Merge remote-tracking branches 'asoc/topic/fsl-sai', 'asoc/topic/fsl-ssl', 'asoc...
[deliverable/linux.git] / drivers / gpu / drm / tegra / dc.c
1 /*
2 * Copyright (C) 2012 Avionic Design GmbH
3 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/reset.h>
14
15 #include <soc/tegra/pmc.h>
16
17 #include "dc.h"
18 #include "drm.h"
19 #include "gem.h"
20
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_helper.h>
23 #include <drm/drm_plane_helper.h>
24
25 struct tegra_dc_soc_info {
26 bool supports_border_color;
27 bool supports_interlacing;
28 bool supports_cursor;
29 bool supports_block_linear;
30 unsigned int pitch_align;
31 bool has_powergate;
32 };
33
34 struct tegra_plane {
35 struct drm_plane base;
36 unsigned int index;
37 };
38
39 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
40 {
41 return container_of(plane, struct tegra_plane, base);
42 }
43
44 struct tegra_dc_state {
45 struct drm_crtc_state base;
46
47 struct clk *clk;
48 unsigned long pclk;
49 unsigned int div;
50
51 u32 planes;
52 };
53
54 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
55 {
56 if (state)
57 return container_of(state, struct tegra_dc_state, base);
58
59 return NULL;
60 }
61
62 struct tegra_plane_state {
63 struct drm_plane_state base;
64
65 struct tegra_bo_tiling tiling;
66 u32 format;
67 u32 swap;
68 };
69
70 static inline struct tegra_plane_state *
71 to_tegra_plane_state(struct drm_plane_state *state)
72 {
73 if (state)
74 return container_of(state, struct tegra_plane_state, base);
75
76 return NULL;
77 }
78
79 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
80 {
81 stats->frames = 0;
82 stats->vblank = 0;
83 stats->underflow = 0;
84 stats->overflow = 0;
85 }
86
87 /*
88 * Reads the active copy of a register. This takes the dc->lock spinlock to
89 * prevent races with the VBLANK processing which also needs access to the
90 * active copy of some registers.
91 */
92 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
93 {
94 unsigned long flags;
95 u32 value;
96
97 spin_lock_irqsave(&dc->lock, flags);
98
99 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
100 value = tegra_dc_readl(dc, offset);
101 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
102
103 spin_unlock_irqrestore(&dc->lock, flags);
104 return value;
105 }
106
107 /*
108 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
109 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
110 * Latching happens mmediately if the display controller is in STOP mode or
111 * on the next frame boundary otherwise.
112 *
113 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
114 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
115 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
116 * into the ACTIVE copy, either immediately if the display controller is in
117 * STOP mode, or at the next frame boundary otherwise.
118 */
119 void tegra_dc_commit(struct tegra_dc *dc)
120 {
121 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
122 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
123 }
124
125 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
126 {
127 /* assume no swapping of fetched data */
128 if (swap)
129 *swap = BYTE_SWAP_NOSWAP;
130
131 switch (fourcc) {
132 case DRM_FORMAT_XBGR8888:
133 *format = WIN_COLOR_DEPTH_R8G8B8A8;
134 break;
135
136 case DRM_FORMAT_XRGB8888:
137 *format = WIN_COLOR_DEPTH_B8G8R8A8;
138 break;
139
140 case DRM_FORMAT_RGB565:
141 *format = WIN_COLOR_DEPTH_B5G6R5;
142 break;
143
144 case DRM_FORMAT_UYVY:
145 *format = WIN_COLOR_DEPTH_YCbCr422;
146 break;
147
148 case DRM_FORMAT_YUYV:
149 if (swap)
150 *swap = BYTE_SWAP_SWAP2;
151
152 *format = WIN_COLOR_DEPTH_YCbCr422;
153 break;
154
155 case DRM_FORMAT_YUV420:
156 *format = WIN_COLOR_DEPTH_YCbCr420P;
157 break;
158
159 case DRM_FORMAT_YUV422:
160 *format = WIN_COLOR_DEPTH_YCbCr422P;
161 break;
162
163 default:
164 return -EINVAL;
165 }
166
167 return 0;
168 }
169
170 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
171 {
172 switch (format) {
173 case WIN_COLOR_DEPTH_YCbCr422:
174 case WIN_COLOR_DEPTH_YUV422:
175 if (planar)
176 *planar = false;
177
178 return true;
179
180 case WIN_COLOR_DEPTH_YCbCr420P:
181 case WIN_COLOR_DEPTH_YUV420P:
182 case WIN_COLOR_DEPTH_YCbCr422P:
183 case WIN_COLOR_DEPTH_YUV422P:
184 case WIN_COLOR_DEPTH_YCbCr422R:
185 case WIN_COLOR_DEPTH_YUV422R:
186 case WIN_COLOR_DEPTH_YCbCr422RA:
187 case WIN_COLOR_DEPTH_YUV422RA:
188 if (planar)
189 *planar = true;
190
191 return true;
192 }
193
194 if (planar)
195 *planar = false;
196
197 return false;
198 }
199
200 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
201 unsigned int bpp)
202 {
203 fixed20_12 outf = dfixed_init(out);
204 fixed20_12 inf = dfixed_init(in);
205 u32 dda_inc;
206 int max;
207
208 if (v)
209 max = 15;
210 else {
211 switch (bpp) {
212 case 2:
213 max = 8;
214 break;
215
216 default:
217 WARN_ON_ONCE(1);
218 /* fallthrough */
219 case 4:
220 max = 4;
221 break;
222 }
223 }
224
225 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
226 inf.full -= dfixed_const(1);
227
228 dda_inc = dfixed_div(inf, outf);
229 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
230
231 return dda_inc;
232 }
233
234 static inline u32 compute_initial_dda(unsigned int in)
235 {
236 fixed20_12 inf = dfixed_init(in);
237 return dfixed_frac(inf);
238 }
239
240 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
241 const struct tegra_dc_window *window)
242 {
243 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
244 unsigned long value, flags;
245 bool yuv, planar;
246
247 /*
248 * For YUV planar modes, the number of bytes per pixel takes into
249 * account only the luma component and therefore is 1.
250 */
251 yuv = tegra_dc_format_is_yuv(window->format, &planar);
252 if (!yuv)
253 bpp = window->bits_per_pixel / 8;
254 else
255 bpp = planar ? 1 : 2;
256
257 spin_lock_irqsave(&dc->lock, flags);
258
259 value = WINDOW_A_SELECT << index;
260 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
261
262 tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
263 tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
264
265 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
266 tegra_dc_writel(dc, value, DC_WIN_POSITION);
267
268 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
269 tegra_dc_writel(dc, value, DC_WIN_SIZE);
270
271 h_offset = window->src.x * bpp;
272 v_offset = window->src.y;
273 h_size = window->src.w * bpp;
274 v_size = window->src.h;
275
276 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
277 tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
278
279 /*
280 * For DDA computations the number of bytes per pixel for YUV planar
281 * modes needs to take into account all Y, U and V components.
