Merge branch 'stable-4.7' of git://git.infradead.org/users/pcmoore/audit
[deliverable/linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 /**
10 * DOC: VC4 CRTC module
11 *
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * output's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
16 *
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, this file also manages
19 * setup of the VC4 HVS's display elements on the CRTC.
20 *
21 * The 2835 has 3 different pixel valves. pv0 in the audio power
22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
23 * image domain can feed either HDMI or the SDTV controller. The
24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25 * SDTV, etc.) according to which output type is chosen in the mux.
26 *
27 * For power management, the pixel valve's registers are all clocked
28 * by the AXI clock, while the timings and FIFOs make use of the
29 * output-specific clock. Since the encoders also directly consume
30 * the CPRMAN clocks, and know what timings they need, they are the
31 * ones that set the clock.
32 */
33
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43
44 struct vc4_crtc {
45 struct drm_crtc base;
46 const struct vc4_crtc_data *data;
47 void __iomem *regs;
48
49 /* Which HVS channel we're using for our CRTC. */
50 int channel;
51
52 u8 lut_r[256];
53 u8 lut_g[256];
54 u8 lut_b[256];
55
56 struct drm_pending_vblank_event *event;
57 };
58
59 struct vc4_crtc_state {
60 struct drm_crtc_state base;
61 /* Dlist area for this CRTC configuration. */
62 struct drm_mm_node mm;
63 };
64
65 static inline struct vc4_crtc *
66 to_vc4_crtc(struct drm_crtc *crtc)
67 {
68 return (struct vc4_crtc *)crtc;
69 }
70
71 static inline struct vc4_crtc_state *
72 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
73 {
74 return (struct vc4_crtc_state *)crtc_state;
75 }
76
77 struct vc4_crtc_data {
78 /* Which channel of the HVS this pixelvalve sources from. */
79 int hvs_channel;
80
81 enum vc4_encoder_type encoder0_type;
82 enum vc4_encoder_type encoder1_type;
83 };
84
85 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
86 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
87
88 #define CRTC_REG(reg) { reg, #reg }
89 static const struct {
90 u32 reg;
91 const char *name;
92 } crtc_regs[] = {
93 CRTC_REG(PV_CONTROL),
94 CRTC_REG(PV_V_CONTROL),
95 CRTC_REG(PV_VSYNCD_EVEN),
96 CRTC_REG(PV_HORZA),
97 CRTC_REG(PV_HORZB),
98 CRTC_REG(PV_VERTA),
99 CRTC_REG(PV_VERTB),
100 CRTC_REG(PV_VERTA_EVEN),
101 CRTC_REG(PV_VERTB_EVEN),
102 CRTC_REG(PV_INTEN),
103 CRTC_REG(PV_INTSTAT),
104 CRTC_REG(PV_STAT),
105 CRTC_REG(PV_HACT_ACT),
106 };
107
108 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
109 {
110 int i;
111
112 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
113 DRM_INFO("0x%04x (%s): 0x%08x\n",
114 crtc_regs[i].reg, crtc_regs[i].name,
115 CRTC_READ(crtc_regs[i].reg));
116 }
117 }
118
119 #ifdef CONFIG_DEBUG_FS
120 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
121 {
122 struct drm_info_node *node = (struct drm_info_node *)m->private;
123 struct drm_device *dev = node->minor->dev;
124 int crtc_index = (uintptr_t)node->info_ent->data;
125 struct drm_crtc *crtc;
126 struct vc4_crtc *vc4_crtc;
127 int i;
128
129 i = 0;
130 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
131 if (i == crtc_index)
132 break;
133 i++;
134 }
135 if (!crtc)
136 return 0;
137 vc4_crtc = to_vc4_crtc(crtc);
138
139 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
140 seq_printf(m, "%s (0x%04x): 0x%08x\n",
141 crtc_regs[i].name, crtc_regs[i].reg,
142 CRTC_READ(crtc_regs[i].reg));
143 }
144
145 return 0;
146 }
147 #endif
148
149 static void vc4_crtc_destroy(struct drm_crtc *crtc)
150 {
151 drm_crtc_cleanup(crtc);
152 }
153
154 static void
155 vc4_crtc_lut_load(struct drm_crtc *crtc)
156 {
157 struct drm_device *dev = crtc->dev;
158 struct vc4_dev *vc4 = to_vc4_dev(dev);
159 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
160 u32 i;
161
162 /* The LUT memory is laid out with each HVS channel in order,
163 * each of which takes 256 writes for R, 256 for G, then 256
164 * for B.
