Merge tag 'v3.14' into drm-intel-next-queued
[deliverable/linux.git] / drivers / gpu / drm / omapdrm / omap_gem.c
1 /*
2 * drivers/gpu/drm/omapdrm/omap_gem.c
3 *
4 * Copyright (C) 2011 Texas Instruments
5 * Author: Rob Clark <rob.clark@linaro.org>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20
21 #include <linux/spinlock.h>
22 #include <linux/shmem_fs.h>
23 #include <drm/drm_vma_manager.h>
24
25 #include "omap_drv.h"
26 #include "omap_dmm_tiler.h"
27
28 /* remove these once drm core helpers are merged */
29 struct page **_drm_gem_get_pages(struct drm_gem_object *obj, gfp_t gfpmask);
30 void _drm_gem_put_pages(struct drm_gem_object *obj, struct page **pages,
31 bool dirty, bool accessed);
32 int _drm_gem_create_mmap_offset_size(struct drm_gem_object *obj, size_t size);
33
34 /*
35 * GEM buffer object implementation.
36 */
37
38 #define to_omap_bo(x) container_of(x, struct omap_gem_object, base)
39
40 /* note: we use upper 8 bits of flags for driver-internal flags: */
41 #define OMAP_BO_DMA 0x01000000 /* actually is physically contiguous */
42 #define OMAP_BO_EXT_SYNC 0x02000000 /* externally allocated sync object */
43 #define OMAP_BO_EXT_MEM 0x04000000 /* externally allocated memory */
44
45
46 struct omap_gem_object {
47 struct drm_gem_object base;
48
49 struct list_head mm_list;
50
51 uint32_t flags;
52
53 /** width/height for tiled formats (rounded up to slot boundaries) */
54 uint16_t width, height;
55
56 /** roll applied when mapping to DMM */
57 uint32_t roll;
58
59 /**
60 * If buffer is allocated physically contiguous, the OMAP_BO_DMA flag
61 * is set and the paddr is valid. Also if the buffer is remapped in
62 * TILER and paddr_cnt > 0, then paddr is valid. But if you are using
63 * the physical address and OMAP_BO_DMA is not set, then you should
64 * be going thru omap_gem_{get,put}_paddr() to ensure the mapping is
65 * not removed from under your feet.
66 *
67 * Note that OMAP_BO_SCANOUT is a hint from userspace that DMA capable
68 * buffer is requested, but doesn't mean that it is. Use the
69 * OMAP_BO_DMA flag to determine if the buffer has a DMA capable
70 * physical address.
71 */
72 dma_addr_t paddr;
73
74 /**
75 * # of users of paddr
76 */
77 uint32_t paddr_cnt;
78
79 /**
80 * tiler block used when buffer is remapped in DMM/TILER.
81 */
82 struct tiler_block *block;
83
84 /**
85 * Array of backing pages, if allocated. Note that pages are never
86 * allocated for buffers originally allocated from contiguous memory
87 */
88 struct page **pages;
89
90 /** addresses corresponding to pages in above array */
91 dma_addr_t *addrs;
92
93 /**
94 * Virtual address, if mapped.
95 */
96 void *vaddr;
97
98 /**
99 * sync-object allocated on demand (if needed)
100 *
101 * Per-buffer sync-object for tracking pending and completed hw/dma
102 * read and write operations. The layout in memory is dictated by
103 * the SGX firmware, which uses this information to stall the command
104 * stream if a surface is not ready yet.
105 *
106 * Note that when buffer is used by SGX, the sync-object needs to be
107 * allocated from a special heap of sync-objects. This way many sync
108 * objects can be packed in a page, and not waste GPU virtual address
109 * space. Because of this we have to have a omap_gem_set_sync_object()
110 * API to allow replacement of the syncobj after it has (potentially)
111 * already been allocated. A bit ugly but I haven't thought of a
112 * better alternative.
113 */
114 struct {
115 uint32_t write_pending;
116 uint32_t write_complete;
117 uint32_t read_pending;
118 uint32_t read_complete;
119 } *sync;
120 };
121
122 static int get_pages(struct drm_gem_object *obj, struct page ***pages);
123 static uint64_t mmap_offset(struct drm_gem_object *obj);
124
125 /* To deal with userspace mmap'ings of 2d tiled buffers, which (a) are
126 * not necessarily pinned in TILER all the time, and (b) when they are
127 * they are not necessarily page aligned, we reserve one or more small
128 * regions in each of the 2d containers to use as a user-GART where we
129 * can create a second page-aligned mapping of parts of the buffer
130 * being accessed from userspace.
131 *
132 * Note that we could optimize slightly when we know that multiple
133 * tiler containers are backed by the same PAT.. but I'll leave that
134 * for later..
135 */
136 #define NUM_USERGART_ENTRIES 2
137 struct usergart_entry {
138 struct tiler_block *block; /* the reserved tiler block */
139 dma_addr_t paddr;
140 struct drm_gem_object *obj; /* the current pinned obj */
141 pgoff_t obj_pgoff; /* page offset of obj currently
142 mapped in */
143 };
144 static struct {
145 struct usergart_entry entry[NUM_USERGART_ENTRIES];
146 int height; /* height in rows */
147 int height_shift; /* ilog2(height in rows) */
148 int slot_shift; /* ilog2(width per slot) */
149 int stride_pfn; /* stride in pages */
150 int last; /* index of last used entry */
151 } *usergart;
152
153 static void evict_entry(struct drm_gem_object *obj,
154 enum tiler_fmt fmt, struct usergart_entry *entry)
155 {
156 struct omap_gem_object *omap_obj = to_omap_bo(obj);
157 int n = usergart[fmt].height;
158 size_t size = PAGE_SIZE * n;
159 loff_t off = mmap_offset(obj) +
160 (entry->obj_pgoff << PAGE_SHIFT);
161 const int m = 1 + ((omap_obj->width << fmt) / PAGE_SIZE);
162
163 if (m > 1) {
164 int i;
165 /* if stride > than PAGE_SIZE then sparse mapping: */
166 for (i = n; i > 0; i--) {
167 unmap_mapping_range(obj->dev->anon_inode->i_mapping,
168 off, PAGE_SIZE, 1);
169 off += PAGE_SIZE * m;
170 }
171 } else {
172 unmap_mapping_range(obj->dev->anon_inode->i_mapping,
173 off, size, 1);
174 }
175
176 entry->obj = NULL;
177 }
178
179 /* Evict a buffer from usergart, if it is mapped there */
180 static void evict(struct drm_gem_object *obj)
181 {
182 struct omap_gem_object *omap_obj = to_omap_bo(obj);
183
184 if (omap_obj->flags & OMAP_BO_TILED) {
185 enum tiler_fmt fmt = gem2fmt(omap_obj->flags);
186 int i;
187
188 if (!usergart)
189 return;
190
191 for (i = 0; i < NUM_USERGART_ENTRIES; i++) {
192 struct usergart_entry *entry = &usergart[fmt].entry[i];
193 if (entry->obj == obj)
194 evict_entry(obj, fmt, entry);
195 }
196 }
197 }
198
199 /* GEM objects can either be allocated from contiguous memory (in which
200 * case obj->filp==NULL), or w/ shmem backing (obj->filp!=NULL). But non
201 * contiguous buffers can be remapped in TILER/DMM if they need to be
202 * contiguous... but we don't do this all the time to reduce pressure
203 * on TILER/DMM space when we know at allocation time that the buffer
204 * will need to be scanned out.
