Linux 3.14
[deliverable/linux.git] / drivers / gpu / drm / radeon / radeon_gart.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <drm/drmP.h>
29 #include <drm/radeon_drm.h>
30 #include "radeon.h"
31 #include "radeon_reg.h"
32 #include "radeon_trace.h"
33
34 /*
35 * GART
36 * The GART (Graphics Aperture Remapping Table) is an aperture
37 * in the GPU's address space. System pages can be mapped into
38 * the aperture and look like contiguous pages from the GPU's
39 * perspective. A page table maps the pages in the aperture
40 * to the actual backing pages in system memory.
41 *
42 * Radeon GPUs support both an internal GART, as described above,
43 * and AGP. AGP works similarly, but the GART table is configured
44 * and maintained by the northbridge rather than the driver.
45 * Radeon hw has a separate AGP aperture that is programmed to
46 * point to the AGP aperture provided by the northbridge and the
47 * requests are passed through to the northbridge aperture.
48 * Both AGP and internal GART can be used at the same time, however
49 * that is not currently supported by the driver.
50 *
51 * This file handles the common internal GART management.
52 */
53
54 /*
55 * Common GART table functions.
56 */
57 /**
58 * radeon_gart_table_ram_alloc - allocate system ram for gart page table
59 *
60 * @rdev: radeon_device pointer
61 *
62 * Allocate system memory for GART page table
63 * (r1xx-r3xx, non-pcie r4xx, rs400). These asics require the
64 * gart table to be in system memory.
65 * Returns 0 for success, -ENOMEM for failure.
66 */
67 int radeon_gart_table_ram_alloc(struct radeon_device *rdev)
68 {
69 void *ptr;
70
71 ptr = pci_alloc_consistent(rdev->pdev, rdev->gart.table_size,
72 &rdev->gart.table_addr);
73 if (ptr == NULL) {
74 return -ENOMEM;
75 }
76 #ifdef CONFIG_X86
77 if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 ||
78 rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) {
79 set_memory_uc((unsigned long)ptr,
80 rdev->gart.table_size >> PAGE_SHIFT);
81 }
82 #endif
83 rdev->gart.ptr = ptr;
84 memset((void *)rdev->gart.ptr, 0, rdev->gart.table_size);
85 return 0;
86 }
87
88 /**
89 * radeon_gart_table_ram_free - free system ram for gart page table
90 *
91 * @rdev: radeon_device pointer
92 *
93 * Free system memory for GART page table
94 * (r1xx-r3xx, non-pcie r4xx, rs400). These asics require the
95 * gart table to be in system memory.
96 */
97 void radeon_gart_table_ram_free(struct radeon_device *rdev)
98 {
99 if (rdev->gart.ptr == NULL) {
100 return;
101 }
102 #ifdef CONFIG_X86
103 if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 ||
104 rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) {
105 set_memory_wb((unsigned long)rdev->gart.ptr,
106 rdev->gart.table_size >> PAGE_SHIFT);
107 }
108 #endif
109 pci_free_consistent(rdev->pdev, rdev->gart.table_size,
110 (void *)rdev->gart.ptr,
111 rdev->gart.table_addr);
112 rdev->gart.ptr = NULL;
113 rdev->gart.table_addr = 0;
114 }
115
116 /**
117 * radeon_gart_table_vram_alloc - allocate vram for gart page table
118 *
119 * @rdev: radeon_device pointer
120 *
121 * Allocate video memory for GART page table
122 * (pcie r4xx, r5xx+). These asics require the
123 * gart table to be in video memory.
124 * Returns 0 for success, error for failure.
125 */
126 int radeon_gart_table_vram_alloc(struct radeon_device *rdev)
127 {
128 int r;
129
130 if (rdev->gart.robj == NULL) {
131 r = radeon_bo_create(rdev, rdev->gart.table_size,
132 PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM,
133 NULL, &rdev->gart.robj);
134 if (r) {
135 return r;
136 }
137 }
138 return 0;
139 }
140
141 /**
142 * radeon_gart_table_vram_pin - pin gart page table in vram
143 *
144 * @rdev: radeon_device pointer
145 *
146 * Pin the GART page table in vram so it will not be moved
147 * by the memory manager (pcie r4xx, r5xx+). These asics require the
148 * gart table to be in video memory.
149 * Returns 0 for success, error for failure.
150 */
151 int radeon_gart_table_vram_pin(struct radeon_device *rdev)
152 {
153 uint64_t gpu_addr;
154 int r;
155
156 r = radeon_bo_reserve(rdev->gart.robj, false);
157 if (unlikely(r != 0))
158 return r;
159 r = radeon_bo_pin(rdev->gart.robj,
160 RADEON_GEM_DOMAIN_VRAM, &gpu_addr);
161 if (r) {
162 radeon_bo_unreserve(rdev->gart.robj);
163 return r;
164 }
165 r = radeon_bo_kmap(rdev->gart.robj, &rdev->gart.ptr);
166 if (r)
167 radeon_bo_unpin(rdev->gart.robj);
168 radeon_bo_unreserve(rdev->gart.robj);
169 rdev->gart.table_addr = gpu_addr;
170 return r;
171 }
172
173 /**
174 * radeon_gart_table_vram_unpin - unpin gart page table in vram
175 *
176 * @rdev: radeon_device pointer
177 *
178 * Unpin the GART page table in vram (pcie r4xx, r5xx+).
179 * These asics require the gart table to be in video memory.
