Merge tag 'v4.3-rc2' into topic/drm-misc
[deliverable/linux.git] / drivers / gpu / drm / tegra / dc.c
1 /*
2 * Copyright (C) 2012 Avionic Design GmbH
3 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/reset.h>
14
15 #include <soc/tegra/pmc.h>
16
17 #include "dc.h"
18 #include "drm.h"
19 #include "gem.h"
20
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_helper.h>
23 #include <drm/drm_plane_helper.h>
24
25 struct tegra_dc_soc_info {
26 bool supports_border_color;
27 bool supports_interlacing;
28 bool supports_cursor;
29 bool supports_block_linear;
30 unsigned int pitch_align;
31 bool has_powergate;
32 };
33
34 struct tegra_plane {
35 struct drm_plane base;
36 unsigned int index;
37 };
38
39 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
40 {
41 return container_of(plane, struct tegra_plane, base);
42 }
43
44 struct tegra_dc_state {
45 struct drm_crtc_state base;
46
47 struct clk *clk;
48 unsigned long pclk;
49 unsigned int div;
50
51 u32 planes;
52 };
53
54 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
55 {
56 if (state)
57 return container_of(state, struct tegra_dc_state, base);
58
59 return NULL;
60 }
61
62 struct tegra_plane_state {
63 struct drm_plane_state base;
64
65 struct tegra_bo_tiling tiling;
66 u32 format;
67 u32 swap;
68 };
69
70 static inline struct tegra_plane_state *
71 to_tegra_plane_state(struct drm_plane_state *state)
72 {
73 if (state)
74 return container_of(state, struct tegra_plane_state, base);
75
76 return NULL;
77 }
78
79 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
80 {
81 stats->frames = 0;
82 stats->vblank = 0;
83 stats->underflow = 0;
84 stats->overflow = 0;
85 }
86
87 /*
88 * Reads the active copy of a register. This takes the dc->lock spinlock to
89 * prevent races with the VBLANK processing which also needs access to the
90 * active copy of some registers.
91 */
92 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
93 {
94 unsigned long flags;
95 u32 value;
96
97 spin_lock_irqsave(&dc->lock, flags);
98
99 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
100 value = tegra_dc_readl(dc, offset);
101 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
102
103 spin_unlock_irqrestore(&dc->lock, flags);
104 return value;
105 }
106
107 /*
108 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
109 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
110 * Latching happens mmediately if the display controller is in STOP mode or
111 * on the next frame boundary otherwise.
112 *
113 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
114 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
115 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
116 * into the ACTIVE copy, either immediately if the display controller is in
117 * STOP mode, or at the next frame boundary otherwise.
118 */
119 void tegra_dc_commit(struct tegra_dc *dc)
120 {
121 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
122 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
123 }
124
125 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
126 {
127 /* assume no swapping of fetched data */
128 if (swap)
129 *swap = BYTE_SWAP_NOSWAP;
130
131 switch (fourcc) {
132 case DRM_FORMAT_XBGR8888:
133 *format = WIN_COLOR_DEPTH_R8G8B8A8;
134 break;
135
136 case DRM_FORMAT_XRGB8888:
137 *format = WIN_COLOR_DEPTH_B8G8R8A8;
138 break;
139
140 case DRM_FORMAT_RGB565:
141 *format = WIN_COLOR_DEPTH_B5G6R5;
142 break;
143
144 case DRM_FORMAT_UYVY:
145 *format = WIN_COLOR_DEPTH_YCbCr422;
146 break;
147
148 case DRM_FORMAT_YUYV:
149 if (swap)
150 *swap = BYTE_SWAP_SWAP2;
151
152 *format = WIN_COLOR_DEPTH_YCbCr422;
153 break;
154
155 case DRM_FORMAT_YUV420:
156 *format = WIN_COLOR_DEPTH_YCbCr420P;
157 break;
158
159 case DRM_FORMAT_YUV422:
160 *format = WIN_COLOR_DEPTH_YCbCr422P;
161 break;
162
163 default:
164 return -EINVAL;
165 }
166
167 return 0;
168 }
169
170 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
171 {
172 switch (format) {
173 case WIN_COLOR_DEPTH_YCbCr422:
174 case WIN_COLOR_DEPTH_YUV422:
175 if (planar)
176 *planar = false;
177
178 return true;
179
180 case WIN_COLOR_DEPTH_YCbCr420P:
181 case WIN_COLOR_DEPTH_YUV420P:
182 case WIN_COLOR_DEPTH_YCbCr422P:
183 case WIN_COLOR_DEPTH_YUV422P:
184 case WIN_COLOR_DEPTH_YCbCr422R:
185 case WIN_COLOR_DEPTH_YUV422R:
186 case WIN_COLOR_DEPTH_YCbCr422RA:
187 case WIN_COLOR_DEPTH_YUV422RA:
188 if (planar)
189 *planar = true;
190
191 return true;
192 }
193
194 if (planar)
195 *planar = false;
196
197 return false;
198 }
199
200 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
201 unsigned int bpp)
202 {
203 fixed20_12 outf = dfixed_init(out);
204 fixed20_12 inf = dfixed_init(in);
205 u32 dda_inc;
206 int max;
207
208 if (v)
209 max = 15;
210 else {
211 switch (bpp) {
212 case 2:
213 max = 8;
214 break;
215
216 default:
217 WARN_ON_ONCE(1);
218 /* fallthrough */
219 case 4:
220 max = 4;
221 break;
222 }
223 }
224
225 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
226 inf.full -= dfixed_const(1);
227
228 dda_inc = dfixed_div(inf, outf);
229 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
230
231 return dda_inc;
232 }
233
234 static inline u32 compute_initial_dda(unsigned int in)
235 {
236 fixed20_12 inf = dfixed_init(in);
237 return dfixed_frac(inf);
238 }
239
240 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
241 const struct tegra_dc_window *window)
242 {
243 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
244 unsigned long value, flags;
245 bool yuv, planar;
246
247 /*
248 * For YUV planar modes, the number of bytes per pixel takes into
249 * account only the luma component and therefore is 1.
250 */
251 yuv = tegra_dc_format_is_yuv(window->format, &planar);
252 if (!yuv)
253 bpp = window->bits_per_pixel / 8;
254 else
255 bpp = planar ? 1 : 2;
256
257 spin_lock_irqsave(&dc->lock, flags);
258
259 value = WINDOW_A_SELECT << index;
260 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
261
262 tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
263 tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
264
265 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
266 tegra_dc_writel(dc, value, DC_WIN_POSITION);
267
268 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
269 tegra_dc_writel(dc, value, DC_WIN_SIZE);
270
271 h_offset = window->src.x * bpp;
272 v_offset = window->src.y;
273 h_size = window->src.w * bpp;
274 v_size = window->src.h;
275
276 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
277 tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
278
279 /*
280 * For DDA computations the number of bytes per pixel for YUV planar
281 * modes needs to take into account all Y, U and V components.