205 */
206 static inline bool is_shmem(struct drm_gem_object *obj)
207 {
208 return obj->filp != NULL;
209 }
210
211 /**
212 * shmem buffers that are mapped cached can simulate coherency via using
213 * page faulting to keep track of dirty pages
214 */
215 static inline bool is_cached_coherent(struct drm_gem_object *obj)
216 {
217 struct omap_gem_object *omap_obj = to_omap_bo(obj);
218 return is_shmem(obj) &&
219 ((omap_obj->flags & OMAP_BO_CACHE_MASK) == OMAP_BO_CACHED);
220 }
221
222 static DEFINE_SPINLOCK(sync_lock);
223
224 /** ensure backing pages are allocated */
225 static int omap_gem_attach_pages(struct drm_gem_object *obj)
226 {
227 struct drm_device *dev = obj->dev;
228 struct omap_gem_object *omap_obj = to_omap_bo(obj);
229 struct page **pages;
230 int npages = obj->size >> PAGE_SHIFT;
231 int i, ret;
232 dma_addr_t *addrs;
233
234 WARN_ON(omap_obj->pages);
235
236 /* TODO: __GFP_DMA32 .. but somehow GFP_HIGHMEM is coming from the
237 * mapping_gfp_mask(mapping) which conflicts w/ GFP_DMA32.. probably
238 * we actually want CMA memory for it all anyways..
239 */
240 pages = drm_gem_get_pages(obj, GFP_KERNEL);
241 if (IS_ERR(pages)) {
242 dev_err(obj->dev->dev, "could not get pages: %ld\n", PTR_ERR(pages));
243 return PTR_ERR(pages);
244 }
245
246 /* for non-cached buffers, ensure the new pages are clean because
247 * DSS, GPU, etc. are not cache coherent:
248 */
249 if (omap_obj->flags & (OMAP_BO_WC|OMAP_BO_UNCACHED)) {
250 addrs = kmalloc(npages * sizeof(*addrs), GFP_KERNEL);
251 if (!addrs) {
252 ret = -ENOMEM;
253 goto free_pages;
254 }
255
256 for (i = 0; i < npages; i++) {
257 addrs[i] = dma_map_page(dev->dev, pages[i],
258 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
259 }
260 } else {
261 addrs = kzalloc(npages * sizeof(*addrs), GFP_KERNEL);
262 if (!addrs) {
263 ret = -ENOMEM;
264 goto free_pages;
265 }
266 }
267
268 omap_obj->addrs = addrs;
269 omap_obj->pages = pages;
270
271 return 0;
272
273 free_pages:
274 drm_gem_put_pages(obj, pages, true, false);
275
276 return ret;
277 }
278
279 /** release backing pages */
280 static void omap_gem_detach_pages(struct drm_gem_object *obj)
281 {
282 struct omap_gem_object *omap_obj = to_omap_bo(obj);
283
284 /* for non-cached buffers, ensure the new pages are clean because
285 * DSS, GPU, etc. are not cache coherent:
286 */
287 if (omap_obj->flags & (OMAP_BO_WC|OMAP_BO_UNCACHED)) {
288 int i, npages = obj->size >> PAGE_SHIFT;
289 for (i = 0; i < npages; i++) {
290 dma_unmap_page(obj->dev->dev, omap_obj->addrs[i],
291 PAGE_SIZE, DMA_BIDIRECTIONAL);
292 }
293 }
294
295 kfree(omap_obj->addrs);
296 omap_obj->addrs = NULL;
297
298 drm_gem_put_pages(obj, omap_obj->pages, true, false);
299 omap_obj->pages = NULL;
300 }
301
302 /* get buffer flags */
303 uint32_t omap_gem_flags(struct drm_gem_object *obj)
304 {
305 return to_omap_bo(obj)->flags;
306 }
307
308 /** get mmap offset */
309 static uint64_t mmap_offset(struct drm_gem_object *obj)
310 {
311 struct drm_device *dev = obj->dev;
312 int ret;
313 size_t size;
314
315 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
316
317 /* Make it mmapable */
318 size = omap_gem_mmap_size(obj);
319 ret = drm_gem_create_mmap_offset_size(obj, size);
320 if (ret) {
321 dev_err(dev->dev, "could not allocate mmap offset\n");
322 return 0;
323 }
324
325 return drm_vma_node_offset_addr(&obj->vma_node);
326 }
327
328 uint64_t omap_gem_mmap_offset(struct drm_gem_object *obj)
329 {
330 uint64_t offset;
331 mutex_lock(&obj->dev->struct_mutex);
332 offset = mmap_offset(obj);
333 mutex_unlock(&obj->dev->struct_mutex);
334 return offset;
335 }
336
337 /** get mmap size */
338 size_t omap_gem_mmap_size(struct drm_gem_object *obj)
339 {
340 struct omap_gem_object *omap_obj = to_omap_bo(obj);
341 size_t size = obj->size;
342
343 if (omap_obj->flags & OMAP_BO_TILED) {
344 /* for tiled buffers, the virtual size has stride rounded up
345 * to 4kb.. (to hide the fact that row n+1 might start 16kb or
346 * 32kb later!). But we don't back the entire buffer with
347 * pages, only the valid picture part.. so need to adjust for
348 * this in the size used to mmap and generate mmap offset
349 */
350 size = tiler_vsize(gem2fmt(omap_obj->flags),
351 omap_obj->width, omap_obj->height);
352 }
353
354 return size;
355 }
356
357 /* get tiled size, returns -EINVAL if not tiled buffer */
358 int omap_gem_tiled_size(struct drm_gem_object *obj, uint16_t *w, uint16_t *h)
359 {
360 struct omap_gem_object *omap_obj = to_omap_bo(obj);
361 if (omap_obj->flags & OMAP_BO_TILED) {
362 *w = omap_obj->width;
363 *h = omap_obj->height;
364 return 0;
365 }
366 return -EINVAL;
367 }
368
369 /* Normal handling for the case of faulting in non-tiled buffers */
370 static int fault_1d(struct drm_gem_object *obj,
371 struct vm_area_struct *vma, struct vm_fault *vmf)
372 {
373 struct omap_gem_object *omap_obj = to_omap_bo(obj);
374 unsigned long pfn;
375 pgoff_t pgoff;
376
377 /* We don't use vmf->pgoff since that has the fake offset: */
378 pgoff = ((unsigned long)vmf->virtual_address -
379 vma->vm_start) >> PAGE_SHIFT;
380
381 if (omap_obj->pages) {
382 omap_gem_cpu_sync(obj, pgoff);
383 pfn = page_to_pfn(omap_obj->pages[pgoff]);
384 } else {
385 BUG_ON(!(omap_obj->flags & OMAP_BO_DMA));
386 pfn = (omap_obj->paddr >> PAGE_SHIFT) + pgoff;
387 }
388
389 VERB("Inserting %p pfn %lx, pa %lx", vmf->virtual_address,
390 pfn, pfn << PAGE_SHIFT);
391
392 return vm_insert_mixed(vma, (unsigned long)vmf->virtual_address, pfn);
393 }
394
395 /* Special handling for the case of faulting in 2d tiled buffers */
396 static int fault_2d(struct drm_gem_object *obj,
397 struct vm_area_struct *vma, struct vm_fault *vmf)
398 {
399 struct omap_gem_object *omap_obj = to_omap_bo(obj);
400 struct usergart_entry *entry;
401 enum tiler_fmt fmt = gem2fmt(omap_obj->flags);
402 struct page *pages[64]; /* XXX is this too much to have on stack? */
403 unsigned long pfn;
404 pgoff_t pgoff, base_pgoff;
405 void __user *vaddr;
406 int i, ret, slots;
407
408 /*
409 * Note the height of the slot is also equal to the number of pages
410 * that need to be mapped in to fill 4kb wide CPU page. If the slot
411 * height is 64, then 64 pages fill a 4kb wide by 64 row region.
