Merge remote-tracking branches 'asoc/fix/arizona', 'asoc/fix/atmel', 'asoc/fix/fsl...
[deliverable/linux.git] / drivers / gpu / drm / vmwgfx / vmwgfx_resource.c
1 /**************************************************************************
2 *
3 * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34
35 #define VMW_RES_EVICT_ERR_COUNT 10
36
37 struct vmw_user_dma_buffer {
38 struct ttm_prime_object prime;
39 struct vmw_dma_buffer dma;
40 };
41
42 struct vmw_bo_user_rep {
43 uint32_t handle;
44 uint64_t map_handle;
45 };
46
47 struct vmw_stream {
48 struct vmw_resource res;
49 uint32_t stream_id;
50 };
51
52 struct vmw_user_stream {
53 struct ttm_base_object base;
54 struct vmw_stream stream;
55 };
56
57
58 static uint64_t vmw_user_stream_size;
59
60 static const struct vmw_res_func vmw_stream_func = {
61 .res_type = vmw_res_stream,
62 .needs_backup = false,
63 .may_evict = false,
64 .type_name = "video streams",
65 .backup_placement = NULL,
66 .create = NULL,
67 .destroy = NULL,
68 .bind = NULL,
69 .unbind = NULL
70 };
71
72 static inline struct vmw_dma_buffer *
73 vmw_dma_buffer(struct ttm_buffer_object *bo)
74 {
75 return container_of(bo, struct vmw_dma_buffer, base);
76 }
77
78 static inline struct vmw_user_dma_buffer *
79 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
80 {
81 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
82 return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
83 }
84
85 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
86 {
87 kref_get(&res->kref);
88 return res;
89 }
90
91
92 /**
93 * vmw_resource_release_id - release a resource id to the id manager.
94 *
95 * @res: Pointer to the resource.
96 *
97 * Release the resource id to the resource id manager and set it to -1
98 */
99 void vmw_resource_release_id(struct vmw_resource *res)
100 {
101 struct vmw_private *dev_priv = res->dev_priv;
102 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
103
104 write_lock(&dev_priv->resource_lock);
105 if (res->id != -1)
106 idr_remove(idr, res->id);
107 res->id = -1;
108 write_unlock(&dev_priv->resource_lock);
109 }
110
111 static void vmw_resource_release(struct kref *kref)
112 {
113 struct vmw_resource *res =
114 container_of(kref, struct vmw_resource, kref);
115 struct vmw_private *dev_priv = res->dev_priv;
116 int id;
117 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
118
119 res->avail = false;
120 list_del_init(&res->lru_head);
121 write_unlock(&dev_priv->resource_lock);
122 if (res->backup) {
123 struct ttm_buffer_object *bo = &res->backup->base;
124
125 ttm_bo_reserve(bo, false, false, false, 0);
126 if (!list_empty(&res->mob_head) &&
127 res->func->unbind != NULL) {
128 struct ttm_validate_buffer val_buf;
129
130 val_buf.bo = bo;
131 res->func->unbind(res, false, &val_buf);
132 }
133 res->backup_dirty = false;
134 list_del_init(&res->mob_head);
135 ttm_bo_unreserve(bo);
136 vmw_dmabuf_unreference(&res->backup);
137 }
138
139 if (likely(res->hw_destroy != NULL))
140 res->hw_destroy(res);
141
142 id = res->id;
143 if (res->res_free != NULL)
144 res->res_free(res);
145 else
146 kfree(res);
147
148 write_lock(&dev_priv->resource_lock);
149
150 if (id != -1)
151 idr_remove(idr, id);
152 }
153
154 void vmw_resource_unreference(struct vmw_resource **p_res)
155 {
156 struct vmw_resource *res = *p_res;
157 struct vmw_private *dev_priv = res->dev_priv;
158
159 *p_res = NULL;
160 write_lock(&dev_priv->resource_lock);
161 kref_put(&res->kref, vmw_resource_release);
162 write_unlock(&dev_priv->resource_lock);
163 }
164
165
166 /**
167 * vmw_resource_alloc_id - release a resource id to the id manager.
168 *
169 * @res: Pointer to the resource.
170 *
171 * Allocate the lowest free resource from the resource manager, and set
172 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
173 */
174 int vmw_resource_alloc_id(struct vmw_resource *res)
175 {
176 struct vmw_private *dev_priv = res->dev_priv;
177 int ret;
178 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
179
180 BUG_ON(res->id != -1);
181
182 idr_preload(GFP_KERNEL);
183 write_lock(&dev_priv->resource_lock);
184
185 ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
186 if (ret >= 0)
187 res->id = ret;
188
189 write_unlock(&dev_priv->resource_lock);
190 idr_preload_end();
191 return ret < 0 ? ret : 0;
192 }
193
194 /**
195 * vmw_resource_init - initialize a struct vmw_resource
196 *
197 * @dev_priv: Pointer to a device private struct.
198 * @res: The struct vmw_resource to initialize.
