Merge remote-tracking branches 'regulator/fix/ad5398', 'regulator/fix/da9210', 'regul...
[deliverable/linux.git] / drivers / gpu / drm / nouveau / nvkm / subdev / clk / gf100.c
1 /*
2 * Copyright 2012 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #define gf100_clk(p) container_of((p), struct gf100_clk, base)
25 #include "priv.h"
26 #include "pll.h"
27
28 #include <subdev/bios.h>
29 #include <subdev/bios/pll.h>
30 #include <subdev/timer.h>
31
32 struct gf100_clk_info {
33 u32 freq;
34 u32 ssel;
35 u32 mdiv;
36 u32 dsrc;
37 u32 ddiv;
38 u32 coef;
39 };
40
41 struct gf100_clk {
42 struct nvkm_clk base;
43 struct gf100_clk_info eng[16];
44 };
45
46 static u32 read_div(struct gf100_clk *, int, u32, u32);
47
48 static u32
49 read_vco(struct gf100_clk *clk, u32 dsrc)
50 {
51 struct nvkm_device *device = clk->base.subdev.device;
52 u32 ssrc = nvkm_rd32(device, dsrc);
53 if (!(ssrc & 0x00000100))
54 return nvkm_clk_read(&clk->base, nv_clk_src_sppll0);
55 return nvkm_clk_read(&clk->base, nv_clk_src_sppll1);
56 }
57
58 static u32
59 read_pll(struct gf100_clk *clk, u32 pll)
60 {
61 struct nvkm_device *device = clk->base.subdev.device;
62 u32 ctrl = nvkm_rd32(device, pll + 0x00);
63 u32 coef = nvkm_rd32(device, pll + 0x04);
64 u32 P = (coef & 0x003f0000) >> 16;
65 u32 N = (coef & 0x0000ff00) >> 8;
66 u32 M = (coef & 0x000000ff) >> 0;
67 u32 sclk;
68
69 if (!(ctrl & 0x00000001))
70 return 0;
71
72 switch (pll) {
73 case 0x00e800:
74 case 0x00e820:
75 sclk = device->crystal;
76 P = 1;
77 break;
78 case 0x132000:
79 sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrc);
80 break;
81 case 0x132020:
82 sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrcref);
83 break;
84 case 0x137000:
85 case 0x137020:
86 case 0x137040:
87 case 0x1370e0:
88 sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
89 break;
90 default:
91 return 0;
92 }
93
94 return sclk * N / M / P;
95 }
96
97 static u32
98 read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl)
99 {
100 struct nvkm_device *device = clk->base.subdev.device;
101 u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
102 u32 sctl = nvkm_rd32(device, dctl + (doff * 4));
103
104 switch (ssrc & 0x00000003) {
105 case 0:
106 if ((ssrc & 0x00030000) != 0x00030000)
107 return device->crystal;
108 return 108000;
109 case 2:
110 return 100000;
111 case 3:
112 if (sctl & 0x80000000) {
113 u32 sclk = read_vco(clk, dsrc + (doff * 4));
114 u32 sdiv = (sctl & 0x0000003f) + 2;
115 return (sclk * 2) / sdiv;
116 }
117
118 return read_vco(clk, dsrc + (doff * 4));
119 default:
120 return 0;
121 }
122 }
123
124 static u32
125 read_clk(struct gf100_clk *clk, int idx)
126 {
127 struct nvkm_device *device = clk->base.subdev.device;
128 u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
129 u32 ssel = nvkm_rd32(device, 0x137100);
130 u32 sclk, sdiv;
131
132 if (ssel & (1 << idx)) {
133 if (idx < 7)
134 sclk = read_pll(clk, 0x137000 + (idx * 0x20));
135 else
136 sclk = read_pll(clk, 0x1370e0);
137 sdiv = ((sctl & 0x00003f00) >> 8) + 2;
138 } else {
139 sclk = read_div(clk, idx, 0x137160, 0x1371d0);
140 sdiv = ((sctl & 0x0000003f) >> 0) + 2;
141 }
142
143 if (sctl & 0x80000000)
144 return (sclk * 2) / sdiv;
145
146 return sclk;
147 }
148
149 static int
150 gf100_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
151 {
152 struct gf100_clk *clk = gf100_clk(base);
153 struct nvkm_subdev *subdev = &clk->base.subdev;
154 struct nvkm_device *device = subdev->device;
155
156 switch (src) {
157 case nv_clk_src_crystal:
158 return device->crystal;
159 case nv_clk_src_href:
160 return 100000;
161 case nv_clk_src_sppll0:
162 return read_pll(clk, 0x00e800);
163 case nv_clk_src_sppll1:
164 return read_pll(clk, 0x00e820);
165
166 case nv_clk_src_mpllsrcref:
167 return read_div(clk, 0, 0x137320, 0x137330);
168 case nv_clk_src_mpllsrc:
169 return read_pll(clk, 0x132020);
170 case nv_clk_src_mpll:
171 return read_pll(clk, 0x132000);
172 case nv_clk_src_mdiv:
173 return read_div(clk, 0, 0x137300, 0x137310);
