drm/ttm: Fix possible stack overflow by recursive shrinker calls.
[deliverable/linux.git] / drivers / gpu / drm / ttm / ttm_page_alloc.c
1 /*
2 * Copyright (c) Red Hat Inc.
3
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
13 * of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: Dave Airlie <airlied@redhat.com>
24 * Jerome Glisse <jglisse@redhat.com>
25 * Pauli Nieminen <suokkos@gmail.com>
26 */
27
28 /* simple list based uncached page pool
29 * - Pool collects resently freed pages for reuse
30 * - Use page->lru to keep a free list
31 * - doesn't track currently in use pages
32 */
33
34 #define pr_fmt(fmt) "[TTM] " fmt
35
36 #include <linux/list.h>
37 #include <linux/spinlock.h>
38 #include <linux/highmem.h>
39 #include <linux/mm_types.h>
40 #include <linux/module.h>
41 #include <linux/mm.h>
42 #include <linux/seq_file.h> /* for seq_printf */
43 #include <linux/slab.h>
44 #include <linux/dma-mapping.h>
45
46 #include <linux/atomic.h>
47
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_page_alloc.h>
50
51 #ifdef TTM_HAS_AGP
52 #include <asm/agp.h>
53 #endif
54
55 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
56 #define SMALL_ALLOCATION 16
57 #define FREE_ALL_PAGES (~0U)
58 /* times are in msecs */
59 #define PAGE_FREE_INTERVAL 1000
60
61 /**
62 * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
63 *
64 * @lock: Protects the shared pool from concurrnet access. Must be used with
65 * irqsave/irqrestore variants because pool allocator maybe called from
66 * delayed work.
67 * @fill_lock: Prevent concurrent calls to fill.
68 * @list: Pool of free uc/wc pages for fast reuse.
69 * @gfp_flags: Flags to pass for alloc_page.
70 * @npages: Number of pages in pool.
71 */
72 struct ttm_page_pool {
73 spinlock_t lock;
74 bool fill_lock;
75 struct list_head list;
76 gfp_t gfp_flags;
77 unsigned npages;
78 char *name;
79 unsigned long nfrees;
80 unsigned long nrefills;
81 };
82
83 /**
84 * Limits for the pool. They are handled without locks because only place where
85 * they may change is in sysfs store. They won't have immediate effect anyway
86 * so forcing serialization to access them is pointless.
87 */
88
89 struct ttm_pool_opts {
90 unsigned alloc_size;
91 unsigned max_size;
92 unsigned small;
93 };
94
95 #define NUM_POOLS 4
96
97 /**
98 * struct ttm_pool_manager - Holds memory pools for fst allocation
99 *
100 * Manager is read only object for pool code so it doesn't need locking.
101 *
102 * @free_interval: minimum number of jiffies between freeing pages from pool.
103 * @page_alloc_inited: reference counting for pool allocation.
104 * @work: Work that is used to shrink the pool. Work is only run when there is
105 * some pages to free.
106 * @small_allocation: Limit in number of pages what is small allocation.
107 *
108 * @pools: All pool objects in use.