165 */
166 HVS_WRITE(SCALER_GAMADDR,
167 SCALER_GAMADDR_AUTOINC |
168 (vc4_crtc->channel * 3 * crtc->gamma_size));
169
170 for (i = 0; i < crtc->gamma_size; i++)
171 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
172 for (i = 0; i < crtc->gamma_size; i++)
173 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
174 for (i = 0; i < crtc->gamma_size; i++)
175 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
176 }
177
178 static void
179 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
180 uint32_t start, uint32_t size)
181 {
182 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
183 u32 i;
184
185 for (i = start; i < start + size; i++) {
186 vc4_crtc->lut_r[i] = r[i] >> 8;
187 vc4_crtc->lut_g[i] = g[i] >> 8;
188 vc4_crtc->lut_b[i] = b[i] >> 8;
189 }
190
191 vc4_crtc_lut_load(crtc);
192 }
193
194 static u32 vc4_get_fifo_full_level(u32 format)
195 {
196 static const u32 fifo_len_bytes = 64;
197 static const u32 hvs_latency_pix = 6;
198
199 switch (format) {
200 case PV_CONTROL_FORMAT_DSIV_16:
201 case PV_CONTROL_FORMAT_DSIC_16:
202 return fifo_len_bytes - 2 * hvs_latency_pix;
203 case PV_CONTROL_FORMAT_DSIV_18:
204 return fifo_len_bytes - 14;
205 case PV_CONTROL_FORMAT_24:
206 case PV_CONTROL_FORMAT_DSIV_24:
207 default:
208 return fifo_len_bytes - 3 * hvs_latency_pix;
209 }
210 }
211
212 /*
213 * Returns the clock select bit for the connector attached to the
214 * CRTC.
215 */
216 static int vc4_get_clock_select(struct drm_crtc *crtc)
217 {
218 struct drm_connector *connector;
219
220 drm_for_each_connector(connector, crtc->dev) {
221 if (connector->state->crtc == crtc) {
222 struct drm_encoder *encoder = connector->encoder;
223 struct vc4_encoder *vc4_encoder =
224 to_vc4_encoder(encoder);
225
226 return vc4_encoder->clock_select;
227 }
228 }
229
230 return -1;
231 }
232
233 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
234 {
235 struct drm_device *dev = crtc->dev;
236 struct vc4_dev *vc4 = to_vc4_dev(dev);
237 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
238 struct drm_crtc_state *state = crtc->state;
239 struct drm_display_mode *mode = &state->adjusted_mode;
240 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
241 u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
242 u32 format = PV_CONTROL_FORMAT_24;
243 bool debug_dump_regs = false;
244 int clock_select = vc4_get_clock_select(crtc);
245
246 if (debug_dump_regs) {
247 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
248 vc4_crtc_dump_regs(vc4_crtc);
249 }
250
251 /* Reset the PV fifo. */
252 CRTC_WRITE(PV_CONTROL, 0);
253 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
254 CRTC_WRITE(PV_CONTROL, 0);
255
256 CRTC_WRITE(PV_HORZA,
257 VC4_SET_FIELD(mode->htotal - mode->hsync_end,
258 PV_HORZA_HBP) |
259 VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
260 PV_HORZA_HSYNC));
261 CRTC_WRITE(PV_HORZB,
262 VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
263 PV_HORZB_HFP) |
264 VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
265
266 CRTC_WRITE(PV_VERTA,
267 VC4_SET_FIELD(mode->vtotal - mode->vsync_end,
268 PV_VERTA_VBP) |
269 VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
270 PV_VERTA_VSYNC));
271 CRTC_WRITE(PV_VERTB,
272 VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
273 PV_VERTB_VFP) |
274 VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
275
276 if (interlace) {
277 CRTC_WRITE(PV_VERTA_EVEN,
278 VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
279 PV_VERTA_VBP) |
280 VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
281 PV_VERTA_VSYNC));
282 CRTC_WRITE(PV_VERTB_EVEN,
283 VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
284 PV_VERTB_VFP) |
285 VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