282 */
283 if (yuv && planar)
284 bpp = 2;
285
286 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
287 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
288
289 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
290 tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
291
292 h_dda = compute_initial_dda(window->src.x);
293 v_dda = compute_initial_dda(window->src.y);
294
295 tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
296 tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
297
298 tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
299 tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
300
301 tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
302
303 if (yuv && planar) {
304 tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
305 tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
306 value = window->stride[1] << 16 | window->stride[0];
307 tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
308 } else {
309 tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
310 }
311
312 if (window->bottom_up)
313 v_offset += window->src.h - 1;
314
315 tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
316 tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
317
318 if (dc->soc->supports_block_linear) {
319 unsigned long height = window->tiling.value;
320
321 switch (window->tiling.mode) {
322 case TEGRA_BO_TILING_MODE_PITCH:
323 value = DC_WINBUF_SURFACE_KIND_PITCH;
324 break;
325
326 case TEGRA_BO_TILING_MODE_TILED:
327 value = DC_WINBUF_SURFACE_KIND_TILED;
328 break;
329
330 case TEGRA_BO_TILING_MODE_BLOCK:
331 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
332 DC_WINBUF_SURFACE_KIND_BLOCK;
333 break;
334 }
335
336 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
337 } else {
338 switch (window->tiling.mode) {
339 case TEGRA_BO_TILING_MODE_PITCH:
340 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
341 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
342 break;
343
344 case TEGRA_BO_TILING_MODE_TILED:
345 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
346 DC_WIN_BUFFER_ADDR_MODE_TILE;
347 break;
348
349 case TEGRA_BO_TILING_MODE_BLOCK:
350 /*
351 * No need to handle this here because ->atomic_check
352 * will already have filtered it out.
353 */
354 break;
355 }
356
357 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
358 }
359
360 value = WIN_ENABLE;
361
362 if (yuv) {
363 /* setup default colorspace conversion coefficients */
364 tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
365 tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
366 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
367 tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
368 tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
369 tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
370 tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
371 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
372
373 value |= CSC_ENABLE;
374 } else if (window->bits_per_pixel < 24) {
375 value |= COLOR_EXPAND;
376 }
377
378 if (window->bottom_up)
379 value |= V_DIRECTION;
380
381 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
382
383 /*
384 * Disable blending and assume Window A is the bottom-most window,
385 * Window C is the top-most window and Window B is in the middle.
386 */
387 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
388 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
389
390 switch (index) {
391 case 0:
392 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
393 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
394 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
395 break;
396
397 case 1:
398 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
399 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
400 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
401 break;
402
403 case 2:
404 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
405 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
406 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
407 break;
408 }
409
410 spin_unlock_irqrestore(&dc->lock, flags);
411 }
412
413 static void tegra_plane_destroy(struct drm_plane *plane)
414 {
415 struct tegra_plane *p = to_tegra_plane(plane);
416
417 drm_plane_cleanup(plane);
418 kfree(p);
419 }
420
421 static const u32 tegra_primary_plane_formats[] = {
422 DRM_FORMAT_XBGR8888,
423 DRM_FORMAT_XRGB8888,
424 DRM_FORMAT_RGB565,
425 };
426
427 static void tegra_primary_plane_destroy(struct drm_plane *plane)
428 {
429 tegra_plane_destroy(plane);
430 }
431
432 static void tegra_plane_reset(struct drm_plane *plane)
433 {
434 struct tegra_plane_state *state;
435
436 if (plane->state)
437 __drm_atomic_helper_plane_destroy_state(plane, plane->state);
438
439 kfree(plane->state);
440 plane->state = NULL;
441
442 state = kzalloc(sizeof(*state), GFP_KERNEL);
443 if (state) {
444 plane->state = &state->base;
445 plane->state->plane = plane;
446 }
447 }
448
449 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
450 {
451 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
452 struct tegra_plane_state *copy;
453
454 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
455 if (!copy)
456 return NULL;
457
458 __drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
459 copy->tiling = state->tiling;
460 copy->format = state->format;
461 copy->swap = state->swap;
462
463 return &copy->base;
464 }
465
466 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
467 struct drm_plane_state *state)
468 {
469 __drm_atomic_helper_plane_destroy_state(plane, state);
470 kfree(state);
471 }
472
473 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
474 .update_plane = drm_atomic_helper_update_plane,
475 .disable_plane = drm_atomic_helper_disable_plane,
476 .destroy = tegra_primary_plane_destroy,
477 .reset = tegra_plane_reset,
478 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
479 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
480 };
481
482 static int tegra_plane_prepare_fb(struct drm_plane *plane,
483 const struct drm_plane_state *new_state)
484 {
485 return 0;
486 }
487
488 static void tegra_plane_cleanup_fb(struct drm_plane *plane,
489 const struct drm_plane_state *old_fb)
490 {
491 }
492
493 static int tegra_plane_state_add(struct tegra_plane *plane,
494 struct drm_plane_state *state)
495 {
496 struct drm_crtc_state *crtc_state;
497 struct tegra_dc_state *tegra;
498
499 /* Propagate errors from allocation or locking failures. */
500 crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
501 if (IS_ERR(crtc_state))
502 return PTR_ERR(crtc_state);
503
504 tegra = to_dc_state(crtc_state);
505
506 tegra->planes |= WIN_A_ACT_REQ << plane->index;
507
508 return 0;
509 }
510
511 static int tegra_plane_atomic_check(struct drm_plane *plane,
512 struct drm_plane_state *state)
513 {
514 struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
515 struct tegra_bo_tiling *tiling = &plane_state->tiling;
516 struct tegra_plane *tegra = to_tegra_plane(plane);
517 struct tegra_dc *dc = to_tegra_dc(state->crtc);
518 int err;
519
520 /* no need for further checks if the plane is being disabled */
521 if (!state->crtc)
522 return 0;
523
524 err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
525 &plane_state->swap);
526 if (err < 0)
527 return err;
528
529 err = tegra_fb_get_tiling(state->fb, tiling);
530 if (err < 0)
531 return err;
532
533 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
534 !dc->soc->supports_block_linear) {
535 DRM_ERROR("hardware doesn't support block linear mode\n");
536 return -EINVAL;
537 }
538
539 /*
540 * Tegra doesn't support different strides for U and V planes so we
541 * error out if the user tries to display a framebuffer with such a
542 * configuration.
