Merge tag 'keys-devel-20131210' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / gpu / drm / vmwgfx / vmwgfx_buffer.c
1 /**************************************************************************
2 *
3 * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 #include <drm/ttm/ttm_page_alloc.h>
32
33 static uint32_t vram_placement_flags = TTM_PL_FLAG_VRAM |
34 TTM_PL_FLAG_CACHED;
35
36 static uint32_t vram_ne_placement_flags = TTM_PL_FLAG_VRAM |
37 TTM_PL_FLAG_CACHED |
38 TTM_PL_FLAG_NO_EVICT;
39
40 static uint32_t sys_placement_flags = TTM_PL_FLAG_SYSTEM |
41 TTM_PL_FLAG_CACHED;
42
43 static uint32_t gmr_placement_flags = VMW_PL_FLAG_GMR |
44 TTM_PL_FLAG_CACHED;
45
46 static uint32_t gmr_ne_placement_flags = VMW_PL_FLAG_GMR |
47 TTM_PL_FLAG_CACHED |
48 TTM_PL_FLAG_NO_EVICT;
49
50 struct ttm_placement vmw_vram_placement = {
51 .fpfn = 0,
52 .lpfn = 0,
53 .num_placement = 1,
54 .placement = &vram_placement_flags,
55 .num_busy_placement = 1,
56 .busy_placement = &vram_placement_flags
57 };
58
59 static uint32_t vram_gmr_placement_flags[] = {
60 TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED,
61 VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
62 };
63
64 static uint32_t gmr_vram_placement_flags[] = {
65 VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED,
66 TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
67 };
68
69 struct ttm_placement vmw_vram_gmr_placement = {
70 .fpfn = 0,
71 .lpfn = 0,
72 .num_placement = 2,
73 .placement = vram_gmr_placement_flags,
74 .num_busy_placement = 1,
75 .busy_placement = &gmr_placement_flags
76 };
77
78 static uint32_t vram_gmr_ne_placement_flags[] = {
79 TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT,
80 VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
81 };
82
83 struct ttm_placement vmw_vram_gmr_ne_placement = {
84 .fpfn = 0,
85 .lpfn = 0,
86 .num_placement = 2,
87 .placement = vram_gmr_ne_placement_flags,
88 .num_busy_placement = 1,
89 .busy_placement = &gmr_ne_placement_flags
90 };
91
92 struct ttm_placement vmw_vram_sys_placement = {
93 .fpfn = 0,
94 .lpfn = 0,
95 .num_placement = 1,
96 .placement = &vram_placement_flags,
97 .num_busy_placement = 1,
98 .busy_placement = &sys_placement_flags
99 };
100
101 struct ttm_placement vmw_vram_ne_placement = {
102 .fpfn = 0,
103 .lpfn = 0,
104 .num_placement = 1,
105 .placement = &vram_ne_placement_flags,
106 .num_busy_placement = 1,
107 .busy_placement = &vram_ne_placement_flags
108 };
109
110 struct ttm_placement vmw_sys_placement = {
111 .fpfn = 0,
112 .lpfn = 0,
113 .num_placement = 1,
114 .placement = &sys_placement_flags,
115 .num_busy_placement = 1,
116 .busy_placement = &sys_placement_flags
117 };
118
119 static uint32_t evictable_placement_flags[] = {
120 TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED,
121 TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED,
122 VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
123 };
124
125 struct ttm_placement vmw_evictable_placement = {
126 .fpfn = 0,
127 .lpfn = 0,
128 .num_placement = 3,
129 .placement = evictable_placement_flags,
130 .num_busy_placement = 1,
131 .busy_placement = &sys_placement_flags
132 };
133
134 struct ttm_placement vmw_srf_placement = {
135 .fpfn = 0,
136 .lpfn = 0,
137 .num_placement = 1,
138 .num_busy_placement = 2,
139 .placement = &gmr_placement_flags,
140 .busy_placement = gmr_vram_placement_flags
141 };
142
143 struct vmw_ttm_tt {
144 struct ttm_dma_tt dma_ttm;
145 struct vmw_private *dev_priv;
146 int gmr_id;
147 struct sg_table sgt;
148 struct vmw_sg_table vsgt;
149 uint64_t sg_alloc_size;
150 bool mapped;
151 };
152
153 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
154
155 /**
156 * Helper functions to advance a struct vmw_piter iterator.