412 */
413 const int n = usergart[fmt].height;
414 const int n_shift = usergart[fmt].height_shift;
415
416 /*
417 * If buffer width in bytes > PAGE_SIZE then the virtual stride is
418 * rounded up to next multiple of PAGE_SIZE.. this need to be taken
419 * into account in some of the math, so figure out virtual stride
420 * in pages
421 */
422 const int m = 1 + ((omap_obj->width << fmt) / PAGE_SIZE);
423
424 /* We don't use vmf->pgoff since that has the fake offset: */
425 pgoff = ((unsigned long)vmf->virtual_address -
426 vma->vm_start) >> PAGE_SHIFT;
427
428 /*
429 * Actual address we start mapping at is rounded down to previous slot
430 * boundary in the y direction:
431 */
432 base_pgoff = round_down(pgoff, m << n_shift);
433
434 /* figure out buffer width in slots */
435 slots = omap_obj->width >> usergart[fmt].slot_shift;
436
437 vaddr = vmf->virtual_address - ((pgoff - base_pgoff) << PAGE_SHIFT);
438
439 entry = &usergart[fmt].entry[usergart[fmt].last];
440
441 /* evict previous buffer using this usergart entry, if any: */
442 if (entry->obj)
443 evict_entry(entry->obj, fmt, entry);
444
445 entry->obj = obj;
446 entry->obj_pgoff = base_pgoff;
447
448 /* now convert base_pgoff to phys offset from virt offset: */
449 base_pgoff = (base_pgoff >> n_shift) * slots;
450
451 /* for wider-than 4k.. figure out which part of the slot-row we want: */
452 if (m > 1) {
453 int off = pgoff % m;
454 entry->obj_pgoff += off;
455 base_pgoff /= m;
456 slots = min(slots - (off << n_shift), n);
457 base_pgoff += off << n_shift;
458 vaddr += off << PAGE_SHIFT;
459 }
460
461 /*
462 * Map in pages. Beyond the valid pixel part of the buffer, we set
463 * pages[i] to NULL to get a dummy page mapped in.. if someone
464 * reads/writes it they will get random/undefined content, but at
465 * least it won't be corrupting whatever other random page used to
466 * be mapped in, or other undefined behavior.
467 */
468 memcpy(pages, &omap_obj->pages[base_pgoff],
469 sizeof(struct page *) * slots);
470 memset(pages + slots, 0,
471 sizeof(struct page *) * (n - slots));
472
473 ret = tiler_pin(entry->block, pages, ARRAY_SIZE(pages), 0, true);
474 if (ret) {
475 dev_err(obj->dev->dev, "failed to pin: %d\n", ret);
476 return ret;
477 }
478
479 pfn = entry->paddr >> PAGE_SHIFT;
480
481 VERB("Inserting %p pfn %lx, pa %lx", vmf->virtual_address,
482 pfn, pfn << PAGE_SHIFT);
483
484 for (i = n; i > 0; i--) {
485 vm_insert_mixed(vma, (unsigned long)vaddr, pfn);
486 pfn += usergart[fmt].stride_pfn;
487 vaddr += PAGE_SIZE * m;
488 }
489
490 /* simple round-robin: */
491 usergart[fmt].last = (usergart[fmt].last + 1) % NUM_USERGART_ENTRIES;
492
493 return 0;
494 }
495
496 /**
497 * omap_gem_fault - pagefault handler for GEM objects
498 * @vma: the VMA of the GEM object
499 * @vmf: fault detail
500 *
501 * Invoked when a fault occurs on an mmap of a GEM managed area. GEM
502 * does most of the work for us including the actual map/unmap calls
503 * but we need to do the actual page work.
504 *
505 * The VMA was set up by GEM. In doing so it also ensured that the
506 * vma->vm_private_data points to the GEM object that is backing this
507 * mapping.
508 */
509 int omap_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
510 {
511 struct drm_gem_object *obj = vma->vm_private_data;
512 struct omap_gem_object *omap_obj = to_omap_bo(obj);
513 struct drm_device *dev = obj->dev;
514 struct page **pages;
515 int ret;
516
517 /* Make sure we don't parallel update on a fault, nor move or remove
518 * something from beneath our feet
519 */
520 mutex_lock(&dev->struct_mutex);
521
522 /* if a shmem backed object, make sure we have pages attached now */
523 ret = get_pages(obj, &pages);
524 if (ret)
525 goto fail;
526
527 /* where should we do corresponding put_pages().. we are mapping
528 * the original page, rather than thru a GART, so we can't rely
529 * on eviction to trigger this. But munmap() or all mappings should
530 * probably trigger put_pages()?
