drm/ttm: add pool wc/uc page allocator V3
[deliverable/linux.git] / drivers / gpu / drm / ttm / ttm_memory.c
1 /**************************************************************************
2 *
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "ttm/ttm_memory.h"
29 #include "ttm/ttm_module.h"
30 #include "ttm/ttm_page_alloc.h"
31 #include <linux/spinlock.h>
32 #include <linux/sched.h>
33 #include <linux/wait.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36
37 #define TTM_MEMORY_ALLOC_RETRIES 4
38
39 struct ttm_mem_zone {
40 struct kobject kobj;
41 struct ttm_mem_global *glob;
42 const char *name;
43 uint64_t zone_mem;
44 uint64_t emer_mem;
45 uint64_t max_mem;
46 uint64_t swap_limit;
47 uint64_t used_mem;
48 };
49
50 static struct attribute ttm_mem_sys = {
51 .name = "zone_memory",
52 .mode = S_IRUGO
53 };
54 static struct attribute ttm_mem_emer = {
55 .name = "emergency_memory",
56 .mode = S_IRUGO | S_IWUSR
57 };
58 static struct attribute ttm_mem_max = {
59 .name = "available_memory",
60 .mode = S_IRUGO | S_IWUSR
61 };
62 static struct attribute ttm_mem_swap = {
63 .name = "swap_limit",
64 .mode = S_IRUGO | S_IWUSR
65 };
66 static struct attribute ttm_mem_used = {
67 .name = "used_memory",
68 .mode = S_IRUGO
69 };
70
71 static void ttm_mem_zone_kobj_release(struct kobject *kobj)
72 {
73 struct ttm_mem_zone *zone =
74 container_of(kobj, struct ttm_mem_zone, kobj);
75
76 printk(KERN_INFO TTM_PFX
77 "Zone %7s: Used memory at exit: %llu kiB.\n",
78 zone->name, (unsigned long long) zone->used_mem >> 10);
79 kfree(zone);
80 }
81
82 static ssize_t ttm_mem_zone_show(struct kobject *kobj,
83 struct attribute *attr,
84 char *buffer)
85 {
86 struct ttm_mem_zone *zone =
87 container_of(kobj, struct ttm_mem_zone, kobj);
88 uint64_t val = 0;
89
90 spin_lock(&zone->glob->lock);
91 if (attr == &ttm_mem_sys)
92 val = zone->zone_mem;
93 else if (attr == &ttm_mem_emer)
94 val = zone->emer_mem;
95 else if (attr == &ttm_mem_max)
96 val = zone->max_mem;
97 else if (attr == &ttm_mem_swap)
98 val = zone->swap_limit;
99 else if (attr == &ttm_mem_used)
100 val = zone->used_mem;
101 spin_unlock(&zone->glob->lock);
102
103 return snprintf(buffer, PAGE_SIZE, "%llu\n",
104 (unsigned long long) val >> 10);
105 }
106
107 static void ttm_check_swapping(struct ttm_mem_global *glob);
108
109 static ssize_t ttm_mem_zone_store(struct kobject *kobj,
110 struct attribute *attr,
111 const char *buffer,
112 size_t size)
113 {
114 struct ttm_mem_zone *zone =
115 container_of(kobj, struct ttm_mem_zone, kobj);
116 int chars;
117 unsigned long val;
118 uint64_t val64;
119
120 chars = sscanf(buffer, "%lu", &val);
121 if (chars == 0)
122 return size;
123
124 val64 = val;
125 val64 <<= 10;
126
127 spin_lock(&zone->glob->lock);
128 if (val64 > zone->zone_mem)
129 val64 = zone->zone_mem;
130 if (attr == &ttm_mem_emer) {
131 zone->emer_mem = val64;
132 if (zone->max_mem > val64)
133 zone->max_mem = val64;
134 } else if (attr == &ttm_mem_max) {
135 zone->max_mem = val64;
136 if (zone->emer_mem < val64)
137 zone->emer_mem = val64;
138 } else if (attr == &ttm_mem_swap)
139 zone->swap_limit = val64;
140 spin_unlock(&zone->glob->lock);
141
142 ttm_check_swapping(zone->glob);
143
144 return size;
145 }
146
147 static struct attribute *ttm_mem_zone_attrs[] = {
148 &ttm_mem_sys,
149 &ttm_mem_emer,
150 &ttm_mem_max,
151 &ttm_mem_swap,
152 &ttm_mem_used,
153 NULL
154 };
155
156 static const struct sysfs_ops ttm_mem_zone_ops = {
157 .show = &ttm_mem_zone_show,
158 .store = &ttm_mem_zone_store
159 };
160
161 static struct kobj_type ttm_mem_zone_kobj_type = {
162 .release = &ttm_mem_zone_kobj_release,
163 .sysfs_ops = &ttm_mem_zone_ops,
164 .default_attrs = ttm_mem_zone_attrs,
165 };
166
167 static void ttm_mem_global_kobj_release(struct kobject *kobj)
168 {
169 struct ttm_mem_global *glob =
170 container_of(kobj, struct ttm_mem_global, kobj);
171
172 kfree(glob);
173 }
174
175 static struct kobj_type ttm_mem_glob_kobj_type = {
176 .release = &ttm_mem_global_kobj_release,
177 };
178
179 static bool ttm_zones_above_swap_target(struct ttm_mem_global *glob,
180 bool from_wq, uint64_t extra)
181 {
182 unsigned int i;
183 struct ttm_mem_zone *zone;
184 uint64_t target;
185
186 for (i = 0; i < glob->num_zones; ++i) {
187 zone = glob->zones[i];
188
189 if (from_wq)
190 target = zone->swap_limit;
191 else if (capable(CAP_SYS_ADMIN))
192 target = zone->emer_mem;
193 else
194 target = zone->max_mem;
195
196 target = (extra > target) ? 0ULL : target;
197
198 if (zone->used_mem > target)
199 return true;
200 }
201 return false;
202 }
203
204 /**
205 * At this point we only support a single shrink callback.