543 */
544 if (drm_format_num_planes(state->fb->pixel_format) > 2) {
545 if (state->fb->pitches[2] != state->fb->pitches[1]) {
546 DRM_ERROR("unsupported UV-plane configuration\n");
547 return -EINVAL;
548 }
549 }
550
551 err = tegra_plane_state_add(tegra, state);
552 if (err < 0)
553 return err;
554
555 return 0;
556 }
557
558 static void tegra_plane_atomic_update(struct drm_plane *plane,
559 struct drm_plane_state *old_state)
560 {
561 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
562 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
563 struct drm_framebuffer *fb = plane->state->fb;
564 struct tegra_plane *p = to_tegra_plane(plane);
565 struct tegra_dc_window window;
566 unsigned int i;
567
568 /* rien ne va plus */
569 if (!plane->state->crtc || !plane->state->fb)
570 return;
571
572 memset(&window, 0, sizeof(window));
573 window.src.x = plane->state->src_x >> 16;
574 window.src.y = plane->state->src_y >> 16;
575 window.src.w = plane->state->src_w >> 16;
576 window.src.h = plane->state->src_h >> 16;
577 window.dst.x = plane->state->crtc_x;
578 window.dst.y = plane->state->crtc_y;
579 window.dst.w = plane->state->crtc_w;
580 window.dst.h = plane->state->crtc_h;
581 window.bits_per_pixel = fb->bits_per_pixel;
582 window.bottom_up = tegra_fb_is_bottom_up(fb);
583
584 /* copy from state */
585 window.tiling = state->tiling;
586 window.format = state->format;
587 window.swap = state->swap;
588
589 for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
590 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
591
592 window.base[i] = bo->paddr + fb->offsets[i];
593 window.stride[i] = fb->pitches[i];
594 }
595
596 tegra_dc_setup_window(dc, p->index, &window);
597 }
598
599 static void tegra_plane_atomic_disable(struct drm_plane *plane,
600 struct drm_plane_state *old_state)
601 {
602 struct tegra_plane *p = to_tegra_plane(plane);
603 struct tegra_dc *dc;
604 unsigned long flags;
605 u32 value;
606
607 /* rien ne va plus */
608 if (!old_state || !old_state->crtc)
609 return;
610
611 dc = to_tegra_dc(old_state->crtc);
612
613 spin_lock_irqsave(&dc->lock, flags);
614
615 value = WINDOW_A_SELECT << p->index;
616 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
617
618 value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
619 value &= ~WIN_ENABLE;
620 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
621
622 spin_unlock_irqrestore(&dc->lock, flags);
623 }
624
625 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
626 .prepare_fb = tegra_plane_prepare_fb,
627 .cleanup_fb = tegra_plane_cleanup_fb,
628 .atomic_check = tegra_plane_atomic_check,
629 .atomic_update = tegra_plane_atomic_update,
630 .atomic_disable = tegra_plane_atomic_disable,
631 };
632
633 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
634 struct tegra_dc *dc)
635 {
636 /*
637 * Ideally this would use drm_crtc_mask(), but that would require the
638 * CRTC to already be in the mode_config's list of CRTCs. However, it
639 * will only be added to that list in the drm_crtc_init_with_planes()
640 * (in tegra_dc_init()), which in turn requires registration of these
641 * planes. So we have ourselves a nice little chicken and egg problem
642 * here.
643 *
644 * We work around this by manually creating the mask from the number
645 * of CRTCs that have been registered, and should therefore always be
646 * the same as drm_crtc_index() after registration.
647 */
648 unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
649 struct tegra_plane *plane;
650 unsigned int num_formats;
651 const u32 *formats;
652 int err;
653
654 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
655 if (!plane)
656 return ERR_PTR(-ENOMEM);
657
658 num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
659 formats = tegra_primary_plane_formats;
660
661 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
662 &tegra_primary_plane_funcs, formats,
663 num_formats, DRM_PLANE_TYPE_PRIMARY);
664 if (err < 0) {
665 kfree(plane);
666 return ERR_PTR(err);
667 }
668
669 drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
670
671 return &plane->base;
672 }
673
674 static const u32 tegra_cursor_plane_formats[] = {
675 DRM_FORMAT_RGBA8888,
676 };
677
678 static int tegra_cursor_atomic_check(struct drm_plane *plane,
679 struct drm_plane_state *state)
680 {
681 struct tegra_plane *tegra = to_tegra_plane(plane);
682 int err;
683
684 /* no need for further checks if the plane is being disabled */
685 if (!state->crtc)
686 return 0;
687
688 /* scaling not supported for cursor */
689 if ((state->src_w >> 16 != state->crtc_w) ||
690 (state->src_h >> 16 != state->crtc_h))
691 return -EINVAL;
692
693 /* only square cursors supported */
694 if (state->src_w != state->src_h)
695 return -EINVAL;
696
697 if (state->crtc_w != 32 && state->crtc_w != 64 &&
698 state->crtc_w != 128 && state->crtc_w != 256)
699 return -EINVAL;
700
701 err = tegra_plane_state_add(tegra, state);
702 if (err < 0)
703 return err;
704
705 return 0;
706 }
707
708 static void tegra_cursor_atomic_update(struct drm_plane *plane,
709 struct drm_plane_state *old_state)
710 {
711 struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
712 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
713 struct drm_plane_state *state = plane->state;
714 u32 value = CURSOR_CLIP_DISPLAY;
715
716 /* rien ne va plus */
717 if (!plane->state->crtc || !plane->state->fb)
718 return;
719
720 switch (state->crtc_w) {
721 case 32:
722 value |= CURSOR_SIZE_32x32;
723 break;
724
725 case 64:
726 value |= CURSOR_SIZE_64x64;
727 break;
728
729 case 128:
730 value |= CURSOR_SIZE_128x128;
731 break;
732
733 case 256:
734 value |= CURSOR_SIZE_256x256;
735 break;
736
737 default:
738 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
739 state->crtc_h);
740 return;
741 }
742
743 value |= (bo->paddr >> 10) & 0x3fffff;
744 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
745
746 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
747 value = (bo->paddr >> 32) & 0x3;
748 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
749 #endif
750
751 /* enable cursor and set blend mode */
752 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
753 value |= CURSOR_ENABLE;
754 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
755
756 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
757 value &= ~CURSOR_DST_BLEND_MASK;
758 value &= ~CURSOR_SRC_BLEND_MASK;
759 value |= CURSOR_MODE_NORMAL;
760 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
761 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
762 value |= CURSOR_ALPHA;
763 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
764
765 /* position the cursor */
766 value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
767 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
768 }
769
770 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
771 struct drm_plane_state *old_state)
772 {
773 struct tegra_dc *dc;
774 u32 value;
775
776 /* rien ne va plus */
777 if (!old_state || !old_state->crtc)
778 return;
779
780 dc = to_tegra_dc(old_state->crtc);
781
782 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
783 value &= ~CURSOR_ENABLE;
784 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
785 }
786
787 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
788 .update_plane = drm_atomic_helper_update_plane,
789 .disable_plane = drm_atomic_helper_disable_plane,
790 .destroy = tegra_plane_destroy,
791 .reset = tegra_plane_reset,
792 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
793 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
794 };
795
796 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
797 .prepare_fb = tegra_plane_prepare_fb,
798 .cleanup_fb = tegra_plane_cleanup_fb,
799 .atomic_check = tegra_cursor_atomic_check,
800 .atomic_update = tegra_cursor_atomic_update,
801 .atomic_disable = tegra_cursor_atomic_disable,
802 };
803
804 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
805 struct tegra_dc *dc)
806 {
807 struct tegra_plane *plane;
808 unsigned int num_formats;
809 const u32 *formats;
810 int err;
811
812 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
813 if (!plane)
814 return ERR_PTR(-ENOMEM);
815
816 /*
817 * This index is kind of fake. The cursor isn't a regular plane, but
818 * its update and activation request bits in DC_CMD_STATE_CONTROL do
819 * use the same programming. Setting this fake index here allows the
820 * code in tegra_add_plane_state() to do the right thing without the
821 * need to special-casing the cursor plane.