286 }
287
288 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
289
290 CRTC_WRITE(PV_V_CONTROL,
291 PV_VCONTROL_CONTINUOUS |
292 (interlace ? PV_VCONTROL_INTERLACE : 0));
293
294 CRTC_WRITE(PV_CONTROL,
295 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
296 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
297 PV_CONTROL_FIFO_LEVEL) |
298 PV_CONTROL_CLR_AT_START |
299 PV_CONTROL_TRIGGER_UNDERFLOW |
300 PV_CONTROL_WAIT_HSTART |
301 VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
302 PV_CONTROL_FIFO_CLR |
303 PV_CONTROL_EN);
304
305 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
306 SCALER_DISPBKGND_AUTOHS |
307 SCALER_DISPBKGND_GAMMA |
308 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
309
310 /* Reload the LUT, since the SRAMs would have been disabled if
311 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
312 */
313 vc4_crtc_lut_load(crtc);
314
315 if (debug_dump_regs) {
316 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
317 vc4_crtc_dump_regs(vc4_crtc);
318 }
319 }
320
321 static void require_hvs_enabled(struct drm_device *dev)
322 {
323 struct vc4_dev *vc4 = to_vc4_dev(dev);
324
325 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
326 SCALER_DISPCTRL_ENABLE);
327 }
328
329 static void vc4_crtc_disable(struct drm_crtc *crtc)
330 {
331 struct drm_device *dev = crtc->dev;
332 struct vc4_dev *vc4 = to_vc4_dev(dev);
333 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
334 u32 chan = vc4_crtc->channel;
335 int ret;
336 require_hvs_enabled(dev);
337
338 CRTC_WRITE(PV_V_CONTROL,
339 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
340 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
341 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
342
343 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
344 SCALER_DISPCTRLX_ENABLE) {
345 HVS_WRITE(SCALER_DISPCTRLX(chan),
346 SCALER_DISPCTRLX_RESET);
347
348 /* While the docs say that reset is self-clearing, it
349 * seems it doesn't actually.
350 */
351 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
352 }
353
354 /* Once we leave, the scaler should be disabled and its fifo empty. */
355
356 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
357
358 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
359 SCALER_DISPSTATX_MODE) !=
360 SCALER_DISPSTATX_MODE_DISABLED);
361
362 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
363 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
364 SCALER_DISPSTATX_EMPTY);
365 }
366
367 static void vc4_crtc_enable(struct drm_crtc *crtc)
368 {
369 struct drm_device *dev = crtc->dev;
370 struct vc4_dev *vc4 = to_vc4_dev(dev);
371 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
372 struct drm_crtc_state *state = crtc->state;
373 struct drm_display_mode *mode = &state->adjusted_mode;
374
375 require_hvs_enabled(dev);
376
377 /* Turn on the scaler, which will wait for vstart to start
378 * compositing.
379 */
380 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
381 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
382 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
383 SCALER_DISPCTRLX_ENABLE);
384
385 /* Turn on the pixel valve, which will emit the vstart signal. */
386 CRTC_WRITE(PV_V_CONTROL,
387 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
388 }
389
390 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
391 struct drm_crtc_state *state)
392 {
393 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
394 struct drm_device *dev = crtc->dev;
395 struct vc4_dev *vc4 = to_vc4_dev(dev);
396 struct drm_plane *plane;
397 unsigned long flags;
398 u32 dlist_count = 0;
399 int ret;
400
401 /* The pixelvalve can only feed one encoder (and encoders are
402 * 1:1 with connectors.)