282 */
283 if (yuv && planar)
284 bpp = 2;
285
286 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
287 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
288
289 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
290 tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
291
292 h_dda = compute_initial_dda(window->src.x);
293 v_dda = compute_initial_dda(window->src.y);
294
295 tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
296 tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
297
298 tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
299 tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
300
301 tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
302
303 if (yuv && planar) {
304 tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
305 tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
306 value = window->stride[1] << 16 | window->stride[0];
307 tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
308 } else {
309 tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
310 }
311
312 if (window->bottom_up)
313 v_offset += window->src.h - 1;
314
315 tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
316 tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
317
318 if (dc->soc->supports_block_linear) {
319 unsigned long height = window->tiling.value;
320
321 switch (window->tiling.mode) {
322 case TEGRA_BO_TILING_MODE_PITCH:
323 value = DC_WINBUF_SURFACE_KIND_PITCH;
324 break;
325
326 case TEGRA_BO_TILING_MODE_TILED:
327 value = DC_WINBUF_SURFACE_KIND_TILED;
328 break;
329
330 case TEGRA_BO_TILING_MODE_BLOCK:
331 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
332 DC_WINBUF_SURFACE_KIND_BLOCK;
333 break;
334 }
335
336 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
337 } else {
338 switch (window->tiling.mode) {
339 case TEGRA_BO_TILING_MODE_PITCH:
340 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
341 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
342 break;
343
344 case TEGRA_BO_TILING_MODE_TILED:
345 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
346 DC_WIN_BUFFER_ADDR_MODE_TILE;
347 break;
348
349 case TEGRA_BO_TILING_MODE_BLOCK:
350 /*
351 * No need to handle this here because ->atomic_check
352 * will already have filtered it out.
353 */
354 break;
355 }
356
357 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
358 }
359
360 value = WIN_ENABLE;
361
362 if (yuv) {
363 /* setup default colorspace conversion coefficients */
364 tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
365 tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
366 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
367 tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
368 tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
369 tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
370 tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
371 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
372
373 value |= CSC_ENABLE;
374 } else if (window->bits_per_pixel < 24) {
375 value |= COLOR_EXPAND;
376 }
377
378 if (window->bottom_up)
379 value |= V_DIRECTION;
380
381 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
382
383 /*
384 * Disable blending and assume Window A is the bottom-most window,
385 * Window C is the top-most window and Window B is in the middle.
386 */
387 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
388 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
389
390 switch (index) {
391 case 0:
392 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
393 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
394 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
395 break;
396
397 case 1:
398 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
399 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
400 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
401 break;
402
403 case 2:
404 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
405 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
406 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
407 break;
408 }
409
410 spin_unlock_irqrestore(&dc->lock, flags);
411 }
412
413 static void tegra_plane_destroy(struct drm_plane *plane)
414 {
415 struct tegra_plane *p = to_tegra_plane(plane);
416
417 drm_plane_cleanup(plane);
418 kfree(p);
419 }
420
421 static const u32 tegra_primary_plane_formats[] = {
422 DRM_FORMAT_XBGR8888,
423 DRM_FORMAT_XRGB8888,
424 DRM_FORMAT_RGB565,
425 };
426
427 static void tegra_primary_plane_destroy(struct drm_plane *plane)
428 {
429 tegra_plane_destroy(plane);
430 }
431
432 static void tegra_plane_reset(struct drm_plane *plane)
433 {
434 struct tegra_plane_state *state;
435
436 if (plane->state)
437 __drm_atomic_helper_plane_destroy_state(plane, plane->state);
438
439 kfree(plane->state);
440 plane->state = NULL;
441
442 state = kzalloc(sizeof(*state), GFP_KERNEL);
443 if (state) {
444 plane->state = &state->base;
445 plane->state->plane = plane;
446 }
447 }
448
449 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
450 {
451 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
452 struct tegra_plane_state *copy;
453
454 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
455 if (!copy)
456 return NULL;
457
458 __drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
459 copy->tiling = state->tiling;
460 copy->format = state->format;
461 copy->swap = state->swap;
462
463 return &copy->base;
464 }
465
466 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
467 struct drm_plane_state *state)
468 {
469 __drm_atomic_helper_plane_destroy_state(plane, state);
470 kfree(state);
471 }
472
473 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
474 .update_plane = drm_atomic_helper_update_plane,
475 .disable_plane = drm_atomic_helper_disable_plane,
476 .destroy = tegra_primary_plane_destroy,
477 .reset = tegra_plane_reset,
478 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
479 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
480 };
481
482 static int tegra_plane_prepare_fb(struct drm_plane *plane,
483 const struct drm_plane_state *new_state)
484 {
485 return 0;
486 }
487
488 static void tegra_plane_cleanup_fb(struct drm_plane *plane,
489 const struct drm_plane_state *old_fb)
490 {
491 }
492
493 static int tegra_plane_state_add(struct tegra_plane *plane,
494 struct drm_plane_state *state)
495 {
496 struct drm_crtc_state *crtc_state;
497 struct tegra_dc_state *tegra;
498
499 /* Propagate errors from allocation or locking failures. */
500 crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
501 if (IS_ERR(crtc_state))
502 return PTR_ERR(crtc_state);
503
504 tegra = to_dc_state(crtc_state);
505
506 tegra->planes |= WIN_A_ACT_REQ << plane->index;
507
508 return 0;
509 }
510
511 static int tegra_plane_atomic_check(struct drm_plane *plane,
512 struct drm_plane_state *state)
513 {
514 struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
515 struct tegra_bo_tiling *tiling = &plane_state->tiling;
516 struct tegra_plane *tegra = to_tegra_plane(plane);
517 struct tegra_dc *dc = to_tegra_dc(state->crtc);
518 int err;
519
520 /* no need for further checks if the plane is being disabled */
521 if (!state->crtc)
522 return 0;
523
524 err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
525 &plane_state->swap);
526 if (err < 0)
527 return err;
528
529 err = tegra_fb_get_tiling(state->fb, tiling);
530 if (err < 0)
531 return err;
532
533 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
534 !dc->soc->supports_block_linear) {
535 DRM_ERROR("hardware doesn't support block linear mode\n");
536 return -EINVAL;
537 }
538
539 /*
540 * Tegra doesn't support different strides for U and V planes so we
541 * error out if the user tries to display a framebuffer with such a
542 * configuration.