822 */
823 plane->index = 6;
824
825 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
826 formats = tegra_cursor_plane_formats;
827
828 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
829 &tegra_cursor_plane_funcs, formats,
830 num_formats, DRM_PLANE_TYPE_CURSOR);
831 if (err < 0) {
832 kfree(plane);
833 return ERR_PTR(err);
834 }
835
836 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
837
838 return &plane->base;
839 }
840
841 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
842 {
843 tegra_plane_destroy(plane);
844 }
845
846 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
847 .update_plane = drm_atomic_helper_update_plane,
848 .disable_plane = drm_atomic_helper_disable_plane,
849 .destroy = tegra_overlay_plane_destroy,
850 .reset = tegra_plane_reset,
851 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
852 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
853 };
854
855 static const uint32_t tegra_overlay_plane_formats[] = {
856 DRM_FORMAT_XBGR8888,
857 DRM_FORMAT_XRGB8888,
858 DRM_FORMAT_RGB565,
859 DRM_FORMAT_UYVY,
860 DRM_FORMAT_YUYV,
861 DRM_FORMAT_YUV420,
862 DRM_FORMAT_YUV422,
863 };
864
865 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
866 .prepare_fb = tegra_plane_prepare_fb,
867 .cleanup_fb = tegra_plane_cleanup_fb,
868 .atomic_check = tegra_plane_atomic_check,
869 .atomic_update = tegra_plane_atomic_update,
870 .atomic_disable = tegra_plane_atomic_disable,
871 };
872
873 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
874 struct tegra_dc *dc,
875 unsigned int index)
876 {
877 struct tegra_plane *plane;
878 unsigned int num_formats;
879 const u32 *formats;
880 int err;
881
882 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
883 if (!plane)
884 return ERR_PTR(-ENOMEM);
885
886 plane->index = index;
887
888 num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
889 formats = tegra_overlay_plane_formats;
890
891 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
892 &tegra_overlay_plane_funcs, formats,
893 num_formats, DRM_PLANE_TYPE_OVERLAY);
894 if (err < 0) {
895 kfree(plane);
896 return ERR_PTR(err);
897 }
898
899 drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
900
901 return &plane->base;
902 }
903
904 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
905 {
906 struct drm_plane *plane;
907 unsigned int i;
908
909 for (i = 0; i < 2; i++) {
910 plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
911 if (IS_ERR(plane))
912 return PTR_ERR(plane);
913 }
914
915 return 0;
916 }
917
918 u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
919 {
920 if (dc->syncpt)
921 return host1x_syncpt_read(dc->syncpt);
922
923 /* fallback to software emulated VBLANK counter */
924 return drm_crtc_vblank_count(&dc->base);
925 }
926
927 void tegra_dc_enable_vblank(struct tegra_dc *dc)
928 {
929 unsigned long value, flags;
930
931 spin_lock_irqsave(&dc->lock, flags);
932
933 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
934 value |= VBLANK_INT;
935 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
936
937 spin_unlock_irqrestore(&dc->lock, flags);
938 }
939
940 void tegra_dc_disable_vblank(struct tegra_dc *dc)
941 {
942 unsigned long value, flags;
943
944 spin_lock_irqsave(&dc->lock, flags);
945
946 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
947 value &= ~VBLANK_INT;
948 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
949
950 spin_unlock_irqrestore(&dc->lock, flags);
951 }
952
953 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
954 {
955 struct drm_device *drm = dc->base.dev;
956 struct drm_crtc *crtc = &dc->base;
957 unsigned long flags, base;
958 struct tegra_bo *bo;
959
960 spin_lock_irqsave(&drm->event_lock, flags);
961
962 if (!dc->event) {
963 spin_unlock_irqrestore(&drm->event_lock, flags);
964 return;
965 }
966
967 bo = tegra_fb_get_plane(crtc->primary->fb, 0);
968
969 spin_lock(&dc->lock);
970
971 /* check if new start address has been latched */
972 tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
973 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
974 base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
975 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
976
977 spin_unlock(&dc->lock);
978
979 if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
980 drm_crtc_send_vblank_event(crtc, dc->event);
981 drm_crtc_vblank_put(crtc);
982 dc->event = NULL;
983 }
984
985 spin_unlock_irqrestore(&drm->event_lock, flags);
986 }
987
988 void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
989 {
990 struct tegra_dc *dc = to_tegra_dc(crtc);
991 struct drm_device *drm = crtc->dev;
992 unsigned long flags;
993
994 spin_lock_irqsave(&drm->event_lock, flags);
995
996 if (dc->event && dc->event->base.file_priv == file) {
997 dc->event->base.destroy(&dc->event->base);
998 drm_crtc_vblank_put(crtc);
999 dc->event = NULL;
1000 }
1001
1002 spin_unlock_irqrestore(&drm->event_lock, flags);
1003 }
1004
1005 static void tegra_dc_destroy(struct drm_crtc *crtc)
1006 {
1007 drm_crtc_cleanup(crtc);
1008 }
1009
1010 static void tegra_crtc_reset(struct drm_crtc *crtc)
1011 {
1012 struct tegra_dc_state *state;
1013
1014 if (crtc->state)
1015 __drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1016
1017 kfree(crtc->state);
1018 crtc->state = NULL;
1019
1020 state = kzalloc(sizeof(*state), GFP_KERNEL);
1021 if (state) {
1022 crtc->state = &state->base;
1023 crtc->state->crtc = crtc;
1024 }
1025
1026 drm_crtc_vblank_reset(crtc);
1027 }
1028
1029 static struct drm_crtc_state *
1030 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1031 {
1032 struct tegra_dc_state *state = to_dc_state(crtc->state);
1033 struct tegra_dc_state *copy;
1034
1035 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1036 if (!copy)
1037 return NULL;
1038
1039 __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1040 copy->clk = state->clk;
1041 copy->pclk = state->pclk;
1042 copy->div = state->div;
1043 copy->planes = state->planes;
1044
1045 return &copy->base;
1046 }
1047
1048 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1049 struct drm_crtc_state *state)
1050 {
1051 __drm_atomic_helper_crtc_destroy_state(crtc, state);
1052 kfree(state);
1053 }
1054
1055 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1056 .page_flip = drm_atomic_helper_page_flip,
1057 .set_config = drm_atomic_helper_set_config,
1058 .destroy = tegra_dc_destroy,
1059 .reset = tegra_crtc_reset,
1060 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1061 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1062 };
1063
1064 static int tegra_dc_set_timings(struct tegra_dc *dc,
1065 struct drm_display_mode *mode)
1066 {
1067 unsigned int h_ref_to_sync = 1;
1068 unsigned int v_ref_to_sync = 1;
1069 unsigned long value;
1070
1071 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1072
1073 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1074 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1075
1076 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1077 ((mode->hsync_end - mode->hsync_start) << 0);
1078 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1079
1080 value = ((mode->vtotal - mode->vsync_end) << 16) |
1081 ((mode->htotal - mode->hsync_end) << 0);
1082 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1083
1084 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1085 ((mode->hsync_start - mode->hdisplay) << 0);
1086 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1087
1088 value = (mode->vdisplay << 16) | mode->hdisplay;
1089 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1090
1091 return 0;
1092 }
1093
1094 /**
1095 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1096 * state
1097 * @dc: display controller
1098 * @crtc_state: CRTC atomic state
1099 * @clk: parent clock for display controller
1100 * @pclk: pixel clock
1101 * @div: shift clock divider
1102 *
1103 * Returns:
1104 * 0 on success or a negative error-code on failure.
