3_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
696 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
697 {
698 struct nouveau_mem *node = old_mem->mm_node;
699 u64 src_offset = node->vma[0].offset;
700 u64 dst_offset = node->vma[1].offset;
701 u32 page_count = new_mem->num_pages;
702 int ret;
703
704 page_count = new_mem->num_pages;
705 while (page_count) {
706 int line_count = (page_count > 8191) ? 8191 : page_count;
707
708 ret = RING_SPACE(chan, 11);
709 if (ret)
710 return ret;
711
712 BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
713 OUT_RING (chan, upper_32_bits(src_offset));
714 OUT_RING (chan, lower_32_bits(src_offset));
715 OUT_RING (chan, upper_32_bits(dst_offset));
716 OUT_RING (chan, lower_32_bits(dst_offset));
717 OUT_RING (chan, PAGE_SIZE);
718 OUT_RING (chan, PAGE_SIZE);
719 OUT_RING (chan, PAGE_SIZE);
720 OUT_RING (chan, line_count);
721 BEGIN_NV04(chan, NvSubCopy, 0x0300, 1);
722 OUT_RING (chan, 0x00000110);
723
724 page_count -= line_count;
725 src_offset += (PAGE_SIZE * line_count);
726 dst_offset += (PAGE_SIZE * line_count);
727 }
728
729 return 0;
730 }
731
732 static int
733 nv98_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
734 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
735 {
736 struct nouveau_mem *node = old_mem->mm_node;
737 int ret = RING_SPACE(chan, 7);
738 if (ret == 0) {
739 BEGIN_NV04(chan, NvSubCopy, 0x0320, 6);
740 OUT_RING (chan, upper_32_bits(node->vma[0].offset));
741 OUT_RING (chan, lower_32_bits(node->vma[0].offset));
742 OUT_RING (chan, upper_32_bits(node->vma[1].offset));
743 OUT_RING (chan, lower_32_bits(node->vma[1].offset));
744 OUT_RING (chan, 0x00000000 /* COPY */);
745 OUT_RING (chan, new_mem->num_pages << PAGE_SHIFT);
746 }
747 return ret;
748 }
749
750 static int
751 nv84_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
752 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
753 {
754 struct nouveau_mem *node = old_mem->mm_node;
755 int ret = RING_SPACE(chan, 7);
756 if (ret == 0) {
757 BEGIN_NV04(chan, NvSubCopy, 0x0304, 6);
758 OUT_RING (chan, new_mem->num_pages << PAGE_SHIFT);
759 OUT_RING (chan, upper_32_bits(node->vma[0].offset));
760 OUT_RING (chan, lower_32_bits(node->vma[0].offset));
761 OUT_RING (chan, upper_32_bits(node->vma[1].offset));
762 OUT_RING (chan, lower_32_bits(node->vma[1].offset));
763 OUT_RING (chan, 0x00000000 /* MODE_COPY, QUERY_NONE */);
764 }
765 return ret;
766 }
767
768 static int
769 nv50_bo_move_init(struct nouveau_channel *chan, u32 handle)
770 {
771 int ret = RING_SPACE(chan, 6);
772 if (ret == 0) {
773 BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
774 OUT_RING (chan, handle);
775 BEGIN_NV04(chan, NvSubCopy, 0x0180, 3);
776 OUT_RING (chan, chan->drm->ntfy.handle);
777 OUT_RING (chan, chan->vram.handle);
778 OUT_RING (chan, chan->vram.handle);
779 }
780
781 return ret;
782 }
783
784 static int
785 nv50_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
786 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
787 {
788 struct nouveau_mem *node = old_mem->mm_node;
789 u64 length = (new_mem->num_pages << PAGE_SHIFT);
790 u64 src_offset = node->vma[0].offset;
791 u64 dst_offset = node->vma[1].offset;
792 int src_tiled = !!node->memtype;
793 int dst_tiled = !!((struct nouveau_mem *)new_mem->mm_node)->memtype;
794 int ret;
795
796 while (length) {
797 u32 amount, stride, height;
798
799 ret = RING_SPACE(chan, 18 + 6 * (src_tiled + dst_tiled));
800 if (ret)
801 return ret;
802
803 amount = min(length, (u64)(4 * 1024 * 1024));
804 stride = 16 * 4;
805 height = amount / stride;
806
807 if (src_tiled) {
808 BEGIN_NV04(chan, NvSubCopy, 0x0200, 7);
809 OUT_RING (chan, 0);