206 * Extend this if needed, perhaps using a linked list of callbacks.
207 * Note that this function is reentrant:
208 * many threads may try to swap out at any given time.
209 */
210
211 static void ttm_shrink(struct ttm_mem_global *glob, bool from_wq,
212 uint64_t extra)
213 {
214 int ret;
215 struct ttm_mem_shrink *shrink;
216
217 spin_lock(&glob->lock);
218 if (glob->shrink == NULL)
219 goto out;
220
221 while (ttm_zones_above_swap_target(glob, from_wq, extra)) {
222 shrink = glob->shrink;
223 spin_unlock(&glob->lock);
224 ret = shrink->do_shrink(shrink);
225 spin_lock(&glob->lock);
226 if (unlikely(ret != 0))
227 goto out;
228 }
229 out:
230 spin_unlock(&glob->lock);
231 }
232
233
234
235 static void ttm_shrink_work(struct work_struct *work)
236 {
237 struct ttm_mem_global *glob =
238 container_of(work, struct ttm_mem_global, work);
239
240 ttm_shrink(glob, true, 0ULL);
241 }
242
243 static int ttm_mem_init_kernel_zone(struct ttm_mem_global *glob,
244 const struct sysinfo *si)
245 {
246 struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL);
247 uint64_t mem;
248 int ret;
249
250 if (unlikely(!zone))
251 return -ENOMEM;
252
253 mem = si->totalram - si->totalhigh;
254 mem *= si->mem_unit;
255
256 zone->name = "kernel";
257 zone->zone_mem = mem;
258 zone->max_mem = mem >> 1;
259 zone->emer_mem = (mem >> 1) + (mem >> 2);
260 zone->swap_limit = zone->max_mem - (mem >> 3);
261 zone->used_mem = 0;
262 zone->glob = glob;
263 glob->zone_kernel = zone;
264 ret = kobject_init_and_add(
265 &zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name);
266 if (unlikely(ret != 0)) {
267 kobject_put(&zone->kobj);
268 return ret;
269 }
270 glob->zones[glob->num_zones++] = zone;
271 return 0;
272 }
273
274 #ifdef CONFIG_HIGHMEM
275 static int ttm_mem_init_highmem_zone(struct ttm_mem_global *glob,
276 const struct sysinfo *si)
277 {
278 struct ttm_mem_zone *zone;
279 uint64_t mem;
280 int ret;
281
282 if (si->totalhigh == 0)
283 return 0;
284
285 zone = kzalloc(sizeof(*zone), GFP_KERNEL);
286 if (unlikely(!zone))
287 return -ENOMEM;
288
289 mem = si->totalram;
290 mem *= si->mem_unit;
291
292 zone->name = "highmem";
293 zone->zone_mem = mem;
294 zone->max_mem = mem >> 1;
295 zone->emer_mem = (mem >> 1) + (mem >> 2);
296 zone->swap_limit = zone->max_mem - (mem >> 3);
297 zone->used_mem = 0;
298 zone->glob = glob;
299 glob->zone_highmem = zone;
300 ret = kobject_init_and_add(
301 &zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name);
302 if (unlikely(ret != 0)) {
303 kobject_put(&zone->kobj);
304 return ret;
305 }
306 glob->zones[glob->num_zones++] = zone;
307 return 0;
308 }
309 #else
310 static int ttm_mem_init_dma32_zone(struct ttm_mem_global *glob,
311 const struct sysinfo *si)
312 {
313 struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL);
314 uint64_t mem;
315 int ret;
316
317 if (unlikely(!zone))
318 return -ENOMEM;
319
320 mem = si->totalram;
321 mem *= si->mem_unit;
322
323 /**
324 * No special dma32 zone needed.