199 * @obj_type: Resource object type.
200 * @delay_id: Boolean whether to defer device id allocation until
201 * the first validation.
202 * @res_free: Resource destructor.
203 * @func: Resource function table.
204 */
205 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
206 bool delay_id,
207 void (*res_free) (struct vmw_resource *res),
208 const struct vmw_res_func *func)
209 {
210 kref_init(&res->kref);
211 res->hw_destroy = NULL;
212 res->res_free = res_free;
213 res->avail = false;
214 res->dev_priv = dev_priv;
215 res->func = func;
216 INIT_LIST_HEAD(&res->lru_head);
217 INIT_LIST_HEAD(&res->mob_head);
218 res->id = -1;
219 res->backup = NULL;
220 res->backup_offset = 0;
221 res->backup_dirty = false;
222 res->res_dirty = false;
223 if (delay_id)
224 return 0;
225 else
226 return vmw_resource_alloc_id(res);
227 }
228
229 /**
230 * vmw_resource_activate
231 *
232 * @res: Pointer to the newly created resource
233 * @hw_destroy: Destroy function. NULL if none.
234 *
235 * Activate a resource after the hardware has been made aware of it.
236 * Set tye destroy function to @destroy. Typically this frees the
237 * resource and destroys the hardware resources associated with it.
238 * Activate basically means that the function vmw_resource_lookup will
239 * find it.
240 */
241 void vmw_resource_activate(struct vmw_resource *res,
242 void (*hw_destroy) (struct vmw_resource *))
243 {
244 struct vmw_private *dev_priv = res->dev_priv;
245
246 write_lock(&dev_priv->resource_lock);
247 res->avail = true;
248 res->hw_destroy = hw_destroy;
249 write_unlock(&dev_priv->resource_lock);
250 }
251
252 struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
253 struct idr *idr, int id)
254 {
255 struct vmw_resource *res;
256
257 read_lock(&dev_priv->resource_lock);
258 res = idr_find(idr, id);
259 if (res && res->avail)
260 kref_get(&res->kref);
261 else
262 res = NULL;
263 read_unlock(&dev_priv->resource_lock);
264
265 if (unlikely(res == NULL))
266 return NULL;
267
268 return res;
269 }
270
271 /**
272 * vmw_user_resource_lookup_handle - lookup a struct resource from a
273 * TTM user-space handle and perform basic type checks
274 *
275 * @dev_priv: Pointer to a device private struct
276 * @tfile: Pointer to a struct ttm_object_file identifying the caller
277 * @handle: The TTM user-space handle
278 * @converter: Pointer to an object describing the resource type
279 * @p_res: On successful return the location pointed to will contain
280 * a pointer to a refcounted struct vmw_resource.
281 *
282 * If the handle can't be found or is associated with an incorrect resource
283 * type, -EINVAL will be returned.
284 */
285 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
286 struct ttm_object_file *tfile,
287 uint32_t handle,
288 const struct vmw_user_resource_conv
289 *converter,
290 struct vmw_resource **p_res)
291 {
292 struct ttm_base_object *base;
293 struct vmw_resource *res;
294 int ret = -EINVAL;
295
296 base = ttm_base_object_lookup(tfile, handle);
297 if (unlikely(base == NULL))
298 return -EINVAL;
299
300 if (unlikely(ttm_base_object_type(base) != converter->object_type))
301 goto out_bad_resource;
302
303 res = converter->base_obj_to_res(base);
304
305 read_lock(&dev_priv->resource_lock);
306 if (!res->avail || res->res_free != converter->res_free) {
307 read_unlock(&dev_priv->resource_lock);
308 goto out_bad_resource;
309 }
310
311 kref_get(&res->kref);
312 read_unlock(&dev_priv->resource_lock);
313
314 *p_res = res;
315 ret = 0;
316
317 out_bad_resource:
318 ttm_base_object_unref(&base);
319
320 return ret;
321 }
322
323 /**
324 * Helper function that looks either a surface or dmabuf.
325 *
326 * The pointer this pointed at by out_surf and out_buf needs to be null.
327 */
328 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
329 struct ttm_object_file *tfile,
330 uint32_t handle,
331 struct vmw_surface **out_surf,
332 struct vmw_dma_buffer **out_buf)
333 {
334 struct vmw_resource *res;
335 int ret;
336
337 BUG_ON(*out_surf || *out_buf);
338
339 ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
340 user_surface_converter,
341 &res);
342 if (!ret) {
343 *out_surf = vmw_res_to_srf(res);
344 return 0;
345 }
346
347 *out_surf = NULL;
348 ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf);
349 return ret;
350 }
351
352 /**
353 * Buffer management.