157 *
158 * @viter: Pointer to the iterator.
159 *
160 * These functions return false if past the end of the list,
161 * true otherwise. Functions are selected depending on the current
162 * DMA mapping mode.
163 */
164 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
165 {
166 return ++(viter->i) < viter->num_pages;
167 }
168
169 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
170 {
171 return __sg_page_iter_next(&viter->iter);
172 }
173
174
175 /**
176 * Helper functions to return a pointer to the current page.
177 *
178 * @viter: Pointer to the iterator
179 *
180 * These functions return a pointer to the page currently
181 * pointed to by @viter. Functions are selected depending on the
182 * current mapping mode.
183 */
184 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
185 {
186 return viter->pages[viter->i];
187 }
188
189 static struct page *__vmw_piter_sg_page(struct vmw_piter *viter)
190 {
191 return sg_page_iter_page(&viter->iter);
192 }
193
194
195 /**
196 * Helper functions to return the DMA address of the current page.
197 *
198 * @viter: Pointer to the iterator
199 *
200 * These functions return the DMA address of the page currently
201 * pointed to by @viter. Functions are selected depending on the
202 * current mapping mode.
203 */
204 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
205 {
206 return page_to_phys(viter->pages[viter->i]);
207 }
208
209 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
210 {
211 return viter->addrs[viter->i];
212 }
213
214 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
215 {
216 return sg_page_iter_dma_address(&viter->iter);
217 }
218
219
220 /**
221 * vmw_piter_start - Initialize a struct vmw_piter.
222 *
223 * @viter: Pointer to the iterator to initialize
224 * @vsgt: Pointer to a struct vmw_sg_table to initialize from
225 *
226 * Note that we're following the convention of __sg_page_iter_start, so that
227 * the iterator doesn't point to a valid page after initialization; it has
228 * to be advanced one step first.
229 */
230 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
231 unsigned long p_offset)
232 {
233 viter->i = p_offset - 1;
234 viter->num_pages = vsgt->num_pages;
235 switch (vsgt->mode) {
236 case vmw_dma_phys:
237 viter->next = &__vmw_piter_non_sg_next;
238 viter->dma_address = &__vmw_piter_phys_addr;
239 viter->page = &__vmw_piter_non_sg_page;
240 viter->pages = vsgt->pages;
241 break;
242 case vmw_dma_alloc_coherent:
243 viter->next = &__vmw_piter_non_sg_next;
244 viter->dma_address = &__vmw_piter_dma_addr;
245 viter->page = &__vmw_piter_non_sg_page;
246 viter->addrs = vsgt->addrs;
247 break;
248 case vmw_dma_map_populate:
249 case vmw_dma_map_bind:
250 viter->next = &__vmw_piter_sg_next;
251 viter->dma_address = &__vmw_piter_sg_addr;
252 viter->page = &__vmw_piter_sg_page;
253 __sg_page_iter_start(&viter->iter, vsgt->sgt->sgl,
254 vsgt->sgt->orig_nents, p_offset);
255 break;
256 default:
257 BUG();
258 }
259 }
260
261 /**
262 * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for
263 * TTM pages
264 *
265 * @vmw_tt: Pointer to a struct vmw_ttm_backend
266 *
267 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
268 */
269 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
270 {
271 struct device *dev = vmw_tt->dev_priv->dev->dev;
272
273 dma_unmap_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.nents,
274 DMA_BIDIRECTIONAL);
275 vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
276 }
277
278 /**
279 * vmw_ttm_map_for_dma - map TTM pages to get device addresses
280 *
281 * @vmw_tt: Pointer to a struct vmw_ttm_backend
282 *
283 * This function is used to get device addresses from the kernel DMA layer.
284 * However, it's violating the DMA API in that when this operation has been
285 * performed, it's illegal for the CPU to write to the pages without first
286 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
287 * therefore only legal to call this function if we know that the function
288 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
289 * a CPU write buffer flush.