180 */
181 void radeon_gart_table_vram_unpin(struct radeon_device *rdev)
182 {
183 int r;
184
185 if (rdev->gart.robj == NULL) {
186 return;
187 }
188 r = radeon_bo_reserve(rdev->gart.robj, false);
189 if (likely(r == 0)) {
190 radeon_bo_kunmap(rdev->gart.robj);
191 radeon_bo_unpin(rdev->gart.robj);
192 radeon_bo_unreserve(rdev->gart.robj);
193 rdev->gart.ptr = NULL;
194 }
195 }
196
197 /**
198 * radeon_gart_table_vram_free - free gart page table vram
199 *
200 * @rdev: radeon_device pointer
201 *
202 * Free the video memory used for the GART page table
203 * (pcie r4xx, r5xx+). These asics require the gart table to
204 * be in video memory.
205 */
206 void radeon_gart_table_vram_free(struct radeon_device *rdev)
207 {
208 if (rdev->gart.robj == NULL) {
209 return;
210 }
211 radeon_bo_unref(&rdev->gart.robj);
212 }
213
214 /*
215 * Common gart functions.
216 */
217 /**
218 * radeon_gart_unbind - unbind pages from the gart page table
219 *
220 * @rdev: radeon_device pointer
221 * @offset: offset into the GPU's gart aperture
222 * @pages: number of pages to unbind
223 *
224 * Unbinds the requested pages from the gart page table and
225 * replaces them with the dummy page (all asics).
226 */
227 void radeon_gart_unbind(struct radeon_device *rdev, unsigned offset,
228 int pages)
229 {
230 unsigned t;
231 unsigned p;
232 int i, j;
233 u64 page_base;
234
235 if (!rdev->gart.ready) {
236 WARN(1, "trying to unbind memory from uninitialized GART !\n");
237 return;
238 }
239 t = offset / RADEON_GPU_PAGE_SIZE;
240 p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
241 for (i = 0; i < pages; i++, p++) {
242 if (rdev->gart.pages[p]) {
243 rdev->gart.pages[p] = NULL;
244 rdev->gart.pages_addr[p] = rdev->dummy_page.addr;
245 page_base = rdev->gart.pages_addr[p];
246 for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
247 if (rdev->gart.ptr) {
248 radeon_gart_set_page(rdev, t, page_base);
249 }
250 page_base += RADEON_GPU_PAGE_SIZE;
251 }
252 }
253 }
254 mb();
255 radeon_gart_tlb_flush(rdev);
256 }
257
258 /**
259 * radeon_gart_bind - bind pages into the gart page table
260 *
261 * @rdev: radeon_device pointer
262 * @offset: offset into the GPU's gart aperture
263 * @pages: number of pages to bind
264 * @pagelist: pages to bind
265 * @dma_addr: DMA addresses of pages
266 *
267 * Binds the requested pages to the gart page table
268 * (all asics).
269 * Returns 0 for success, -EINVAL for failure.
270 */
271 int radeon_gart_bind(struct radeon_device *rdev, unsigned offset,
272 int pages, struct page **pagelist, dma_addr_t *dma_addr)
273 {
274 unsigned t;
275 unsigned p;
276 uint64_t page_base;
277 int i, j;
278
279 if (!rdev->gart.ready) {
280 WARN(1, "trying to bind memory to uninitialized GART !\n");
281 return -EINVAL;
282 }
283 t = offset / RADEON_GPU_PAGE_SIZE;
284 p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
285
286 for (i = 0; i < pages; i++, p++) {
287 rdev->gart.pages_addr[p] = dma_addr[i];
288 rdev->gart.pages[p] = pagelist[i];
289 if (rdev->gart.ptr) {
290 page_base = rdev->gart.pages_addr[p];
291 for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
292 radeon_gart_set_page(rdev, t, page_base);
293 page_base += RADEON_GPU_PAGE_SIZE;
294 }
295 }
296 }
297 mb();
298 radeon_gart_tlb_flush(rdev);
299 return 0;
300 }
301
302 /**
303 * radeon_gart_restore - bind all pages in the gart page table
304 *
305 * @rdev: radeon_device pointer
306 *
307 * Binds all pages in the gart page table (all asics).
308 * Used to rebuild the gart table on device startup or resume.
309 */
310 void radeon_gart_restore(struct radeon_device *rdev)
311 {
312 int i, j, t;
313 u64 page_base;
314
315 if (!rdev->gart.ptr) {
316 return;
317 }
318 for (i = 0, t = 0; i < rdev->gart.num_cpu_pages; i++) {
319 page_base = rdev->gart.pages_addr[i];
320 for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
321 radeon_gart_set_page(rdev, t, page_base);
322 page_base += RADEON_GPU_PAGE_SIZE;
323 }
324 }
325 mb();
326 radeon_gart_tlb_flush(rdev);
327 }
328
329 /**
330 * radeon_gart_init - init the driver info for managing the gart
331 *
332 * @rdev: radeon_device pointer
333 *
334 * Allocate the dummy page and init the gart driver info (all asics).
335 * Returns 0 for success, error for failure.