1105 */
1106 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1107 struct drm_crtc_state *crtc_state,
1108 struct clk *clk, unsigned long pclk,
1109 unsigned int div)
1110 {
1111 struct tegra_dc_state *state = to_dc_state(crtc_state);
1112
1113 if (!clk_has_parent(dc->clk, clk))
1114 return -EINVAL;
1115
1116 state->clk = clk;
1117 state->pclk = pclk;
1118 state->div = div;
1119
1120 return 0;
1121 }
1122
1123 static void tegra_dc_commit_state(struct tegra_dc *dc,
1124 struct tegra_dc_state *state)
1125 {
1126 u32 value;
1127 int err;
1128
1129 err = clk_set_parent(dc->clk, state->clk);
1130 if (err < 0)
1131 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1132
1133 /*
1134 * Outputs may not want to change the parent clock rate. This is only
1135 * relevant to Tegra20 where only a single display PLL is available.
1136 * Since that PLL would typically be used for HDMI, an internal LVDS
1137 * panel would need to be driven by some other clock such as PLL_P
1138 * which is shared with other peripherals. Changing the clock rate
1139 * should therefore be avoided.
1140 */
1141 if (state->pclk > 0) {
1142 err = clk_set_rate(state->clk, state->pclk);
1143 if (err < 0)
1144 dev_err(dc->dev,
1145 "failed to set clock rate to %lu Hz\n",
1146 state->pclk);
1147 }
1148
1149 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1150 state->div);
1151 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1152
1153 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1154 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1155 }
1156
1157 static void tegra_dc_stop(struct tegra_dc *dc)
1158 {
1159 u32 value;
1160
1161 /* stop the display controller */
1162 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1163 value &= ~DISP_CTRL_MODE_MASK;
1164 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1165
1166 tegra_dc_commit(dc);
1167 }
1168
1169 static bool tegra_dc_idle(struct tegra_dc *dc)
1170 {
1171 u32 value;
1172
1173 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1174
1175 return (value & DISP_CTRL_MODE_MASK) == 0;
1176 }
1177
1178 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1179 {
1180 timeout = jiffies + msecs_to_jiffies(timeout);
1181
1182 while (time_before(jiffies, timeout)) {
1183 if (tegra_dc_idle(dc))
1184 return 0;
1185
1186 usleep_range(1000, 2000);
1187 }
1188
1189 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1190 return -ETIMEDOUT;
1191 }
1192
1193 static void tegra_crtc_disable(struct drm_crtc *crtc)
1194 {
1195 struct tegra_dc *dc = to_tegra_dc(crtc);
1196 u32 value;
1197
1198 if (!tegra_dc_idle(dc)) {
1199 tegra_dc_stop(dc);
1200
1201 /*
1202 * Ignore the return value, there isn't anything useful to do
1203 * in case this fails.
1204 */
1205 tegra_dc_wait_idle(dc, 100);
1206 }
1207
1208 /*
1209 * This should really be part of the RGB encoder driver, but clearing
1210 * these bits has the side-effect of stopping the display controller.
1211 * When that happens no VBLANK interrupts will be raised. At the same
1212 * time the encoder is disabled before the display controller, so the
1213 * above code is always going to timeout waiting for the controller
1214 * to go idle.
1215 *
1216 * Given the close coupling between the RGB encoder and the display
1217 * controller doing it here is still kind of okay. None of the other
1218 * encoder drivers require these bits to be cleared.
1219 *
1220 * XXX: Perhaps given that the display controller is switched off at
1221 * this point anyway maybe clearing these bits isn't even useful for
1222 * the RGB encoder?
1223 */
1224 if (dc->rgb) {
1225 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1226 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1227 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1228 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1229 }
1230
1231 tegra_dc_stats_reset(&dc->stats);
1232 drm_crtc_vblank_off(crtc);
1233 }
1234
1235 static void tegra_crtc_enable(struct drm_crtc *crtc)
1236 {
1237 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1238 struct tegra_dc_state *state = to_dc_state(crtc->state);
1239 struct tegra_dc *dc = to_tegra_dc(crtc);
1240 u32 value;
1241
1242 tegra_dc_commit_state(dc, state);
1243
1244 /* program display mode */
1245 tegra_dc_set_timings(dc, mode);
1246
1247 /* interlacing isn't supported yet, so disable it */
1248 if (dc->soc->supports_interlacing) {
1249 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1250 value &= ~INTERLACE_ENABLE;
1251 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1252 }
1253
1254 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1255 value &= ~DISP_CTRL_MODE_MASK;
1256 value |= DISP_CTRL_MODE_C_DISPLAY;
1257 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1258
1259 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1260 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1261 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1262 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1263
1264 tegra_dc_commit(dc);
1265
1266 drm_crtc_vblank_on(crtc);
1267 }
1268
1269 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1270 struct drm_crtc_state *state)
1271 {
1272 return 0;
1273 }
1274
1275 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1276 struct drm_crtc_state *old_crtc_state)
1277 {
1278 struct tegra_dc *dc = to_tegra_dc(crtc);
1279
1280 if (crtc->state->event) {
1281 crtc->state->event->pipe = drm_crtc_index(crtc);
1282
1283 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1284
1285 dc->event = crtc->state->event;
1286 crtc->state->event = NULL;
1287 }
1288 }
1289
1290 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1291 struct drm_crtc_state *old_crtc_state)
1292 {
1293 struct tegra_dc_state *state = to_dc_state(crtc->state);
1294 struct tegra_dc *dc = to_tegra_dc(crtc);
1295
1296 tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1297 tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1298 }
1299
1300 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1301 .disable = tegra_crtc_disable,
1302 .enable = tegra_crtc_enable,
1303 .atomic_check = tegra_crtc_atomic_check,
1304 .atomic_begin = tegra_crtc_atomic_begin,
1305 .atomic_flush = tegra_crtc_atomic_flush,
1306 };
1307
1308 static irqreturn_t tegra_dc_irq(int irq, void *data)
1309 {
1310 struct tegra_dc *dc = data;
1311 unsigned long status;
1312
1313 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1314 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1315
1316 if (status & FRAME_END_INT) {
1317 /*
1318 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1319 */
1320 dc->stats.frames++;
1321 }
1322
1323 if (status & VBLANK_INT) {
1324 /*
1325 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1326 */
1327 drm_crtc_handle_vblank(&dc->base);
1328 tegra_dc_finish_page_flip(dc);
1329 dc->stats.vblank++;
1330 }
1331
1332 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1333 /*
1334 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1335 */
1336 dc->stats.underflow++;
1337 }
1338
1339 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1340 /*
1341 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1342 */
1343 dc->stats.overflow++;
1344 }
1345
1346 return IRQ_HANDLED;
1347 }
1348
1349 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1350 {
1351 struct drm_info_node *node = s->private;
1352 struct tegra_dc *dc = node->info_ent->data;
1353 int err = 0;
1354
1355 drm_modeset_lock_crtc(&dc->base, NULL);
1356
1357 if (!dc->base.state->active) {
1358 err = -EBUSY;
1359 goto unlock;
1360 }
1361
1362 #define DUMP_REG(name) \
1363 seq_printf(s, "%-40s %#05x %08x\n", #name, name, \
1364 tegra_dc_readl(dc, name))
1365
1366 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1367 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1368 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1369 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1370 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1371 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1372 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1373 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1374 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1375 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1376 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1377 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1378 DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1379 DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1380 DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1381 DUMP_REG(DC_CMD_SIGNAL_RAISE);
