Merge branch 'for-linus' of git://neil.brown.name/md
[deliverable/linux.git] / drivers / gpu / drm / ttm / ttm_bo_util.c
1 /**************************************************************************
2 *
3 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29 */
30
31 #include "ttm/ttm_bo_driver.h"
32 #include "ttm/ttm_placement.h"
33 #include <linux/io.h>
34 #include <linux/highmem.h>
35 #include <linux/wait.h>
36 #include <linux/slab.h>
37 #include <linux/vmalloc.h>
38 #include <linux/module.h>
39
40 void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
41 {
42 struct ttm_mem_reg *old_mem = &bo->mem;
43
44 if (old_mem->mm_node) {
45 spin_lock(&bo->glob->lru_lock);
46 drm_mm_put_block(old_mem->mm_node);
47 spin_unlock(&bo->glob->lru_lock);
48 }
49 old_mem->mm_node = NULL;
50 }
51
52 int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
53 bool evict, bool no_wait_reserve,
54 bool no_wait_gpu, struct ttm_mem_reg *new_mem)
55 {
56 struct ttm_tt *ttm = bo->ttm;
57 struct ttm_mem_reg *old_mem = &bo->mem;
58 int ret;
59
60 if (old_mem->mem_type != TTM_PL_SYSTEM) {
61 ttm_tt_unbind(ttm);
62 ttm_bo_free_old_node(bo);
63 ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
64 TTM_PL_MASK_MEM);
65 old_mem->mem_type = TTM_PL_SYSTEM;
66 }
67
68 ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
69 if (unlikely(ret != 0))
70 return ret;
71
72 if (new_mem->mem_type != TTM_PL_SYSTEM) {
73 ret = ttm_tt_bind(ttm, new_mem);
74 if (unlikely(ret != 0))
75 return ret;
76 }
77
78 *old_mem = *new_mem;
79 new_mem->mm_node = NULL;
80
81 return 0;
82 }
83 EXPORT_SYMBOL(ttm_bo_move_ttm);
84
85 int ttm_mem_io_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
86 {
87 int ret;
88
89 if (!mem->bus.io_reserved) {
90 mem->bus.io_reserved = true;
91 ret = bdev->driver->io_mem_reserve(bdev, mem);
92 if (unlikely(ret != 0))
93 return ret;
94 }
95 return 0;
96 }
97
98 void ttm_mem_io_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
99 {
100 if (bdev->driver->io_mem_reserve) {
101 if (mem->bus.io_reserved) {
102 mem->bus.io_reserved = false;
103 bdev->driver->io_mem_free(bdev, mem);
104 }
105 }
106 }
107
108 int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
109 void **virtual)
110 {
111 int ret;
112 void *addr;
113
114 *virtual = NULL;
115 ret = ttm_mem_io_reserve(bdev, mem);
116 if (ret || !mem->bus.is_iomem)
117 return ret;
118
119 if (mem->bus.addr) {
120 addr = mem->bus.addr;
121 } else {
122 if (mem->placement & TTM_PL_FLAG_WC)
123 addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
124 else
125 addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
126 if (!addr) {
127 ttm_mem_io_free(bdev, mem);
128 return -ENOMEM;
129 }
130 }
131 *virtual = addr;
132 return 0;
133 }
134
135 void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
136 void *virtual)
137 {
138 struct ttm_mem_type_manager *man;
139
140 man = &bdev->man[mem->mem_type];
141
142 if (virtual && mem->bus.addr == NULL)
143 iounmap(virtual);
144 ttm_mem_io_free(bdev, mem);
145 }
146
147 static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
148 {
149 uint32_t *dstP =
150 (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
151 uint32_t *srcP =
152 (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
153
154 int i;
155 for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
156 iowrite32(ioread32(srcP++), dstP++);
157 return 0;
158 }
159
160 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
161 unsigned long page,
162 pgprot_t prot)
163 {
164 struct page *d = ttm_tt_get_page(ttm, page);
165 void *dst;
166
167 if (!d)
168 return -ENOMEM;
169
170 src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
171
172 #ifdef CONFIG_X86
173 dst = kmap_atomic_prot(d, KM_USER0, prot);
174 #else
175 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