336 */
337 int radeon_gart_init(struct radeon_device *rdev)
338 {
339 int r, i;
340
341 if (rdev->gart.pages) {
342 return 0;
343 }
344 /* We need PAGE_SIZE >= RADEON_GPU_PAGE_SIZE */
345 if (PAGE_SIZE < RADEON_GPU_PAGE_SIZE) {
346 DRM_ERROR("Page size is smaller than GPU page size!\n");
347 return -EINVAL;
348 }
349 r = radeon_dummy_page_init(rdev);
350 if (r)
351 return r;
352 /* Compute table size */
353 rdev->gart.num_cpu_pages = rdev->mc.gtt_size / PAGE_SIZE;
354 rdev->gart.num_gpu_pages = rdev->mc.gtt_size / RADEON_GPU_PAGE_SIZE;
355 DRM_INFO("GART: num cpu pages %u, num gpu pages %u\n",
356 rdev->gart.num_cpu_pages, rdev->gart.num_gpu_pages);
357 /* Allocate pages table */
358 rdev->gart.pages = vzalloc(sizeof(void *) * rdev->gart.num_cpu_pages);
359 if (rdev->gart.pages == NULL) {
360 radeon_gart_fini(rdev);
361 return -ENOMEM;
362 }
363 rdev->gart.pages_addr = vzalloc(sizeof(dma_addr_t) *
364 rdev->gart.num_cpu_pages);
365 if (rdev->gart.pages_addr == NULL) {
366 radeon_gart_fini(rdev);
367 return -ENOMEM;
368 }
369 /* set GART entry to point to the dummy page by default */
370 for (i = 0; i < rdev->gart.num_cpu_pages; i++) {
371 rdev->gart.pages_addr[i] = rdev->dummy_page.addr;
372 }
373 return 0;
374 }
375
376 /**
377 * radeon_gart_fini - tear down the driver info for managing the gart
378 *
379 * @rdev: radeon_device pointer
380 *
381 * Tear down the gart driver info and free the dummy page (all asics).
382 */
383 void radeon_gart_fini(struct radeon_device *rdev)
384 {
385 if (rdev->gart.pages && rdev->gart.pages_addr && rdev->gart.ready) {
386 /* unbind pages */
387 radeon_gart_unbind(rdev, 0, rdev->gart.num_cpu_pages);
388 }
389 rdev->gart.ready = false;
390 vfree(rdev->gart.pages);
391 vfree(rdev->gart.pages_addr);
392 rdev->gart.pages = NULL;
393 rdev->gart.pages_addr = NULL;
394
395 radeon_dummy_page_fini(rdev);
396 }
397
398 /*
399 * GPUVM
400 * GPUVM is similar to the legacy gart on older asics, however
401 * rather than there being a single global gart table
402 * for the entire GPU, there are multiple VM page tables active
403 * at any given time. The VM page tables can contain a mix
404 * vram pages and system memory pages and system memory pages
405 * can be mapped as snooped (cached system pages) or unsnooped
406 * (uncached system pages).
407 * Each VM has an ID associated with it and there is a page table
408 * associated with each VMID. When execting a command buffer,
409 * the kernel tells the the ring what VMID to use for that command
410 * buffer. VMIDs are allocated dynamically as commands are submitted.
411 * The userspace drivers maintain their own address space and the kernel
412 * sets up their pages tables accordingly when they submit their
413 * command buffers and a VMID is assigned.
414 * Cayman/Trinity support up to 8 active VMs at any given time;
415 * SI supports 16.
416 */
417
418 /*
419 * vm helpers
420 *
421 * TODO bind a default page at vm initialization for default address
422 */
423
424 /**
425 * radeon_vm_num_pde - return the number of page directory entries
426 *
427 * @rdev: radeon_device pointer
428 *
429 * Calculate the number of page directory entries (cayman+).
430 */
431 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev)
432 {
433 return rdev->vm_manager.max_pfn >> RADEON_VM_BLOCK_SIZE;
434 }
435
436 /**
437 * radeon_vm_directory_size - returns the size of the page directory in bytes
438 *
439 * @rdev: radeon_device pointer
440 *
441 * Calculate the size of the page directory in bytes (cayman+).
442 */
443 static unsigned radeon_vm_directory_size(struct radeon_device *rdev)
444 {
445 return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8);
446 }
447
448 /**
449 * radeon_vm_manager_init - init the vm manager
450 *
451 * @rdev: radeon_device pointer
452 *
453 * Init the vm manager (cayman+).
454 * Returns 0 for success, error for failure.
455 */
456 int radeon_vm_manager_init(struct radeon_device *rdev)
457 {
458 struct radeon_vm *vm;
459 struct radeon_bo_va *bo_va;
460 int r;
461 unsigned size;
462
463 if (!rdev->vm_manager.enabled) {
464 /* allocate enough for 2 full VM pts */
465 size = radeon_vm_directory_size(rdev);
466 size += rdev->vm_manager.max_pfn * 8;
467 size *= 2;
468 r = radeon_sa_bo_manager_init(rdev, &rdev->vm_manager.sa_manager,
469 RADEON_GPU_PAGE_ALIGN(size),
470 RADEON_VM_PTB_ALIGN_SIZE,
471 RADEON_GEM_DOMAIN_VRAM);
472 if (r) {
473 dev_err(rdev->dev, "failed to allocate vm bo (%dKB)\n",
474 (rdev->vm_manager.max_pfn * 8) >> 10);
475 return r;
476 }
477
478 r = radeon_asic_vm_init(rdev);
479 if (r)
480 return r;
481
482 rdev->vm_manager.enabled = true;
483
484 r = radeon_sa_bo_manager_start(rdev, &rdev->vm_manager.sa_manager);
485 if (r)
486 return r;
487 }
488
489 /* restore page table */
490 list_for_each_entry(vm, &rdev->vm_manager.lru_vm, list) {
491 if (vm->page_directory == NULL)
492 continue;
493
494 list_for_each_entry(bo_va, &vm->va, vm_list) {
495 bo_va->valid = false;
496 }
497 }
498 return 0;
499 }
500
501 /**
502 * radeon_vm_free_pt - free the page table for a specific vm
503 *
504 * @rdev: radeon_device pointer
505 * @vm: vm to unbind
506 *
507 * Free the page table of a specific vm (cayman+).
508 *
509 * Global and local mutex must be lock!