403 */
404 if (hweight32(state->connector_mask) > 1)
405 return -EINVAL;
406
407 drm_atomic_crtc_state_for_each_plane(plane, state) {
408 struct drm_plane_state *plane_state =
409 state->state->plane_states[drm_plane_index(plane)];
410
411 /* plane might not have changed, in which case take
412 * current state:
413 */
414 if (!plane_state)
415 plane_state = plane->state;
416
417 dlist_count += vc4_plane_dlist_size(plane_state);
418 }
419
420 dlist_count++; /* Account for SCALER_CTL0_END. */
421
422 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
423 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
424 dlist_count, 1, 0);
425 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
426 if (ret)
427 return ret;
428
429 return 0;
430 }
431
432 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
433 struct drm_crtc_state *old_state)
434 {
435 struct drm_device *dev = crtc->dev;
436 struct vc4_dev *vc4 = to_vc4_dev(dev);
437 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
438 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
439 struct drm_plane *plane;
440 bool debug_dump_regs = false;
441 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
442 u32 __iomem *dlist_next = dlist_start;
443
444 if (debug_dump_regs) {
445 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
446 vc4_hvs_dump_state(dev);
447 }
448
449 /* Copy all the active planes' dlist contents to the hardware dlist. */
450 drm_atomic_crtc_for_each_plane(plane, crtc) {
451 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
452 }
453
454 writel(SCALER_CTL0_END, dlist_next);
455 dlist_next++;
456
457 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
458
459 if (crtc->state->event) {
460 unsigned long flags;
461
462 crtc->state->event->pipe = drm_crtc_index(crtc);
463
464 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
465
466 spin_lock_irqsave(&dev->event_lock, flags);
467 vc4_crtc->event = crtc->state->event;
468 crtc->state->event = NULL;
469
470 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
471 vc4_state->mm.start);
472
473 spin_unlock_irqrestore(&dev->event_lock, flags);
474 } else {
475 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
476 vc4_state->mm.start);
477 }
478
479 if (debug_dump_regs) {
480 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
481 vc4_hvs_dump_state(dev);
482 }
483 }
484
485 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
486 {
487 struct vc4_dev *vc4 = to_vc4_dev(dev);
488 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
489
490 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
491
492 return 0;
493 }
494
495 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
496 {
497 struct vc4_dev *vc4 = to_vc4_dev(dev);
498 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
499
500 CRTC_WRITE(PV_INTEN, 0);
501 }
502
503 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
504 {
505 struct drm_crtc *crtc = &vc4_crtc->base;
506 struct drm_device *dev = crtc->dev;
507 struct vc4_dev *vc4 = to_vc4_dev(dev);
508 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
509 u32 chan = vc4_crtc->channel;
510 unsigned long flags;
511
512 spin_lock_irqsave(&dev->event_lock, flags);
513 if (vc4_crtc->event &&
514 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
515 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
516 vc4_crtc->event = NULL;
517 drm_crtc_vblank_put(crtc);
518 }
519 spin_unlock_irqrestore(&dev->event_lock, flags);
520 }
521
522 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
523 {
524 struct vc4_crtc *vc4_crtc = data;
525 u32 stat = CRTC_READ(PV_INTSTAT);
526 irqreturn_t ret = IRQ_NONE;
527
528 if (stat & PV_INT_VFP_START) {
529 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
530 drm_crtc_handle_vblank(&vc4_crtc->base);
531 vc4_crtc_handle_page_flip(vc4_crtc);
532 ret = IRQ_HANDLED;
533 }
534
535 return ret;
536 }
537
538 struct vc4_async_flip_state {
539 struct drm_crtc *crtc;
540 struct drm_framebuffer *fb;
541 struct drm_pending_vblank_event *event;
542
543 struct vc4_seqno_cb cb;
544 };
545
546 /* Called when the V3D execution for the BO being flipped to is done, so that
547 * we can actually update the plane's address to point to it.
548 */
549 static void
550 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
551 {
552 struct vc4_async_flip_state *flip_state =
553 container_of(cb, struct vc4_async_flip_state, cb);
554 struct drm_crtc *crtc = flip_state->crtc;
555 struct drm_device *dev = crtc->dev;
556 struct vc4_dev *vc4 = to_vc4_dev(dev);
557 struct drm_plane *plane = crtc->primary;
558
559 vc4_plane_async_set_fb(plane, flip_state->fb);
560 if (flip_state->event) {
561 unsigned long flags;
562
563 spin_lock_irqsave(&dev->event_lock, flags);
564 drm_crtc_send_vblank_event(crtc, flip_state->event);
565 spin_unlock_irqrestore(&dev->event_lock, flags);
566 }
567
568 drm_crtc_vblank_put(crtc);
569 drm_framebuffer_unreference(flip_state->fb);
570 kfree(flip_state);
571
572 up(&vc4->async_modeset);
573 }
574
575 /* Implements async (non-vblank-synced) page flips.
576 *
577 * The page flip ioctl needs to return immediately, so we grab the
578 * modeset semaphore on the pipe, and queue the address update for
579 * when V3D is done with the BO being flipped to.