109 **/
110 struct ttm_pool_manager {
111 struct kobject kobj;
112 struct shrinker mm_shrink;
113 struct ttm_pool_opts options;
114
115 union {
116 struct ttm_page_pool pools[NUM_POOLS];
117 struct {
118 struct ttm_page_pool wc_pool;
119 struct ttm_page_pool uc_pool;
120 struct ttm_page_pool wc_pool_dma32;
121 struct ttm_page_pool uc_pool_dma32;
122 } ;
123 };
124 };
125
126 static struct attribute ttm_page_pool_max = {
127 .name = "pool_max_size",
128 .mode = S_IRUGO | S_IWUSR
129 };
130 static struct attribute ttm_page_pool_small = {
131 .name = "pool_small_allocation",
132 .mode = S_IRUGO | S_IWUSR
133 };
134 static struct attribute ttm_page_pool_alloc_size = {
135 .name = "pool_allocation_size",
136 .mode = S_IRUGO | S_IWUSR
137 };
138
139 static struct attribute *ttm_pool_attrs[] = {
140 &ttm_page_pool_max,
141 &ttm_page_pool_small,
142 &ttm_page_pool_alloc_size,
143 NULL
144 };
145
146 static void ttm_pool_kobj_release(struct kobject *kobj)
147 {
148 struct ttm_pool_manager *m =
149 container_of(kobj, struct ttm_pool_manager, kobj);
150 kfree(m);
151 }
152
153 static ssize_t ttm_pool_store(struct kobject *kobj,
154 struct attribute *attr, const char *buffer, size_t size)
155 {
156 struct ttm_pool_manager *m =
157 container_of(kobj, struct ttm_pool_manager, kobj);
158 int chars;
159 unsigned val;
160 chars = sscanf(buffer, "%u", &val);
161 if (chars == 0)
162 return size;
163
164 /* Convert kb to number of pages */
165 val = val / (PAGE_SIZE >> 10);
166
167 if (attr == &ttm_page_pool_max)
168 m->options.max_size = val;
169 else if (attr == &ttm_page_pool_small)
170 m->options.small = val;
171 else if (attr == &ttm_page_pool_alloc_size) {
172 if (val > NUM_PAGES_TO_ALLOC*8) {
173 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
174 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
175 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
176 return size;
177 } else if (val > NUM_PAGES_TO_ALLOC) {
178 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
179 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
180 }
181 m->options.alloc_size = val;
182 }
183
184 return size;
185 }
186
187 static ssize_t ttm_pool_show(struct kobject *kobj,
188 struct attribute *attr, char *buffer)
189 {
190 struct ttm_pool_manager *m =
191 container_of(kobj, struct ttm_pool_manager, kobj);
192 unsigned val = 0;
193
194 if (attr == &ttm_page_pool_max)
195 val = m->options.max_size;
196 else if (attr == &ttm_page_pool_small)
197 val = m->options.small;
198 else if (attr == &ttm_page_pool_alloc_size)
199 val = m->options.alloc_size;
200
201 val = val * (PAGE_SIZE >> 10);
202
203 return snprintf(buffer, PAGE_SIZE, "%u\n", val);
204 }
205
206 static const struct sysfs_ops ttm_pool_sysfs_ops = {
207 .show = &ttm_pool_show,
208 .store = &ttm_pool_store,
209 };
210
211 static struct kobj_type ttm_pool_kobj_type = {
212 .release = &ttm_pool_kobj_release,
213 .sysfs_ops = &ttm_pool_sysfs_ops,
214 .default_attrs = ttm_pool_attrs,
215 };
216
217 static struct ttm_pool_manager *_manager;
218
219 #ifndef CONFIG_X86
220 static int set_pages_array_wb(struct page **pages, int addrinarray)
221 {
222 #ifdef TTM_HAS_AGP
223 int i;
224
225 for (i = 0; i < addrinarray; i++)
226 unmap_page_from_agp(pages[i]);
227 #endif
228 return 0;
229 }
230
231 static int set_pages_array_wc(struct page **pages, int addrinarray)
232 {
233 #ifdef TTM_HAS_AGP
234 int i;
235
236 for (i = 0; i < addrinarray; i++)
237 map_page_into_agp(pages[i]);
238 #endif
239 return 0;
240 }
241
242 static int set_pages_array_uc(struct page **pages, int addrinarray)
243 {
244 #ifdef TTM_HAS_AGP
245 int i;
246
247 for (i = 0; i < addrinarray; i++)
248 map_page_into_agp(pages[i]);
249 #endif
250 return 0;
251 }
252 #endif
253
254 /**
255 * Select the right pool or requested caching state and ttm flags. */
256 static struct ttm_page_pool *ttm_get_pool(int flags,
257 enum ttm_caching_state cstate)
258 {
259 int pool_index;
260
261 if (cstate == tt_cached)
262 return NULL;
263
264 if (cstate == tt_wc)
265 pool_index = 0x0;
266 else
267 pool_index = 0x1;
268
269 if (flags & TTM_PAGE_FLAG_DMA32)
270 pool_index |= 0x2;
271
272 return &_manager->pools[pool_index];
273 }
274
275 /* set memory back to wb and free the pages. */
276 static void ttm_pages_put(struct page *pages[], unsigned npages)
277 {
278 unsigned i;
279 if (set_pages_array_wb(pages, npages))
280 pr_err("Failed to set %d pages to wb!\n", npages);
281 for (i = 0; i < npages; ++i)
282 __free_page(pages[i]);
283 }
284
285 static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
286 unsigned freed_pages)
287 {
288 pool->npages -= freed_pages;
289 pool->nfrees += freed_pages;
290 }
291
292 /**
293 * Free pages from pool.