543 */
544 if (drm_format_num_planes(state->fb->pixel_format) > 2) {
545 if (state->fb->pitches[2] != state->fb->pitches[1]) {
546 DRM_ERROR("unsupported UV-plane configuration\n");
547 return -EINVAL;
548 }
549 }
550
551 err = tegra_plane_state_add(tegra, state);
552 if (err < 0)
553 return err;
554
555 return 0;
556 }
557
558 static void tegra_plane_atomic_update(struct drm_plane *plane,
559 struct drm_plane_state *old_state)
560 {
561 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
562 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
563 struct drm_framebuffer *fb = plane->state->fb;
564 struct tegra_plane *p = to_tegra_plane(plane);
565 struct tegra_dc_window window;
566 unsigned int i;
567
568 /* rien ne va plus */
569 if (!plane->state->crtc || !plane->state->fb)
570 return;
571
572 memset(&window, 0, sizeof(window));
573 window.src.x = plane->state->src_x >> 16;
574 window.src.y = plane->state->src_y >> 16;
575 window.src.w = plane->state->src_w >> 16;
576 window.src.h = plane->state->src_h >> 16;
577 window.dst.x = plane->state->crtc_x;
578 window.dst.y = plane->state->crtc_y;
579 window.dst.w = plane->state->crtc_w;
580 window.dst.h = plane->state->crtc_h;
581 window.bits_per_pixel = fb->bits_per_pixel;
582 window.bottom_up = tegra_fb_is_bottom_up(fb);
583
584 /* copy from state */
585 window.tiling = state->tiling;
586 window.format = state->format;
587 window.swap = state->swap;
588
589 for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
590 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
591
592 window.base[i] = bo->paddr + fb->offsets[i];
593 window.stride[i] = fb->pitches[i];
594 }
595
596 tegra_dc_setup_window(dc, p->index, &window);
597 }
598
599 static void tegra_plane_atomic_disable(struct drm_plane *plane,
600 struct drm_plane_state *old_state)
601 {
602 struct tegra_plane *p = to_tegra_plane(plane);
603 struct tegra_dc *dc;
604 unsigned long flags;
605 u32 value;
606
607 /* rien ne va plus */
608 if (!old_state || !old_state->crtc)
609 return;
610
611 dc = to_tegra_dc(old_state->crtc);
612
613 spin_lock_irqsave(&dc->lock, flags);
614
615 value = WINDOW_A_SELECT << p->index;
616 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
617
618 value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
619 value &= ~WIN_ENABLE;
620 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
621
622 spin_unlock_irqrestore(&dc->lock, flags);
623 }
624
625 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
626 .prepare_fb = tegra_plane_prepare_fb,
627 .cleanup_fb = tegra_plane_cleanup_fb,
628 .atomic_check = tegra_plane_atomic_check,
629 .atomic_update = tegra_plane_atomic_update,
630 .atomic_disable = tegra_plane_atomic_disable,
631 };
632
633 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
634 struct tegra_dc *dc)
635 {
636 /*
637 * Ideally this would use drm_crtc_mask(), but that would require the
638 * CRTC to already be in the mode_config's list of CRTCs. However, it
639 * will only be added to that list in the drm_crtc_init_with_planes()
640 * (in tegra_dc_init()), which in turn requires registration of these
641 * planes. So we have ourselves a nice little chicken and egg problem
642 * here.
643 *
644 * We work around this by manually creating the mask from the number
645 * of CRTCs that have been registered, and should therefore always be
646 * the same as drm_crtc_index() after registration.
647 */
648 unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
649 struct tegra_plane *plane;
650 unsigned int num_formats;
651 const u32 *formats;
652 int err;
653
654 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
655 if (!plane)
656 return ERR_PTR(-ENOMEM);
657
658 num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
659 formats = tegra_primary_plane_formats;
660
661 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
662 &tegra_primary_plane_funcs, formats,
663 num_formats, DRM_PLANE_TYPE_PRIMARY,
664 NULL);
665 if (err < 0) {
666 kfree(plane);
667 return ERR_PTR(err);
668 }
669
670 drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
671
672 return &plane->base;
673 }
674
675 static const u32 tegra_cursor_plane_formats[] = {
676 DRM_FORMAT_RGBA8888,
677 };
678
679 static int tegra_cursor_atomic_check(struct drm_plane *plane,
680 struct drm_plane_state *state)
681 {
682 struct tegra_plane *tegra = to_tegra_plane(plane);
683 int err;
684
685 /* no need for further checks if the plane is being disabled */
686 if (!state->crtc)
687 return 0;
688
689 /* scaling not supported for cursor */
690 if ((state->src_w >> 16 != state->crtc_w) ||
691 (state->src_h >> 16 != state->crtc_h))
692 return -EINVAL;
693
694 /* only square cursors supported */
695 if (state->src_w != state->src_h)
696 return -EINVAL;
697
698 if (state->crtc_w != 32 && state->crtc_w != 64 &&
699 state->crtc_w != 128 && state->crtc_w != 256)
700 return -EINVAL;
701
702 err = tegra_plane_state_add(tegra, state);
703 if (err < 0)
704 return err;
705
706 return 0;
707 }
708
709 static void tegra_cursor_atomic_update(struct drm_plane *plane,
710 struct drm_plane_state *old_state)
711 {
712 struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
713 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
714 struct drm_plane_state *state = plane->state;
715 u32 value = CURSOR_CLIP_DISPLAY;
716
717 /* rien ne va plus */
718 if (!plane->state->crtc || !plane->state->fb)
719 return;
720
721 switch (state->crtc_w) {
722 case 32:
723 value |= CURSOR_SIZE_32x32;
724 break;
725
726 case 64:
727 value |= CURSOR_SIZE_64x64;
728 break;
729
730 case 128:
731 value |= CURSOR_SIZE_128x128;
732 break;
733
734 case 256:
735 value |= CURSOR_SIZE_256x256;
736 break;
737
738 default:
739 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
740 state->crtc_h);
741 return;
742 }
743
744 value |= (bo->paddr >> 10) & 0x3fffff;
745 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
746
747 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
748 value = (bo->paddr >> 32) & 0x3;
749 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
750 #endif
751
752 /* enable cursor and set blend mode */
753 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
754 value |= CURSOR_ENABLE;
755 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
756
757 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
758 value &= ~CURSOR_DST_BLEND_MASK;
759 value &= ~CURSOR_SRC_BLEND_MASK;
760 value |= CURSOR_MODE_NORMAL;
761 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
762 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
763 value |= CURSOR_ALPHA;
764 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
765
766 /* position the cursor */
767 value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
768 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
769 }
770
771 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
772 struct drm_plane_state *old_state)
773 {
774 struct tegra_dc *dc;
775 u32 value;
776
777 /* rien ne va plus */
778 if (!old_state || !old_state->crtc)
779 return;
780
781 dc = to_tegra_dc(old_state->crtc);
782
783 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
784 value &= ~CURSOR_ENABLE;
785 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
786 }
787
788 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
789 .update_plane = drm_atomic_helper_update_plane,
790 .disable_plane = drm_atomic_helper_disable_plane,
791 .destroy = tegra_plane_destroy,
792 .reset = tegra_plane_reset,
793 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
794 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
795 };
796
797 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
798 .prepare_fb = tegra_plane_prepare_fb,
799 .cleanup_fb = tegra_plane_cleanup_fb,
800 .atomic_check = tegra_cursor_atomic_check,
801 .atomic_update = tegra_cursor_atomic_update,
802 .atomic_disable = tegra_cursor_atomic_disable,
803 };
804
805 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
806 struct tegra_dc *dc)
807 {
808 struct tegra_plane *plane;
809 unsigned int num_formats;
810 const u32 *formats;
811 int err;
812
813 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
814 if (!plane)
815 return ERR_PTR(-ENOMEM);
816
817 /*
818 * This index is kind of fake. The cursor isn't a regular plane, but
819 * its update and activation request bits in DC_CMD_STATE_CONTROL do
820 * use the same programming. Setting this fake index here allows the
821 * code in tegra_add_plane_state() to do the right thing without the
822 * need to special-casing the cursor plane.