531 */
532
533 if (omap_obj->flags & OMAP_BO_TILED)
534 ret = fault_2d(obj, vma, vmf);
535 else
536 ret = fault_1d(obj, vma, vmf);
537
538
539 fail:
540 mutex_unlock(&dev->struct_mutex);
541 switch (ret) {
542 case 0:
543 case -ERESTARTSYS:
544 case -EINTR:
545 return VM_FAULT_NOPAGE;
546 case -ENOMEM:
547 return VM_FAULT_OOM;
548 default:
549 return VM_FAULT_SIGBUS;
550 }
551 }
552
553 /** We override mainly to fix up some of the vm mapping flags.. */
554 int omap_gem_mmap(struct file *filp, struct vm_area_struct *vma)
555 {
556 int ret;
557
558 ret = drm_gem_mmap(filp, vma);
559 if (ret) {
560 DBG("mmap failed: %d", ret);
561 return ret;
562 }
563
564 return omap_gem_mmap_obj(vma->vm_private_data, vma);
565 }
566
567 int omap_gem_mmap_obj(struct drm_gem_object *obj,
568 struct vm_area_struct *vma)
569 {
570 struct omap_gem_object *omap_obj = to_omap_bo(obj);
571
572 vma->vm_flags &= ~VM_PFNMAP;
573 vma->vm_flags |= VM_MIXEDMAP;
574
575 if (omap_obj->flags & OMAP_BO_WC) {
576 vma->vm_page_prot = pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
577 } else if (omap_obj->flags & OMAP_BO_UNCACHED) {
578 vma->vm_page_prot = pgprot_noncached(vm_get_page_prot(vma->vm_flags));
579 } else {
580 /*
581 * We do have some private objects, at least for scanout buffers
582 * on hardware without DMM/TILER. But these are allocated write-
583 * combine
584 */
585 if (WARN_ON(!obj->filp))
586 return -EINVAL;
587
588 /*
589 * Shunt off cached objs to shmem file so they have their own
590 * address_space (so unmap_mapping_range does what we want,
591 * in particular in the case of mmap'd dmabufs)
592 */
593 fput(vma->vm_file);
594 vma->vm_pgoff = 0;
595 vma->vm_file = get_file(obj->filp);
596
597 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
598 }
599
600 return 0;
601 }
602
603
604 /**
605 * omap_gem_dumb_create - create a dumb buffer
606 * @drm_file: our client file
607 * @dev: our device
608 * @args: the requested arguments copied from userspace
609 *
610 * Allocate a buffer suitable for use for a frame buffer of the
611 * form described by user space. Give userspace a handle by which
612 * to reference it.
613 */
614 int omap_gem_dumb_create(struct drm_file *file, struct drm_device *dev,
615 struct drm_mode_create_dumb *args)
616 {
617 union omap_gem_size gsize;
618
619 /* in case someone tries to feed us a completely bogus stride: */
620 args->pitch = align_pitch(args->pitch, args->width, args->bpp);
621 args->size = PAGE_ALIGN(args->pitch * args->height);
622
623 gsize = (union omap_gem_size){
624 .bytes = args->size,
625 };
626
627 return omap_gem_new_handle(dev, file, gsize,
628 OMAP_BO_SCANOUT | OMAP_BO_WC, &args->handle);
629 }
630
631 /**
632 * omap_gem_dumb_map - buffer mapping for dumb interface
633 * @file: our drm client file
634 * @dev: drm device
635 * @handle: GEM handle to the object (from dumb_create)
636 *
637 * Do the necessary setup to allow the mapping of the frame buffer
638 * into user memory. We don't have to do much here at the moment.
639 */
640 int omap_gem_dumb_map_offset(struct drm_file *file, struct drm_device *dev,
641 uint32_t handle, uint64_t *offset)
642 {
643 struct drm_gem_object *obj;
644 int ret = 0;
645
646 /* GEM does all our handle to object mapping */
647 obj = drm_gem_object_lookup(dev, file, handle);
648 if (obj == NULL) {
649 ret = -ENOENT;
650 goto fail;
651 }
652
653 *offset = omap_gem_mmap_offset(obj);
654
655 drm_gem_object_unreference_unlocked(obj);
656
657 fail:
658 return ret;
659 }
660
661 /* Set scrolling position. This allows us to implement fast scrolling
662 * for console.
663 *
664 * Call only from non-atomic contexts.
665 */
666 int omap_gem_roll(struct drm_gem_object *obj, uint32_t roll)
667 {
668 struct omap_gem_object *omap_obj = to_omap_bo(obj);
669 uint32_t npages = obj->size >> PAGE_SHIFT;
670 int ret = 0;
671
672 if (roll > npages) {
673 dev_err(obj->dev->dev, "invalid roll: %d\n", roll);
674 return -EINVAL;
675 }
676
677 omap_obj->roll = roll;
678
679 mutex_lock(&obj->dev->struct_mutex);
680
681 /* if we aren't mapped yet, we don't need to do anything */
682 if (omap_obj->block) {
683 struct page **pages;
684 ret = get_pages(obj, &pages);
685 if (ret)
686 goto fail;
687 ret = tiler_pin(omap_obj->block, pages, npages, roll, true);
688 if (ret)
689 dev_err(obj->dev->dev, "could not repin: %d\n", ret);
690 }
691
692 fail:
693 mutex_unlock(&obj->dev->struct_mutex);
694
695 return ret;
696 }
697
698 /* Sync the buffer for CPU access.. note pages should already be
699 * attached, ie. omap_gem_get_pages()
700 */
701 void omap_gem_cpu_sync(struct drm_gem_object *obj, int pgoff)
702 {
703 struct drm_device *dev = obj->dev;
704 struct omap_gem_object *omap_obj = to_omap_bo(obj);
705
706 if (is_cached_coherent(obj) && omap_obj->addrs[pgoff]) {
707 dma_unmap_page(dev->dev, omap_obj->addrs[pgoff],
708 PAGE_SIZE, DMA_BIDIRECTIONAL);
709 omap_obj->addrs[pgoff] = 0;
710 }
711 }
712
713 /* sync the buffer for DMA access */
714 void omap_gem_dma_sync(struct drm_gem_object *obj,
715 enum dma_data_direction dir)
716 {
717 struct drm_device *dev = obj->dev;
718 struct omap_gem_object *omap_obj = to_omap_bo(obj);
719
720 if (is_cached_coherent(obj)) {
721 int i, npages = obj->size >> PAGE_SHIFT;
722 struct page **pages = omap_obj->pages;
723 bool dirty = false;
724
725 for (i = 0; i < npages; i++) {
726 if (!omap_obj->addrs[i]) {
727 omap_obj->addrs[i] = dma_map_page(dev->dev, pages[i], 0,
728 PAGE_SIZE, DMA_BIDIRECTIONAL);
729 dirty = true;
730 }
731 }
732
733 if (dirty) {
734 unmap_mapping_range(obj->filp->f_mapping, 0,
735 omap_gem_mmap_size(obj), 1);
736 }
737 }
738 }
739
740 /* Get physical address for DMA.. if 'remap' is true, and the buffer is not
741 * already contiguous, remap it to pin in physically contiguous memory.. (ie.