810 OUT_RING (chan, 0);
811 OUT_RING (chan, stride);
812 OUT_RING (chan, height);
813 OUT_RING (chan, 1);
814 OUT_RING (chan, 0);
815 OUT_RING (chan, 0);
816 } else {
817 BEGIN_NV04(chan, NvSubCopy, 0x0200, 1);
818 OUT_RING (chan, 1);
819 }
820 if (dst_tiled) {
821 BEGIN_NV04(chan, NvSubCopy, 0x021c, 7);
822 OUT_RING (chan, 0);
823 OUT_RING (chan, 0);
824 OUT_RING (chan, stride);
825 OUT_RING (chan, height);
826 OUT_RING (chan, 1);
827 OUT_RING (chan, 0);
828 OUT_RING (chan, 0);
829 } else {
830 BEGIN_NV04(chan, NvSubCopy, 0x021c, 1);
831 OUT_RING (chan, 1);
832 }
833
834 BEGIN_NV04(chan, NvSubCopy, 0x0238, 2);
835 OUT_RING (chan, upper_32_bits(src_offset));
836 OUT_RING (chan, upper_32_bits(dst_offset));
837 BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
838 OUT_RING (chan, lower_32_bits(src_offset));
839 OUT_RING (chan, lower_32_bits(dst_offset));
840 OUT_RING (chan, stride);
841 OUT_RING (chan, stride);
842 OUT_RING (chan, stride);
843 OUT_RING (chan, height);
844 OUT_RING (chan, 0x00000101);
845 OUT_RING (chan, 0x00000000);
846 BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
847 OUT_RING (chan, 0);
848
849 length -= amount;
850 src_offset += amount;
851 dst_offset += amount;
852 }
853
854 return 0;
855 }
856
857 static int
858 nv04_bo_move_init(struct nouveau_channel *chan, u32 handle)
859 {
860 int ret = RING_SPACE(chan, 4);
861 if (ret == 0) {
862 BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
863 OUT_RING (chan, handle);
864 BEGIN_NV04(chan, NvSubCopy, 0x0180, 1);
865 OUT_RING (chan, chan->drm->ntfy.handle);
866 }
867
868 return ret;
869 }
870
871 static inline uint32_t
872 nouveau_bo_mem_ctxdma(struct ttm_buffer_object *bo,
873 struct nouveau_channel *chan, struct ttm_mem_reg *mem)
874 {
875 if (mem->mem_type == TTM_PL_TT)
876 return NvDmaTT;
877 return chan->vram.handle;
878 }
879
880 static int
881 nv04_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
882 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
883 {
884 u32 src_offset = old_mem->start << PAGE_SHIFT;
885 u32 dst_offset = new_mem->start << PAGE_SHIFT;
886 u32 page_count = new_mem->num_pages;
887 int ret;
888
889 ret = RING_SPACE(chan, 3);
890 if (ret)
891 return ret;
892
893 BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE, 2);
894 OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, old_mem));
895 OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, new_mem));
896
897 page_count = new_mem->num_pages;
898 while (page_count) {
899 int line_count = (page_count > 2047) ? 2047 : page_count;
900
901 ret = RING_SPACE(chan, 11);
902 if (ret)
903 return ret;
904
905 BEGIN_NV04(chan, NvSubCopy,
906 NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN, 8);
907 OUT_RING (chan, src_offset);
908 OUT_RING (chan, dst_offset);
909 OUT_RING (chan, PAGE_SIZE); /* src_pitch */
910 OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
911 OUT_RING (chan, PAGE_SIZE); /* line_length */
912 OUT_RING (chan, line_count);
913 OUT_RING (chan, 0x00000101);
914 OUT_RING (chan, 0x00000000);
915 BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
916 OUT_RING (chan, 0);
917
918 page_count -= line_count;
919 src_offset += (PAGE_SIZE * line_count);
920 dst_offset += (PAGE_SIZE * line_count);
921 }
922
923 return 0;
924 }
925
926 static int
927 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
928 struct ttm_mem_reg *mem)
929 {
930 struct nouveau_mem *old_node = bo->mem.mm_node;
931 struct nouveau_mem *new_node = mem->mm_node;
932 u64 size = (u64)mem->num_pages << PAGE_SHIFT;
933 int ret;
934
935 ret = nouveau_vm_get(drm->client.vm, size, old_node->page_shift,
936 NV_MEM_ACCESS_RW, &old_node->vma[0]);
937 if (ret)
938 return ret;