174 case nv_clk_src_mem:
175 if (nvkm_rd32(device, 0x1373f0) & 0x00000002)
176 return nvkm_clk_read(&clk->base, nv_clk_src_mpll);
177 return nvkm_clk_read(&clk->base, nv_clk_src_mdiv);
178
179 case nv_clk_src_gpc:
180 return read_clk(clk, 0x00);
181 case nv_clk_src_rop:
182 return read_clk(clk, 0x01);
183 case nv_clk_src_hubk07:
184 return read_clk(clk, 0x02);
185 case nv_clk_src_hubk06:
186 return read_clk(clk, 0x07);
187 case nv_clk_src_hubk01:
188 return read_clk(clk, 0x08);
189 case nv_clk_src_copy:
190 return read_clk(clk, 0x09);
191 case nv_clk_src_pmu:
192 return read_clk(clk, 0x0c);
193 case nv_clk_src_vdec:
194 return read_clk(clk, 0x0e);
195 default:
196 nvkm_error(subdev, "invalid clock source %d\n", src);
197 return -EINVAL;
198 }
199 }
200
201 static u32
202 calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
203 {
204 u32 div = min((ref * 2) / freq, (u32)65);
205 if (div < 2)
206 div = 2;
207
208 *ddiv = div - 2;
209 return (ref * 2) / div;
210 }
211
212 static u32
213 calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
214 {
215 u32 sclk;
216
217 /* use one of the fixed frequencies if possible */
218 *ddiv = 0x00000000;
219 switch (freq) {
220 case 27000:
221 case 108000:
222 *dsrc = 0x00000000;
223 if (freq == 108000)
224 *dsrc |= 0x00030000;
225 return freq;
226 case 100000:
227 *dsrc = 0x00000002;
228 return freq;
229 default:
230 *dsrc = 0x00000003;
231 break;
232 }
233
234 /* otherwise, calculate the closest divider */
235 sclk = read_vco(clk, 0x137160 + (idx * 4));
236 if (idx < 7)
237 sclk = calc_div(clk, idx, sclk, freq, ddiv);
238 return sclk;
239 }
240
241 static u32
242 calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef)
243 {
244 struct nvkm_subdev *subdev = &clk->base.subdev;
245 struct nvkm_bios *bios = subdev->device->bios;
246 struct nvbios_pll limits;
247 int N, M, P, ret;
248
249 ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
250 if (ret)
251 return 0;
252
253 limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
254 if (!limits.refclk)
255 return 0;
256
257 ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
258 if (ret <= 0)
259 return 0;
260
261 *coef = (P << 16) | (N << 8) | M;
262 return ret;
263 }
264
265 static int
266 calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom)
267 {
268 struct gf100_clk_info *info = &clk->eng[idx];
269 u32 freq = cstate->domain[dom];
270 u32 src0, div0, div1D, div1P = 0;
271 u32 clk0, clk1 = 0;
272
273 /* invalid clock domain */
274 if (!freq)
275 return 0;
276
277 /* first possible path, using only dividers */
278 clk0 = calc_src(clk, idx, freq, &src0, &div0);
279 clk0 = calc_div(clk, idx, clk0, freq, &div1D);
280
281 /* see if we can get any closer using PLLs */
282 if (clk0 != freq && (0x00004387 & (1 << idx))) {
283 if (idx <= 7)
284 clk1 = calc_pll(clk, idx, freq, &info->coef);
285 else
286 clk1 = cstate->domain[nv_clk_src_hubk06];
287 clk1 = calc_div(clk, idx, clk1, freq, &div1P);
288 }
289
290 /* select the method which gets closest to target freq */
291 if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
292 info->dsrc = src0;
293 if (div0) {
294 info->ddiv |= 0x80000000;
295 info->ddiv |= div0 << 8;
296 info->ddiv |= div0;
297 }
298 if (div1D) {
299 info->mdiv |= 0x80000000;
300 info->mdiv |= div1D;
301 }
302 info->ssel = info->coef = 0;
303 info->freq = clk0;
304 } else {
305 if (div1P) {
306 info->mdiv |= 0x80000000;
307 info->mdiv |= div1P << 8;
308 }
309 info->ssel = (1 << idx);
310 info->freq = clk1;
311 }
312
313 return 0;
314 }
315
316 static int
317 gf100_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
318 {
319 struct gf100_clk *clk = gf100_clk(base);
320 int ret;
321
322 if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
323 (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
324 (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
325 (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
326 (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
327 (ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) ||