1382 DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1383 DUMP_REG(DC_CMD_INT_STATUS);
1384 DUMP_REG(DC_CMD_INT_MASK);
1385 DUMP_REG(DC_CMD_INT_ENABLE);
1386 DUMP_REG(DC_CMD_INT_TYPE);
1387 DUMP_REG(DC_CMD_INT_POLARITY);
1388 DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1389 DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1390 DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1391 DUMP_REG(DC_CMD_STATE_ACCESS);
1392 DUMP_REG(DC_CMD_STATE_CONTROL);
1393 DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1394 DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1395 DUMP_REG(DC_COM_CRC_CONTROL);
1396 DUMP_REG(DC_COM_CRC_CHECKSUM);
1397 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1398 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1399 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1400 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1401 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1402 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1403 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1404 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1405 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1406 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1407 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1408 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1409 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1410 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1411 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1412 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1413 DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1414 DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1415 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1416 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1417 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1418 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1419 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1420 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1421 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1422 DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1423 DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1424 DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1425 DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1426 DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1427 DUMP_REG(DC_COM_SPI_CONTROL);
1428 DUMP_REG(DC_COM_SPI_START_BYTE);
1429 DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1430 DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1431 DUMP_REG(DC_COM_HSPI_CS_DC);
1432 DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1433 DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1434 DUMP_REG(DC_COM_GPIO_CTRL);
1435 DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1436 DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1437 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1438 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1439 DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1440 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1441 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1442 DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1443 DUMP_REG(DC_DISP_REF_TO_SYNC);
1444 DUMP_REG(DC_DISP_SYNC_WIDTH);
1445 DUMP_REG(DC_DISP_BACK_PORCH);
1446 DUMP_REG(DC_DISP_ACTIVE);
1447 DUMP_REG(DC_DISP_FRONT_PORCH);
1448 DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1449 DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1450 DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1451 DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1452 DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1453 DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1454 DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1455 DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1456 DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1457 DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1458 DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1459 DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1460 DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1461 DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1462 DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1463 DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1464 DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1465 DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1466 DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1467 DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1468 DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1469 DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1470 DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1471 DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1472 DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1473 DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1474 DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1475 DUMP_REG(DC_DISP_M0_CONTROL);
1476 DUMP_REG(DC_DISP_M1_CONTROL);
1477 DUMP_REG(DC_DISP_DI_CONTROL);
1478 DUMP_REG(DC_DISP_PP_CONTROL);
1479 DUMP_REG(DC_DISP_PP_SELECT_A);
1480 DUMP_REG(DC_DISP_PP_SELECT_B);
1481 DUMP_REG(DC_DISP_PP_SELECT_C);
1482 DUMP_REG(DC_DISP_PP_SELECT_D);
1483 DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1484 DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1485 DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1486 DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1487 DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1488 DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1489 DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1490 DUMP_REG(DC_DISP_BORDER_COLOR);
1491 DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1492 DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1493 DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1494 DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1495 DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1496 DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1497 DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1498 DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1499 DUMP_REG(DC_DISP_CURSOR_POSITION);
1500 DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1501 DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1502 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1503 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1504 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1505 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1506 DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1507 DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1508 DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1509 DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1510 DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1511 DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1512 DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1513 DUMP_REG(DC_DISP_SD_CONTROL);
1514 DUMP_REG(DC_DISP_SD_CSC_COEFF);
1515 DUMP_REG(DC_DISP_SD_LUT(0));
1516 DUMP_REG(DC_DISP_SD_LUT(1));
1517 DUMP_REG(DC_DISP_SD_LUT(2));
1518 DUMP_REG(DC_DISP_SD_LUT(3));
1519 DUMP_REG(DC_DISP_SD_LUT(4));
1520 DUMP_REG(DC_DISP_SD_LUT(5));
1521 DUMP_REG(DC_DISP_SD_LUT(6));
1522 DUMP_REG(DC_DISP_SD_LUT(7));
1523 DUMP_REG(DC_DISP_SD_LUT(8));
1524 DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1525 DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1526 DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1527 DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1528 DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1529 DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1530 DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1531 DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1532 DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1533 DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1534 DUMP_REG(DC_DISP_SD_BL_TF(0));