290 */
291 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
292 {
293 struct device *dev = vmw_tt->dev_priv->dev->dev;
294 int ret;
295
296 ret = dma_map_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.orig_nents,
297 DMA_BIDIRECTIONAL);
298 if (unlikely(ret == 0))
299 return -ENOMEM;
300
301 vmw_tt->sgt.nents = ret;
302
303 return 0;
304 }
305
306 /**
307 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
308 *
309 * @vmw_tt: Pointer to a struct vmw_ttm_tt
310 *
311 * Select the correct function for and make sure the TTM pages are
312 * visible to the device. Allocate storage for the device mappings.
313 * If a mapping has already been performed, indicated by the storage
314 * pointer being non NULL, the function returns success.
315 */
316 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
317 {
318 struct vmw_private *dev_priv = vmw_tt->dev_priv;
319 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
320 struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
321 struct vmw_piter iter;
322 dma_addr_t old;
323 int ret = 0;
324 static size_t sgl_size;
325 static size_t sgt_size;
326
327 if (vmw_tt->mapped)
328 return 0;
329
330 vsgt->mode = dev_priv->map_mode;
331 vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
332 vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
333 vsgt->addrs = vmw_tt->dma_ttm.dma_address;
334 vsgt->sgt = &vmw_tt->sgt;
335
336 switch (dev_priv->map_mode) {
337 case vmw_dma_map_bind:
338 case vmw_dma_map_populate:
339 if (unlikely(!sgl_size)) {
340 sgl_size = ttm_round_pot(sizeof(struct scatterlist));
341 sgt_size = ttm_round_pot(sizeof(struct sg_table));
342 }
343 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
344 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, false,
345 true);
346 if (unlikely(ret != 0))
347 return ret;
348
349 ret = sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
350 vsgt->num_pages, 0,
351 (unsigned long)
352 vsgt->num_pages << PAGE_SHIFT,
353 GFP_KERNEL);
354 if (unlikely(ret != 0))
355 goto out_sg_alloc_fail;
356
357 if (vsgt->num_pages > vmw_tt->sgt.nents) {
358 uint64_t over_alloc =
359 sgl_size * (vsgt->num_pages -
360 vmw_tt->sgt.nents);
361
362 ttm_mem_global_free(glob, over_alloc);
363 vmw_tt->sg_alloc_size -= over_alloc;
364 }
365
366 ret = vmw_ttm_map_for_dma(vmw_tt);
367 if (unlikely(ret != 0))
368 goto out_map_fail;
369
370 break;
371 default:
372 break;
373 }
374
375 old = ~((dma_addr_t) 0);
376 vmw_tt->vsgt.num_regions = 0;
377 for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
378 dma_addr_t cur = vmw_piter_dma_addr(&iter);
379
380 if (cur != old + PAGE_SIZE)
381 vmw_tt->vsgt.num_regions++;
382 old = cur;
383 }
384
385 vmw_tt->mapped = true;
386 return 0;
387
388 out_map_fail:
389 sg_free_table(vmw_tt->vsgt.sgt);
390 vmw_tt->vsgt.sgt = NULL;
391 out_sg_alloc_fail:
392 ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
393 return ret;
394 }
395
396 /**
397 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
398 *
399 * @vmw_tt: Pointer to a struct vmw_ttm_tt
400 *
401 * Tear down any previously set up device DMA mappings and free
402 * any storage space allocated for them. If there are no mappings set up,
403 * this function is a NOP.