510 */
511 static void radeon_vm_free_pt(struct radeon_device *rdev,
512 struct radeon_vm *vm)
513 {
514 struct radeon_bo_va *bo_va;
515 int i;
516
517 if (!vm->page_directory)
518 return;
519
520 list_del_init(&vm->list);
521 radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence);
522
523 list_for_each_entry(bo_va, &vm->va, vm_list) {
524 bo_va->valid = false;
525 }
526
527 if (vm->page_tables == NULL)
528 return;
529
530 for (i = 0; i < radeon_vm_num_pdes(rdev); i++)
531 radeon_sa_bo_free(rdev, &vm->page_tables[i], vm->fence);
532
533 kfree(vm->page_tables);
534 }
535
536 /**
537 * radeon_vm_manager_fini - tear down the vm manager
538 *
539 * @rdev: radeon_device pointer
540 *
541 * Tear down the VM manager (cayman+).
542 */
543 void radeon_vm_manager_fini(struct radeon_device *rdev)
544 {
545 struct radeon_vm *vm, *tmp;
546 int i;
547
548 if (!rdev->vm_manager.enabled)
549 return;
550
551 mutex_lock(&rdev->vm_manager.lock);
552 /* free all allocated page tables */
553 list_for_each_entry_safe(vm, tmp, &rdev->vm_manager.lru_vm, list) {
554 mutex_lock(&vm->mutex);
555 radeon_vm_free_pt(rdev, vm);
556 mutex_unlock(&vm->mutex);
557 }
558 for (i = 0; i < RADEON_NUM_VM; ++i) {
559 radeon_fence_unref(&rdev->vm_manager.active[i]);
560 }
561 radeon_asic_vm_fini(rdev);
562 mutex_unlock(&rdev->vm_manager.lock);
563
564 radeon_sa_bo_manager_suspend(rdev, &rdev->vm_manager.sa_manager);
565 radeon_sa_bo_manager_fini(rdev, &rdev->vm_manager.sa_manager);
566 rdev->vm_manager.enabled = false;
567 }
568
569 /**
570 * radeon_vm_evict - evict page table to make room for new one
571 *
572 * @rdev: radeon_device pointer
573 * @vm: VM we want to allocate something for
574 *
575 * Evict a VM from the lru, making sure that it isn't @vm. (cayman+).
576 * Returns 0 for success, -ENOMEM for failure.
577 *
578 * Global and local mutex must be locked!
579 */
580 static int radeon_vm_evict(struct radeon_device *rdev, struct radeon_vm *vm)
581 {
582 struct radeon_vm *vm_evict;
583
584 if (list_empty(&rdev->vm_manager.lru_vm))
585 return -ENOMEM;
586
587 vm_evict = list_first_entry(&rdev->vm_manager.lru_vm,
588 struct radeon_vm, list);
589 if (vm_evict == vm)
590 return -ENOMEM;
591
592 mutex_lock(&vm_evict->mutex);
593 radeon_vm_free_pt(rdev, vm_evict);
594 mutex_unlock(&vm_evict->mutex);
595 return 0;
596 }
597
598 /**
599 * radeon_vm_alloc_pt - allocates a page table for a VM
600 *
601 * @rdev: radeon_device pointer
602 * @vm: vm to bind
603 *
604 * Allocate a page table for the requested vm (cayman+).
605 * Returns 0 for success, error for failure.
606 *
607 * Global and local mutex must be locked!
608 */
609 int radeon_vm_alloc_pt(struct radeon_device *rdev, struct radeon_vm *vm)
610 {
611 unsigned pd_size, pd_entries, pts_size;
612 struct radeon_ib ib;
613 int r;
614
615 if (vm == NULL) {
616 return -EINVAL;
617 }
618
619 if (vm->page_directory != NULL) {
620 return 0;
621 }
622
623 pd_size = radeon_vm_directory_size(rdev);
624 pd_entries = radeon_vm_num_pdes(rdev);
625
626 retry:
627 r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager,
628 &vm->page_directory, pd_size,
629 RADEON_VM_PTB_ALIGN_SIZE, false);
630 if (r == -ENOMEM) {
631 r = radeon_vm_evict(rdev, vm);
632 if (r)
633 return r;
634 goto retry;
635
636 } else if (r) {
637 return r;
638 }
639
640 vm->pd_gpu_addr = radeon_sa_bo_gpu_addr(vm->page_directory);
641
642 /* Initially clear the page directory */
643 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib,
644 NULL, pd_entries * 2 + 64);
645 if (r) {
646 radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence);
647 return r;
648 }
649
650 ib.length_dw = 0;
651
652 radeon_asic_vm_set_page(rdev, &ib, vm->pd_gpu_addr,
653 0, pd_entries, 0, 0);
654
655 radeon_semaphore_sync_to(ib.semaphore, vm->fence);
656 r = radeon_ib_schedule(rdev, &ib, NULL);
657 if (r) {
658 radeon_ib_free(rdev, &ib);
659 radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence);
660 return r;
661 }
662 radeon_fence_unref(&vm->fence);
663 vm->fence = radeon_fence_ref(ib.fence);
664 radeon_ib_free(rdev, &ib);
665 radeon_fence_unref(&vm->last_flush);
666
667 /* allocate page table array */
668 pts_size = radeon_vm_num_pdes(rdev) * sizeof(struct radeon_sa_bo *);
669 vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
670
671 if (vm->page_tables == NULL) {
672 DRM_ERROR("Cannot allocate memory for page table array\n");
673 radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence);
674 return -ENOMEM;
675 }
676
677 return 0;
678 }
679
680 /**
681 * radeon_vm_add_to_lru - add VMs page table to LRU list
682 *
683 * @rdev: radeon_device pointer
684 * @vm: vm to add to LRU
685 *
686 * Add the allocated page table to the LRU list (cayman+).