354 */
355 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
356 {
357 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
358
359 kfree(vmw_bo);
360 }
361
362 int vmw_dmabuf_init(struct vmw_private *dev_priv,
363 struct vmw_dma_buffer *vmw_bo,
364 size_t size, struct ttm_placement *placement,
365 bool interruptible,
366 void (*bo_free) (struct ttm_buffer_object *bo))
367 {
368 struct ttm_bo_device *bdev = &dev_priv->bdev;
369 size_t acc_size;
370 int ret;
371
372 BUG_ON(!bo_free);
373
374 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct vmw_dma_buffer));
375 memset(vmw_bo, 0, sizeof(*vmw_bo));
376
377 INIT_LIST_HEAD(&vmw_bo->res_list);
378
379 ret = ttm_bo_init(bdev, &vmw_bo->base, size,
380 ttm_bo_type_device, placement,
381 0, interruptible,
382 NULL, acc_size, NULL, bo_free);
383 return ret;
384 }
385
386 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
387 {
388 struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
389
390 ttm_prime_object_kfree(vmw_user_bo, prime);
391 }
392
393 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
394 {
395 struct vmw_user_dma_buffer *vmw_user_bo;
396 struct ttm_base_object *base = *p_base;
397 struct ttm_buffer_object *bo;
398
399 *p_base = NULL;
400
401 if (unlikely(base == NULL))
402 return;
403
404 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
405 prime.base);
406 bo = &vmw_user_bo->dma.base;
407 ttm_bo_unref(&bo);
408 }
409
410 /**
411 * vmw_user_dmabuf_alloc - Allocate a user dma buffer
412 *
413 * @dev_priv: Pointer to a struct device private.
414 * @tfile: Pointer to a struct ttm_object_file on which to register the user
415 * object.
416 * @size: Size of the dma buffer.
417 * @shareable: Boolean whether the buffer is shareable with other open files.
418 * @handle: Pointer to where the handle value should be assigned.
419 * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
420 * should be assigned.
421 */
422 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
423 struct ttm_object_file *tfile,
424 uint32_t size,
425 bool shareable,
426 uint32_t *handle,
427 struct vmw_dma_buffer **p_dma_buf)
428 {
429 struct vmw_user_dma_buffer *user_bo;
430 struct ttm_buffer_object *tmp;
431 int ret;
432
433 user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
434 if (unlikely(user_bo == NULL)) {
435 DRM_ERROR("Failed to allocate a buffer.\n");
436 return -ENOMEM;
437 }
438
439 ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
440 &vmw_vram_sys_placement, true,
441 &vmw_user_dmabuf_destroy);
442 if (unlikely(ret != 0))
443 return ret;
444
445 tmp = ttm_bo_reference(&user_bo->dma.base);
446 ret = ttm_prime_object_init(tfile,
447 size,
448 &user_bo->prime,
449 shareable,
450 ttm_buffer_type,
451 &vmw_user_dmabuf_release, NULL);
452 if (unlikely(ret != 0)) {
453 ttm_bo_unref(&tmp);
454 goto out_no_base_object;
455 }
456
457 *p_dma_buf = &user_bo->dma;
458 *handle = user_bo->prime.base.hash.key;
459
460 out_no_base_object:
461 return ret;
462 }
463
464 /**
465 * vmw_user_dmabuf_verify_access - verify access permissions on this
466 * buffer object.
467 *
468 * @bo: Pointer to the buffer object being accessed
469 * @tfile: Identifying the caller.
470 */
471 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
472 struct ttm_object_file *tfile)
473 {
474 struct vmw_user_dma_buffer *vmw_user_bo;
475
476 if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
477 return -EPERM;
478
479 vmw_user_bo = vmw_user_dma_buffer(bo);
480 return (vmw_user_bo->prime.base.tfile == tfile ||
481 vmw_user_bo->prime.base.shareable) ? 0 : -EPERM;
482 }
483
484 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
485 struct drm_file *file_priv)
486 {
487 struct vmw_private *dev_priv = vmw_priv(dev);
488 union drm_vmw_alloc_dmabuf_arg *arg =
489 (union drm_vmw_alloc_dmabuf_arg *)data;
490 struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
491 struct drm_vmw_dmabuf_rep *rep = &arg->rep;
492 struct vmw_dma_buffer *dma_buf;
493 uint32_t handle;
494 struct vmw_master *vmaster = vmw_master(file_priv->master);
495 int ret;
496
497 ret = ttm_read_lock(&vmaster->lock, true);
498 if (unlikely(ret != 0))
499 return ret;
500
501 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
502 req->size, false, &handle, &dma_buf);
503 if (unlikely(ret != 0))
504 goto out_no_dmabuf;
505
506 rep->handle = handle;
507 rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
508 rep->cur_gmr_id = handle;
509 rep->cur_gmr_offset = 0;
510
511 vmw_dmabuf_unreference(&dma_buf);
512
513 out_no_dmabuf:
514 ttm_read_unlock(&vmaster->lock);
515
516 return ret;
517 }
518
519 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
520 struct drm_file *file_priv)
521 {
522 struct drm_vmw_unref_dmabuf_arg *arg =
523 (struct drm_vmw_unref_dmabuf_arg *)data;