176 dst = vmap(&d, 1, 0, prot);
177 else
178 dst = kmap(d);
179 #endif
180 if (!dst)
181 return -ENOMEM;
182
183 memcpy_fromio(dst, src, PAGE_SIZE);
184
185 #ifdef CONFIG_X86
186 kunmap_atomic(dst, KM_USER0);
187 #else
188 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
189 vunmap(dst);
190 else
191 kunmap(d);
192 #endif
193
194 return 0;
195 }
196
197 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
198 unsigned long page,
199 pgprot_t prot)
200 {
201 struct page *s = ttm_tt_get_page(ttm, page);
202 void *src;
203
204 if (!s)
205 return -ENOMEM;
206
207 dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
208 #ifdef CONFIG_X86
209 src = kmap_atomic_prot(s, KM_USER0, prot);
210 #else
211 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
212 src = vmap(&s, 1, 0, prot);
213 else
214 src = kmap(s);
215 #endif
216 if (!src)
217 return -ENOMEM;
218
219 memcpy_toio(dst, src, PAGE_SIZE);
220
221 #ifdef CONFIG_X86
222 kunmap_atomic(src, KM_USER0);
223 #else
224 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
225 vunmap(src);
226 else
227 kunmap(s);
228 #endif
229
230 return 0;
231 }
232
233 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
234 bool evict, bool no_wait_reserve, bool no_wait_gpu,
235 struct ttm_mem_reg *new_mem)
236 {
237 struct ttm_bo_device *bdev = bo->bdev;
238 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
239 struct ttm_tt *ttm = bo->ttm;
240 struct ttm_mem_reg *old_mem = &bo->mem;
241 struct ttm_mem_reg old_copy = *old_mem;
242 void *old_iomap;
243 void *new_iomap;
244 int ret;
245 unsigned long i;
246 unsigned long page;
247 unsigned long add = 0;
248 int dir;
249
250 ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
251 if (ret)
252 return ret;
253 ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
254 if (ret)
255 goto out;
256
257 if (old_iomap == NULL && new_iomap == NULL)
258 goto out2;
259 if (old_iomap == NULL && ttm == NULL)
260 goto out2;
261
262 add = 0;
263 dir = 1;
264
265 if ((old_mem->mem_type == new_mem->mem_type) &&
266 (new_mem->mm_node->start <
267 old_mem->mm_node->start + old_mem->mm_node->size)) {
268 dir = -1;
269 add = new_mem->num_pages - 1;
270 }
271
272 for (i = 0; i < new_mem->num_pages; ++i) {
273 page = i * dir + add;
274 if (old_iomap == NULL) {
275 pgprot_t prot = ttm_io_prot(old_mem->placement,
276 PAGE_KERNEL);
277 ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
278 prot);
279 } else if (new_iomap == NULL) {
280 pgprot_t prot = ttm_io_prot(new_mem->placement,
281 PAGE_KERNEL);
282 ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
283 prot);
284 } else
285 ret = ttm_copy_io_page(new_iomap, old_iomap, page);
286 if (ret)
287 goto out1;
288 }
289 mb();
290 out2:
291 ttm_bo_free_old_node(bo);
292
293 *old_mem = *new_mem;
294 new_mem->mm_node = NULL;
295
296 if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && (ttm != NULL)) {
297 ttm_tt_unbind(ttm);
298 ttm_tt_destroy(ttm);
299 bo->ttm = NULL;
300 }
301
302 out1:
303 ttm_mem_reg_iounmap(bdev, new_mem, new_iomap);
304 out:
305 ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
306 return ret;
307 }
308 EXPORT_SYMBOL(ttm_bo_move_memcpy);
309
310 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
311 {
312 kfree(bo);
313 }
314
315 /**
316 * ttm_buffer_object_transfer
317 *
318 * @bo: A pointer to a struct ttm_buffer_object.
319 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
320 * holding the data of @bo with the old placement.
321 *
322 * This is a utility function that may be called after an accelerated move
323 * has been scheduled. A new buffer object is created as a placeholder for
324 * the old data while it's being copied. When that buffer object is idle,
325 * it can be destroyed, releasing the space of the old placement.
326 * Returns:
327 * !0: Failure.