294 *
295 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
296 * number of pages in one go.
297 *
298 * @pool: to free the pages from
299 * @free_all: If set to true will free all pages in pool
300 **/
301 static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free)
302 {
303 unsigned long irq_flags;
304 struct page *p;
305 struct page **pages_to_free;
306 unsigned freed_pages = 0,
307 npages_to_free = nr_free;
308
309 if (NUM_PAGES_TO_ALLOC < nr_free)
310 npages_to_free = NUM_PAGES_TO_ALLOC;
311
312 pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
313 GFP_KERNEL);
314 if (!pages_to_free) {
315 pr_err("Failed to allocate memory for pool free operation\n");
316 return 0;
317 }
318
319 restart:
320 spin_lock_irqsave(&pool->lock, irq_flags);
321
322 list_for_each_entry_reverse(p, &pool->list, lru) {
323 if (freed_pages >= npages_to_free)
324 break;
325
326 pages_to_free[freed_pages++] = p;
327 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
328 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
329 /* remove range of pages from the pool */
330 __list_del(p->lru.prev, &pool->list);
331
332 ttm_pool_update_free_locked(pool, freed_pages);
333 /**
334 * Because changing page caching is costly
335 * we unlock the pool to prevent stalling.
336 */
337 spin_unlock_irqrestore(&pool->lock, irq_flags);
338
339 ttm_pages_put(pages_to_free, freed_pages);
340 if (likely(nr_free != FREE_ALL_PAGES))
341 nr_free -= freed_pages;
342
343 if (NUM_PAGES_TO_ALLOC >= nr_free)
344 npages_to_free = nr_free;
345 else
346 npages_to_free = NUM_PAGES_TO_ALLOC;
347
348 freed_pages = 0;
349
350 /* free all so restart the processing */
351 if (nr_free)
352 goto restart;
353
354 /* Not allowed to fall through or break because
355 * following context is inside spinlock while we are
356 * outside here.
357 */
358 goto out;
359
360 }
361 }
362
363 /* remove range of pages from the pool */
364 if (freed_pages) {
365 __list_del(&p->lru, &pool->list);
366
367 ttm_pool_update_free_locked(pool, freed_pages);
368 nr_free -= freed_pages;
369 }
370
371 spin_unlock_irqrestore(&pool->lock, irq_flags);
372
373 if (freed_pages)
374 ttm_pages_put(pages_to_free, freed_pages);
375 out:
376 kfree(pages_to_free);
377 return nr_free;
378 }
379
380 /**
381 * Callback for mm to request pool to reduce number of page held.
382 *
383 * XXX: (dchinner) Deadlock warning!
384 *
385 * ttm_page_pool_free() does memory allocation using GFP_KERNEL. that means
386 * this can deadlock when called a sc->gfp_mask that is not equal to
387 * GFP_KERNEL.
388 *
389 * This code is crying out for a shrinker per pool....