524
525 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
526 arg->handle,
527 TTM_REF_USAGE);
528 }
529
530 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
531 uint32_t handle, struct vmw_dma_buffer **out)
532 {
533 struct vmw_user_dma_buffer *vmw_user_bo;
534 struct ttm_base_object *base;
535
536 base = ttm_base_object_lookup(tfile, handle);
537 if (unlikely(base == NULL)) {
538 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
539 (unsigned long)handle);
540 return -ESRCH;
541 }
542
543 if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
544 ttm_base_object_unref(&base);
545 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
546 (unsigned long)handle);
547 return -EINVAL;
548 }
549
550 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
551 prime.base);
552 (void)ttm_bo_reference(&vmw_user_bo->dma.base);
553 ttm_base_object_unref(&base);
554 *out = &vmw_user_bo->dma;
555
556 return 0;
557 }
558
559 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
560 struct vmw_dma_buffer *dma_buf)
561 {
562 struct vmw_user_dma_buffer *user_bo;
563
564 if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
565 return -EINVAL;
566
567 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
568 return ttm_ref_object_add(tfile, &user_bo->prime.base,
569 TTM_REF_USAGE, NULL);
570 }
571
572 /*
573 * Stream management
574 */
575
576 static void vmw_stream_destroy(struct vmw_resource *res)
577 {
578 struct vmw_private *dev_priv = res->dev_priv;
579 struct vmw_stream *stream;
580 int ret;
581
582 DRM_INFO("%s: unref\n", __func__);
583 stream = container_of(res, struct vmw_stream, res);
584
585 ret = vmw_overlay_unref(dev_priv, stream->stream_id);
586 WARN_ON(ret != 0);
587 }
588
589 static int vmw_stream_init(struct vmw_private *dev_priv,
590 struct vmw_stream *stream,
591 void (*res_free) (struct vmw_resource *res))
592 {
593 struct vmw_resource *res = &stream->res;
594 int ret;
595
596 ret = vmw_resource_init(dev_priv, res, false, res_free,
597 &vmw_stream_func);
598
599 if (unlikely(ret != 0)) {
600 if (res_free == NULL)
601 kfree(stream);
602 else
603 res_free(&stream->res);
604 return ret;
605 }
606
607 ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
608 if (ret) {
609 vmw_resource_unreference(&res);
610 return ret;
611 }
612
613 DRM_INFO("%s: claimed\n", __func__);
614
615 vmw_resource_activate(&stream->res, vmw_stream_destroy);
616 return 0;
617 }
618
619 static void vmw_user_stream_free(struct vmw_resource *res)
620 {
621 struct vmw_user_stream *stream =
622 container_of(res, struct vmw_user_stream, stream.res);
623 struct vmw_private *dev_priv = res->dev_priv;
624
625 ttm_base_object_kfree(stream, base);
626 ttm_mem_global_free(vmw_mem_glob(dev_priv),
627 vmw_user_stream_size);
628 }
629
630 /**
631 * This function is called when user space has no more references on the
632 * base object. It releases the base-object's reference on the resource object.
633 */
634
635 static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
636 {
637 struct ttm_base_object *base = *p_base;
638 struct vmw_user_stream *stream =
639 container_of(base, struct vmw_user_stream, base);
640 struct vmw_resource *res = &stream->stream.res;
641
642 *p_base = NULL;
643 vmw_resource_unreference(&res);
644 }
645
646 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
647 struct drm_file *file_priv)
648 {
649 struct vmw_private *dev_priv = vmw_priv(dev);
650 struct vmw_resource *res;
651 struct vmw_user_stream *stream;
652 struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
653 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
654 struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
655 int ret = 0;
656
657
658 res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
659 if (unlikely(res == NULL))
660 return -EINVAL;
661
662 if (res->res_free != &vmw_user_stream_free) {
663 ret = -EINVAL;
664 goto out;
665 }
666
667 stream = container_of(res, struct vmw_user_stream, stream.res);
668 if (stream->base.tfile != tfile) {
669 ret = -EINVAL;
670 goto out;
671 }
672
673 ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
674 out:
675 vmw_resource_unreference(&res);
676 return ret;
677 }
678
679 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
680 struct drm_file *file_priv)
681 {
682 struct vmw_private *dev_priv = vmw_priv(dev);
683 struct vmw_user_stream *stream;
684 struct vmw_resource *res;
685 struct vmw_resource *tmp;
686 struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
687 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
688 struct vmw_master *vmaster = vmw_master(file_priv->master);
689 int ret;
690
691 /*
692 * Approximate idr memory usage with 128 bytes. It will be limited
693 * by maximum number_of streams anyway?