328 */
329
330 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
331 struct ttm_buffer_object **new_obj)
332 {
333 struct ttm_buffer_object *fbo;
334 struct ttm_bo_device *bdev = bo->bdev;
335 struct ttm_bo_driver *driver = bdev->driver;
336
337 fbo = kzalloc(sizeof(*fbo), GFP_KERNEL);
338 if (!fbo)
339 return -ENOMEM;
340
341 *fbo = *bo;
342
343 /**
344 * Fix up members that we shouldn't copy directly:
345 * TODO: Explicit member copy would probably be better here.
346 */
347
348 spin_lock_init(&fbo->lock);
349 init_waitqueue_head(&fbo->event_queue);
350 INIT_LIST_HEAD(&fbo->ddestroy);
351 INIT_LIST_HEAD(&fbo->lru);
352 INIT_LIST_HEAD(&fbo->swap);
353 fbo->vm_node = NULL;
354
355 fbo->sync_obj = driver->sync_obj_ref(bo->sync_obj);
356 kref_init(&fbo->list_kref);
357 kref_init(&fbo->kref);
358 fbo->destroy = &ttm_transfered_destroy;
359
360 *new_obj = fbo;
361 return 0;
362 }
363
364 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
365 {
366 #if defined(__i386__) || defined(__x86_64__)
367 if (caching_flags & TTM_PL_FLAG_WC)
368 tmp = pgprot_writecombine(tmp);
369 else if (boot_cpu_data.x86 > 3)
370 tmp = pgprot_noncached(tmp);
371
372 #elif defined(__powerpc__)
373 if (!(caching_flags & TTM_PL_FLAG_CACHED)) {
374 pgprot_val(tmp) |= _PAGE_NO_CACHE;
375 if (caching_flags & TTM_PL_FLAG_UNCACHED)
376 pgprot_val(tmp) |= _PAGE_GUARDED;
377 }
378 #endif
379 #if defined(__ia64__)
380 if (caching_flags & TTM_PL_FLAG_WC)
381 tmp = pgprot_writecombine(tmp);
382 else
383 tmp = pgprot_noncached(tmp);
384 #endif
385 #if defined(__sparc__)
386 if (!(caching_flags & TTM_PL_FLAG_CACHED))
387 tmp = pgprot_noncached(tmp);
388 #endif
389 return tmp;
390 }
391 EXPORT_SYMBOL(ttm_io_prot);
392
393 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
394 unsigned long offset,
395 unsigned long size,
396 struct ttm_bo_kmap_obj *map)
397 {
398 struct ttm_mem_reg *mem = &bo->mem;
399
400 if (bo->mem.bus.addr) {
401 map->bo_kmap_type = ttm_bo_map_premapped;
402 map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
403 } else {
404 map->bo_kmap_type = ttm_bo_map_iomap;
405 if (mem->placement & TTM_PL_FLAG_WC)
406 map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
407 size);
408 else
409 map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
410 size);
411 }
412 return (!map->virtual) ? -ENOMEM : 0;
413 }
414
415 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
416 unsigned long start_page,
417 unsigned long num_pages,
418 struct ttm_bo_kmap_obj *map)
419 {
420 struct ttm_mem_reg *mem = &bo->mem; pgprot_t prot;
421 struct ttm_tt *ttm = bo->ttm;
422 struct page *d;
423 int i;
424
425 BUG_ON(!ttm);
426 if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
427 /*
428 * We're mapping a single page, and the desired
429 * page protection is consistent with the bo.
430 */
431
432 map->bo_kmap_type = ttm_bo_map_kmap;
433 map->page = ttm_tt_get_page(ttm, start_page);
434 map->virtual = kmap(map->page);
435 } else {
436 /*
437 * Populate the part we're mapping;
438 */
439 for (i = start_page; i < start_page + num_pages; ++i) {
440 d = ttm_tt_get_page(ttm, i);
441 if (!d)
442 return -ENOMEM;
443 }
444
445 /*
446 * We need to use vmap to get the desired page protection
447 * or to make the buffer object look contiguous.
448 */
449 prot = (mem->placement & TTM_PL_FLAG_CACHED) ?