687 *
688 * Global mutex must be locked!
689 */
690 void radeon_vm_add_to_lru(struct radeon_device *rdev, struct radeon_vm *vm)
691 {
692 list_del_init(&vm->list);
693 list_add_tail(&vm->list, &rdev->vm_manager.lru_vm);
694 }
695
696 /**
697 * radeon_vm_grab_id - allocate the next free VMID
698 *
699 * @rdev: radeon_device pointer
700 * @vm: vm to allocate id for
701 * @ring: ring we want to submit job to
702 *
703 * Allocate an id for the vm (cayman+).
704 * Returns the fence we need to sync to (if any).
705 *
706 * Global and local mutex must be locked!
707 */
708 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev,
709 struct radeon_vm *vm, int ring)
710 {
711 struct radeon_fence *best[RADEON_NUM_RINGS] = {};
712 unsigned choices[2] = {};
713 unsigned i;
714
715 /* check if the id is still valid */
716 if (vm->last_id_use && vm->last_id_use == rdev->vm_manager.active[vm->id])
717 return NULL;
718
719 /* we definately need to flush */
720 radeon_fence_unref(&vm->last_flush);
721
722 /* skip over VMID 0, since it is the system VM */
723 for (i = 1; i < rdev->vm_manager.nvm; ++i) {
724 struct radeon_fence *fence = rdev->vm_manager.active[i];
725
726 if (fence == NULL) {
727 /* found a free one */
728 vm->id = i;
729 trace_radeon_vm_grab_id(vm->id, ring);
730 return NULL;
731 }
732
733 if (radeon_fence_is_earlier(fence, best[fence->ring])) {
734 best[fence->ring] = fence;
735 choices[fence->ring == ring ? 0 : 1] = i;
736 }
737 }
738
739 for (i = 0; i < 2; ++i) {
740 if (choices[i]) {
741 vm->id = choices[i];
742 trace_radeon_vm_grab_id(vm->id, ring);
743 return rdev->vm_manager.active[choices[i]];
744 }
745 }
746
747 /* should never happen */
748 BUG();
749 return NULL;
750 }
751
752 /**
753 * radeon_vm_fence - remember fence for vm
754 *
755 * @rdev: radeon_device pointer
756 * @vm: vm we want to fence
757 * @fence: fence to remember
758 *
759 * Fence the vm (cayman+).
760 * Set the fence used to protect page table and id.
761 *
762 * Global and local mutex must be locked!
763 */
764 void radeon_vm_fence(struct radeon_device *rdev,
765 struct radeon_vm *vm,
766 struct radeon_fence *fence)
767 {
768 radeon_fence_unref(&rdev->vm_manager.active[vm->id]);
769 rdev->vm_manager.active[vm->id] = radeon_fence_ref(fence);
770
771 radeon_fence_unref(&vm->fence);
772 vm->fence = radeon_fence_ref(fence);
773
774 radeon_fence_unref(&vm->last_id_use);
775 vm->last_id_use = radeon_fence_ref(fence);
776 }
777
778 /**
779 * radeon_vm_bo_find - find the bo_va for a specific vm & bo
780 *
781 * @vm: requested vm
782 * @bo: requested buffer object
783 *
784 * Find @bo inside the requested vm (cayman+).
785 * Search inside the @bos vm list for the requested vm
786 * Returns the found bo_va or NULL if none is found
787 *
788 * Object has to be reserved!
789 */
790 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm,
791 struct radeon_bo *bo)
792 {
793 struct radeon_bo_va *bo_va;
794
795 list_for_each_entry(bo_va, &bo->va, bo_list) {
796 if (bo_va->vm == vm) {
797 return bo_va;
798 }
799 }
800 return NULL;
801 }
802
803 /**
804 * radeon_vm_bo_add - add a bo to a specific vm
805 *
806 * @rdev: radeon_device pointer
807 * @vm: requested vm
808 * @bo: radeon buffer object
809 *
810 * Add @bo into the requested vm (cayman+).
811 * Add @bo to the list of bos associated with the vm
812 * Returns newly added bo_va or NULL for failure
813 *
814 * Object has to be reserved!
815 */
816 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev,
817 struct radeon_vm *vm,
818 struct radeon_bo *bo)
819 {
820 struct radeon_bo_va *bo_va;
821
822 bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
823 if (bo_va == NULL) {
824 return NULL;
825 }
826 bo_va->vm = vm;
827 bo_va->bo = bo;
828 bo_va->soffset = 0;
829 bo_va->eoffset = 0;
830 bo_va->flags = 0;
831 bo_va->valid = false;
832 bo_va->ref_count = 1;
833 INIT_LIST_HEAD(&bo_va->bo_list);
834 INIT_LIST_HEAD(&bo_va->vm_list);
835
836 mutex_lock(&vm->mutex);
837 list_add(&bo_va->vm_list, &vm->va);
838 list_add_tail(&bo_va->bo_list, &bo->va);
839 mutex_unlock(&vm->mutex);
840
841 return bo_va;
842 }
843
844 /**
845 * radeon_vm_bo_set_addr - set bos virtual address inside a vm
846 *
847 * @rdev: radeon_device pointer
848 * @bo_va: bo_va to store the address
849 * @soffset: requested offset of the buffer in the VM address space
850 * @flags: attributes of pages (read/write/valid/etc.)
851 *
852 * Set offset of @bo_va (cayman+).
853 * Validate and set the offset requested within the vm address space.
854 * Returns 0 for success, error for failure.
855 *
856 * Object has to be reserved!