939
940 ret = nouveau_vm_get(drm->client.vm, size, new_node->page_shift,
941 NV_MEM_ACCESS_RW, &old_node->vma[1]);
942 if (ret) {
943 nouveau_vm_put(&old_node->vma[0]);
944 return ret;
945 }
946
947 nouveau_vm_map(&old_node->vma[0], old_node);
948 nouveau_vm_map(&old_node->vma[1], new_node);
949 return 0;
950 }
951
952 static int
953 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, bool intr,
954 bool no_wait_gpu, struct ttm_mem_reg *new_mem)
955 {
956 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
957 struct nouveau_channel *chan = drm->ttm.chan;
958 struct nouveau_cli *cli = (void *)nvif_client(&chan->device->base);
959 struct nouveau_fence *fence;
960 int ret;
961
962 /* create temporary vmas for the transfer and attach them to the
963 * old nouveau_mem node, these will get cleaned up after ttm has
964 * destroyed the ttm_mem_reg
965 */
966 if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
967 ret = nouveau_bo_move_prep(drm, bo, new_mem);
968 if (ret)
969 return ret;
970 }
971
972 mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
973 ret = nouveau_fence_sync(bo->sync_obj, chan);
974 if (ret == 0) {
975 ret = drm->ttm.move(chan, bo, &bo->mem, new_mem);
976 if (ret == 0) {
977 ret = nouveau_fence_new(chan, false, &fence);
978 if (ret == 0) {
979 ret = ttm_bo_move_accel_cleanup(bo, fence,
980 evict,
981 no_wait_gpu,
982 new_mem);
983 nouveau_fence_unref(&fence);
984 }
985 }
986 }
987 mutex_unlock(&cli->mutex);
988 return ret;
989 }
990
991 void
992 nouveau_bo_move_init(struct nouveau_drm *drm)
993 {
994 static const struct {
995 const char *name;
996 int engine;
997 u32 oclass;
998 int (*exec)(struct nouveau_channel *,
999 struct ttm_buffer_object *,
1000 struct ttm_mem_reg *, struct ttm_mem_reg *);
1001 int (*init)(struct nouveau_channel *, u32 handle);
1002 } _methods[] = {
1003 { "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
1004 { "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1005 { "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
1006 { "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
1007 { "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
1008 { "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
1009 { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
1010 { "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
1011 { "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
1012 {},
1013 { "CRYPT", 0, 0x88b4, nv98_bo_move_exec, nv50_bo_move_init },
1014 }, *mthd = _methods;
1015 const char *name = "CPU";
1016 int ret;
1017
1018 do {
1019 struct nouveau_channel *chan;
1020
1021 if (mthd->engine)
1022 chan = drm->cechan;
1023 else
1024 chan = drm->channel;
1025 if (chan == NULL)
1026 continue;
1027
1028 ret = nvif_object_init(chan->object, NULL,
1029 mthd->oclass | (mthd->engine << 16),
1030 mthd->oclass, NULL, 0,
1031 &drm->ttm.copy);
1032 if (ret == 0) {
1033 ret = mthd->init(chan, drm->ttm.copy.handle);
1034 if (ret) {
1035 nvif_object_fini(&drm->ttm.copy);
1036 continue;
1037 }
1038
1039 drm->ttm.move = mthd->exec;
1040 drm->ttm.chan = chan;
1041 name = mthd->name;
1042 break;
1043 }
1044 } while ((++mthd)->exec);
1045
1046 NV_INFO(drm, "MM: using %s for buffer copies\n", name);
1047 }
1048
1049 static int
1050 nouveau_bo_move_flipd(struct ttm_buffer_object *bo, bool evict, bool intr,
1051 bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1052 {
1053 struct ttm_place placement_memtype = {
1054 .fpfn = 0,
1055 .lpfn = 0,
1056 .flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
1057 };
1058 struct ttm_placement placement;
1059 struct ttm_mem_reg tmp_mem;
1060 int ret;
1061
1062 placement.num_placement = placement.num_busy_placement = 1;