390 */
391 static unsigned long
392 ttm_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
393 {
394 static DEFINE_MUTEX(lock);
395 static unsigned start_pool;
396 unsigned i;
397 unsigned pool_offset;
398 struct ttm_page_pool *pool;
399 int shrink_pages = sc->nr_to_scan;
400 unsigned long freed = 0;
401
402 if (!mutex_trylock(&lock))
403 return SHRINK_STOP;
404 pool_offset = ++start_pool % NUM_POOLS;
405 /* select start pool in round robin fashion */
406 for (i = 0; i < NUM_POOLS; ++i) {
407 unsigned nr_free = shrink_pages;
408 if (shrink_pages == 0)
409 break;
410 pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
411 shrink_pages = ttm_page_pool_free(pool, nr_free);
412 freed += nr_free - shrink_pages;
413 }
414 mutex_unlock(&lock);
415 return freed;
416 }
417
418
419 static unsigned long
420 ttm_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
421 {
422 unsigned i;
423 unsigned long count = 0;
424
425 for (i = 0; i < NUM_POOLS; ++i)
426 count += _manager->pools[i].npages;
427
428 return count;
429 }
430
431 static void ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
432 {
433 manager->mm_shrink.count_objects = ttm_pool_shrink_count;
434 manager->mm_shrink.scan_objects = ttm_pool_shrink_scan;
435 manager->mm_shrink.seeks = 1;
436 register_shrinker(&manager->mm_shrink);
437 }
438
439 static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
440 {
441 unregister_shrinker(&manager->mm_shrink);
442 }
443
444 static int ttm_set_pages_caching(struct page **pages,
445 enum ttm_caching_state cstate, unsigned cpages)
446 {
447 int r = 0;
448 /* Set page caching */
449 switch (cstate) {
450 case tt_uncached:
451 r = set_pages_array_uc(pages, cpages);
452 if (r)
453 pr_err("Failed to set %d pages to uc!\n", cpages);
454 break;
455 case tt_wc:
456 r = set_pages_array_wc(pages, cpages);
457 if (r)
458 pr_err("Failed to set %d pages to wc!\n", cpages);
459 break;
460 default:
461 break;
462 }
463 return r;
464 }
465
466 /**
467 * Free pages the pages that failed to change the caching state. If there is
468 * any pages that have changed their caching state already put them to the
469 * pool.
470 */
471 static void ttm_handle_caching_state_failure(struct list_head *pages,
472 int ttm_flags, enum ttm_caching_state cstate,
473 struct page **failed_pages, unsigned cpages)
474 {
475 unsigned i;
476 /* Failed pages have to be freed */
477 for (i = 0; i < cpages; ++i) {
478 list_del(&failed_pages[i]->lru);
479 __free_page(failed_pages[i]);
480 }
481 }
482
483 /**
484 * Allocate new pages with correct caching.
485 *
486 * This function is reentrant if caller updates count depending on number of
487 * pages returned in pages array.
488 */
489 static int ttm_alloc_new_pages(struct list_head *pages, gfp_t gfp_flags,
490 int ttm_flags, enum ttm_caching_state cstate, unsigned count)
491 {
492 struct page **caching_array;
493 struct page *p;
494 int r = 0;
495 unsigned i, cpages;
496 unsigned max_cpages = min(count,
497 (unsigned)(PAGE_SIZE/sizeof(struct page *)));
498
499 /* allocate array for page caching change */
500 caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
501
502 if (!caching_array) {
503 pr_err("Unable to allocate table for new pages\n");
504 return -ENOMEM;
505 }
506
507 for (i = 0, cpages = 0; i < count; ++i) {
508 p = alloc_page(gfp_flags);
509
510 if (!p) {
511 pr_err("Unable to get page %u\n", i);
512
513 /* store already allocated pages in the pool after
514 * setting the caching state */
515 if (cpages) {
516 r = ttm_set_pages_caching(caching_array,
517 cstate, cpages);
518 if (r)
519 ttm_handle_caching_state_failure(pages,
520 ttm_flags, cstate,
521 caching_array, cpages);
522 }
523 r = -ENOMEM;
524 goto out;
525 }
526
527 #ifdef CONFIG_HIGHMEM
528 /* gfp flags of highmem page should never be dma32 so we
529 * we should be fine in such case
530 */
531 if (!PageHighMem(p))
532 #endif
533 {
534 caching_array[cpages++] = p;
535 if (cpages == max_cpages) {
536
537 r = ttm_set_pages_caching(caching_array,
538 cstate, cpages);
539 if (r) {
540 ttm_handle_caching_state_failure(pages,
541 ttm_flags, cstate,
542 caching_array, cpages);
543 goto out;
544 }
545 cpages = 0;
546 }
547 }
548
549 list_add(&p->lru, pages);
550 }
551
552 if (cpages) {
553 r = ttm_set_pages_caching(caching_array, cstate, cpages);
554 if (r)
555 ttm_handle_caching_state_failure(pages,
556 ttm_flags, cstate,
557 caching_array, cpages);
558 }
559 out:
560 kfree(caching_array);
561
562 return r;
563 }
564
565 /**
566 * Fill the given pool if there aren't enough pages and the requested number of
567 * pages is small.