328 (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_pmu)) ||
329 (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
330 return ret;
331
332 return 0;
333 }
334
335 static void
336 gf100_clk_prog_0(struct gf100_clk *clk, int idx)
337 {
338 struct gf100_clk_info *info = &clk->eng[idx];
339 struct nvkm_device *device = clk->base.subdev.device;
340 if (idx < 7 && !info->ssel) {
341 nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv);
342 nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
343 }
344 }
345
346 static void
347 gf100_clk_prog_1(struct gf100_clk *clk, int idx)
348 {
349 struct nvkm_device *device = clk->base.subdev.device;
350 nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
351 nvkm_msec(device, 2000,
352 if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
353 break;
354 );
355 }
356
357 static void
358 gf100_clk_prog_2(struct gf100_clk *clk, int idx)
359 {
360 struct gf100_clk_info *info = &clk->eng[idx];
361 struct nvkm_device *device = clk->base.subdev.device;
362 const u32 addr = 0x137000 + (idx * 0x20);
363 if (idx <= 7) {
364 nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
365 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
366 if (info->coef) {
367 nvkm_wr32(device, addr + 0x04, info->coef);
368 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
369 nvkm_msec(device, 2000,
370 if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
371 break;
372 );
373 nvkm_mask(device, addr + 0x00, 0x00020004, 0x00000004);
374 }
375 }
376 }
377
378 static void
379 gf100_clk_prog_3(struct gf100_clk *clk, int idx)
380 {
381 struct gf100_clk_info *info = &clk->eng[idx];
382 struct nvkm_device *device = clk->base.subdev.device;
383 if (info->ssel) {
384 nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
385 nvkm_msec(device, 2000,
386 u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
387 if (tmp == info->ssel)
388 break;
389 );
390 }
391 }
392
393 static void
394 gf100_clk_prog_4(struct gf100_clk *clk, int idx)
395 {
396 struct gf100_clk_info *info = &clk->eng[idx];
397 struct nvkm_device *device = clk->base.subdev.device;
398 nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv);
399 }
400
401 static int
402 gf100_clk_prog(struct nvkm_clk *base)
403 {
404 struct gf100_clk *clk = gf100_clk(base);
405 struct {
406 void (*exec)(struct gf100_clk *, int);
407 } stage[] = {
408 { gf100_clk_prog_0 }, /* div programming */
409 { gf100_clk_prog_1 }, /* select div mode */
410 { gf100_clk_prog_2 }, /* (maybe) program pll */
411 { gf100_clk_prog_3 }, /* (maybe) select pll mode */
412 { gf100_clk_prog_4 }, /* final divider */
413 };
414 int i, j;
415
416 for (i = 0; i < ARRAY_SIZE(stage); i++) {
417 for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
418 if (!clk->eng[j].freq)
419 continue;
420 stage[i].exec(clk, j);
421 }
422 }
423
424 return 0;
425 }
426
427 static void
428 gf100_clk_tidy(struct nvkm_clk *base)
429 {
430 struct gf100_clk *clk = gf100_clk(base);
431 memset(clk->eng, 0x00, sizeof(clk->eng));
432 }
433
434 static const struct nvkm_clk_func
435 gf100_clk = {
436 .read = gf100_clk_read,
437 .calc = gf100_clk_calc,
438 .prog = gf100_clk_prog,
439 .tidy = gf100_clk_tidy,
440 .domains = {
441 { nv_clk_src_crystal, 0xff },
442 { nv_clk_src_href , 0xff },
443 { nv_clk_src_hubk06 , 0x00 },
444 { nv_clk_src_hubk01 , 0x01 },
445 { nv_clk_src_copy , 0x02 },
446 { nv_clk_src_gpc , 0x03, 0, "core", 2000 },
447 { nv_clk_src_rop , 0x04 },
448 { nv_clk_src_mem , 0x05, 0, "memory", 1000 },
449 { nv_clk_src_vdec , 0x06 },
450 { nv_clk_src_pmu , 0x0a },
451 { nv_clk_src_hubk07 , 0x0b },
452 { nv_clk_src_max }
453 }
454 };
455
456 int
457 gf100_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
458 {
459 struct gf100_clk *clk;
460
461 if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
462 return -ENOMEM;
463 *pclk = &clk->base;
464
465 return nvkm_clk_ctor(&gf100_clk, device, index, false, &clk->base);
466 }
This page took 0.044199 seconds and 6 git commands to generate.