857 */
858 int radeon_vm_bo_set_addr(struct radeon_device *rdev,
859 struct radeon_bo_va *bo_va,
860 uint64_t soffset,
861 uint32_t flags)
862 {
863 uint64_t size = radeon_bo_size(bo_va->bo);
864 uint64_t eoffset, last_offset = 0;
865 struct radeon_vm *vm = bo_va->vm;
866 struct radeon_bo_va *tmp;
867 struct list_head *head;
868 unsigned last_pfn;
869
870 if (soffset) {
871 /* make sure object fit at this offset */
872 eoffset = soffset + size;
873 if (soffset >= eoffset) {
874 return -EINVAL;
875 }
876
877 last_pfn = eoffset / RADEON_GPU_PAGE_SIZE;
878 if (last_pfn > rdev->vm_manager.max_pfn) {
879 dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n",
880 last_pfn, rdev->vm_manager.max_pfn);
881 return -EINVAL;
882 }
883
884 } else {
885 eoffset = last_pfn = 0;
886 }
887
888 mutex_lock(&vm->mutex);
889 head = &vm->va;
890 last_offset = 0;
891 list_for_each_entry(tmp, &vm->va, vm_list) {
892 if (bo_va == tmp) {
893 /* skip over currently modified bo */
894 continue;
895 }
896
897 if (soffset >= last_offset && eoffset <= tmp->soffset) {
898 /* bo can be added before this one */
899 break;
900 }
901 if (eoffset > tmp->soffset && soffset < tmp->eoffset) {
902 /* bo and tmp overlap, invalid offset */
903 dev_err(rdev->dev, "bo %p va 0x%08X conflict with (bo %p 0x%08X 0x%08X)\n",
904 bo_va->bo, (unsigned)bo_va->soffset, tmp->bo,
905 (unsigned)tmp->soffset, (unsigned)tmp->eoffset);
906 mutex_unlock(&vm->mutex);
907 return -EINVAL;
908 }
909 last_offset = tmp->eoffset;
910 head = &tmp->vm_list;
911 }
912
913 bo_va->soffset = soffset;
914 bo_va->eoffset = eoffset;
915 bo_va->flags = flags;
916 bo_va->valid = false;
917 list_move(&bo_va->vm_list, head);
918
919 mutex_unlock(&vm->mutex);
920 return 0;
921 }
922
923 /**
924 * radeon_vm_map_gart - get the physical address of a gart page
925 *
926 * @rdev: radeon_device pointer
927 * @addr: the unmapped addr
928 *
929 * Look up the physical address of the page that the pte resolves
930 * to (cayman+).
931 * Returns the physical address of the page.
932 */
933 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr)
934 {
935 uint64_t result;
936
937 /* page table offset */
938 result = rdev->gart.pages_addr[addr >> PAGE_SHIFT];
939
940 /* in case cpu page size != gpu page size*/
941 result |= addr & (~PAGE_MASK);
942
943 return result;
944 }
945
946 /**
947 * radeon_vm_page_flags - translate page flags to what the hw uses
948 *
949 * @flags: flags comming from userspace
950 *
951 * Translate the flags the userspace ABI uses to hw flags.
952 */
953 static uint32_t radeon_vm_page_flags(uint32_t flags)
954 {
955 uint32_t hw_flags = 0;
956 hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0;
957 hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0;
958 hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0;
959 if (flags & RADEON_VM_PAGE_SYSTEM) {
960 hw_flags |= R600_PTE_SYSTEM;
961 hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0;
962 }
963 return hw_flags;
964 }
965
966 /**
967 * radeon_vm_update_pdes - make sure that page directory is valid
968 *
969 * @rdev: radeon_device pointer
970 * @vm: requested vm
971 * @start: start of GPU address range
972 * @end: end of GPU address range
973 *
974 * Allocates new page tables if necessary
975 * and updates the page directory (cayman+).
976 * Returns 0 for success, error for failure.
977 *
978 * Global and local mutex must be locked!
979 */
980 static int radeon_vm_update_pdes(struct radeon_device *rdev,
981 struct radeon_vm *vm,
982 struct radeon_ib *ib,
983 uint64_t start, uint64_t end)
984 {
985 static const uint32_t incr = RADEON_VM_PTE_COUNT * 8;
986
987 uint64_t last_pde = ~0, last_pt = ~0;
988 unsigned count = 0;
989 uint64_t pt_idx;
990 int r;
991
992 start = (start / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE;
993 end = (end / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE;
994
995 /* walk over the address space and update the page directory */
996 for (pt_idx = start; pt_idx <= end; ++pt_idx) {
997 uint64_t pde, pt;
998
999 if (vm->page_tables[pt_idx])
1000 continue;
1001
1002 retry:
1003 r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager,
1004 &vm->page_tables[pt_idx],
1005 RADEON_VM_PTE_COUNT * 8,
1006 RADEON_GPU_PAGE_SIZE, false);
1007
1008 if (r == -ENOMEM) {
1009 r = radeon_vm_evict(rdev, vm);
1010 if (r)
1011 return r;
1012 goto retry;
1013 } else if (r) {
1014 return r;
1015 }
1016
1017 pde = vm->pd_gpu_addr + pt_idx * 8;
1018
1019 pt = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]);
1020
1021 if (((last_pde + 8 * count) != pde) ||
1022 ((last_pt + incr * count) != pt)) {
1023
1024 if (count) {
1025 radeon_asic_vm_set_page(rdev, ib, last_pde,
1026 last_pt, count, incr,
1027 R600_PTE_VALID);
1028
1029 count *= RADEON_VM_PTE_COUNT;
1030 radeon_asic_vm_set_page(rdev, ib, last_pt, 0,
1031 count, 0, 0);
1032 }
1033
1034 count = 1;
1035 last_pde = pde;
1036 last_pt = pt;
1037 } else {
1038 ++count;
1039 }
1040 }
1041
1042 if (count) {
1043 radeon_asic_vm_set_page(rdev, ib, last_pde, last_pt, count,
1044 incr, R600_PTE_VALID);
1045
1046 count *= RADEON_VM_PTE_COUNT;
1047 radeon_asic_vm_set_page(rdev, ib, last_pt, 0,
1048 count, 0, 0);
1049 }
1050
1051 return 0;
1052 }
1053
1054 /**
1055 * radeon_vm_update_ptes - make sure that page tables are valid
1056 *
1057 * @rdev: radeon_device pointer
1058 * @vm: requested vm
1059 * @start: start of GPU address range
1060 * @end: end of GPU address range
1061 * @dst: destination address to map to
1062 * @flags: mapping flags
1063 *
1064 * Update the page tables in the range @start - @end (cayman+).