568 */
569 static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool,
570 int ttm_flags, enum ttm_caching_state cstate, unsigned count,
571 unsigned long *irq_flags)
572 {
573 struct page *p;
574 int r;
575 unsigned cpages = 0;
576 /**
577 * Only allow one pool fill operation at a time.
578 * If pool doesn't have enough pages for the allocation new pages are
579 * allocated from outside of pool.
580 */
581 if (pool->fill_lock)
582 return;
583
584 pool->fill_lock = true;
585
586 /* If allocation request is small and there are not enough
587 * pages in a pool we fill the pool up first. */
588 if (count < _manager->options.small
589 && count > pool->npages) {
590 struct list_head new_pages;
591 unsigned alloc_size = _manager->options.alloc_size;
592
593 /**
594 * Can't change page caching if in irqsave context. We have to
595 * drop the pool->lock.
596 */
597 spin_unlock_irqrestore(&pool->lock, *irq_flags);
598
599 INIT_LIST_HEAD(&new_pages);
600 r = ttm_alloc_new_pages(&new_pages, pool->gfp_flags, ttm_flags,
601 cstate, alloc_size);
602 spin_lock_irqsave(&pool->lock, *irq_flags);
603
604 if (!r) {
605 list_splice(&new_pages, &pool->list);
606 ++pool->nrefills;
607 pool->npages += alloc_size;
608 } else {
609 pr_err("Failed to fill pool (%p)\n", pool);
610 /* If we have any pages left put them to the pool. */
611 list_for_each_entry(p, &pool->list, lru) {
612 ++cpages;
613 }
614 list_splice(&new_pages, &pool->list);
615 pool->npages += cpages;
616 }
617
618 }
619 pool->fill_lock = false;
620 }
621
622 /**
623 * Cut 'count' number of pages from the pool and put them on the return list.
624 *
625 * @return count of pages still required to fulfill the request.
626 */
627 static unsigned ttm_page_pool_get_pages(struct ttm_page_pool *pool,
628 struct list_head *pages,
629 int ttm_flags,
630 enum ttm_caching_state cstate,
631 unsigned count)
632 {
633 unsigned long irq_flags;
634 struct list_head *p;
635 unsigned i;
636
637 spin_lock_irqsave(&pool->lock, irq_flags);
638 ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count, &irq_flags);
639
640 if (count >= pool->npages) {
641 /* take all pages from the pool */
642 list_splice_init(&pool->list, pages);
643 count -= pool->npages;
644 pool->npages = 0;
645 goto out;
646 }
647 /* find the last pages to include for requested number of pages. Split
648 * pool to begin and halve it to reduce search space. */
649 if (count <= pool->npages/2) {
650 i = 0;
651 list_for_each(p, &pool->list) {
652 if (++i == count)
653 break;
654 }
655 } else {
656 i = pool->npages + 1;
657 list_for_each_prev(p, &pool->list) {
658 if (--i == count)
659 break;
660 }
661 }
662 /* Cut 'count' number of pages from the pool */
663 list_cut_position(pages, &pool->list, p);
664 pool->npages -= count;
665 count = 0;
666 out:
667 spin_unlock_irqrestore(&pool->lock, irq_flags);
668 return count;
669 }
670
671 /* Put all pages in pages list to correct pool to wait for reuse */