742 * map in TILER)
743 */
744 int omap_gem_get_paddr(struct drm_gem_object *obj,
745 dma_addr_t *paddr, bool remap)
746 {
747 struct omap_drm_private *priv = obj->dev->dev_private;
748 struct omap_gem_object *omap_obj = to_omap_bo(obj);
749 int ret = 0;
750
751 mutex_lock(&obj->dev->struct_mutex);
752
753 if (remap && is_shmem(obj) && priv->has_dmm) {
754 if (omap_obj->paddr_cnt == 0) {
755 struct page **pages;
756 uint32_t npages = obj->size >> PAGE_SHIFT;
757 enum tiler_fmt fmt = gem2fmt(omap_obj->flags);
758 struct tiler_block *block;
759
760 BUG_ON(omap_obj->block);
761
762 ret = get_pages(obj, &pages);
763 if (ret)
764 goto fail;
765
766 if (omap_obj->flags & OMAP_BO_TILED) {
767 block = tiler_reserve_2d(fmt,
768 omap_obj->width,
769 omap_obj->height, 0);
770 } else {
771 block = tiler_reserve_1d(obj->size);
772 }
773
774 if (IS_ERR(block)) {
775 ret = PTR_ERR(block);
776 dev_err(obj->dev->dev,
777 "could not remap: %d (%d)\n", ret, fmt);
778 goto fail;
779 }
780
781 /* TODO: enable async refill.. */
782 ret = tiler_pin(block, pages, npages,
783 omap_obj->roll, true);
784 if (ret) {
785 tiler_release(block);
786 dev_err(obj->dev->dev,
787 "could not pin: %d\n", ret);
788 goto fail;
789 }
790
791 omap_obj->paddr = tiler_ssptr(block);
792 omap_obj->block = block;
793
794 DBG("got paddr: %08x", omap_obj->paddr);
795 }
796
797 omap_obj->paddr_cnt++;
798
799 *paddr = omap_obj->paddr;
800 } else if (omap_obj->flags & OMAP_BO_DMA) {
801 *paddr = omap_obj->paddr;
802 } else {
803 ret = -EINVAL;
804 goto fail;
805 }
806
807 fail:
808 mutex_unlock(&obj->dev->struct_mutex);
809
810 return ret;
811 }
812
813 /* Release physical address, when DMA is no longer being performed.. this
814 * could potentially unpin and unmap buffers from TILER
815 */
816 int omap_gem_put_paddr(struct drm_gem_object *obj)
817 {
818 struct omap_gem_object *omap_obj = to_omap_bo(obj);
819 int ret = 0;
820
821 mutex_lock(&obj->dev->struct_mutex);
822 if (omap_obj->paddr_cnt > 0) {
823 omap_obj->paddr_cnt--;
824 if (omap_obj->paddr_cnt == 0) {
825 ret = tiler_unpin(omap_obj->block);
826 if (ret) {
827 dev_err(obj->dev->dev,
828 "could not unpin pages: %d\n", ret);
829 goto fail;
830 }
831 ret = tiler_release(omap_obj->block);
832 if (ret) {
833 dev_err(obj->dev->dev,
834 "could not release unmap: %d\n", ret);
835 }
836 omap_obj->block = NULL;
837 }
838 }
839 fail:
840 mutex_unlock(&obj->dev->struct_mutex);
841 return ret;
842 }
843
844 /* Get rotated scanout address (only valid if already pinned), at the
845 * specified orientation and x,y offset from top-left corner of buffer
846 * (only valid for tiled 2d buffers)
847 */
848 int omap_gem_rotated_paddr(struct drm_gem_object *obj, uint32_t orient,
849 int x, int y, dma_addr_t *paddr)
850 {
851 struct omap_gem_object *omap_obj = to_omap_bo(obj);
852 int ret = -EINVAL;
853
854 mutex_lock(&obj->dev->struct_mutex);
855 if ((omap_obj->paddr_cnt > 0) && omap_obj->block &&
856 (omap_obj->flags & OMAP_BO_TILED)) {
857 *paddr = tiler_tsptr(omap_obj->block, orient, x, y);
858 ret = 0;
859 }
860 mutex_unlock(&obj->dev->struct_mutex);
861 return ret;
862 }
863
864 /* Get tiler stride for the buffer (only valid for 2d tiled buffers) */
865 int omap_gem_tiled_stride(struct drm_gem_object *obj, uint32_t orient)
866 {
867 struct omap_gem_object *omap_obj = to_omap_bo(obj);
868 int ret = -EINVAL;
869 if (omap_obj->flags & OMAP_BO_TILED)
870 ret = tiler_stride(gem2fmt(omap_obj->flags), orient);
871 return ret;
872 }
873
874 /* acquire pages when needed (for example, for DMA where physically
875 * contiguous buffer is not required
876 */
877 static int get_pages(struct drm_gem_object *obj, struct page ***pages)
878 {
879 struct omap_gem_object *omap_obj = to_omap_bo(obj);
880 int ret = 0;
881
882 if (is_shmem(obj) && !omap_obj->pages) {
883 ret = omap_gem_attach_pages(obj);
884 if (ret) {
885 dev_err(obj->dev->dev, "could not attach pages\n");
886 return ret;
887 }
888 }
889
890 /* TODO: even phys-contig.. we should have a list of pages? */
891 *pages = omap_obj->pages;
892
893 return 0;
894 }
895
896 /* if !remap, and we don't have pages backing, then fail, rather than
897 * increasing the pin count (which we don't really do yet anyways,
898 * because we don't support swapping pages back out). And 'remap'
899 * might not be quite the right name, but I wanted to keep it working
900 * similarly to omap_gem_get_paddr(). Note though that mutex is not
901 * aquired if !remap (because this can be called in atomic ctxt),
902 * but probably omap_gem_get_paddr() should be changed to work in the
903 * same way. If !remap, a matching omap_gem_put_pages() call is not
904 * required (and should not be made).
905 */
906 int omap_gem_get_pages(struct drm_gem_object *obj, struct page ***pages,
907 bool remap)
908 {
909 int ret;
910 if (!remap) {
911 struct omap_gem_object *omap_obj = to_omap_bo(obj);
912 if (!omap_obj->pages)
913 return -ENOMEM;
914 *pages = omap_obj->pages;
915 return 0;
916 }
917 mutex_lock(&obj->dev->struct_mutex);
918 ret = get_pages(obj, pages);
919 mutex_unlock(&obj->dev->struct_mutex);
920 return ret;
921 }
922
923 /* release pages when DMA no longer being performed */
924 int omap_gem_put_pages(struct drm_gem_object *obj)
925 {
926 /* do something here if we dynamically attach/detach pages.. at
927 * least they would no longer need to be pinned if everyone has
928 * released the pages..
929 */
930 return 0;
931 }
932
933 /* Get kernel virtual address for CPU access.. this more or less only
934 * exists for omap_fbdev. This should be called with struct_mutex
935 * held.