694 */
695
696 if (unlikely(vmw_user_stream_size == 0))
697 vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
698
699 ret = ttm_read_lock(&vmaster->lock, true);
700 if (unlikely(ret != 0))
701 return ret;
702
703 ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
704 vmw_user_stream_size,
705 false, true);
706 if (unlikely(ret != 0)) {
707 if (ret != -ERESTARTSYS)
708 DRM_ERROR("Out of graphics memory for stream"
709 " creation.\n");
710 goto out_unlock;
711 }
712
713
714 stream = kmalloc(sizeof(*stream), GFP_KERNEL);
715 if (unlikely(stream == NULL)) {
716 ttm_mem_global_free(vmw_mem_glob(dev_priv),
717 vmw_user_stream_size);
718 ret = -ENOMEM;
719 goto out_unlock;
720 }
721
722 res = &stream->stream.res;
723 stream->base.shareable = false;
724 stream->base.tfile = NULL;
725
726 /*
727 * From here on, the destructor takes over resource freeing.
728 */
729
730 ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
731 if (unlikely(ret != 0))
732 goto out_unlock;
733
734 tmp = vmw_resource_reference(res);
735 ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
736 &vmw_user_stream_base_release, NULL);
737
738 if (unlikely(ret != 0)) {
739 vmw_resource_unreference(&tmp);
740 goto out_err;
741 }
742
743 arg->stream_id = res->id;
744 out_err:
745 vmw_resource_unreference(&res);
746 out_unlock:
747 ttm_read_unlock(&vmaster->lock);
748 return ret;
749 }
750
751 int vmw_user_stream_lookup(struct vmw_private *dev_priv,
752 struct ttm_object_file *tfile,
753 uint32_t *inout_id, struct vmw_resource **out)
754 {
755 struct vmw_user_stream *stream;
756 struct vmw_resource *res;
757 int ret;
758
759 res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
760 *inout_id);
761 if (unlikely(res == NULL))
762 return -EINVAL;
763
764 if (res->res_free != &vmw_user_stream_free) {
765 ret = -EINVAL;
766 goto err_ref;
767 }
768
769 stream = container_of(res, struct vmw_user_stream, stream.res);
770 if (stream->base.tfile != tfile) {
771 ret = -EPERM;
772 goto err_ref;
773 }
774
775 *inout_id = stream->stream.stream_id;
776 *out = res;
777 return 0;
778 err_ref:
779 vmw_resource_unreference(&res);
780 return ret;
781 }
782
783
784 int vmw_dumb_create(struct drm_file *file_priv,
785 struct drm_device *dev,
786 struct drm_mode_create_dumb *args)
787 {
788 struct vmw_private *dev_priv = vmw_priv(dev);
789 struct vmw_master *vmaster = vmw_master(file_priv->master);
790 struct vmw_user_dma_buffer *vmw_user_bo;
791 struct ttm_buffer_object *tmp;
792 int ret;
793
794 args->pitch = args->width * ((args->bpp + 7) / 8);
795 args->size = args->pitch * args->height;
796
797 vmw_user_bo = kzalloc(sizeof(*vmw_user_bo), GFP_KERNEL);
798 if (vmw_user_bo == NULL)
799 return -ENOMEM;
800
801 ret = ttm_read_lock(&vmaster->lock, true);
802 if (ret != 0) {
803 kfree(vmw_user_bo);
804 return ret;
805 }
806
807 ret = vmw_dmabuf_init(dev_priv, &vmw_user_bo->dma, args->size,
808 &vmw_vram_sys_placement, true,
809 &vmw_user_dmabuf_destroy);
810 if (ret != 0)
811 goto out_no_dmabuf;
812
813 tmp = ttm_bo_reference(&vmw_user_bo->dma.base);
814 ret = ttm_prime_object_init(vmw_fpriv(file_priv)->tfile,
815 args->size,
816 &vmw_user_bo->prime,
817 false,
818 ttm_buffer_type,
819 &vmw_user_dmabuf_release, NULL);
820 if (unlikely(ret != 0))
821 goto out_no_base_object;
822
823 args->handle = vmw_user_bo->prime.base.hash.key;
824
825 out_no_base_object:
826 ttm_bo_unref(&tmp);
827 out_no_dmabuf:
828 ttm_read_unlock(&vmaster->lock);
829 return ret;
830 }
831
832 int vmw_dumb_map_offset(struct drm_file *file_priv,
833 struct drm_device *dev, uint32_t handle,
834 uint64_t *offset)
835 {
836 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
837 struct vmw_dma_buffer *out_buf;
838 int ret;
839
840 ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf);
841 if (ret != 0)
842 return -EINVAL;
843
844 *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
845 vmw_dmabuf_unreference(&out_buf);
846 return 0;
847 }
848
849 int vmw_dumb_destroy(struct drm_file *file_priv,
850 struct drm_device *dev,
851 uint32_t handle)
852 {
853 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
854 handle, TTM_REF_USAGE);
855 }
856
857 /**
858 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
859 *
860 * @res: The resource for which to allocate a backup buffer.
861 * @interruptible: Whether any sleeps during allocation should be
862 * performed while interruptible.