672 static void ttm_put_pages(struct page **pages, unsigned npages, int flags,
673 enum ttm_caching_state cstate)
674 {
675 unsigned long irq_flags;
676 struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
677 unsigned i;
678
679 if (pool == NULL) {
680 /* No pool for this memory type so free the pages */
681 for (i = 0; i < npages; i++) {
682 if (pages[i]) {
683 if (page_count(pages[i]) != 1)
684 pr_err("Erroneous page count. Leaking pages.\n");
685 __free_page(pages[i]);
686 pages[i] = NULL;
687 }
688 }
689 return;
690 }
691
692 spin_lock_irqsave(&pool->lock, irq_flags);
693 for (i = 0; i < npages; i++) {
694 if (pages[i]) {
695 if (page_count(pages[i]) != 1)
696 pr_err("Erroneous page count. Leaking pages.\n");
697 list_add_tail(&pages[i]->lru, &pool->list);
698 pages[i] = NULL;
699 pool->npages++;
700 }
701 }
702 /* Check that we don't go over the pool limit */
703 npages = 0;
704 if (pool->npages > _manager->options.max_size) {
705 npages = pool->npages - _manager->options.max_size;
706 /* free at least NUM_PAGES_TO_ALLOC number of pages
707 * to reduce calls to set_memory_wb */
708 if (npages < NUM_PAGES_TO_ALLOC)
709 npages = NUM_PAGES_TO_ALLOC;
710 }
711 spin_unlock_irqrestore(&pool->lock, irq_flags);
712 if (npages)
713 ttm_page_pool_free(pool, npages);
714 }
715
716 /*
717 * On success pages list will hold count number of correctly
718 * cached pages.
719 */
720 static int ttm_get_pages(struct page **pages, unsigned npages, int flags,
721 enum ttm_caching_state cstate)
722 {
723 struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
724 struct list_head plist;
725 struct page *p = NULL;
726 gfp_t gfp_flags = GFP_USER;
727 unsigned count;
728 int r;
729
730 /* set zero flag for page allocation if required */
731 if (flags & TTM_PAGE_FLAG_ZERO_ALLOC)
732 gfp_flags |= __GFP_ZERO;
733
734 /* No pool for cached pages */
735 if (pool == NULL) {
736 if (flags & TTM_PAGE_FLAG_DMA32)
737 gfp_flags |= GFP_DMA32;
738 else
739 gfp_flags |= GFP_HIGHUSER;
740
741 for (r = 0; r < npages; ++r) {
742 p = alloc_page(gfp_flags);
743 if (!p) {
744
745 pr_err("Unable to allocate page\n");
746 return -ENOMEM;
747 }
748
749 pages[r] = p;
750 }
751 return 0;
752 }
753
754 /* combine zero flag to pool flags */
755 gfp_flags |= pool->gfp_flags;
756
757 /* First we take pages from the pool */
758 INIT_LIST_HEAD(&plist);
759 npages = ttm_page_pool_get_pages(pool, &plist, flags, cstate, npages);
760 count = 0;
761 list_for_each_entry(p, &plist, lru) {
762 pages[count++] = p;
763 }
764
765 /* clear the pages coming from the pool if requested */
766 if (flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
767 list_for_each_entry(p, &plist, lru) {
768 if (PageHighMem(p))
769 clear_highpage(p);
770 else
771 clear_page(page_address(p));
772 }
773 }
774
775 /* If pool didn't have enough pages allocate new one. */
776 if (npages > 0) {
777 /* ttm_alloc_new_pages doesn't reference pool so we can run
778 * multiple requests in parallel.