823 */
824 plane->index = 6;
825
826 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
827 formats = tegra_cursor_plane_formats;
828
829 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
830 &tegra_cursor_plane_funcs, formats,
831 num_formats, DRM_PLANE_TYPE_CURSOR,
832 NULL);
833 if (err < 0) {
834 kfree(plane);
835 return ERR_PTR(err);
836 }
837
838 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
839
840 return &plane->base;
841 }
842
843 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
844 {
845 tegra_plane_destroy(plane);
846 }
847
848 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
849 .update_plane = drm_atomic_helper_update_plane,
850 .disable_plane = drm_atomic_helper_disable_plane,
851 .destroy = tegra_overlay_plane_destroy,
852 .reset = tegra_plane_reset,
853 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
854 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
855 };
856
857 static const uint32_t tegra_overlay_plane_formats[] = {
858 DRM_FORMAT_XBGR8888,
859 DRM_FORMAT_XRGB8888,
860 DRM_FORMAT_RGB565,
861 DRM_FORMAT_UYVY,
862 DRM_FORMAT_YUYV,
863 DRM_FORMAT_YUV420,
864 DRM_FORMAT_YUV422,
865 };
866
867 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
868 .prepare_fb = tegra_plane_prepare_fb,
869 .cleanup_fb = tegra_plane_cleanup_fb,
870 .atomic_check = tegra_plane_atomic_check,
871 .atomic_update = tegra_plane_atomic_update,
872 .atomic_disable = tegra_plane_atomic_disable,
873 };
874
875 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
876 struct tegra_dc *dc,
877 unsigned int index)
878 {
879 struct tegra_plane *plane;
880 unsigned int num_formats;
881 const u32 *formats;
882 int err;
883
884 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
885 if (!plane)
886 return ERR_PTR(-ENOMEM);
887
888 plane->index = index;
889
890 num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
891 formats = tegra_overlay_plane_formats;
892
893 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
894 &tegra_overlay_plane_funcs, formats,
895 num_formats, DRM_PLANE_TYPE_OVERLAY,
896 NULL);
897 if (err < 0) {
898 kfree(plane);
899 return ERR_PTR(err);
900 }
901
902 drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
903
904 return &plane->base;
905 }
906
907 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
908 {
909 struct drm_plane *plane;
910 unsigned int i;
911
912 for (i = 0; i < 2; i++) {
913 plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
914 if (IS_ERR(plane))
915 return PTR_ERR(plane);
916 }
917
918 return 0;
919 }
920
921 u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
922 {
923 if (dc->syncpt)
924 return host1x_syncpt_read(dc->syncpt);
925
926 /* fallback to software emulated VBLANK counter */
927 return drm_crtc_vblank_count(&dc->base);
928 }
929
930 void tegra_dc_enable_vblank(struct tegra_dc *dc)
931 {
932 unsigned long value, flags;
933
934 spin_lock_irqsave(&dc->lock, flags);
935
936 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
937 value |= VBLANK_INT;
938 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
939
940 spin_unlock_irqrestore(&dc->lock, flags);
941 }
942
943 void tegra_dc_disable_vblank(struct tegra_dc *dc)
944 {
945 unsigned long value, flags;
946
947 spin_lock_irqsave(&dc->lock, flags);
948
949 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
950 value &= ~VBLANK_INT;
951 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
952
953 spin_unlock_irqrestore(&dc->lock, flags);
954 }
955
956 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
957 {
958 struct drm_device *drm = dc->base.dev;
959 struct drm_crtc *crtc = &dc->base;
960 unsigned long flags, base;
961 struct tegra_bo *bo;
962
963 spin_lock_irqsave(&drm->event_lock, flags);
964
965 if (!dc->event) {
966 spin_unlock_irqrestore(&drm->event_lock, flags);
967 return;
968 }
969
970 bo = tegra_fb_get_plane(crtc->primary->fb, 0);
971
972 spin_lock(&dc->lock);
973
974 /* check if new start address has been latched */
975 tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
976 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
977 base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
978 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
979
980 spin_unlock(&dc->lock);
981
982 if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
983 drm_crtc_send_vblank_event(crtc, dc->event);
984 drm_crtc_vblank_put(crtc);
985 dc->event = NULL;
986 }
987
988 spin_unlock_irqrestore(&drm->event_lock, flags);
989 }
990
991 void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
992 {
993 struct tegra_dc *dc = to_tegra_dc(crtc);
994 struct drm_device *drm = crtc->dev;
995 unsigned long flags;
996
997 spin_lock_irqsave(&drm->event_lock, flags);
998
999 if (dc->event && dc->event->base.file_priv == file) {
1000 dc->event->base.destroy(&dc->event->base);
1001 drm_crtc_vblank_put(crtc);
1002 dc->event = NULL;
1003 }
1004
1005 spin_unlock_irqrestore(&drm->event_lock, flags);
1006 }
1007
1008 static void tegra_dc_destroy(struct drm_crtc *crtc)
1009 {
1010 drm_crtc_cleanup(crtc);
1011 }
1012
1013 static void tegra_crtc_reset(struct drm_crtc *crtc)
1014 {
1015 struct tegra_dc_state *state;
1016
1017 if (crtc->state)
1018 __drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1019
1020 kfree(crtc->state);
1021 crtc->state = NULL;
1022
1023 state = kzalloc(sizeof(*state), GFP_KERNEL);
1024 if (state) {
1025 crtc->state = &state->base;
1026 crtc->state->crtc = crtc;
1027 }
1028
1029 drm_crtc_vblank_reset(crtc);
1030 }
1031
1032 static struct drm_crtc_state *
1033 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1034 {
1035 struct tegra_dc_state *state = to_dc_state(crtc->state);
1036 struct tegra_dc_state *copy;
1037
1038 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1039 if (!copy)
1040 return NULL;
1041
1042 __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1043 copy->clk = state->clk;
1044 copy->pclk = state->pclk;
1045 copy->div = state->div;
1046 copy->planes = state->planes;
1047
1048 return &copy->base;
1049 }
1050
1051 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1052 struct drm_crtc_state *state)
1053 {
1054 __drm_atomic_helper_crtc_destroy_state(crtc, state);
1055 kfree(state);
1056 }
1057
1058 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1059 .page_flip = drm_atomic_helper_page_flip,
1060 .set_config = drm_atomic_helper_set_config,
1061 .destroy = tegra_dc_destroy,
1062 .reset = tegra_crtc_reset,
1063 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1064 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1065 };
1066
1067 static int tegra_dc_set_timings(struct tegra_dc *dc,
1068 struct drm_display_mode *mode)
1069 {
1070 unsigned int h_ref_to_sync = 1;
1071 unsigned int v_ref_to_sync = 1;
1072 unsigned long value;
1073
1074 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1075
1076 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1077 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1078
1079 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1080 ((mode->hsync_end - mode->hsync_start) << 0);
1081 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1082
1083 value = ((mode->vtotal - mode->vsync_end) << 16) |
1084 ((mode->htotal - mode->hsync_end) << 0);
1085 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1086
1087 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1088 ((mode->hsync_start - mode->hdisplay) << 0);
1089 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1090
1091 value = (mode->vdisplay << 16) | mode->hdisplay;
1092 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1093
1094 return 0;
1095 }
1096
1097 /**
1098 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1099 * state
1100 * @dc: display controller
1101 * @crtc_state: CRTC atomic state
1102 * @clk: parent clock for display controller
1103 * @pclk: pixel clock
1104 * @div: shift clock divider
1105 *
1106 * Returns:
1107 * 0 on success or a negative error-code on failure.