1065 *
1066 * Global and local mutex must be locked!
1067 */
1068 static void radeon_vm_update_ptes(struct radeon_device *rdev,
1069 struct radeon_vm *vm,
1070 struct radeon_ib *ib,
1071 uint64_t start, uint64_t end,
1072 uint64_t dst, uint32_t flags)
1073 {
1074 static const uint64_t mask = RADEON_VM_PTE_COUNT - 1;
1075
1076 uint64_t last_pte = ~0, last_dst = ~0;
1077 unsigned count = 0;
1078 uint64_t addr;
1079
1080 start = start / RADEON_GPU_PAGE_SIZE;
1081 end = end / RADEON_GPU_PAGE_SIZE;
1082
1083 /* walk over the address space and update the page tables */
1084 for (addr = start; addr < end; ) {
1085 uint64_t pt_idx = addr >> RADEON_VM_BLOCK_SIZE;
1086 unsigned nptes;
1087 uint64_t pte;
1088
1089 if ((addr & ~mask) == (end & ~mask))
1090 nptes = end - addr;
1091 else
1092 nptes = RADEON_VM_PTE_COUNT - (addr & mask);
1093
1094 pte = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]);
1095 pte += (addr & mask) * 8;
1096
1097 if ((last_pte + 8 * count) != pte) {
1098
1099 if (count) {
1100 radeon_asic_vm_set_page(rdev, ib, last_pte,
1101 last_dst, count,
1102 RADEON_GPU_PAGE_SIZE,
1103 flags);
1104 }
1105
1106 count = nptes;
1107 last_pte = pte;
1108 last_dst = dst;
1109 } else {
1110 count += nptes;
1111 }
1112
1113 addr += nptes;
1114 dst += nptes * RADEON_GPU_PAGE_SIZE;
1115 }
1116
1117 if (count) {
1118 radeon_asic_vm_set_page(rdev, ib, last_pte,
1119 last_dst, count,
1120 RADEON_GPU_PAGE_SIZE, flags);
1121 }
1122 }
1123
1124 /**
1125 * radeon_vm_bo_update - map a bo into the vm page table
1126 *
1127 * @rdev: radeon_device pointer
1128 * @vm: requested vm
1129 * @bo: radeon buffer object
1130 * @mem: ttm mem
1131 *
1132 * Fill in the page table entries for @bo (cayman+).
1133 * Returns 0 for success, -EINVAL for failure.
1134 *
1135 * Object have to be reserved & global and local mutex must be locked!
1136 */
1137 int radeon_vm_bo_update(struct radeon_device *rdev,
1138 struct radeon_vm *vm,
1139 struct radeon_bo *bo,
1140 struct ttm_mem_reg *mem)
1141 {
1142 struct radeon_ib ib;
1143 struct radeon_bo_va *bo_va;
1144 unsigned nptes, npdes, ndw;
1145 uint64_t addr;
1146 int r;
1147
1148 /* nothing to do if vm isn't bound */
1149 if (vm->page_directory == NULL)
1150 return 0;
1151
1152 bo_va = radeon_vm_bo_find(vm, bo);
1153 if (bo_va == NULL) {
1154 dev_err(rdev->dev, "bo %p not in vm %p\n", bo, vm);
1155 return -EINVAL;
1156 }
1157
1158 if (!bo_va->soffset) {
1159 dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n",
1160 bo, vm);
1161 return -EINVAL;
1162 }
1163
1164 if ((bo_va->valid && mem) || (!bo_va->valid && mem == NULL))
1165 return 0;
1166
1167 bo_va->flags &= ~RADEON_VM_PAGE_VALID;
1168 bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM;
1169 if (mem) {
1170 addr = mem->start << PAGE_SHIFT;
1171 if (mem->mem_type != TTM_PL_SYSTEM) {
1172 bo_va->flags |= RADEON_VM_PAGE_VALID;
1173 bo_va->valid = true;
1174 }
1175 if (mem->mem_type == TTM_PL_TT) {
1176 bo_va->flags |= RADEON_VM_PAGE_SYSTEM;
1177 } else {
1178 addr += rdev->vm_manager.vram_base_offset;
1179 }
1180 } else {
1181 addr = 0;
1182 bo_va->valid = false;
1183 }
1184
1185 trace_radeon_vm_bo_update(bo_va);
1186
1187 nptes = radeon_bo_ngpu_pages(bo);
1188
1189 /* assume two extra pdes in case the mapping overlaps the borders */
1190 npdes = (nptes >> RADEON_VM_BLOCK_SIZE) + 2;
1191
1192 /* padding, etc. */
1193 ndw = 64;
1194
1195 if (RADEON_VM_BLOCK_SIZE > 11)
1196 /* reserve space for one header for every 2k dwords */
1197 ndw += (nptes >> 11) * 4;
1198 else
1199 /* reserve space for one header for
1200 every (1 << BLOCK_SIZE) entries */
1201 ndw += (nptes >> RADEON_VM_BLOCK_SIZE) * 4;
1202
1203 /* reserve space for pte addresses */
1204 ndw += nptes * 2;
1205
1206 /* reserve space for one header for every 2k dwords */
1207 ndw += (npdes >> 11) * 4;
1208
1209 /* reserve space for pde addresses */