936 */
937 void *omap_gem_vaddr(struct drm_gem_object *obj)
938 {
939 struct omap_gem_object *omap_obj = to_omap_bo(obj);
940 WARN_ON(!mutex_is_locked(&obj->dev->struct_mutex));
941 if (!omap_obj->vaddr) {
942 struct page **pages;
943 int ret = get_pages(obj, &pages);
944 if (ret)
945 return ERR_PTR(ret);
946 omap_obj->vaddr = vmap(pages, obj->size >> PAGE_SHIFT,
947 VM_MAP, pgprot_writecombine(PAGE_KERNEL));
948 }
949 return omap_obj->vaddr;
950 }
951
952 #ifdef CONFIG_PM
953 /* re-pin objects in DMM in resume path: */
954 int omap_gem_resume(struct device *dev)
955 {
956 struct drm_device *drm_dev = dev_get_drvdata(dev);
957 struct omap_drm_private *priv = drm_dev->dev_private;
958 struct omap_gem_object *omap_obj;
959 int ret = 0;
960
961 list_for_each_entry(omap_obj, &priv->obj_list, mm_list) {
962 if (omap_obj->block) {
963 struct drm_gem_object *obj = &omap_obj->base;
964 uint32_t npages = obj->size >> PAGE_SHIFT;
965 WARN_ON(!omap_obj->pages); /* this can't happen */
966 ret = tiler_pin(omap_obj->block,
967 omap_obj->pages, npages,
968 omap_obj->roll, true);
969 if (ret) {
970 dev_err(dev, "could not repin: %d\n", ret);
971 return ret;
972 }
973 }
974 }
975
976 return 0;
977 }
978 #endif
979
980 #ifdef CONFIG_DEBUG_FS
981 void omap_gem_describe(struct drm_gem_object *obj, struct seq_file *m)
982 {
983 struct drm_device *dev = obj->dev;
984 struct omap_gem_object *omap_obj = to_omap_bo(obj);
985 uint64_t off;
986
987 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
988
989 off = drm_vma_node_start(&obj->vma_node);
990
991 seq_printf(m, "%08x: %2d (%2d) %08llx %08Zx (%2d) %p %4d",
992 omap_obj->flags, obj->name, obj->refcount.refcount.counter,
993 off, omap_obj->paddr, omap_obj->paddr_cnt,
994 omap_obj->vaddr, omap_obj->roll);
995
996 if (omap_obj->flags & OMAP_BO_TILED) {
997 seq_printf(m, " %dx%d", omap_obj->width, omap_obj->height);
998 if (omap_obj->block) {
999 struct tcm_area *area = &omap_obj->block->area;
1000 seq_printf(m, " (%dx%d, %dx%d)",
1001 area->p0.x, area->p0.y,
1002 area->p1.x, area->p1.y);
1003 }
1004 } else {
1005 seq_printf(m, " %d", obj->size);
1006 }
1007
1008 seq_printf(m, "\n");
1009 }
1010
1011 void omap_gem_describe_objects(struct list_head *list, struct seq_file *m)
1012 {
1013 struct omap_gem_object *omap_obj;
1014 int count = 0;
1015 size_t size = 0;
1016
1017 list_for_each_entry(omap_obj, list, mm_list) {
1018 struct drm_gem_object *obj = &omap_obj->base;
1019 seq_printf(m, " ");
1020 omap_gem_describe(obj, m);
1021 count++;
1022 size += obj->size;
1023 }
1024
1025 seq_printf(m, "Total %d objects, %zu bytes\n", count, size);
1026 }
1027 #endif
1028
1029 /* Buffer Synchronization:
1030 */
1031
1032 struct omap_gem_sync_waiter {
1033 struct list_head list;
1034 struct omap_gem_object *omap_obj;
1035 enum omap_gem_op op;
1036 uint32_t read_target, write_target;
1037 /* notify called w/ sync_lock held */
1038 void (*notify)(void *arg);
1039 void *arg;
1040 };
1041
1042 /* list of omap_gem_sync_waiter.. the notify fxn gets called back when
1043 * the read and/or write target count is achieved which can call a user
1044 * callback (ex. to kick 3d and/or 2d), wakeup blocked task (prep for
1045 * cpu access), etc.
1046 */
1047 static LIST_HEAD(waiters);
1048
1049 static inline bool is_waiting(struct omap_gem_sync_waiter *waiter)
1050 {
1051 struct omap_gem_object *omap_obj = waiter->omap_obj;
1052 if ((waiter->op & OMAP_GEM_READ) &&
1053 (omap_obj->sync->read_complete < waiter->read_target))
1054 return true;
1055 if ((waiter->op & OMAP_GEM_WRITE) &&
1056 (omap_obj->sync->write_complete < waiter->write_target))
1057 return true;
1058 return false;
1059 }
1060
1061 /* macro for sync debug.. */
1062 #define SYNCDBG 0
1063 #define SYNC(fmt, ...) do { if (SYNCDBG) \
1064 printk(KERN_ERR "%s:%d: "fmt"\n", \
1065 __func__, __LINE__, ##__VA_ARGS__); \
1066 } while (0)
1067
1068
1069 static void sync_op_update(void)
1070 {
1071 struct omap_gem_sync_waiter *waiter, *n;
1072 list_for_each_entry_safe(waiter, n, &waiters, list) {
1073 if (!is_waiting(waiter)) {
1074 list_del(&waiter->list);
1075 SYNC("notify: %p", waiter);
1076 waiter->notify(waiter->arg);
1077 kfree(waiter);
1078 }
1079 }
1080 }
1081
1082 static inline int sync_op(struct drm_gem_object *obj,
1083 enum omap_gem_op op, bool start)
1084 {
1085 struct omap_gem_object *omap_obj = to_omap_bo(obj);
1086 int ret = 0;
1087
1088 spin_lock(&sync_lock);
1089
1090 if (!omap_obj->sync) {
1091 omap_obj->sync = kzalloc(sizeof(*omap_obj->sync), GFP_ATOMIC);
1092 if (!omap_obj->sync) {
1093 ret = -ENOMEM;
1094 goto unlock;
1095 }
1096 }
1097
1098 if (start) {
1099 if (op & OMAP_GEM_READ)
1100 omap_obj->sync->read_pending++;
1101 if (op & OMAP_GEM_WRITE)
1102 omap_obj->sync->write_pending++;
1103 } else {
1104 if (op & OMAP_GEM_READ)
1105 omap_obj->sync->read_complete++;
1106 if (op & OMAP_GEM_WRITE)
1107 omap_obj->sync->write_complete++;
1108 sync_op_update();
1109 }
1110
1111 unlock:
1112 spin_unlock(&sync_lock);
1113
1114 return ret;
1115 }
1116
1117 /* it is a bit lame to handle updates in this sort of polling way, but
1118 * in case of PVR, the GPU can directly update read/write complete
1119 * values, and not really tell us which ones it updated.. this also
1120 * means that sync_lock is not quite sufficient. So we'll need to
1121 * do something a bit better when it comes time to add support for
1122 * separate 2d hw..