1108 */
1109 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1110 struct drm_crtc_state *crtc_state,
1111 struct clk *clk, unsigned long pclk,
1112 unsigned int div)
1113 {
1114 struct tegra_dc_state *state = to_dc_state(crtc_state);
1115
1116 if (!clk_has_parent(dc->clk, clk))
1117 return -EINVAL;
1118
1119 state->clk = clk;
1120 state->pclk = pclk;
1121 state->div = div;
1122
1123 return 0;
1124 }
1125
1126 static void tegra_dc_commit_state(struct tegra_dc *dc,
1127 struct tegra_dc_state *state)
1128 {
1129 u32 value;
1130 int err;
1131
1132 err = clk_set_parent(dc->clk, state->clk);
1133 if (err < 0)
1134 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1135
1136 /*
1137 * Outputs may not want to change the parent clock rate. This is only
1138 * relevant to Tegra20 where only a single display PLL is available.
1139 * Since that PLL would typically be used for HDMI, an internal LVDS
1140 * panel would need to be driven by some other clock such as PLL_P
1141 * which is shared with other peripherals. Changing the clock rate
1142 * should therefore be avoided.
1143 */
1144 if (state->pclk > 0) {
1145 err = clk_set_rate(state->clk, state->pclk);
1146 if (err < 0)
1147 dev_err(dc->dev,
1148 "failed to set clock rate to %lu Hz\n",
1149 state->pclk);
1150 }
1151
1152 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1153 state->div);
1154 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1155
1156 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1157 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1158 }
1159
1160 static void tegra_dc_stop(struct tegra_dc *dc)
1161 {
1162 u32 value;
1163
1164 /* stop the display controller */
1165 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1166 value &= ~DISP_CTRL_MODE_MASK;
1167 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1168
1169 tegra_dc_commit(dc);
1170 }
1171
1172 static bool tegra_dc_idle(struct tegra_dc *dc)
1173 {
1174 u32 value;
1175
1176 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1177
1178 return (value & DISP_CTRL_MODE_MASK) == 0;
1179 }
1180
1181 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1182 {
1183 timeout = jiffies + msecs_to_jiffies(timeout);
1184
1185 while (time_before(jiffies, timeout)) {
1186 if (tegra_dc_idle(dc))
1187 return 0;
1188
1189 usleep_range(1000, 2000);
1190 }
1191
1192 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1193 return -ETIMEDOUT;
1194 }
1195
1196 static void tegra_crtc_disable(struct drm_crtc *crtc)
1197 {
1198 struct tegra_dc *dc = to_tegra_dc(crtc);
1199 u32 value;
1200
1201 if (!tegra_dc_idle(dc)) {
1202 tegra_dc_stop(dc);
1203
1204 /*
1205 * Ignore the return value, there isn't anything useful to do
1206 * in case this fails.
1207 */
1208 tegra_dc_wait_idle(dc, 100);
1209 }
1210
1211 /*
1212 * This should really be part of the RGB encoder driver, but clearing
1213 * these bits has the side-effect of stopping the display controller.
1214 * When that happens no VBLANK interrupts will be raised. At the same
1215 * time the encoder is disabled before the display controller, so the
1216 * above code is always going to timeout waiting for the controller
1217 * to go idle.
1218 *
1219 * Given the close coupling between the RGB encoder and the display
1220 * controller doing it here is still kind of okay. None of the other
1221 * encoder drivers require these bits to be cleared.
1222 *
1223 * XXX: Perhaps given that the display controller is switched off at
1224 * this point anyway maybe clearing these bits isn't even useful for
1225 * the RGB encoder?
1226 */
1227 if (dc->rgb) {
1228 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1229 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1230 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1231 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1232 }
1233
1234 tegra_dc_stats_reset(&dc->stats);
1235 drm_crtc_vblank_off(crtc);
1236 }
1237
1238 static void tegra_crtc_enable(struct drm_crtc *crtc)
1239 {
1240 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1241 struct tegra_dc_state *state = to_dc_state(crtc->state);
1242 struct tegra_dc *dc = to_tegra_dc(crtc);
1243 u32 value;
1244
1245 tegra_dc_commit_state(dc, state);
1246
1247 /* program display mode */
1248 tegra_dc_set_timings(dc, mode);
1249
1250 /* interlacing isn't supported yet, so disable it */
1251 if (dc->soc->supports_interlacing) {
1252 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1253 value &= ~INTERLACE_ENABLE;
1254 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1255 }
1256
1257 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1258 value &= ~DISP_CTRL_MODE_MASK;
1259 value |= DISP_CTRL_MODE_C_DISPLAY;
1260 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1261
1262 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1263 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1264 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1265 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1266
1267 tegra_dc_commit(dc);
1268
1269 drm_crtc_vblank_on(crtc);
1270 }
1271
1272 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1273 struct drm_crtc_state *state)
1274 {
1275 return 0;
1276 }
1277
1278 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1279 struct drm_crtc_state *old_crtc_state)
1280 {
1281 struct tegra_dc *dc = to_tegra_dc(crtc);
1282
1283 if (crtc->state->event) {
1284 crtc->state->event->pipe = drm_crtc_index(crtc);
1285
1286 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1287
1288 dc->event = crtc->state->event;
1289 crtc->state->event = NULL;
1290 }
1291 }
1292
1293 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1294 struct drm_crtc_state *old_crtc_state)
1295 {
1296 struct tegra_dc_state *state = to_dc_state(crtc->state);
1297 struct tegra_dc *dc = to_tegra_dc(crtc);
1298
1299 tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1300 tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1301 }
1302
1303 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1304 .disable = tegra_crtc_disable,
1305 .enable = tegra_crtc_enable,
1306 .atomic_check = tegra_crtc_atomic_check,
1307 .atomic_begin = tegra_crtc_atomic_begin,
1308 .atomic_flush = tegra_crtc_atomic_flush,
1309 };
1310
1311 static irqreturn_t tegra_dc_irq(int irq, void *data)
1312 {
1313 struct tegra_dc *dc = data;
1314 unsigned long status;
1315
1316 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1317 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1318
1319 if (status & FRAME_END_INT) {
1320 /*
1321 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1322 */
1323 dc->stats.frames++;
1324 }
1325
1326 if (status & VBLANK_INT) {
1327 /*
1328 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1329 */
1330 drm_crtc_handle_vblank(&dc->base);
1331 tegra_dc_finish_page_flip(dc);
1332 dc->stats.vblank++;
1333 }
1334
1335 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1336 /*
1337 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1338 */
1339 dc->stats.underflow++;
1340 }
1341
1342 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1343 /*
1344 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1345 */
1346 dc->stats.overflow++;
1347 }
1348
1349 return IRQ_HANDLED;
1350 }
1351
1352 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1353 {
1354 struct drm_info_node *node = s->private;
1355 struct tegra_dc *dc = node->info_ent->data;
1356 int err = 0;
1357
1358 drm_modeset_lock_crtc(&dc->base, NULL);
1359
1360 if (!dc->base.state->active) {
1361 err = -EBUSY;
1362 goto unlock;
1363 }
1364
1365 #define DUMP_REG(name) \
1366 seq_printf(s, "%-40s %#05x %08x\n", #name, name, \
1367 tegra_dc_readl(dc, name))
1368
1369 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1370 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1371 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1372 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1373 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1374 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1375 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1376 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1377 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1378 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1379 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1380 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1381 DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1382 DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1383 DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1384 DUMP_REG(DC_CMD_SIGNAL_RAISE);