325 */
326
327 if (mem <= ((uint64_t) 1ULL << 32)) {
328 kfree(zone);
329 return 0;
330 }
331
332 /*
333 * Limit max dma32 memory to 4GB for now
334 * until we can figure out how big this
335 * zone really is.
336 */
337
338 mem = ((uint64_t) 1ULL << 32);
339 zone->name = "dma32";
340 zone->zone_mem = mem;
341 zone->max_mem = mem >> 1;
342 zone->emer_mem = (mem >> 1) + (mem >> 2);
343 zone->swap_limit = zone->max_mem - (mem >> 3);
344 zone->used_mem = 0;
345 zone->glob = glob;
346 glob->zone_dma32 = zone;
347 ret = kobject_init_and_add(
348 &zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name);
349 if (unlikely(ret != 0)) {
350 kobject_put(&zone->kobj);
351 return ret;
352 }
353 glob->zones[glob->num_zones++] = zone;
354 return 0;
355 }
356 #endif
357
358 int ttm_mem_global_init(struct ttm_mem_global *glob)
359 {
360 struct sysinfo si;
361 int ret;
362 int i;
363 struct ttm_mem_zone *zone;
364
365 spin_lock_init(&glob->lock);
366 glob->swap_queue = create_singlethread_workqueue("ttm_swap");
367 INIT_WORK(&glob->work, ttm_shrink_work);
368 init_waitqueue_head(&glob->queue);
369 ret = kobject_init_and_add(
370 &glob->kobj, &ttm_mem_glob_kobj_type, ttm_get_kobj(), "memory_accounting");
371 if (unlikely(ret != 0)) {
372 kobject_put(&glob->kobj);
373 return ret;
374 }
375
376 si_meminfo(&si);
377
378 ret = ttm_mem_init_kernel_zone(glob, &si);
379 if (unlikely(ret != 0))
380 goto out_no_zone;
381 #ifdef CONFIG_HIGHMEM
382 ret = ttm_mem_init_highmem_zone(glob, &si);
383 if (unlikely(ret != 0))
384 goto out_no_zone;
385 #else
386 ret = ttm_mem_init_dma32_zone(glob, &si);
387 if (unlikely(ret != 0))
388 goto out_no_zone;
389 #endif
390 for (i = 0; i < glob->num_zones; ++i) {
391 zone = glob->zones[i];
392 printk(KERN_INFO TTM_PFX
393 "Zone %7s: Available graphics memory: %llu kiB.\n",
394 zone->name, (unsigned long long) zone->max_mem >> 10);
395 }
396 ttm_page_alloc_init(glob->zone_kernel->max_mem/(2*PAGE_SIZE));
397 return 0;
398 out_no_zone:
399 ttm_mem_global_release(glob);
400 return ret;
401 }
402 EXPORT_SYMBOL(ttm_mem_global_init);
403
404 void ttm_mem_global_release(struct ttm_mem_global *glob)
405 {
406 unsigned int i;
407 struct ttm_mem_zone *zone;
408
409 /* let the page allocator first stop the shrink work. */
410 ttm_page_alloc_fini();
411
412 flush_workqueue(glob->swap_queue);
413 destroy_workqueue(glob->swap_queue);
414 glob->swap_queue = NULL;
415 for (i = 0; i < glob->num_zones; ++i) {
416 zone = glob->zones[i];
417 kobject_del(&zone->kobj);
418 kobject_put(&zone->kobj);
419 }
420 kobject_del(&glob->kobj);
421 kobject_put(&glob->kobj);
422 }
423 EXPORT_SYMBOL(ttm_mem_global_release);
424
425 static void ttm_check_swapping(struct ttm_mem_global *glob)
426 {
427 bool needs_swapping = false;
428 unsigned int i;
429 struct ttm_mem_zone *zone;
430
431 spin_lock(&glob->lock);
432 for (i = 0; i < glob->num_zones; ++i) {
433 zone = glob->zones[i];
434 if (zone->used_mem > zone->swap_limit) {
435 needs_swapping = true;
436 break;
437 }
438 }
439
440 spin_unlock(&glob->lock);
441
442 if (unlikely(needs_swapping))
443 (void)queue_work(glob->swap_queue, &glob->work);
444
445 }
446
447 static void ttm_mem_global_free_zone(struct ttm_mem_global *glob,
448 struct ttm_mem_zone *single_zone,
449 uint64_t amount)
450 {
451 unsigned int i;
452 struct ttm_mem_zone *zone;
453
454 spin_lock(&glob->lock);
455 for (i = 0; i < glob->num_zones; ++i) {
456 zone = glob->zones[i];
457 if (single_zone && zone != single_zone)
458 continue;
459 zone->used_mem -= amount;
460 }
461 spin_unlock(&glob->lock);
462 }
463
464 void ttm_mem_global_free(struct ttm_mem_global *glob,
465 uint64_t amount)
466 {
467 return ttm_mem_global_free_zone(glob, NULL, amount);
468 }
469 EXPORT_SYMBOL(ttm_mem_global_free);
470
471 static int ttm_mem_global_reserve(struct ttm_mem_global *glob,
472 struct ttm_mem_zone *single_zone,
473 uint64_t amount, bool reserve)
474 {
475 uint64_t limit;
476 int ret = -ENOMEM;
477 unsigned int i;
478 struct ttm_mem_zone *zone;
479
480 spin_lock(&glob->lock);
481 for (i = 0; i < glob->num_zones; ++i) {
482 zone = glob->zones[i];
483 if (single_zone && zone != single_zone)
484 continue;
485
486 limit = (capable(CAP_SYS_ADMIN)) ?