863 */
864 static int vmw_resource_buf_alloc(struct vmw_resource *res,
865 bool interruptible)
866 {
867 unsigned long size =
868 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
869 struct vmw_dma_buffer *backup;
870 int ret;
871
872 if (likely(res->backup)) {
873 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
874 return 0;
875 }
876
877 backup = kzalloc(sizeof(*backup), GFP_KERNEL);
878 if (unlikely(backup == NULL))
879 return -ENOMEM;
880
881 ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
882 res->func->backup_placement,
883 interruptible,
884 &vmw_dmabuf_bo_free);
885 if (unlikely(ret != 0))
886 goto out_no_dmabuf;
887
888 res->backup = backup;
889
890 out_no_dmabuf:
891 return ret;
892 }
893
894 /**
895 * vmw_resource_do_validate - Make a resource up-to-date and visible
896 * to the device.
897 *
898 * @res: The resource to make visible to the device.
899 * @val_buf: Information about a buffer possibly
900 * containing backup data if a bind operation is needed.
901 *
902 * On hardware resource shortage, this function returns -EBUSY and
903 * should be retried once resources have been freed up.
904 */
905 static int vmw_resource_do_validate(struct vmw_resource *res,
906 struct ttm_validate_buffer *val_buf)
907 {
908 int ret = 0;
909 const struct vmw_res_func *func = res->func;
910
911 if (unlikely(res->id == -1)) {
912 ret = func->create(res);
913 if (unlikely(ret != 0))
914 return ret;
915 }
916
917 if (func->bind &&
918 ((func->needs_backup && list_empty(&res->mob_head) &&
919 val_buf->bo != NULL) ||
920 (!func->needs_backup && val_buf->bo != NULL))) {
921 ret = func->bind(res, val_buf);
922 if (unlikely(ret != 0))
923 goto out_bind_failed;
924 if (func->needs_backup)
925 list_add_tail(&res->mob_head, &res->backup->res_list);
926 }
927
928 /*
929 * Only do this on write operations, and move to
930 * vmw_resource_unreserve if it can be called after
931 * backup buffers have been unreserved. Otherwise
932 * sort out locking.
933 */
934 res->res_dirty = true;
935
936 return 0;
937
938 out_bind_failed:
939 func->destroy(res);
940
941 return ret;
942 }
943
944 /**
945 * vmw_resource_unreserve - Unreserve a resource previously reserved for
946 * command submission.
947 *
948 * @res: Pointer to the struct vmw_resource to unreserve.
949 * @new_backup: Pointer to new backup buffer if command submission
950 * switched.
951 * @new_backup_offset: New backup offset if @new_backup is !NULL.
952 *
953 * Currently unreserving a resource means putting it back on the device's
954 * resource lru list, so that it can be evicted if necessary.
955 */
956 void vmw_resource_unreserve(struct vmw_resource *res,
957 struct vmw_dma_buffer *new_backup,
958 unsigned long new_backup_offset)
959 {
960 struct vmw_private *dev_priv = res->dev_priv;
961
962 if (!list_empty(&res->lru_head))
963 return;
964
965 if (new_backup && new_backup != res->backup) {
966
967 if (res->backup) {
968 lockdep_assert_held(&res->backup->base.resv->lock.base);
969 list_del_init(&res->mob_head);
970 vmw_dmabuf_unreference(&res->backup);
971 }
972
973 res->backup = vmw_dmabuf_reference(new_backup);
974 lockdep_assert_held(&new_backup->base.resv->lock.base);
975 list_add_tail(&res->mob_head, &new_backup->res_list);
976 }
977 if (new_backup)
978 res->backup_offset = new_backup_offset;
979
980 if (!res->func->may_evict || res->id == -1)
981 return;
982
983 write_lock(&dev_priv->resource_lock);
984 list_add_tail(&res->lru_head,
985 &res->dev_priv->res_lru[res->func->res_type]);
986 write_unlock(&dev_priv->resource_lock);
987 }
988
989 /**
990 * vmw_resource_check_buffer - Check whether a backup buffer is needed
991 * for a resource and in that case, allocate
992 * one, reserve and validate it.
993 *
994 * @res: The resource for which to allocate a backup buffer.
995 * @interruptible: Whether any sleeps during allocation should be
996 * performed while interruptible.
997 * @val_buf: On successful return contains data about the
998 * reserved and validated backup buffer.
999 */
1000 static int
1001 vmw_resource_check_buffer(struct vmw_resource *res,
1002 bool interruptible,
1003 struct ttm_validate_buffer *val_buf)
1004 {
1005 struct list_head val_list;
1006 bool backup_dirty = false;
1007 int ret;
1008
1009 if (unlikely(res->backup == NULL)) {
1010 ret = vmw_resource_buf_alloc(res, interruptible);
1011 if (unlikely(ret != 0))
1012 return ret;
1013 }
1014
1015 INIT_LIST_HEAD(&val_list);
1016 val_buf->bo = ttm_bo_reference(&res->backup->base);
1017 list_add_tail(&val_buf->head, &val_list);
1018 ret = ttm_eu_reserve_buffers(NULL, &val_list);
1019 if (unlikely(ret != 0))
1020 goto out_no_reserve;
1021
1022 if (res->func->needs_backup && list_empty(&res->mob_head))
1023 return 0;
1024
1025 backup_dirty = res->backup_dirty;
1026 ret = ttm_bo_validate(&res->backup->base,
1027 res->func->backup_placement,
1028 true, false);
1029
1030 if (unlikely(ret != 0))
1031 goto out_no_validate;
1032
1033 return 0;
1034
1035 out_no_validate:
1036 ttm_eu_backoff_reservation(NULL, &val_list);
1037 out_no_reserve:
1038 ttm_bo_unref(&val_buf->bo);
1039 if (backup_dirty)
1040 vmw_dmabuf_unreference(&res->backup);
1041
1042 return ret;
1043 }
1044
1045 /**
1046 * vmw_resource_reserve - Reserve a resource for command submission
1047 *
1048 * @res: The resource to reserve.