404 */
405 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
406 {
407 struct vmw_private *dev_priv = vmw_tt->dev_priv;
408
409 if (!vmw_tt->vsgt.sgt)
410 return;
411
412 switch (dev_priv->map_mode) {
413 case vmw_dma_map_bind:
414 case vmw_dma_map_populate:
415 vmw_ttm_unmap_from_dma(vmw_tt);
416 sg_free_table(vmw_tt->vsgt.sgt);
417 vmw_tt->vsgt.sgt = NULL;
418 ttm_mem_global_free(vmw_mem_glob(dev_priv),
419 vmw_tt->sg_alloc_size);
420 break;
421 default:
422 break;
423 }
424 vmw_tt->mapped = false;
425 }
426
427 static int vmw_ttm_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
428 {
429 struct vmw_ttm_tt *vmw_be =
430 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
431 int ret;
432
433 ret = vmw_ttm_map_dma(vmw_be);
434 if (unlikely(ret != 0))
435 return ret;
436
437 vmw_be->gmr_id = bo_mem->start;
438
439 return vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
440 ttm->num_pages, vmw_be->gmr_id);
441 }
442
443 static int vmw_ttm_unbind(struct ttm_tt *ttm)
444 {
445 struct vmw_ttm_tt *vmw_be =
446 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
447
448 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
449
450 if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
451 vmw_ttm_unmap_dma(vmw_be);
452
453 return 0;
454 }
455
456 static void vmw_ttm_destroy(struct ttm_tt *ttm)
457 {
458 struct vmw_ttm_tt *vmw_be =
459 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
460
461 vmw_ttm_unmap_dma(vmw_be);
462 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
463 ttm_dma_tt_fini(&vmw_be->dma_ttm);
464 else
465 ttm_tt_fini(ttm);
466 kfree(vmw_be);
467 }
468
469 static int vmw_ttm_populate(struct ttm_tt *ttm)
470 {
471 struct vmw_ttm_tt *vmw_tt =
472 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
473 struct vmw_private *dev_priv = vmw_tt->dev_priv;
474 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
475 int ret;
476
477 if (ttm->state != tt_unpopulated)
478 return 0;
479
480 if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
481 size_t size =
482 ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
483 ret = ttm_mem_global_alloc(glob, size, false, true);
484 if (unlikely(ret != 0))
485 return ret;
486
487 ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
488 if (unlikely(ret != 0))
489 ttm_mem_global_free(glob, size);
490 } else
491 ret = ttm_pool_populate(ttm);
492
493 return ret;
494 }
495
496 static void vmw_ttm_unpopulate(struct ttm_tt *ttm)
497 {
498 struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
499 dma_ttm.ttm);
500 struct vmw_private *dev_priv = vmw_tt->dev_priv;
501 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
502
503 vmw_ttm_unmap_dma(vmw_tt);
504 if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
505 size_t size =
506 ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
507
508 ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
509 ttm_mem_global_free(glob, size);
510 } else
511 ttm_pool_unpopulate(ttm);
512 }
513
514 static struct ttm_backend_func vmw_ttm_func = {
515 .bind = vmw_ttm_bind,
516 .unbind = vmw_ttm_unbind,
517 .destroy = vmw_ttm_destroy,
518 };
519
520 struct ttm_tt *vmw_ttm_tt_create(struct ttm_bo_device *bdev,
521 unsigned long size, uint32_t page_flags,
522 struct page *dummy_read_page)
523 {
524 struct vmw_ttm_tt *vmw_be;
525 int ret;
526
527 vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
528 if (!vmw_be)
529 return NULL;
530
531 vmw_be->dma_ttm.ttm.func = &vmw_ttm_func;
532 vmw_be->dev_priv = container_of(bdev, struct vmw_private, bdev);
533
534 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
535 ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bdev, size, page_flags,
536 dummy_read_page);
537 else
538 ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bdev, size, page_flags,
539 dummy_read_page);
540 if (unlikely(ret != 0))
541 goto out_no_init;
542
543 return &vmw_be->dma_ttm.ttm;
544 out_no_init:
545 kfree(vmw_be);
546 return NULL;
547 }
548
549 int vmw_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
550 {
551 return 0;
552 }
553
554 int vmw_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
555 struct ttm_mem_type_manager *man)
556 {
557 switch (type) {
558 case TTM_PL_SYSTEM:
559 /* System memory */
560
561 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
562 man->available_caching = TTM_PL_FLAG_CACHED;
563 man->default_caching = TTM_PL_FLAG_CACHED;
564 break;
565 case TTM_PL_VRAM:
566 /* "On-card" video ram */
567 man->func = &ttm_bo_manager_func;
568 man->gpu_offset = 0;
569 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_MAPPABLE;
570 man->available_caching = TTM_PL_FLAG_CACHED;
571 man->default_caching = TTM_PL_FLAG_CACHED;
572 break;
573 case VMW_PL_GMR:
574 /*
575 * "Guest Memory Regions" is an aperture like feature with
576 * one slot per bo. There is an upper limit of the number of
577 * slots as well as the bo size.