1123 */
1124 void omap_gem_op_update(void)
1125 {
1126 spin_lock(&sync_lock);
1127 sync_op_update();
1128 spin_unlock(&sync_lock);
1129 }
1130
1131 /* mark the start of read and/or write operation */
1132 int omap_gem_op_start(struct drm_gem_object *obj, enum omap_gem_op op)
1133 {
1134 return sync_op(obj, op, true);
1135 }
1136
1137 int omap_gem_op_finish(struct drm_gem_object *obj, enum omap_gem_op op)
1138 {
1139 return sync_op(obj, op, false);
1140 }
1141
1142 static DECLARE_WAIT_QUEUE_HEAD(sync_event);
1143
1144 static void sync_notify(void *arg)
1145 {
1146 struct task_struct **waiter_task = arg;
1147 *waiter_task = NULL;
1148 wake_up_all(&sync_event);
1149 }
1150
1151 int omap_gem_op_sync(struct drm_gem_object *obj, enum omap_gem_op op)
1152 {
1153 struct omap_gem_object *omap_obj = to_omap_bo(obj);
1154 int ret = 0;
1155 if (omap_obj->sync) {
1156 struct task_struct *waiter_task = current;
1157 struct omap_gem_sync_waiter *waiter =
1158 kzalloc(sizeof(*waiter), GFP_KERNEL);
1159
1160 if (!waiter)
1161 return -ENOMEM;
1162
1163 waiter->omap_obj = omap_obj;
1164 waiter->op = op;
1165 waiter->read_target = omap_obj->sync->read_pending;
1166 waiter->write_target = omap_obj->sync->write_pending;
1167 waiter->notify = sync_notify;
1168 waiter->arg = &waiter_task;
1169
1170 spin_lock(&sync_lock);
1171 if (is_waiting(waiter)) {
1172 SYNC("waited: %p", waiter);
1173 list_add_tail(&waiter->list, &waiters);
1174 spin_unlock(&sync_lock);
1175 ret = wait_event_interruptible(sync_event,
1176 (waiter_task == NULL));
1177 spin_lock(&sync_lock);
1178 if (waiter_task) {
1179 SYNC("interrupted: %p", waiter);
1180 /* we were interrupted */
1181 list_del(&waiter->list);
1182 waiter_task = NULL;
1183 } else {
1184 /* freed in sync_op_update() */
1185 waiter = NULL;
1186 }
1187 }
1188 spin_unlock(&sync_lock);
1189
1190 if (waiter)
1191 kfree(waiter);
1192 }
1193 return ret;
1194 }
1195
1196 /* call fxn(arg), either synchronously or asynchronously if the op
1197 * is currently blocked.. fxn() can be called from any context
1198 *
1199 * (TODO for now fxn is called back from whichever context calls
1200 * omap_gem_op_update().. but this could be better defined later
1201 * if needed)
1202 *
1203 * TODO more code in common w/ _sync()..
1204 */
1205 int omap_gem_op_async(struct drm_gem_object *obj, enum omap_gem_op op,
1206 void (*fxn)(void *arg), void *arg)
1207 {
1208 struct omap_gem_object *omap_obj = to_omap_bo(obj);
1209 if (omap_obj->sync) {
1210 struct omap_gem_sync_waiter *waiter =
1211 kzalloc(sizeof(*waiter), GFP_ATOMIC);
1212
1213 if (!waiter)
1214 return -ENOMEM;
1215
1216 waiter->omap_obj = omap_obj;
1217 waiter->op = op;
1218 waiter->read_target = omap_obj->sync->read_pending;
1219 waiter->write_target = omap_obj->sync->write_pending;
1220 waiter->notify = fxn;
1221 waiter->arg = arg;
1222
1223 spin_lock(&sync_lock);
1224 if (is_waiting(waiter)) {
1225 SYNC("waited: %p", waiter);
1226 list_add_tail(&waiter->list, &waiters);
1227 spin_unlock(&sync_lock);
1228 return 0;
1229 }
1230
1231 spin_unlock(&sync_lock);
1232 }
1233
1234 /* no waiting.. */
1235 fxn(arg);
1236
1237 return 0;
1238 }
1239
1240 /* special API so PVR can update the buffer to use a sync-object allocated
1241 * from it's sync-obj heap. Only used for a newly allocated (from PVR's
1242 * perspective) sync-object, so we overwrite the new syncobj w/ values
1243 * from the already allocated syncobj (if there is one)
1244 */
1245 int omap_gem_set_sync_object(struct drm_gem_object *obj, void *syncobj)
1246 {
1247 struct omap_gem_object *omap_obj = to_omap_bo(obj);
1248 int ret = 0;
1249
1250 spin_lock(&sync_lock);
1251
1252 if ((omap_obj->flags & OMAP_BO_EXT_SYNC) && !syncobj) {
1253 /* clearing a previously set syncobj */
1254 syncobj = kmemdup(omap_obj->sync, sizeof(*omap_obj->sync),
1255 GFP_ATOMIC);
1256 if (!syncobj) {
1257 ret = -ENOMEM;
1258 goto unlock;
1259 }
1260 omap_obj->flags &= ~OMAP_BO_EXT_SYNC;
1261 omap_obj->sync = syncobj;
1262 } else if (syncobj && !(omap_obj->flags & OMAP_BO_EXT_SYNC)) {
1263 /* replacing an existing syncobj */
1264 if (omap_obj->sync) {
1265 memcpy(syncobj, omap_obj->sync, sizeof(*omap_obj->sync));
1266 kfree(omap_obj->sync);
1267 }
1268 omap_obj->flags |= OMAP_BO_EXT_SYNC;
1269 omap_obj->sync = syncobj;
1270 }
1271
1272 unlock:
1273 spin_unlock(&sync_lock);
1274 return ret;
1275 }
1276
1277 /* don't call directly.. called from GEM core when it is time to actually
1278 * free the object..
1279 */
1280 void omap_gem_free_object(struct drm_gem_object *obj)
1281 {
1282 struct drm_device *dev = obj->dev;
1283 struct omap_gem_object *omap_obj = to_omap_bo(obj);
1284
1285 evict(obj);
1286
1287 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
1288
1289 list_del(&omap_obj->mm_list);
1290
1291 drm_gem_free_mmap_offset(obj);
1292
1293 /* this means the object is still pinned.. which really should
1294 * not happen. I think..