1063 placement.placement = placement.busy_placement = &placement_memtype;
1064
1065 tmp_mem = *new_mem;
1066 tmp_mem.mm_node = NULL;
1067 ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_gpu);
1068 if (ret)
1069 return ret;
1070
1071 ret = ttm_tt_bind(bo->ttm, &tmp_mem);
1072 if (ret)
1073 goto out;
1074
1075 ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, &tmp_mem);
1076 if (ret)
1077 goto out;
1078
1079 ret = ttm_bo_move_ttm(bo, true, no_wait_gpu, new_mem);
1080 out:
1081 ttm_bo_mem_put(bo, &tmp_mem);
1082 return ret;
1083 }
1084
1085 static int
1086 nouveau_bo_move_flips(struct ttm_buffer_object *bo, bool evict, bool intr,
1087 bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1088 {
1089 struct ttm_place placement_memtype = {
1090 .fpfn = 0,
1091 .lpfn = 0,
1092 .flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
1093 };
1094 struct ttm_placement placement;
1095 struct ttm_mem_reg tmp_mem;
1096 int ret;
1097
1098 placement.num_placement = placement.num_busy_placement = 1;
1099 placement.placement = placement.busy_placement = &placement_memtype;
1100
1101 tmp_mem = *new_mem;
1102 tmp_mem.mm_node = NULL;
1103 ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_gpu);
1104 if (ret)
1105 return ret;
1106
1107 ret = ttm_bo_move_ttm(bo, true, no_wait_gpu, &tmp_mem);
1108 if (ret)
1109 goto out;
1110
1111 ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, new_mem);
1112 if (ret)
1113 goto out;
1114
1115 out:
1116 ttm_bo_mem_put(bo, &tmp_mem);
1117 return ret;
1118 }
1119
1120 static void
1121 nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem)
1122 {
1123 struct nouveau_bo *nvbo = nouveau_bo(bo);
1124 struct nouveau_vma *vma;
1125
1126 /* ttm can now (stupidly) pass the driver bos it didn't create... */
1127 if (bo->destroy != nouveau_bo_del_ttm)
1128 return;
1129
1130 list_for_each_entry(vma, &nvbo->vma_list, head) {
1131 if (new_mem && new_mem->mem_type != TTM_PL_SYSTEM &&
1132 (new_mem->mem_type == TTM_PL_VRAM ||
1133 nvbo->page_shift != vma->vm->vmm->lpg_shift)) {
1134 nouveau_vm_map(vma, new_mem->mm_node);
1135 } else {
1136 nouveau_vm_unmap(vma);
1137 }
1138 }
1139 }
1140
1141 static int
1142 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem,
1143 struct nouveau_drm_tile **new_tile)
1144 {
1145 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1146 struct drm_device *dev = drm->dev;
1147 struct nouveau_bo *nvbo = nouveau_bo(bo);
1148 u64 offset = new_mem->start << PAGE_SHIFT;
1149
1150 *new_tile = NULL;
1151 if (new_mem->mem_type != TTM_PL_VRAM)
1152 return 0;
1153
1154 if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
1155 *new_tile = nv10_bo_set_tiling(dev, offset, new_mem->size,
1156 nvbo->tile_mode,
1157 nvbo->tile_flags);
1158 }
1159
1160 return 0;
1161 }
1162
1163 static void
1164 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
1165 struct nouveau_drm_tile *new_tile,
1166 struct nouveau_drm_tile **old_tile)
1167 {
1168 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1169 struct drm_device *dev = drm->dev;
1170
1171 nv10_bo_put_tile_region(dev, *old_tile, bo->sync_obj);
1172 *old_tile = new_tile;
1173 }
1174
1175 static int
1176 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict, bool intr,
1177 bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1178 {
1179 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1180 struct nouveau_bo *nvbo = nouveau_bo(bo);
1181 struct ttm_mem_reg *old_mem = &bo->mem;
1182 struct nouveau_drm_tile *new_tile = NULL;
1183 int ret = 0;
1184
1185 if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1186 ret = nouveau_bo_vm_bind(bo, new_mem, &new_tile);
1187 if (ret)
1188 return ret;
1189 }
1190