1049 *
1050 * This function takes the resource off the LRU list and make sure
1051 * a backup buffer is present for guest-backed resources. However,
1052 * the buffer may not be bound to the resource at this point.
1053 *
1054 */
1055 int vmw_resource_reserve(struct vmw_resource *res, bool no_backup)
1056 {
1057 struct vmw_private *dev_priv = res->dev_priv;
1058 int ret;
1059
1060 write_lock(&dev_priv->resource_lock);
1061 list_del_init(&res->lru_head);
1062 write_unlock(&dev_priv->resource_lock);
1063
1064 if (res->func->needs_backup && res->backup == NULL &&
1065 !no_backup) {
1066 ret = vmw_resource_buf_alloc(res, true);
1067 if (unlikely(ret != 0))
1068 return ret;
1069 }
1070
1071 return 0;
1072 }
1073
1074 /**
1075 * vmw_resource_backoff_reservation - Unreserve and unreference a
1076 * backup buffer
1077 *.
1078 * @val_buf: Backup buffer information.
1079 */
1080 static void
1081 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1082 {
1083 struct list_head val_list;
1084
1085 if (likely(val_buf->bo == NULL))
1086 return;
1087
1088 INIT_LIST_HEAD(&val_list);
1089 list_add_tail(&val_buf->head, &val_list);
1090 ttm_eu_backoff_reservation(NULL, &val_list);
1091 ttm_bo_unref(&val_buf->bo);
1092 }
1093
1094 /**
1095 * vmw_resource_do_evict - Evict a resource, and transfer its data
1096 * to a backup buffer.
1097 *
1098 * @res: The resource to evict.
1099 * @interruptible: Whether to wait interruptible.
1100 */
1101 int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1102 {
1103 struct ttm_validate_buffer val_buf;
1104 const struct vmw_res_func *func = res->func;
1105 int ret;
1106
1107 BUG_ON(!func->may_evict);
1108
1109 val_buf.bo = NULL;
1110 ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1111 if (unlikely(ret != 0))
1112 return ret;
1113
1114 if (unlikely(func->unbind != NULL &&
1115 (!func->needs_backup || !list_empty(&res->mob_head)))) {
1116 ret = func->unbind(res, res->res_dirty, &val_buf);
1117 if (unlikely(ret != 0))
1118 goto out_no_unbind;
1119 list_del_init(&res->mob_head);
1120 }
1121 ret = func->destroy(res);
1122 res->backup_dirty = true;
1123 res->res_dirty = false;
1124 out_no_unbind:
1125 vmw_resource_backoff_reservation(&val_buf);
1126
1127 return ret;
1128 }
1129
1130
1131 /**
1132 * vmw_resource_validate - Make a resource up-to-date and visible
1133 * to the device.
1134 *
1135 * @res: The resource to make visible to the device.
1136 *
1137 * On succesful return, any backup DMA buffer pointed to by @res->backup will
1138 * be reserved and validated.
1139 * On hardware resource shortage, this function will repeatedly evict
1140 * resources of the same type until the validation succeeds.