1295 */
1296 WARN_ON(omap_obj->paddr_cnt > 0);
1297
1298 /* don't free externally allocated backing memory */
1299 if (!(omap_obj->flags & OMAP_BO_EXT_MEM)) {
1300 if (omap_obj->pages)
1301 omap_gem_detach_pages(obj);
1302
1303 if (!is_shmem(obj)) {
1304 dma_free_writecombine(dev->dev, obj->size,
1305 omap_obj->vaddr, omap_obj->paddr);
1306 } else if (omap_obj->vaddr) {
1307 vunmap(omap_obj->vaddr);
1308 }
1309 }
1310
1311 /* don't free externally allocated syncobj */
1312 if (!(omap_obj->flags & OMAP_BO_EXT_SYNC))
1313 kfree(omap_obj->sync);
1314
1315 drm_gem_object_release(obj);
1316
1317 kfree(obj);
1318 }
1319
1320 /* convenience method to construct a GEM buffer object, and userspace handle */
1321 int omap_gem_new_handle(struct drm_device *dev, struct drm_file *file,
1322 union omap_gem_size gsize, uint32_t flags, uint32_t *handle)
1323 {
1324 struct drm_gem_object *obj;
1325 int ret;
1326
1327 obj = omap_gem_new(dev, gsize, flags);
1328 if (!obj)
1329 return -ENOMEM;
1330
1331 ret = drm_gem_handle_create(file, obj, handle);
1332 if (ret) {
1333 drm_gem_object_release(obj);
1334 kfree(obj); /* TODO isn't there a dtor to call? just copying i915 */
1335 return ret;
1336 }
1337
1338 /* drop reference from allocate - handle holds it now */
1339 drm_gem_object_unreference_unlocked(obj);
1340
1341 return 0;
1342 }
1343
1344 /* GEM buffer object constructor */
1345 struct drm_gem_object *omap_gem_new(struct drm_device *dev,
1346 union omap_gem_size gsize, uint32_t flags)
1347 {
1348 struct omap_drm_private *priv = dev->dev_private;
1349 struct omap_gem_object *omap_obj;
1350 struct drm_gem_object *obj = NULL;
1351 size_t size;
1352 int ret;
1353
1354 if (flags & OMAP_BO_TILED) {
1355 if (!usergart) {
1356 dev_err(dev->dev, "Tiled buffers require DMM\n");
1357 goto fail;
1358 }
1359
1360 /* tiled buffers are always shmem paged backed.. when they are
1361 * scanned out, they are remapped into DMM/TILER
1362 */
1363 flags &= ~OMAP_BO_SCANOUT;
1364
1365 /* currently don't allow cached buffers.. there is some caching
1366 * stuff that needs to be handled better
1367 */
1368 flags &= ~(OMAP_BO_CACHED|OMAP_BO_UNCACHED);
1369 flags |= OMAP_BO_WC;
1370
1371 /* align dimensions to slot boundaries... */
1372 tiler_align(gem2fmt(flags),
1373 &gsize.tiled.width, &gsize.tiled.height);
1374
1375 /* ...and calculate size based on aligned dimensions */
1376 size = tiler_size(gem2fmt(flags),
1377 gsize.tiled.width, gsize.tiled.height);
1378 } else {
1379 size = PAGE_ALIGN(gsize.bytes);
1380 }
1381
1382 omap_obj = kzalloc(sizeof(*omap_obj), GFP_KERNEL);
1383 if (!omap_obj)
1384 goto fail;
1385
1386 list_add(&omap_obj->mm_list, &priv->obj_list);
1387
1388 obj = &omap_obj->base;
1389
1390 if ((flags & OMAP_BO_SCANOUT) && !priv->has_dmm) {
1391 /* attempt to allocate contiguous memory if we don't
1392 * have DMM for remappign discontiguous buffers
1393 */
1394 omap_obj->vaddr = dma_alloc_writecombine(dev->dev, size,
1395 &omap_obj->paddr, GFP_KERNEL);
1396 if (omap_obj->vaddr)
1397 flags |= OMAP_BO_DMA;
1398
1399 }
1400
1401 omap_obj->flags = flags;
1402
1403 if (flags & OMAP_BO_TILED) {
1404 omap_obj->width = gsize.tiled.width;
1405 omap_obj->height = gsize.tiled.height;
1406 }
1407
1408 ret = 0;
1409 if (flags & (OMAP_BO_DMA|OMAP_BO_EXT_MEM))
1410 drm_gem_private_object_init(dev, obj, size);
1411 else
1412 ret = drm_gem_object_init(dev, obj, size);
1413
1414 if (ret)
1415 goto fail;
1416
1417 return obj;
1418
1419 fail:
1420 if (obj)
1421 omap_gem_free_object(obj);
1422
1423 return NULL;
1424 }
1425
1426 /* init/cleanup.. if DMM is used, we need to set some stuff up.. */
1427 void omap_gem_init(struct drm_device *dev)
1428 {
1429 struct omap_drm_private *priv = dev->dev_private;
1430 const enum tiler_fmt fmts[] = {
1431 TILFMT_8BIT, TILFMT_16BIT, TILFMT_32BIT
1432 };
1433 int i, j;
1434
1435 if (!dmm_is_available()) {
1436 /* DMM only supported on OMAP4 and later, so this isn't fatal */
1437 dev_warn(dev->dev, "DMM not available, disable DMM support\n");
1438 return;
1439 }
1440
1441 usergart = kcalloc(3, sizeof(*usergart), GFP_KERNEL);
1442 if (!usergart)
1443 return;
1444
1445 /* reserve 4k aligned/wide regions for userspace mappings: */
1446 for (i = 0; i < ARRAY_SIZE(fmts); i++) {
1447 uint16_t h = 1, w = PAGE_SIZE >> i;
1448 tiler_align(fmts[i], &w, &h);
1449 /* note: since each region is 1 4kb page wide, and minimum
1450 * number of rows, the height ends up being the same as the
1451 * # of pages in the region
1452 */
1453 usergart[i].height = h;
1454 usergart[i].height_shift = ilog2(h);
1455 usergart[i].stride_pfn = tiler_stride(fmts[i], 0) >> PAGE_SHIFT;
1456 usergart[i].slot_shift = ilog2((PAGE_SIZE / h) >> i);
1457 for (j = 0; j < NUM_USERGART_ENTRIES; j++) {
1458 struct usergart_entry *entry = &usergart[i].entry[j];
1459 struct tiler_block *block =
1460 tiler_reserve_2d(fmts[i], w, h,
1461 PAGE_SIZE);
1462 if (IS_ERR(block)) {
1463 dev_err(dev->dev,
1464 "reserve failed: %d, %d, %ld\n",
1465 i, j, PTR_ERR(block));
1466 return;
1467 }
1468 entry->paddr = tiler_ssptr(block);
1469 entry->block = block;
1470
1471 DBG("%d:%d: %dx%d: paddr=%08x stride=%d", i, j, w, h,
1472 entry->paddr,
1473 usergart[i].stride_pfn << PAGE_SHIFT);
1474 }
1475 }
1476
1477 priv->has_dmm = true;
1478 }
1479
1480 void omap_gem_deinit(struct drm_device *dev)
1481 {
1482 /* I believe we can rely on there being no more outstanding GEM
1483 * objects which could depend on usergart/dmm at this point.
1484 */
1485 kfree(usergart);
1486 }
This page took 0.064975 seconds and 5 git commands to generate.