1535 DUMP_REG(DC_DISP_SD_BL_TF(1));
1536 DUMP_REG(DC_DISP_SD_BL_TF(2));
1537 DUMP_REG(DC_DISP_SD_BL_TF(3));
1538 DUMP_REG(DC_DISP_SD_BL_CONTROL);
1539 DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1540 DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1541 DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1542 DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1543 DUMP_REG(DC_WIN_WIN_OPTIONS);
1544 DUMP_REG(DC_WIN_BYTE_SWAP);
1545 DUMP_REG(DC_WIN_BUFFER_CONTROL);
1546 DUMP_REG(DC_WIN_COLOR_DEPTH);
1547 DUMP_REG(DC_WIN_POSITION);
1548 DUMP_REG(DC_WIN_SIZE);
1549 DUMP_REG(DC_WIN_PRESCALED_SIZE);
1550 DUMP_REG(DC_WIN_H_INITIAL_DDA);
1551 DUMP_REG(DC_WIN_V_INITIAL_DDA);
1552 DUMP_REG(DC_WIN_DDA_INC);
1553 DUMP_REG(DC_WIN_LINE_STRIDE);
1554 DUMP_REG(DC_WIN_BUF_STRIDE);
1555 DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1556 DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1557 DUMP_REG(DC_WIN_DV_CONTROL);
1558 DUMP_REG(DC_WIN_BLEND_NOKEY);
1559 DUMP_REG(DC_WIN_BLEND_1WIN);
1560 DUMP_REG(DC_WIN_BLEND_2WIN_X);
1561 DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1562 DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1563 DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1564 DUMP_REG(DC_WINBUF_START_ADDR);
1565 DUMP_REG(DC_WINBUF_START_ADDR_NS);
1566 DUMP_REG(DC_WINBUF_START_ADDR_U);
1567 DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1568 DUMP_REG(DC_WINBUF_START_ADDR_V);
1569 DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1570 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1571 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1572 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1573 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1574 DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1575 DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1576 DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1577 DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1578
1579 #undef DUMP_REG
1580
1581 unlock:
1582 drm_modeset_unlock_crtc(&dc->base);
1583 return err;
1584 }
1585
1586 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1587 {
1588 struct drm_info_node *node = s->private;
1589 struct tegra_dc *dc = node->info_ent->data;
1590 int err = 0;
1591 u32 value;
1592
1593 drm_modeset_lock_crtc(&dc->base, NULL);
1594
1595 if (!dc->base.state->active) {
1596 err = -EBUSY;
1597 goto unlock;
1598 }
1599
1600 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1601 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1602 tegra_dc_commit(dc);
1603
1604 drm_crtc_wait_one_vblank(&dc->base);
1605 drm_crtc_wait_one_vblank(&dc->base);
1606
1607 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1608 seq_printf(s, "%08x\n", value);
1609
1610 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1611
1612 unlock:
1613 drm_modeset_unlock_crtc(&dc->base);
1614 return err;
1615 }
1616
1617 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1618 {
1619 struct drm_info_node *node = s->private;
1620 struct tegra_dc *dc = node->info_ent->data;
1621
1622 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1623 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1624 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1625 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1626
1627 return 0;
1628 }
1629
1630 static struct drm_info_list debugfs_files[] = {
1631 { "regs", tegra_dc_show_regs, 0, NULL },
1632 { "crc", tegra_dc_show_crc, 0, NULL },
1633 { "stats", tegra_dc_show_stats, 0, NULL },
1634 };
1635
1636 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1637 {
1638 unsigned int i;
1639 char *name;
1640 int err;
1641
1642 name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1643 dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1644 kfree(name);
1645
1646 if (!dc->debugfs)
1647 return -ENOMEM;
1648
1649 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1650 GFP_KERNEL);
1651 if (!dc->debugfs_files) {
1652 err = -ENOMEM;
1653 goto remove;
1654 }
1655
1656 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1657 dc->debugfs_files[i].data = dc;
1658
1659 err = drm_debugfs_create_files(dc->debugfs_files,
1660 ARRAY_SIZE(debugfs_files),
1661 dc->debugfs, minor);
1662 if (err < 0)
1663 goto free;
1664
1665 dc->minor = minor;
1666
1667 return 0;
1668
1669 free:
1670 kfree(dc->debugfs_files);
1671 dc->debugfs_files = NULL;
1672 remove:
1673 debugfs_remove(dc->debugfs);
1674 dc->debugfs = NULL;
1675
1676 return err;
1677 }
1678
1679 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1680 {
1681 drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1682 dc->minor);
1683 dc->minor = NULL;
1684
1685 kfree(dc->debugfs_files);
1686 dc->debugfs_files = NULL;
1687
1688 debugfs_remove(dc->debugfs);
1689 dc->debugfs = NULL;
1690
1691 return 0;
1692 }
1693
1694 static int tegra_dc_init(struct host1x_client *client)
1695 {
1696 struct drm_device *drm = dev_get_drvdata(client->parent);
1697 struct tegra_dc *dc = host1x_client_to_dc(client);
1698 struct tegra_drm *tegra = drm->dev_private;
1699 struct drm_plane *primary = NULL;
1700 struct drm_plane *cursor = NULL;
1701 u32 value;
1702 int err;
1703
1704 if (tegra->domain) {
1705 err = iommu_attach_device(tegra->domain, dc->dev);
1706 if (err < 0) {
1707 dev_err(dc->dev, "failed to attach to domain: %d\n",
1708 err);
1709 return err;
1710 }
1711
1712 dc->domain = tegra->domain;
1713 }
1714
1715 primary = tegra_dc_primary_plane_create(drm, dc);
1716 if (IS_ERR(primary)) {
1717 err = PTR_ERR(primary);
1718 goto cleanup;
1719 }
1720
1721 if (dc->soc->supports_cursor) {
1722 cursor = tegra_dc_cursor_plane_create(drm, dc);
1723 if (IS_ERR(cursor)) {
1724 err = PTR_ERR(cursor);
1725 goto cleanup;
1726 }
1727 }
1728
1729 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1730 &tegra_crtc_funcs);
1731 if (err < 0)
1732 goto cleanup;
1733
1734 drm_mode_crtc_set_gamma_size(&dc->base, 256);
1735 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1736
1737 /*
1738 * Keep track of the minimum pitch alignment across all display
1739 * controllers.
1740 */
1741 if (dc->soc->pitch_align > tegra->pitch_align)
1742 tegra->pitch_align = dc->soc->pitch_align;
1743
1744 err = tegra_dc_rgb_init(drm, dc);
1745 if (err < 0 && err != -ENODEV) {
1746 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1747 goto cleanup;
1748 }
1749
1750 err = tegra_dc_add_planes(drm, dc);
1751 if (err < 0)
1752 goto cleanup;
1753
1754 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1755 err = tegra_dc_debugfs_init(dc, drm->primary);
1756 if (err < 0)
1757 dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1758 }
1759
1760 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1761 dev_name(dc->dev), dc);
1762 if (err < 0) {
1763 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1764 err);
1765 goto cleanup;
1766 }
1767
1768 /* initialize display controller */
1769 if (dc->syncpt) {
1770 u32 syncpt = host1x_syncpt_id(dc->syncpt);
1771
1772 value = SYNCPT_CNTRL_NO_STALL;
1773 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1774
1775 value = SYNCPT_VSYNC_ENABLE | syncpt;
1776 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1777 }
1778
1779 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1780 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1781 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1782
1783 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1784 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1785 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1786
1787 /* initialize timer */
1788 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1789 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1790 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1791
1792 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1793 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1794 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1795