1191 /* Fake bo copy. */
1192 if (old_mem->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
1193 BUG_ON(bo->mem.mm_node != NULL);
1194 bo->mem = *new_mem;
1195 new_mem->mm_node = NULL;
1196 goto out;
1197 }
1198
1199 /* Hardware assisted copy. */
1200 if (drm->ttm.move) {
1201 if (new_mem->mem_type == TTM_PL_SYSTEM)
1202 ret = nouveau_bo_move_flipd(bo, evict, intr,
1203 no_wait_gpu, new_mem);
1204 else if (old_mem->mem_type == TTM_PL_SYSTEM)
1205 ret = nouveau_bo_move_flips(bo, evict, intr,
1206 no_wait_gpu, new_mem);
1207 else
1208 ret = nouveau_bo_move_m2mf(bo, evict, intr,
1209 no_wait_gpu, new_mem);
1210 if (!ret)
1211 goto out;
1212 }
1213
1214 /* Fallback to software copy. */
1215 spin_lock(&bo->bdev->fence_lock);
1216 ret = ttm_bo_wait(bo, true, intr, no_wait_gpu);
1217 spin_unlock(&bo->bdev->fence_lock);
1218 if (ret == 0)
1219 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, new_mem);
1220
1221 out:
1222 if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1223 if (ret)
1224 nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1225 else
1226 nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1227 }
1228
1229 return ret;
1230 }
1231
1232 static int
1233 nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
1234 {
1235 struct nouveau_bo *nvbo = nouveau_bo(bo);
1236
1237 return drm_vma_node_verify_access(&nvbo->gem.vma_node, filp);
1238 }
1239
1240 static int
1241 nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1242 {
1243 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1244 struct nouveau_drm *drm = nouveau_bdev(bdev);
1245 struct nouveau_mem *node = mem->mm_node;
1246 int ret;
1247
1248 mem->bus.addr = NULL;
1249 mem->bus.offset = 0;
1250 mem->bus.size = mem->num_pages << PAGE_SHIFT;
1251 mem->bus.base = 0;
1252 mem->bus.is_iomem = false;
1253 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
1254 return -EINVAL;
1255 switch (mem->mem_type) {
1256 case TTM_PL_SYSTEM:
1257 /* System memory */
1258 return 0;
1259 case TTM_PL_TT:
1260 #if __OS_HAS_AGP
1261 if (drm->agp.stat == ENABLED) {
1262 mem->bus.offset = mem->start << PAGE_SHIFT;
1263 mem->bus.base = drm->agp.base;
1264 mem->bus.is_iomem = !drm->dev->agp->cant_use_aperture;
1265 }
1266 #endif
1267 if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA || !node->memtype)
1268 /* untiled */
1269 break;
1270 /* fallthrough, tiled memory */
1271 case TTM_PL_VRAM:
1272 mem->bus.offset = mem->start << PAGE_SHIFT;
1273 mem->bus.base = nv_device_resource_start(nvkm_device(&drm->device), 1);
1274 mem->bus.is_iomem = true;
1275 if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
1276 struct nouveau_bar *bar = nvkm_bar(&drm->device);
1277
1278 ret = bar->umap(bar, node, NV_MEM_ACCESS_RW,
1279 &node->bar_vma);
1280 if (ret)
1281 return ret;
1282
1283 mem->bus.offset = node->bar_vma.offset;
1284 }
1285 break;
1286 default:
1287 return -EINVAL;
1288 }
1289 return 0;
1290 }
1291
1292 static void
1293 nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1294 {
1295 struct nouveau_drm *drm = nouveau_bdev(bdev);
1296 struct nouveau_bar *bar = nvkm_bar(&drm->device);
1297 struct nouveau_mem *node = mem->mm_node;
1298
1299 if (!node->bar_vma.node)
1300 return;
1301
1302 bar->unmap(bar, &node->bar_vma);
1303 }
1304
1305 static int
1306 nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1307 {
1308 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1309 struct nouveau_bo *nvbo = nouveau_bo(bo);
1310 struct nvif_device *device = &drm->device;
1311 u32 mappable = nv_device_resource_len(nvkm_device(device), 1) >> PAGE_SHIFT;
1312 int i, ret;
1313
1314 /* as long as the bo isn't in vram, and isn't tiled, we've got
1315 * nothing to do here.