1210 ndw += npdes * 2;
1211
1212 /* reserve space for clearing new page tables */
1213 ndw += npdes * 2 * RADEON_VM_PTE_COUNT;
1214
1215 /* update too big for an IB */
1216 if (ndw > 0xfffff)
1217 return -ENOMEM;
1218
1219 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
1220 if (r)
1221 return r;
1222 ib.length_dw = 0;
1223
1224 r = radeon_vm_update_pdes(rdev, vm, &ib, bo_va->soffset, bo_va->eoffset);
1225 if (r) {
1226 radeon_ib_free(rdev, &ib);
1227 return r;
1228 }
1229
1230 radeon_vm_update_ptes(rdev, vm, &ib, bo_va->soffset, bo_va->eoffset,
1231 addr, radeon_vm_page_flags(bo_va->flags));
1232
1233 radeon_semaphore_sync_to(ib.semaphore, vm->fence);
1234 r = radeon_ib_schedule(rdev, &ib, NULL);
1235 if (r) {
1236 radeon_ib_free(rdev, &ib);
1237 return r;
1238 }
1239 radeon_fence_unref(&vm->fence);
1240 vm->fence = radeon_fence_ref(ib.fence);
1241 radeon_ib_free(rdev, &ib);
1242 radeon_fence_unref(&vm->last_flush);
1243
1244 return 0;
1245 }
1246
1247 /**
1248 * radeon_vm_bo_rmv - remove a bo to a specific vm
1249 *
1250 * @rdev: radeon_device pointer
1251 * @bo_va: requested bo_va
1252 *
1253 * Remove @bo_va->bo from the requested vm (cayman+).
1254 * Remove @bo_va->bo from the list of bos associated with the bo_va->vm and
1255 * remove the ptes for @bo_va in the page table.
1256 * Returns 0 for success.
1257 *
1258 * Object have to be reserved!
1259 */
1260 int radeon_vm_bo_rmv(struct radeon_device *rdev,
1261 struct radeon_bo_va *bo_va)
1262 {
1263 int r = 0;
1264
1265 mutex_lock(&rdev->vm_manager.lock);
1266 mutex_lock(&bo_va->vm->mutex);
1267 if (bo_va->soffset) {
1268 r = radeon_vm_bo_update(rdev, bo_va->vm, bo_va->bo, NULL);
1269 }
1270 mutex_unlock(&rdev->vm_manager.lock);
1271 list_del(&bo_va->vm_list);
1272 mutex_unlock(&bo_va->vm->mutex);
1273 list_del(&bo_va->bo_list);
1274
1275 kfree(bo_va);
1276 return r;
1277 }
1278
1279 /**
1280 * radeon_vm_bo_invalidate - mark the bo as invalid
1281 *
1282 * @rdev: radeon_device pointer
1283 * @vm: requested vm
1284 * @bo: radeon buffer object
1285 *
1286 * Mark @bo as invalid (cayman+).
1287 */
1288 void radeon_vm_bo_invalidate(struct radeon_device *rdev,
1289 struct radeon_bo *bo)
1290 {
1291 struct radeon_bo_va *bo_va;
1292
1293 list_for_each_entry(bo_va, &bo->va, bo_list) {
1294 bo_va->valid = false;
1295 }
1296 }
1297
1298 /**
1299 * radeon_vm_init - initialize a vm instance
1300 *
1301 * @rdev: radeon_device pointer
1302 * @vm: requested vm
1303 *
1304 * Init @vm fields (cayman+).
1305 */
1306 void radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm)
1307 {
1308 vm->id = 0;
1309 vm->fence = NULL;
1310 vm->last_flush = NULL;
1311 vm->last_id_use = NULL;
1312 mutex_init(&vm->mutex);
1313 INIT_LIST_HEAD(&vm->list);
1314 INIT_LIST_HEAD(&vm->va);
1315 }
1316
1317 /**
1318 * radeon_vm_fini - tear down a vm instance
1319 *
1320 * @rdev: radeon_device pointer
1321 * @vm: requested vm
1322 *
1323 * Tear down @vm (cayman+).
1324 * Unbind the VM and remove all bos from the vm bo list
1325 */
1326 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm)
1327 {
1328 struct radeon_bo_va *bo_va, *tmp;
1329 int r;
1330
1331 mutex_lock(&rdev->vm_manager.lock);
1332 mutex_lock(&vm->mutex);
1333 radeon_vm_free_pt(rdev, vm);
1334 mutex_unlock(&rdev->vm_manager.lock);
1335
1336 if (!list_empty(&vm->va)) {
1337 dev_err(rdev->dev, "still active bo inside vm\n");
1338 }
1339 list_for_each_entry_safe(bo_va, tmp, &vm->va, vm_list) {
1340 list_del_init(&bo_va->vm_list);
1341 r = radeon_bo_reserve(bo_va->bo, false);
1342 if (!r) {
1343 list_del_init(&bo_va->bo_list);
1344 radeon_bo_unreserve(bo_va->bo);
1345 kfree(bo_va);
1346 }
1347 }
1348 radeon_fence_unref(&vm->fence);
1349 radeon_fence_unref(&vm->last_flush);
1350 radeon_fence_unref(&vm->last_id_use);
1351 mutex_unlock(&vm->mutex);
1352 }
This page took 0.061212 seconds and 5 git commands to generate.