450 PAGE_KERNEL :
451 ttm_io_prot(mem->placement, PAGE_KERNEL);
452 map->bo_kmap_type = ttm_bo_map_vmap;
453 map->virtual = vmap(ttm->pages + start_page, num_pages,
454 0, prot);
455 }
456 return (!map->virtual) ? -ENOMEM : 0;
457 }
458
459 int ttm_bo_kmap(struct ttm_buffer_object *bo,
460 unsigned long start_page, unsigned long num_pages,
461 struct ttm_bo_kmap_obj *map)
462 {
463 unsigned long offset, size;
464 int ret;
465
466 BUG_ON(!list_empty(&bo->swap));
467 map->virtual = NULL;
468 map->bo = bo;
469 if (num_pages > bo->num_pages)
470 return -EINVAL;
471 if (start_page > bo->num_pages)
472 return -EINVAL;
473 #if 0
474 if (num_pages > 1 && !DRM_SUSER(DRM_CURPROC))
475 return -EPERM;
476 #endif
477 ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
478 if (ret)
479 return ret;
480 if (!bo->mem.bus.is_iomem) {
481 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
482 } else {
483 offset = start_page << PAGE_SHIFT;
484 size = num_pages << PAGE_SHIFT;
485 return ttm_bo_ioremap(bo, offset, size, map);
486 }
487 }
488 EXPORT_SYMBOL(ttm_bo_kmap);
489
490 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
491 {
492 if (!map->virtual)
493 return;
494 switch (map->bo_kmap_type) {
495 case ttm_bo_map_iomap:
496 iounmap(map->virtual);
497 ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
498 break;
499 case ttm_bo_map_vmap:
500 vunmap(map->virtual);
501 break;
502 case ttm_bo_map_kmap:
503 kunmap(map->page);
504 break;
505 case ttm_bo_map_premapped:
506 break;
507 default:
508 BUG();
509 }
510 map->virtual = NULL;
511 map->page = NULL;
512 }
513 EXPORT_SYMBOL(ttm_bo_kunmap);
514
515 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
516 void *sync_obj,
517 void *sync_obj_arg,
518 bool evict, bool no_wait_reserve,
519 bool no_wait_gpu,
520 struct ttm_mem_reg *new_mem)
521 {
522 struct ttm_bo_device *bdev = bo->bdev;
523 struct ttm_bo_driver *driver = bdev->driver;
524 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
525 struct ttm_mem_reg *old_mem = &bo->mem;
526 int ret;
527 struct ttm_buffer_object *ghost_obj;
528 void *tmp_obj = NULL;
529
530 spin_lock(&bo->lock);
531 if (bo->sync_obj) {
532 tmp_obj = bo->sync_obj;
533 bo->sync_obj = NULL;
534 }
535 bo->sync_obj = driver->sync_obj_ref(sync_obj);
536 bo->sync_obj_arg = sync_obj_arg;
537 if (evict) {
538 ret = ttm_bo_wait(bo, false, false, false);
539 spin_unlock(&bo->lock);
540 if (tmp_obj)
541 driver->sync_obj_unref(&tmp_obj);
542 if (ret)
543 return ret;
544
545 ttm_bo_free_old_node(bo);
546 if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
547 (bo->ttm != NULL)) {
548 ttm_tt_unbind(bo->ttm);
549 ttm_tt_destroy(bo->ttm);
550 bo->ttm = NULL;
551 }
552 } else {
553 /**
554 * This should help pipeline ordinary buffer moves.
555 *
556 * Hang old buffer memory on a new buffer object,
557 * and leave it to be released when the GPU
558 * operation has completed.
559 */
560
561 set_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
562 spin_unlock(&bo->lock);
563 if (tmp_obj)
564 driver->sync_obj_unref(&tmp_obj);
565
566 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
567 if (ret)
568 return ret;
569
570 /**
571 * If we're not moving to fixed memory, the TTM object
572 * needs to stay alive. Otherwhise hang it on the ghost
573 * bo to be unbound and destroyed.
574 */
575
576 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
577 ghost_obj->ttm = NULL;
578 else
579 bo->ttm = NULL;
580
581 ttm_bo_unreserve(ghost_obj);
582 ttm_bo_unref(&ghost_obj);
583 }
584
585 *old_mem = *new_mem;
586 new_mem->mm_node = NULL;
587
588 return 0;
589 }
590 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
This page took 0.066805 seconds and 5 git commands to generate.