1316 */
1317 if (bo->mem.mem_type != TTM_PL_VRAM) {
1318 if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1319 !nouveau_bo_tile_layout(nvbo))
1320 return 0;
1321
1322 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
1323 nouveau_bo_placement_set(nvbo, TTM_PL_TT, 0);
1324
1325 ret = nouveau_bo_validate(nvbo, false, false);
1326 if (ret)
1327 return ret;
1328 }
1329 return 0;
1330 }
1331
1332 /* make sure bo is in mappable vram */
1333 if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1334 bo->mem.start + bo->mem.num_pages < mappable)
1335 return 0;
1336
1337 for (i = 0; i < nvbo->placement.num_placement; ++i) {
1338 nvbo->placements[i].fpfn = 0;
1339 nvbo->placements[i].lpfn = mappable;
1340 }
1341
1342 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
1343 nvbo->busy_placements[i].fpfn = 0;
1344 nvbo->busy_placements[i].lpfn = mappable;
1345 }
1346
1347 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_VRAM, 0);
1348 return nouveau_bo_validate(nvbo, false, false);
1349 }
1350
1351 static int
1352 nouveau_ttm_tt_populate(struct ttm_tt *ttm)
1353 {
1354 struct ttm_dma_tt *ttm_dma = (void *)ttm;
1355 struct nouveau_drm *drm;
1356 struct nouveau_device *device;
1357 struct drm_device *dev;
1358 struct device *pdev;
1359 unsigned i;
1360 int r;
1361 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1362
1363 if (ttm->state != tt_unpopulated)
1364 return 0;
1365
1366 if (slave && ttm->sg) {
1367 /* make userspace faulting work */
1368 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1369 ttm_dma->dma_address, ttm->num_pages);
1370 ttm->state = tt_unbound;
1371 return 0;
1372 }
1373
1374 drm = nouveau_bdev(ttm->bdev);
1375 device = nvkm_device(&drm->device);
1376 dev = drm->dev;
1377 pdev = nv_device_base(device);
1378
1379 #if __OS_HAS_AGP
1380 if (drm->agp.stat == ENABLED) {
1381 return ttm_agp_tt_populate(ttm);
1382 }
1383 #endif
1384
1385 #ifdef CONFIG_SWIOTLB
1386 if (swiotlb_nr_tbl()) {
1387 return ttm_dma_populate((void *)ttm, dev->dev);
1388 }
1389 #endif
1390
1391 r = ttm_pool_populate(ttm);
1392 if (r) {
1393 return r;
1394 }
1395
1396 for (i = 0; i < ttm->num_pages; i++) {
1397 dma_addr_t addr;
1398
1399 addr = dma_map_page(pdev, ttm->pages[i], 0, PAGE_SIZE,
1400 DMA_BIDIRECTIONAL);
1401
1402 if (dma_mapping_error(pdev, addr)) {
1403 while (--i) {
1404 dma_unmap_page(pdev, ttm_dma->dma_address[i],
1405 PAGE_SIZE, DMA_BIDIRECTIONAL);
1406 ttm_dma->dma_address[i] = 0;
1407 }
1408 ttm_pool_unpopulate(ttm);
1409 return -EFAULT;
1410 }
1411
1412 ttm_dma->dma_address[i] = addr;
1413 }
1414 return 0;
1415 }
1416
1417 static void
1418 nouveau_ttm_tt_unpopulate(struct ttm_tt *ttm)
1419 {
1420 struct ttm_dma_tt *ttm_dma = (void *)ttm;
1421 struct nouveau_drm *drm;
1422 struct nouveau_device *device;
1423 struct drm_device *dev;
1424 struct device *pdev;
1425 unsigned i;
1426 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1427
1428 if (slave)
1429 return;
1430
1431 drm = nouveau_bdev(ttm->bdev);
1432 device = nvkm_device(&drm->device);
1433 dev = drm->dev;
1434 pdev = nv_device_base(device);
1435
1436 #if __OS_HAS_AGP
1437 if (drm->agp.stat == ENABLED) {
1438 ttm_agp_tt_unpopulate(ttm);
1439 return;
1440 }
1441 #endif
1442
1443 #ifdef CONFIG_SWIOTLB
1444 if (swiotlb_nr_tbl()) {
1445 ttm_dma_unpopulate((void *)ttm, dev->dev);
1446 return;
1447 }
1448 #endif
1449
1450 for (i = 0; i < ttm->num_pages; i++) {