1385 DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1386 DUMP_REG(DC_CMD_INT_STATUS);
1387 DUMP_REG(DC_CMD_INT_MASK);
1388 DUMP_REG(DC_CMD_INT_ENABLE);
1389 DUMP_REG(DC_CMD_INT_TYPE);
1390 DUMP_REG(DC_CMD_INT_POLARITY);
1391 DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1392 DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1393 DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1394 DUMP_REG(DC_CMD_STATE_ACCESS);
1395 DUMP_REG(DC_CMD_STATE_CONTROL);
1396 DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1397 DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1398 DUMP_REG(DC_COM_CRC_CONTROL);
1399 DUMP_REG(DC_COM_CRC_CHECKSUM);
1400 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1401 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1402 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1403 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1404 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1405 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1406 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1407 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1408 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1409 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1410 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1411 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1412 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1413 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1414 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1415 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1416 DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1417 DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1418 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1419 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1420 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1421 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1422 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1423 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1424 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1425 DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1426 DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1427 DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1428 DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1429 DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1430 DUMP_REG(DC_COM_SPI_CONTROL);
1431 DUMP_REG(DC_COM_SPI_START_BYTE);
1432 DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1433 DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1434 DUMP_REG(DC_COM_HSPI_CS_DC);
1435 DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1436 DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1437 DUMP_REG(DC_COM_GPIO_CTRL);
1438 DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1439 DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1440 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1441 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1442 DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1443 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1444 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1445 DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1446 DUMP_REG(DC_DISP_REF_TO_SYNC);
1447 DUMP_REG(DC_DISP_SYNC_WIDTH);
1448 DUMP_REG(DC_DISP_BACK_PORCH);
1449 DUMP_REG(DC_DISP_ACTIVE);
1450 DUMP_REG(DC_DISP_FRONT_PORCH);
1451 DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1452 DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1453 DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1454 DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1455 DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1456 DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1457 DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1458 DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1459 DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1460 DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1461 DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1462 DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1463 DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1464 DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1465 DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1466 DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1467 DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1468 DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1469 DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1470 DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1471 DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1472 DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1473 DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1474 DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1475 DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1476 DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1477 DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1478 DUMP_REG(DC_DISP_M0_CONTROL);
1479 DUMP_REG(DC_DISP_M1_CONTROL);
1480 DUMP_REG(DC_DISP_DI_CONTROL);
1481 DUMP_REG(DC_DISP_PP_CONTROL);
1482 DUMP_REG(DC_DISP_PP_SELECT_A);
1483 DUMP_REG(DC_DISP_PP_SELECT_B);
1484 DUMP_REG(DC_DISP_PP_SELECT_C);
1485 DUMP_REG(DC_DISP_PP_SELECT_D);
1486 DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1487 DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1488 DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1489 DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1490 DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1491 DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1492 DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1493 DUMP_REG(DC_DISP_BORDER_COLOR);
1494 DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1495 DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1496 DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1497 DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1498 DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1499 DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1500 DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1501 DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1502 DUMP_REG(DC_DISP_CURSOR_POSITION);
1503 DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1504 DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1505 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1506 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1507 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1508 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1509 DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1510 DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1511 DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1512 DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1513 DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1514 DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1515 DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1516 DUMP_REG(DC_DISP_SD_CONTROL);
1517 DUMP_REG(DC_DISP_SD_CSC_COEFF);
1518 DUMP_REG(DC_DISP_SD_LUT(0));
1519 DUMP_REG(DC_DISP_SD_LUT(1));
1520 DUMP_REG(DC_DISP_SD_LUT(2));
1521 DUMP_REG(DC_DISP_SD_LUT(3));
1522 DUMP_REG(DC_DISP_SD_LUT(4));
1523 DUMP_REG(DC_DISP_SD_LUT(5));
1524 DUMP_REG(DC_DISP_SD_LUT(6));
1525 DUMP_REG(DC_DISP_SD_LUT(7));
1526 DUMP_REG(DC_DISP_SD_LUT(8));
1527 DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1528 DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1529 DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1530 DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1531 DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1532 DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1533 DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1534 DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1535 DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1536 DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1537 DUMP_REG(DC_DISP_SD_BL_TF(0));