779 **/
780 INIT_LIST_HEAD(&plist);
781 r = ttm_alloc_new_pages(&plist, gfp_flags, flags, cstate, npages);
782 list_for_each_entry(p, &plist, lru) {
783 pages[count++] = p;
784 }
785 if (r) {
786 /* If there is any pages in the list put them back to
787 * the pool. */
788 pr_err("Failed to allocate extra pages for large request\n");
789 ttm_put_pages(pages, count, flags, cstate);
790 return r;
791 }
792 }
793
794 return 0;
795 }
796
797 static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, gfp_t flags,
798 char *name)
799 {
800 spin_lock_init(&pool->lock);
801 pool->fill_lock = false;
802 INIT_LIST_HEAD(&pool->list);
803 pool->npages = pool->nfrees = 0;
804 pool->gfp_flags = flags;
805 pool->name = name;
806 }
807
808 int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
809 {
810 int ret;
811
812 WARN_ON(_manager);
813
814 pr_info("Initializing pool allocator\n");
815
816 _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
817
818 ttm_page_pool_init_locked(&_manager->wc_pool, GFP_HIGHUSER, "wc");
819
820 ttm_page_pool_init_locked(&_manager->uc_pool, GFP_HIGHUSER, "uc");
821
822 ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
823 GFP_USER | GFP_DMA32, "wc dma");
824
825 ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
826 GFP_USER | GFP_DMA32, "uc dma");
827
828 _manager->options.max_size = max_pages;
829 _manager->options.small = SMALL_ALLOCATION;
830 _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
831
832 ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
833 &glob->kobj, "pool");
834 if (unlikely(ret != 0)) {
835 kobject_put(&_manager->kobj);
836 _manager = NULL;
837 return ret;
838 }
839
840 ttm_pool_mm_shrink_init(_manager);
841
842 return 0;
843 }
844
845 void ttm_page_alloc_fini(void)
846 {
847 int i;
848
849 pr_info("Finalizing pool allocator\n");
850 ttm_pool_mm_shrink_fini(_manager);
851
852 for (i = 0; i < NUM_POOLS; ++i)
853 ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES);
854
855 kobject_put(&_manager->kobj);
856 _manager = NULL;
857 }
858
859 int ttm_pool_populate(struct ttm_tt *ttm)
860 {
861 struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
862 unsigned i;
863 int ret;
864
865 if (ttm->state != tt_unpopulated)
866 return 0;
867
868 for (i = 0; i < ttm->num_pages; ++i) {
869 ret = ttm_get_pages(&ttm->pages[i], 1,
870 ttm->page_flags,
871 ttm->caching_state);
872 if (ret != 0) {
873 ttm_pool_unpopulate(ttm);
874 return -ENOMEM;
875 }
876
877 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
878 false, false);
879 if (unlikely(ret != 0)) {
880 ttm_pool_unpopulate(ttm);
881 return -ENOMEM;
882 }
883 }
884
885 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
886 ret = ttm_tt_swapin(ttm);
887 if (unlikely(ret != 0)) {
888 ttm_pool_unpopulate(ttm);
889 return ret;
890 }
891 }
892
893 ttm->state = tt_unbound;
894 return 0;
895 }
896 EXPORT_SYMBOL(ttm_pool_populate);
897
898 void ttm_pool_unpopulate(struct ttm_tt *ttm)
899 {
900 unsigned i;
901
902 for (i = 0; i < ttm->num_pages; ++i) {
903 if (ttm->pages[i]) {
904 ttm_mem_global_free_page(ttm->glob->mem_glob,
905 ttm->pages[i]);
906 ttm_put_pages(&ttm->pages[i], 1,
907 ttm->page_flags,
908 ttm->caching_state);
909 }
910 }
911 ttm->state = tt_unpopulated;
912 }
913 EXPORT_SYMBOL(ttm_pool_unpopulate);
914
915 int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
916 {
917 struct ttm_page_pool *p;
918 unsigned i;
919 char *h[] = {"pool", "refills", "pages freed", "size"};
920 if (!_manager) {
921 seq_printf(m, "No pool allocator running.\n");
922 return 0;
923 }
924 seq_printf(m, "%6s %12s %13s %8s\n",
925 h[0], h[1], h[2], h[3]);
926 for (i = 0; i < NUM_POOLS; ++i) {
927 p = &_manager->pools[i];
928
929 seq_printf(m, "%6s %12ld %13ld %8d\n",
930 p->name, p->nrefills,
931 p->nfrees, p->npages);
932 }
933 return 0;
934 }
935 EXPORT_SYMBOL(ttm_page_alloc_debugfs);
This page took 0.053593 seconds and 5 git commands to generate.