580 */
581 static int vc4_async_page_flip(struct drm_crtc *crtc,
582 struct drm_framebuffer *fb,
583 struct drm_pending_vblank_event *event,
584 uint32_t flags)
585 {
586 struct drm_device *dev = crtc->dev;
587 struct vc4_dev *vc4 = to_vc4_dev(dev);
588 struct drm_plane *plane = crtc->primary;
589 int ret = 0;
590 struct vc4_async_flip_state *flip_state;
591 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
592 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
593
594 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
595 if (!flip_state)
596 return -ENOMEM;
597
598 drm_framebuffer_reference(fb);
599 flip_state->fb = fb;
600 flip_state->crtc = crtc;
601 flip_state->event = event;
602
603 /* Make sure all other async modesetes have landed. */
604 ret = down_interruptible(&vc4->async_modeset);
605 if (ret) {
606 drm_framebuffer_unreference(fb);
607 kfree(flip_state);
608 return ret;
609 }
610
611 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
612
613 /* Immediately update the plane's legacy fb pointer, so that later
614 * modeset prep sees the state that will be present when the semaphore
615 * is released.
616 */
617 drm_atomic_set_fb_for_plane(plane->state, fb);
618 plane->fb = fb;
619
620 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
621 vc4_async_page_flip_complete);
622
623 /* Driver takes ownership of state on successful async commit. */
624 return 0;
625 }
626
627 static int vc4_page_flip(struct drm_crtc *crtc,
628 struct drm_framebuffer *fb,
629 struct drm_pending_vblank_event *event,
630 uint32_t flags)
631 {
632 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
633 return vc4_async_page_flip(crtc, fb, event, flags);
634 else
635 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
636 }
637
638 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
639 {
640 struct vc4_crtc_state *vc4_state;
641
642 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
643 if (!vc4_state)
644 return NULL;
645
646 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
647 return &vc4_state->base;
648 }
649
650 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
651 struct drm_crtc_state *state)
652 {
653 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
654 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
655
656 if (vc4_state->mm.allocated) {
657 unsigned long flags;
658
659 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
660 drm_mm_remove_node(&vc4_state->mm);
661 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
662
663 }
664
665 __drm_atomic_helper_crtc_destroy_state(state);
666 }
667
668 static const struct drm_crtc_funcs vc4_crtc_funcs = {
669 .set_config = drm_atomic_helper_set_config,
670 .destroy = vc4_crtc_destroy,
671 .page_flip = vc4_page_flip,
672 .set_property = NULL,
673 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
674 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
675 .reset = drm_atomic_helper_crtc_reset,
676 .atomic_duplicate_state = vc4_crtc_duplicate_state,
677 .atomic_destroy_state = vc4_crtc_destroy_state,
678 .gamma_set = vc4_crtc_gamma_set,
679 };
680
681 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
682 .mode_set_nofb = vc4_crtc_mode_set_nofb,
683 .disable = vc4_crtc_disable,
684 .enable = vc4_crtc_enable,
685 .atomic_check = vc4_crtc_atomic_check,
686 .atomic_flush = vc4_crtc_atomic_flush,
687 };
688
689 static const struct vc4_crtc_data pv0_data = {
690 .hvs_channel = 0,
691 .encoder0_type = VC4_ENCODER_TYPE_DSI0,
692 .encoder1_type = VC4_ENCODER_TYPE_DPI,
693 };
694
695 static const struct vc4_crtc_data pv1_data = {
696 .hvs_channel = 2,
697 .encoder0_type = VC4_ENCODER_TYPE_DSI1,
698 .encoder1_type = VC4_ENCODER_TYPE_SMI,
699 };
700
701 static const struct vc4_crtc_data pv2_data = {
702 .hvs_channel = 1,
703 .encoder0_type = VC4_ENCODER_TYPE_VEC,
704 .encoder1_type = VC4_ENCODER_TYPE_HDMI,
705 };
706
707 static const struct of_device_id vc4_crtc_dt_match[] = {
708 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
709 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
710 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
711 {}
712 };
713
714 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
715 struct drm_crtc *crtc)
716 {
717 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
718 struct drm_encoder *encoder;
719
720 drm_for_each_encoder(encoder, drm) {
721 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
722
723 if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
724 vc4_encoder->clock_select = 0;
725 encoder->possible_crtcs |= drm_crtc_mask(crtc);
726 } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
727 vc4_encoder->clock_select = 1;
728 encoder->possible_crtcs |= drm_crtc_mask(crtc);
729 }
730 }
731 }
732
733 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
734 {
735 struct platform_device *pdev = to_platform_device(dev);
736 struct drm_device *drm = dev_get_drvdata(master);
737 struct vc4_dev *vc4 = to_vc4_dev(drm);
738 struct vc4_crtc *vc4_crtc;
739 struct drm_crtc *crtc;
740 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
741 const struct of_device_id *match;
742 int ret, i;
743
744 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
745 if (!vc4_crtc)
746 return -ENOMEM;
747 crtc = &vc4_crtc->base;
748
749 match = of_match_device(vc4_crtc_dt_match, dev);
750 if (!match)
751 return -ENODEV;
752 vc4_crtc->data = match->data;
753
754 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
755 if (IS_ERR(vc4_crtc->regs))
756 return PTR_ERR(vc4_crtc->regs);
757
758 /* For now, we create just the primary and the legacy cursor
759 * planes. We should be able to stack more planes on easily,
760 * but to do that we would need to compute the bandwidth
761 * requirement of the plane configuration, and reject ones
762 * that will take too much.