1538 DUMP_REG(DC_DISP_SD_BL_TF(1));
1539 DUMP_REG(DC_DISP_SD_BL_TF(2));
1540 DUMP_REG(DC_DISP_SD_BL_TF(3));
1541 DUMP_REG(DC_DISP_SD_BL_CONTROL);
1542 DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1543 DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1544 DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1545 DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1546 DUMP_REG(DC_WIN_WIN_OPTIONS);
1547 DUMP_REG(DC_WIN_BYTE_SWAP);
1548 DUMP_REG(DC_WIN_BUFFER_CONTROL);
1549 DUMP_REG(DC_WIN_COLOR_DEPTH);
1550 DUMP_REG(DC_WIN_POSITION);
1551 DUMP_REG(DC_WIN_SIZE);
1552 DUMP_REG(DC_WIN_PRESCALED_SIZE);
1553 DUMP_REG(DC_WIN_H_INITIAL_DDA);
1554 DUMP_REG(DC_WIN_V_INITIAL_DDA);
1555 DUMP_REG(DC_WIN_DDA_INC);
1556 DUMP_REG(DC_WIN_LINE_STRIDE);
1557 DUMP_REG(DC_WIN_BUF_STRIDE);
1558 DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1559 DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1560 DUMP_REG(DC_WIN_DV_CONTROL);
1561 DUMP_REG(DC_WIN_BLEND_NOKEY);
1562 DUMP_REG(DC_WIN_BLEND_1WIN);
1563 DUMP_REG(DC_WIN_BLEND_2WIN_X);
1564 DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1565 DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1566 DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1567 DUMP_REG(DC_WINBUF_START_ADDR);
1568 DUMP_REG(DC_WINBUF_START_ADDR_NS);
1569 DUMP_REG(DC_WINBUF_START_ADDR_U);
1570 DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1571 DUMP_REG(DC_WINBUF_START_ADDR_V);
1572 DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1573 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1574 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1575 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1576 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1577 DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1578 DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1579 DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1580 DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1581
1582 #undef DUMP_REG
1583
1584 unlock:
1585 drm_modeset_unlock_crtc(&dc->base);
1586 return err;
1587 }
1588
1589 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1590 {
1591 struct drm_info_node *node = s->private;
1592 struct tegra_dc *dc = node->info_ent->data;
1593 int err = 0;
1594 u32 value;
1595
1596 drm_modeset_lock_crtc(&dc->base, NULL);
1597
1598 if (!dc->base.state->active) {
1599 err = -EBUSY;
1600 goto unlock;
1601 }
1602
1603 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1604 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1605 tegra_dc_commit(dc);
1606
1607 drm_crtc_wait_one_vblank(&dc->base);
1608 drm_crtc_wait_one_vblank(&dc->base);
1609
1610 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1611 seq_printf(s, "%08x\n", value);
1612
1613 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1614
1615 unlock:
1616 drm_modeset_unlock_crtc(&dc->base);
1617 return err;
1618 }
1619
1620 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1621 {
1622 struct drm_info_node *node = s->private;
1623 struct tegra_dc *dc = node->info_ent->data;
1624
1625 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1626 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1627 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1628 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1629
1630 return 0;
1631 }
1632
1633 static struct drm_info_list debugfs_files[] = {
1634 { "regs", tegra_dc_show_regs, 0, NULL },
1635 { "crc", tegra_dc_show_crc, 0, NULL },
1636 { "stats", tegra_dc_show_stats, 0, NULL },
1637 };
1638
1639 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1640 {
1641 unsigned int i;
1642 char *name;
1643 int err;
1644
1645 name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1646 dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1647 kfree(name);
1648
1649 if (!dc->debugfs)
1650 return -ENOMEM;
1651
1652 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1653 GFP_KERNEL);
1654 if (!dc->debugfs_files) {
1655 err = -ENOMEM;
1656 goto remove;
1657 }
1658
1659 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1660 dc->debugfs_files[i].data = dc;
1661
1662 err = drm_debugfs_create_files(dc->debugfs_files,
1663 ARRAY_SIZE(debugfs_files),
1664 dc->debugfs, minor);
1665 if (err < 0)
1666 goto free;
1667
1668 dc->minor = minor;
1669
1670 return 0;
1671
1672 free:
1673 kfree(dc->debugfs_files);
1674 dc->debugfs_files = NULL;
1675 remove:
1676 debugfs_remove(dc->debugfs);
1677 dc->debugfs = NULL;
1678
1679 return err;
1680 }
1681
1682 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1683 {
1684 drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1685 dc->minor);
1686 dc->minor = NULL;
1687
1688 kfree(dc->debugfs_files);
1689 dc->debugfs_files = NULL;
1690
1691 debugfs_remove(dc->debugfs);
1692 dc->debugfs = NULL;
1693
1694 return 0;
1695 }
1696
1697 static int tegra_dc_init(struct host1x_client *client)
1698 {
1699 struct drm_device *drm = dev_get_drvdata(client->parent);
1700 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1701 struct tegra_dc *dc = host1x_client_to_dc(client);
1702 struct tegra_drm *tegra = drm->dev_private;
1703 struct drm_plane *primary = NULL;
1704 struct drm_plane *cursor = NULL;
1705 u32 value;
1706 int err;
1707
1708 dc->syncpt = host1x_syncpt_request(dc->dev, flags);
1709 if (!dc->syncpt)
1710 dev_warn(dc->dev, "failed to allocate syncpoint\n");
1711
1712 if (tegra->domain) {
1713 err = iommu_attach_device(tegra->domain, dc->dev);
1714 if (err < 0) {
1715 dev_err(dc->dev, "failed to attach to domain: %d\n",
1716 err);
1717 return err;
1718 }
1719
1720 dc->domain = tegra->domain;
1721 }
1722
1723 primary = tegra_dc_primary_plane_create(drm, dc);
1724 if (IS_ERR(primary)) {
1725 err = PTR_ERR(primary);
1726 goto cleanup;
1727 }
1728
1729 if (dc->soc->supports_cursor) {
1730 cursor = tegra_dc_cursor_plane_create(drm, dc);
1731 if (IS_ERR(cursor)) {
1732 err = PTR_ERR(cursor);
1733 goto cleanup;
1734 }
1735 }
1736
1737 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1738 &tegra_crtc_funcs, NULL);
1739 if (err < 0)
1740 goto cleanup;
1741
1742 drm_mode_crtc_set_gamma_size(&dc->base, 256);
1743 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1744
1745 /*
1746 * Keep track of the minimum pitch alignment across all display
1747 * controllers.
1748 */
1749 if (dc->soc->pitch_align > tegra->pitch_align)
1750 tegra->pitch_align = dc->soc->pitch_align;
1751
1752 err = tegra_dc_rgb_init(drm, dc);
1753 if (err < 0 && err != -ENODEV) {
1754 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1755 goto cleanup;
1756 }
1757
1758 err = tegra_dc_add_planes(drm, dc);
1759 if (err < 0)
1760 goto cleanup;
1761
1762 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1763 err = tegra_dc_debugfs_init(dc, drm->primary);
1764 if (err < 0)
1765 dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1766 }
1767
1768 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1769 dev_name(dc->dev), dc);
1770 if (err < 0) {
1771 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1772 err);
1773 goto cleanup;
1774 }
1775
1776 /* initialize display controller */
1777 if (dc->syncpt) {
1778 u32 syncpt = host1x_syncpt_id(dc->syncpt);
1779
1780 value = SYNCPT_CNTRL_NO_STALL;
1781 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1782
1783 value = SYNCPT_VSYNC_ENABLE | syncpt;
1784 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1785 }
1786
1787 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1788 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1789 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1790
1791 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1792 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1793 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1794
1795 /* initialize timer */
1796 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1797 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1798 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1799