487 zone->emer_mem : zone->max_mem;
488
489 if (zone->used_mem > limit)
490 goto out_unlock;
491 }
492
493 if (reserve) {
494 for (i = 0; i < glob->num_zones; ++i) {
495 zone = glob->zones[i];
496 if (single_zone && zone != single_zone)
497 continue;
498 zone->used_mem += amount;
499 }
500 }
501
502 ret = 0;
503 out_unlock:
504 spin_unlock(&glob->lock);
505 ttm_check_swapping(glob);
506
507 return ret;
508 }
509
510
511 static int ttm_mem_global_alloc_zone(struct ttm_mem_global *glob,
512 struct ttm_mem_zone *single_zone,
513 uint64_t memory,
514 bool no_wait, bool interruptible)
515 {
516 int count = TTM_MEMORY_ALLOC_RETRIES;
517
518 while (unlikely(ttm_mem_global_reserve(glob,
519 single_zone,
520 memory, true)
521 != 0)) {
522 if (no_wait)
523 return -ENOMEM;
524 if (unlikely(count-- == 0))
525 return -ENOMEM;
526 ttm_shrink(glob, false, memory + (memory >> 2) + 16);
527 }
528
529 return 0;
530 }
531
532 int ttm_mem_global_alloc(struct ttm_mem_global *glob, uint64_t memory,
533 bool no_wait, bool interruptible)
534 {
535 /**
536 * Normal allocations of kernel memory are registered in
537 * all zones.
538 */
539
540 return ttm_mem_global_alloc_zone(glob, NULL, memory, no_wait,
541 interruptible);
542 }
543 EXPORT_SYMBOL(ttm_mem_global_alloc);
544
545 int ttm_mem_global_alloc_page(struct ttm_mem_global *glob,
546 struct page *page,
547 bool no_wait, bool interruptible)
548 {
549
550 struct ttm_mem_zone *zone = NULL;
551
552 /**
553 * Page allocations may be registed in a single zone
554 * only if highmem or !dma32.
555 */
556
557 #ifdef CONFIG_HIGHMEM
558 if (PageHighMem(page) && glob->zone_highmem != NULL)
559 zone = glob->zone_highmem;
560 #else
561 if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL)
562 zone = glob->zone_kernel;
563 #endif
564 return ttm_mem_global_alloc_zone(glob, zone, PAGE_SIZE, no_wait,
565 interruptible);
566 }
567
568 void ttm_mem_global_free_page(struct ttm_mem_global *glob, struct page *page)
569 {
570 struct ttm_mem_zone *zone = NULL;
571
572 #ifdef CONFIG_HIGHMEM
573 if (PageHighMem(page) && glob->zone_highmem != NULL)
574 zone = glob->zone_highmem;
575 #else
576 if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL)
577 zone = glob->zone_kernel;
578 #endif
579 ttm_mem_global_free_zone(glob, zone, PAGE_SIZE);
580 }
581
582
583 size_t ttm_round_pot(size_t size)
584 {
585 if ((size & (size - 1)) == 0)
586 return size;
587 else if (size > PAGE_SIZE)
588 return PAGE_ALIGN(size);
589 else {
590 size_t tmp_size = 4;
591
592 while (tmp_size < size)
593 tmp_size <<= 1;
594
595 return tmp_size;
596 }
597 return 0;
598 }
599 EXPORT_SYMBOL(ttm_round_pot);
This page took 0.05996 seconds and 5 git commands to generate.