1451 if (ttm_dma->dma_address[i]) {
1452 dma_unmap_page(pdev, ttm_dma->dma_address[i], PAGE_SIZE,
1453 DMA_BIDIRECTIONAL);
1454 }
1455 }
1456
1457 ttm_pool_unpopulate(ttm);
1458 }
1459
1460 void
1461 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence)
1462 {
1463 struct nouveau_fence *new_fence = nouveau_fence_ref(fence);
1464 struct nouveau_fence *old_fence = NULL;
1465
1466 lockdep_assert_held(&nvbo->bo.resv->lock.base);
1467
1468 spin_lock(&nvbo->bo.bdev->fence_lock);
1469 old_fence = nvbo->bo.sync_obj;
1470 nvbo->bo.sync_obj = new_fence;
1471 spin_unlock(&nvbo->bo.bdev->fence_lock);
1472
1473 nouveau_fence_unref(&old_fence);
1474 }
1475
1476 static void
1477 nouveau_bo_fence_unref(void **sync_obj)
1478 {
1479 nouveau_fence_unref((struct nouveau_fence **)sync_obj);
1480 }
1481
1482 static void *
1483 nouveau_bo_fence_ref(void *sync_obj)
1484 {
1485 return nouveau_fence_ref(sync_obj);
1486 }
1487
1488 static bool
1489 nouveau_bo_fence_signalled(void *sync_obj)
1490 {
1491 return nouveau_fence_done(sync_obj);
1492 }
1493
1494 static int
1495 nouveau_bo_fence_wait(void *sync_obj, bool lazy, bool intr)
1496 {
1497 return nouveau_fence_wait(sync_obj, lazy, intr);
1498 }
1499
1500 static int
1501 nouveau_bo_fence_flush(void *sync_obj)
1502 {
1503 return 0;
1504 }
1505
1506 struct ttm_bo_driver nouveau_bo_driver = {
1507 .ttm_tt_create = &nouveau_ttm_tt_create,
1508 .ttm_tt_populate = &nouveau_ttm_tt_populate,
1509 .ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1510 .invalidate_caches = nouveau_bo_invalidate_caches,
1511 .init_mem_type = nouveau_bo_init_mem_type,
1512 .evict_flags = nouveau_bo_evict_flags,
1513 .move_notify = nouveau_bo_move_ntfy,
1514 .move = nouveau_bo_move,
1515 .verify_access = nouveau_bo_verify_access,
1516 .sync_obj_signaled = nouveau_bo_fence_signalled,
1517 .sync_obj_wait = nouveau_bo_fence_wait,
1518 .sync_obj_flush = nouveau_bo_fence_flush,
1519 .sync_obj_unref = nouveau_bo_fence_unref,
1520 .sync_obj_ref = nouveau_bo_fence_ref,
1521 .fault_reserve_notify = &nouveau_ttm_fault_reserve_notify,
1522 .io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1523 .io_mem_free = &nouveau_ttm_io_mem_free,
1524 };
1525
1526 struct nouveau_vma *
1527 nouveau_bo_vma_find(struct nouveau_bo *nvbo, struct nouveau_vm *vm)
1528 {
1529 struct nouveau_vma *vma;
1530 list_for_each_entry(vma, &nvbo->vma_list, head) {
1531 if (vma->vm == vm)
1532 return vma;
1533 }
1534
1535 return NULL;
1536 }
1537
1538 int
1539 nouveau_bo_vma_add(struct nouveau_bo *nvbo, struct nouveau_vm *vm,
1540 struct nouveau_vma *vma)
1541 {
1542 const u32 size = nvbo->bo.mem.num_pages << PAGE_SHIFT;
1543 int ret;
1544
1545 ret = nouveau_vm_get(vm, size, nvbo->page_shift,
1546 NV_MEM_ACCESS_RW, vma);
1547 if (ret)
1548 return ret;
1549
1550 if ( nvbo->bo.mem.mem_type != TTM_PL_SYSTEM &&
1551 (nvbo->bo.mem.mem_type == TTM_PL_VRAM ||
1552 nvbo->page_shift != vma->vm->vmm->lpg_shift))
1553 nouveau_vm_map(vma, nvbo->bo.mem.mm_node);
1554
1555 list_add_tail(&vma->head, &nvbo->vma_list);
1556 vma->refcount = 1;
1557 return 0;
1558 }
1559
1560 void
1561 nouveau_bo_vma_del(struct nouveau_bo *nvbo, struct nouveau_vma *vma)
1562 {
1563 if (vma->node) {
1564 if (nvbo->bo.mem.mem_type != TTM_PL_SYSTEM)
1565 nouveau_vm_unmap(vma);
1566 nouveau_vm_put(vma);
1567 list_del(&vma->head);
1568 }
1569 }
This page took 0.071166 seconds and 5 git commands to generate.