1796 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1797 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1798 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1799
1800 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1801 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1802 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1803
1804 if (dc->soc->supports_border_color)
1805 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1806
1807 tegra_dc_stats_reset(&dc->stats);
1808
1809 return 0;
1810
1811 cleanup:
1812 if (cursor)
1813 drm_plane_cleanup(cursor);
1814
1815 if (primary)
1816 drm_plane_cleanup(primary);
1817
1818 if (tegra->domain) {
1819 iommu_detach_device(tegra->domain, dc->dev);
1820 dc->domain = NULL;
1821 }
1822
1823 return err;
1824 }
1825
1826 static int tegra_dc_exit(struct host1x_client *client)
1827 {
1828 struct tegra_dc *dc = host1x_client_to_dc(client);
1829 int err;
1830
1831 devm_free_irq(dc->dev, dc->irq, dc);
1832
1833 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1834 err = tegra_dc_debugfs_exit(dc);
1835 if (err < 0)
1836 dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1837 }
1838
1839 err = tegra_dc_rgb_exit(dc);
1840 if (err) {
1841 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1842 return err;
1843 }
1844
1845 if (dc->domain) {
1846 iommu_detach_device(dc->domain, dc->dev);
1847 dc->domain = NULL;
1848 }
1849
1850 return 0;
1851 }
1852
1853 static const struct host1x_client_ops dc_client_ops = {
1854 .init = tegra_dc_init,
1855 .exit = tegra_dc_exit,
1856 };
1857
1858 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1859 .supports_border_color = true,
1860 .supports_interlacing = false,
1861 .supports_cursor = false,
1862 .supports_block_linear = false,
1863 .pitch_align = 8,
1864 .has_powergate = false,
1865 };
1866
1867 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1868 .supports_border_color = true,
1869 .supports_interlacing = false,
1870 .supports_cursor = false,
1871 .supports_block_linear = false,
1872 .pitch_align = 8,
1873 .has_powergate = false,
1874 };
1875
1876 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1877 .supports_border_color = true,
1878 .supports_interlacing = false,
1879 .supports_cursor = false,
1880 .supports_block_linear = false,
1881 .pitch_align = 64,
1882 .has_powergate = true,
1883 };
1884
1885 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1886 .supports_border_color = false,
1887 .supports_interlacing = true,
1888 .supports_cursor = true,
1889 .supports_block_linear = true,
1890 .pitch_align = 64,
1891 .has_powergate = true,
1892 };
1893
1894 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1895 .supports_border_color = false,
1896 .supports_interlacing = true,
1897 .supports_cursor = true,
1898 .supports_block_linear = true,
1899 .pitch_align = 64,
1900 .has_powergate = true,
1901 };
1902
1903 static const struct of_device_id tegra_dc_of_match[] = {
1904 {
1905 .compatible = "nvidia,tegra210-dc",
1906 .data = &tegra210_dc_soc_info,
1907 }, {
1908 .compatible = "nvidia,tegra124-dc",
1909 .data = &tegra124_dc_soc_info,
1910 }, {
1911 .compatible = "nvidia,tegra114-dc",
1912 .data = &tegra114_dc_soc_info,
1913 }, {
1914 .compatible = "nvidia,tegra30-dc",
1915 .data = &tegra30_dc_soc_info,
1916 }, {
1917 .compatible = "nvidia,tegra20-dc",
1918 .data = &tegra20_dc_soc_info,
1919 }, {
1920 /* sentinel */
1921 }
1922 };
1923 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1924
1925 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1926 {
1927 struct device_node *np;
1928 u32 value = 0;
1929 int err;
1930
1931 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1932 if (err < 0) {
1933 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1934
1935 /*
1936 * If the nvidia,head property isn't present, try to find the
1937 * correct head number by looking up the position of this
1938 * display controller's node within the device tree. Assuming
1939 * that the nodes are ordered properly in the DTS file and
1940 * that the translation into a flattened device tree blob
1941 * preserves that ordering this will actually yield the right
1942 * head number.
1943 *
1944 * If those assumptions don't hold, this will still work for
1945 * cases where only a single display controller is used.
1946 */
1947 for_each_matching_node(np, tegra_dc_of_match) {
1948 if (np == dc->dev->of_node)
1949 break;
1950
1951 value++;
1952 }
1953 }
1954
1955 dc->pipe = value;
1956
1957 return 0;
1958 }
1959
1960 static int tegra_dc_probe(struct platform_device *pdev)
1961 {
1962 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1963 const struct of_device_id *id;
1964 struct resource *regs;
1965 struct tegra_dc *dc;
1966 int err;
1967
1968 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1969 if (!dc)
1970 return -ENOMEM;
1971
1972 id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1973 if (!id)
1974 return -ENODEV;
1975
1976 spin_lock_init(&dc->lock);
1977 INIT_LIST_HEAD(&dc->list);
1978 dc->dev = &pdev->dev;
1979 dc->soc = id->data;
1980
1981 err = tegra_dc_parse_dt(dc);
1982 if (err < 0)
1983 return err;
1984
1985 dc->clk = devm_clk_get(&pdev->dev, NULL);
1986 if (IS_ERR(dc->clk)) {
1987 dev_err(&pdev->dev, "failed to get clock\n");
1988 return PTR_ERR(dc->clk);
1989 }
1990
1991 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1992 if (IS_ERR(dc->rst)) {
1993 dev_err(&pdev->dev, "failed to get reset\n");
1994 return PTR_ERR(dc->rst);
1995 }
1996
1997 if (dc->soc->has_powergate) {
1998 if (dc->pipe == 0)
1999 dc->powergate = TEGRA_POWERGATE_DIS;
2000 else
2001 dc->powergate = TEGRA_POWERGATE_DISB;
2002
2003 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2004 dc->rst);
2005 if (err < 0) {
2006 dev_err(&pdev->dev, "failed to power partition: %d\n",
2007 err);
2008 return err;
2009 }
2010 } else {
2011 err = clk_prepare_enable(dc->clk);
2012 if (err < 0) {
2013 dev_err(&pdev->dev, "failed to enable clock: %d\n",
2014 err);
2015 return err;
2016 }
2017
2018 err = reset_control_deassert(dc->rst);
2019 if (err < 0) {
2020 dev_err(&pdev->dev, "failed to deassert reset: %d\n",
2021 err);
2022 return err;
2023 }
2024 }
2025
2026 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2027 dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2028 if (IS_ERR(dc->regs))
2029 return PTR_ERR(dc->regs);
2030
2031 dc->irq = platform_get_irq(pdev, 0);
2032 if (dc->irq < 0) {
2033 dev_err(&pdev->dev, "failed to get IRQ\n");
2034 return -ENXIO;
2035 }
2036
2037 dc->syncpt = host1x_syncpt_request(&pdev->dev, flags);
2038 if (!dc->syncpt)
2039 dev_warn(&pdev->dev, "failed to allocate syncpoint\n");
2040
2041 INIT_LIST_HEAD(&dc->client.list);
2042 dc->client.ops = &dc_client_ops;
2043 dc->client.dev = &pdev->dev;
2044
2045 err = tegra_dc_rgb_probe(dc);
2046 if (err < 0 && err != -ENODEV) {
2047 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2048 return err;
2049 }
2050
2051 err = host1x_client_register(&dc->client);
2052 if (err < 0) {
2053 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2054 err);
2055 return err;
2056 }
2057
2058 platform_set_drvdata(pdev, dc);
2059
2060 return 0;
2061 }
2062
2063 static int tegra_dc_remove(struct platform_device *pdev)
2064 {
2065 struct tegra_dc *dc = platform_get_drvdata(pdev);
2066 int err;
2067
2068 host1x_syncpt_free(dc->syncpt);
2069
2070 err = host1x_client_unregister(&dc->client);
2071 if (err < 0) {
2072 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2073 err);
2074 return err;
2075 }
2076
2077 err = tegra_dc_rgb_remove(dc);
2078 if (err < 0) {
2079 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2080 return err;
2081 }
2082
2083 reset_control_assert(dc->rst);
2084
2085 if (dc->soc->has_powergate)
2086 tegra_powergate_power_off(dc->powergate);
2087
2088 clk_disable_unprepare(dc->clk);
2089
2090 return 0;
2091 }
2092
2093 struct platform_driver tegra_dc_driver = {
2094 .driver = {
2095 .name = "tegra-dc",
2096 .of_match_table = tegra_dc_of_match,
2097 },
2098 .probe = tegra_dc_probe,
2099 .remove = tegra_dc_remove,
2100 };
This page took 0.150553 seconds and 5 git commands to generate.