763 */
764 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
765 if (IS_ERR(primary_plane)) {
766 dev_err(dev, "failed to construct primary plane\n");
767 ret = PTR_ERR(primary_plane);
768 goto err;
769 }
770
771 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
772 &vc4_crtc_funcs, NULL);
773 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
774 primary_plane->crtc = crtc;
775 vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
776 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
777 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
778
779 /* Set up some arbitrary number of planes. We're not limited
780 * by a set number of physical registers, just the space in
781 * the HVS (16k) and how small an plane can be (28 bytes).
782 * However, each plane we set up takes up some memory, and
783 * increases the cost of looping over planes, which atomic
784 * modesetting does quite a bit. As a result, we pick a
785 * modest number of planes to expose, that should hopefully
786 * still cover any sane usecase.
787 */
788 for (i = 0; i < 8; i++) {
789 struct drm_plane *plane =
790 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
791
792 if (IS_ERR(plane))
793 continue;
794
795 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
796 }
797
798 /* Set up the legacy cursor after overlay initialization,
799 * since we overlay planes on the CRTC in the order they were
800 * initialized.
801 */
802 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
803 if (!IS_ERR(cursor_plane)) {
804 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
805 cursor_plane->crtc = crtc;
806 crtc->cursor = cursor_plane;
807 }
808
809 CRTC_WRITE(PV_INTEN, 0);
810 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
811 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
812 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
813 if (ret)
814 goto err_destroy_planes;
815
816 vc4_set_crtc_possible_masks(drm, crtc);
817
818 for (i = 0; i < crtc->gamma_size; i++) {
819 vc4_crtc->lut_r[i] = i;
820 vc4_crtc->lut_g[i] = i;
821 vc4_crtc->lut_b[i] = i;
822 }
823
824 platform_set_drvdata(pdev, vc4_crtc);
825
826 return 0;
827
828 err_destroy_planes:
829 list_for_each_entry_safe(destroy_plane, temp,
830 &drm->mode_config.plane_list, head) {
831 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
832 destroy_plane->funcs->destroy(destroy_plane);
833 }
834 err:
835 return ret;
836 }
837
838 static void vc4_crtc_unbind(struct device *dev, struct device *master,
839 void *data)
840 {
841 struct platform_device *pdev = to_platform_device(dev);
842 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
843
844 vc4_crtc_destroy(&vc4_crtc->base);
845
846 CRTC_WRITE(PV_INTEN, 0);
847
848 platform_set_drvdata(pdev, NULL);
849 }
850
851 static const struct component_ops vc4_crtc_ops = {
852 .bind = vc4_crtc_bind,
853 .unbind = vc4_crtc_unbind,
854 };
855
856 static int vc4_crtc_dev_probe(struct platform_device *pdev)
857 {
858 return component_add(&pdev->dev, &vc4_crtc_ops);
859 }
860
861 static int vc4_crtc_dev_remove(struct platform_device *pdev)
862 {
863 component_del(&pdev->dev, &vc4_crtc_ops);
864 return 0;
865 }
866
867 struct platform_driver vc4_crtc_driver = {
868 .probe = vc4_crtc_dev_probe,
869 .remove = vc4_crtc_dev_remove,
870 .driver = {
871 .name = "vc4_crtc",
872 .of_match_table = vc4_crtc_dt_match,
873 },
874 };
This page took 0.051647 seconds and 5 git commands to generate.