578 */
579 man->func = &vmw_gmrid_manager_func;
580 man->gpu_offset = 0;
581 man->flags = TTM_MEMTYPE_FLAG_CMA | TTM_MEMTYPE_FLAG_MAPPABLE;
582 man->available_caching = TTM_PL_FLAG_CACHED;
583 man->default_caching = TTM_PL_FLAG_CACHED;
584 break;
585 default:
586 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
587 return -EINVAL;
588 }
589 return 0;
590 }
591
592 void vmw_evict_flags(struct ttm_buffer_object *bo,
593 struct ttm_placement *placement)
594 {
595 *placement = vmw_sys_placement;
596 }
597
598 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
599 {
600 struct ttm_object_file *tfile =
601 vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
602
603 return vmw_user_dmabuf_verify_access(bo, tfile);
604 }
605
606 static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
607 {
608 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
609 struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
610
611 mem->bus.addr = NULL;
612 mem->bus.is_iomem = false;
613 mem->bus.offset = 0;
614 mem->bus.size = mem->num_pages << PAGE_SHIFT;
615 mem->bus.base = 0;
616 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
617 return -EINVAL;
618 switch (mem->mem_type) {
619 case TTM_PL_SYSTEM:
620 case VMW_PL_GMR:
621 return 0;
622 case TTM_PL_VRAM:
623 mem->bus.offset = mem->start << PAGE_SHIFT;
624 mem->bus.base = dev_priv->vram_start;
625 mem->bus.is_iomem = true;
626 break;
627 default:
628 return -EINVAL;
629 }
630 return 0;
631 }
632
633 static void vmw_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
634 {
635 }
636
637 static int vmw_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
638 {
639 return 0;
640 }
641
642 /**
643 * FIXME: We're using the old vmware polling method to sync.
644 * Do this with fences instead.
645 */
646
647 static void *vmw_sync_obj_ref(void *sync_obj)
648 {
649
650 return (void *)
651 vmw_fence_obj_reference((struct vmw_fence_obj *) sync_obj);
652 }
653
654 static void vmw_sync_obj_unref(void **sync_obj)
655 {
656 vmw_fence_obj_unreference((struct vmw_fence_obj **) sync_obj);
657 }
658
659 static int vmw_sync_obj_flush(void *sync_obj)
660 {
661 vmw_fence_obj_flush((struct vmw_fence_obj *) sync_obj);
662 return 0;
663 }
664
665 static bool vmw_sync_obj_signaled(void *sync_obj)
666 {
667 return vmw_fence_obj_signaled((struct vmw_fence_obj *) sync_obj,
668 DRM_VMW_FENCE_FLAG_EXEC);
669
670 }
671
672 static int vmw_sync_obj_wait(void *sync_obj, bool lazy, bool interruptible)
673 {
674 return vmw_fence_obj_wait((struct vmw_fence_obj *) sync_obj,
675 DRM_VMW_FENCE_FLAG_EXEC,
676 lazy, interruptible,
677 VMW_FENCE_WAIT_TIMEOUT);
678 }
679
680 struct ttm_bo_driver vmw_bo_driver = {
681 .ttm_tt_create = &vmw_ttm_tt_create,
682 .ttm_tt_populate = &vmw_ttm_populate,
683 .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
684 .invalidate_caches = vmw_invalidate_caches,
685 .init_mem_type = vmw_init_mem_type,
686 .evict_flags = vmw_evict_flags,
687 .move = NULL,
688 .verify_access = vmw_verify_access,
689 .sync_obj_signaled = vmw_sync_obj_signaled,
690 .sync_obj_wait = vmw_sync_obj_wait,
691 .sync_obj_flush = vmw_sync_obj_flush,
692 .sync_obj_unref = vmw_sync_obj_unref,
693 .sync_obj_ref = vmw_sync_obj_ref,
694 .move_notify = NULL,
695 .swap_notify = NULL,
696 .fault_reserve_notify = &vmw_ttm_fault_reserve_notify,
697 .io_mem_reserve = &vmw_ttm_io_mem_reserve,
698 .io_mem_free = &vmw_ttm_io_mem_free,
699 };
This page took 0.045886 seconds and 6 git commands to generate.