1800 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1801 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1802 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1803
1804 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1805 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1806 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1807
1808 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1809 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1810 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1811
1812 if (dc->soc->supports_border_color)
1813 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1814
1815 tegra_dc_stats_reset(&dc->stats);
1816
1817 return 0;
1818
1819 cleanup:
1820 if (cursor)
1821 drm_plane_cleanup(cursor);
1822
1823 if (primary)
1824 drm_plane_cleanup(primary);
1825
1826 if (tegra->domain) {
1827 iommu_detach_device(tegra->domain, dc->dev);
1828 dc->domain = NULL;
1829 }
1830
1831 return err;
1832 }
1833
1834 static int tegra_dc_exit(struct host1x_client *client)
1835 {
1836 struct tegra_dc *dc = host1x_client_to_dc(client);
1837 int err;
1838
1839 devm_free_irq(dc->dev, dc->irq, dc);
1840
1841 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1842 err = tegra_dc_debugfs_exit(dc);
1843 if (err < 0)
1844 dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1845 }
1846
1847 err = tegra_dc_rgb_exit(dc);
1848 if (err) {
1849 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1850 return err;
1851 }
1852
1853 if (dc->domain) {
1854 iommu_detach_device(dc->domain, dc->dev);
1855 dc->domain = NULL;
1856 }
1857
1858 host1x_syncpt_free(dc->syncpt);
1859
1860 return 0;
1861 }
1862
1863 static const struct host1x_client_ops dc_client_ops = {
1864 .init = tegra_dc_init,
1865 .exit = tegra_dc_exit,
1866 };
1867
1868 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1869 .supports_border_color = true,
1870 .supports_interlacing = false,
1871 .supports_cursor = false,
1872 .supports_block_linear = false,
1873 .pitch_align = 8,
1874 .has_powergate = false,
1875 };
1876
1877 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1878 .supports_border_color = true,
1879 .supports_interlacing = false,
1880 .supports_cursor = false,
1881 .supports_block_linear = false,
1882 .pitch_align = 8,
1883 .has_powergate = false,
1884 };
1885
1886 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1887 .supports_border_color = true,
1888 .supports_interlacing = false,
1889 .supports_cursor = false,
1890 .supports_block_linear = false,
1891 .pitch_align = 64,
1892 .has_powergate = true,
1893 };
1894
1895 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1896 .supports_border_color = false,
1897 .supports_interlacing = true,
1898 .supports_cursor = true,
1899 .supports_block_linear = true,
1900 .pitch_align = 64,
1901 .has_powergate = true,
1902 };
1903
1904 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1905 .supports_border_color = false,
1906 .supports_interlacing = true,
1907 .supports_cursor = true,
1908 .supports_block_linear = true,
1909 .pitch_align = 64,
1910 .has_powergate = true,
1911 };
1912
1913 static const struct of_device_id tegra_dc_of_match[] = {
1914 {
1915 .compatible = "nvidia,tegra210-dc",
1916 .data = &tegra210_dc_soc_info,
1917 }, {
1918 .compatible = "nvidia,tegra124-dc",
1919 .data = &tegra124_dc_soc_info,
1920 }, {
1921 .compatible = "nvidia,tegra114-dc",
1922 .data = &tegra114_dc_soc_info,
1923 }, {
1924 .compatible = "nvidia,tegra30-dc",
1925 .data = &tegra30_dc_soc_info,
1926 }, {
1927 .compatible = "nvidia,tegra20-dc",
1928 .data = &tegra20_dc_soc_info,
1929 }, {
1930 /* sentinel */
1931 }
1932 };
1933 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1934
1935 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1936 {
1937 struct device_node *np;
1938 u32 value = 0;
1939 int err;
1940
1941 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1942 if (err < 0) {
1943 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1944
1945 /*
1946 * If the nvidia,head property isn't present, try to find the
1947 * correct head number by looking up the position of this
1948 * display controller's node within the device tree. Assuming
1949 * that the nodes are ordered properly in the DTS file and
1950 * that the translation into a flattened device tree blob
1951 * preserves that ordering this will actually yield the right
1952 * head number.
1953 *
1954 * If those assumptions don't hold, this will still work for
1955 * cases where only a single display controller is used.
1956 */
1957 for_each_matching_node(np, tegra_dc_of_match) {
1958 if (np == dc->dev->of_node) {
1959 of_node_put(np);
1960 break;
1961 }
1962
1963 value++;
1964 }
1965 }
1966
1967 dc->pipe = value;
1968
1969 return 0;
1970 }
1971
1972 static int tegra_dc_probe(struct platform_device *pdev)
1973 {
1974 const struct of_device_id *id;
1975 struct resource *regs;
1976 struct tegra_dc *dc;
1977 int err;
1978
1979 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1980 if (!dc)
1981 return -ENOMEM;
1982
1983 id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1984 if (!id)
1985 return -ENODEV;
1986
1987 spin_lock_init(&dc->lock);
1988 INIT_LIST_HEAD(&dc->list);
1989 dc->dev = &pdev->dev;
1990 dc->soc = id->data;
1991
1992 err = tegra_dc_parse_dt(dc);
1993 if (err < 0)
1994 return err;
1995
1996 dc->clk = devm_clk_get(&pdev->dev, NULL);
1997 if (IS_ERR(dc->clk)) {
1998 dev_err(&pdev->dev, "failed to get clock\n");
1999 return PTR_ERR(dc->clk);
2000 }
2001
2002 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2003 if (IS_ERR(dc->rst)) {
2004 dev_err(&pdev->dev, "failed to get reset\n");
2005 return PTR_ERR(dc->rst);
2006 }
2007
2008 if (dc->soc->has_powergate) {
2009 if (dc->pipe == 0)
2010 dc->powergate = TEGRA_POWERGATE_DIS;
2011 else
2012 dc->powergate = TEGRA_POWERGATE_DISB;
2013
2014 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2015 dc->rst);
2016 if (err < 0) {
2017 dev_err(&pdev->dev, "failed to power partition: %d\n",
2018 err);
2019 return err;
2020 }
2021 } else {
2022 err = clk_prepare_enable(dc->clk);
2023 if (err < 0) {
2024 dev_err(&pdev->dev, "failed to enable clock: %d\n",
2025 err);
2026 return err;
2027 }
2028
2029 err = reset_control_deassert(dc->rst);
2030 if (err < 0) {
2031 dev_err(&pdev->dev, "failed to deassert reset: %d\n",
2032 err);
2033 return err;
2034 }
2035 }
2036
2037 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2038 dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2039 if (IS_ERR(dc->regs))
2040 return PTR_ERR(dc->regs);
2041
2042 dc->irq = platform_get_irq(pdev, 0);
2043 if (dc->irq < 0) {
2044 dev_err(&pdev->dev, "failed to get IRQ\n");
2045 return -ENXIO;
2046 }
2047
2048 INIT_LIST_HEAD(&dc->client.list);
2049 dc->client.ops = &dc_client_ops;
2050 dc->client.dev = &pdev->dev;
2051
2052 err = tegra_dc_rgb_probe(dc);
2053 if (err < 0 && err != -ENODEV) {
2054 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2055 return err;
2056 }
2057
2058 err = host1x_client_register(&dc->client);
2059 if (err < 0) {
2060 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2061 err);
2062 return err;
2063 }
2064
2065 platform_set_drvdata(pdev, dc);
2066
2067 return 0;
2068 }
2069
2070 static int tegra_dc_remove(struct platform_device *pdev)
2071 {
2072 struct tegra_dc *dc = platform_get_drvdata(pdev);
2073 int err;
2074
2075 err = host1x_client_unregister(&dc->client);
2076 if (err < 0) {
2077 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2078 err);
2079 return err;
2080 }
2081
2082 err = tegra_dc_rgb_remove(dc);
2083 if (err < 0) {
2084 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2085 return err;
2086 }
2087
2088 reset_control_assert(dc->rst);
2089
2090 if (dc->soc->has_powergate)
2091 tegra_powergate_power_off(dc->powergate);
2092
2093 clk_disable_unprepare(dc->clk);
2094
2095 return 0;
2096 }
2097
2098 struct platform_driver tegra_dc_driver = {
2099 .driver = {
2100 .name = "tegra-dc",
2101 .of_match_table = tegra_dc_of_match,
2102 },
2103 .probe = tegra_dc_probe,
2104 .remove = tegra_dc_remove,
2105 };
This page took 0.071618 seconds and 6 git commands to generate.