1141 */
1142 int vmw_resource_validate(struct vmw_resource *res)
1143 {
1144 int ret;
1145 struct vmw_resource *evict_res;
1146 struct vmw_private *dev_priv = res->dev_priv;
1147 struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1148 struct ttm_validate_buffer val_buf;
1149 unsigned err_count = 0;
1150
1151 if (likely(!res->func->may_evict))
1152 return 0;
1153
1154 val_buf.bo = NULL;
1155 if (res->backup)
1156 val_buf.bo = &res->backup->base;
1157 do {
1158 ret = vmw_resource_do_validate(res, &val_buf);
1159 if (likely(ret != -EBUSY))
1160 break;
1161
1162 write_lock(&dev_priv->resource_lock);
1163 if (list_empty(lru_list) || !res->func->may_evict) {
1164 DRM_ERROR("Out of device device resources "
1165 "for %s.\n", res->func->type_name);
1166 ret = -EBUSY;
1167 write_unlock(&dev_priv->resource_lock);
1168 break;
1169 }
1170
1171 evict_res = vmw_resource_reference
1172 (list_first_entry(lru_list, struct vmw_resource,
1173 lru_head));
1174 list_del_init(&evict_res->lru_head);
1175
1176 write_unlock(&dev_priv->resource_lock);
1177
1178 ret = vmw_resource_do_evict(evict_res, true);
1179 if (unlikely(ret != 0)) {
1180 write_lock(&dev_priv->resource_lock);
1181 list_add_tail(&evict_res->lru_head, lru_list);
1182 write_unlock(&dev_priv->resource_lock);
1183 if (ret == -ERESTARTSYS ||
1184 ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1185 vmw_resource_unreference(&evict_res);
1186 goto out_no_validate;
1187 }
1188 }
1189
1190 vmw_resource_unreference(&evict_res);
1191 } while (1);
1192
1193 if (unlikely(ret != 0))
1194 goto out_no_validate;
1195 else if (!res->func->needs_backup && res->backup) {
1196 list_del_init(&res->mob_head);
1197 vmw_dmabuf_unreference(&res->backup);
1198 }
1199
1200 return 0;
1201
1202 out_no_validate:
1203 return ret;
1204 }
1205
1206 /**
1207 * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1208 * object without unreserving it.
1209 *
1210 * @bo: Pointer to the struct ttm_buffer_object to fence.
1211 * @fence: Pointer to the fence. If NULL, this function will
1212 * insert a fence into the command stream..
1213 *
1214 * Contrary to the ttm_eu version of this function, it takes only
1215 * a single buffer object instead of a list, and it also doesn't
1216 * unreserve the buffer object, which needs to be done separately.
1217 */
1218 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1219 struct vmw_fence_obj *fence)
1220 {
1221 struct ttm_bo_device *bdev = bo->bdev;
1222 struct ttm_bo_driver *driver = bdev->driver;
1223 struct vmw_fence_obj *old_fence_obj;
1224 struct vmw_private *dev_priv =
1225 container_of(bdev, struct vmw_private, bdev);
1226
1227 if (fence == NULL)
1228 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1229 else
1230 driver->sync_obj_ref(fence);
1231
1232 spin_lock(&bdev->fence_lock);
1233
1234 old_fence_obj = bo->sync_obj;
1235 bo->sync_obj = fence;
1236
1237 spin_unlock(&bdev->fence_lock);
1238
1239 if (old_fence_obj)
1240 vmw_fence_obj_unreference(&old_fence_obj);
1241 }
1242
1243 /**
1244 * vmw_resource_move_notify - TTM move_notify_callback
1245 *
1246 * @bo: The TTM buffer object about to move.
1247 * @mem: The truct ttm_mem_reg indicating to what memory
1248 * region the move is taking place.
1249 *
1250 * For now does nothing.
1251 */
1252 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1253 struct ttm_mem_reg *mem)
1254 {
1255 }
1256
1257 /**
1258 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1259 *
1260 * @res: The resource being queried.
1261 */
1262 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1263 {
1264 return res->func->needs_backup;
1265 }
1266
1267 /**
1268 * vmw_resource_evict_type - Evict all resources of a specific type
1269 *
1270 * @dev_priv: Pointer to a device private struct
1271 * @type: The resource type to evict
1272 *
1273 * To avoid thrashing starvation or as part of the hibernation sequence,
1274 * try to evict all evictable resources of a specific type.
1275 */
1276 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1277 enum vmw_res_type type)
1278 {
1279 struct list_head *lru_list = &dev_priv->res_lru[type];
1280 struct vmw_resource *evict_res;
1281 unsigned err_count = 0;
1282 int ret;
1283
1284 do {
1285 write_lock(&dev_priv->resource_lock);
1286
1287 if (list_empty(lru_list))
1288 goto out_unlock;
1289
1290 evict_res = vmw_resource_reference(
1291 list_first_entry(lru_list, struct vmw_resource,
1292 lru_head));
1293 list_del_init(&evict_res->lru_head);
1294 write_unlock(&dev_priv->resource_lock);
1295
1296 ret = vmw_resource_do_evict(evict_res, false);
1297 if (unlikely(ret != 0)) {
1298 write_lock(&dev_priv->resource_lock);
1299 list_add_tail(&evict_res->lru_head, lru_list);
1300 write_unlock(&dev_priv->resource_lock);
1301 if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1302 vmw_resource_unreference(&evict_res);
1303 return;
1304 }
1305 }
1306
1307 vmw_resource_unreference(&evict_res);
1308 } while (1);
1309
1310 out_unlock:
1311 write_unlock(&dev_priv->resource_lock);
1312 }
1313
1314 /**
1315 * vmw_resource_evict_all - Evict all evictable resources
1316 *
1317 * @dev_priv: Pointer to a device private struct
1318 *
1319 * To avoid thrashing starvation or as part of the hibernation sequence,
1320 * evict all evictable resources. In particular this means that all
1321 * guest-backed resources that are registered with the device are
1322 * evicted and the OTable becomes clean.
1323 */
1324 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1325 {
1326 enum vmw_res_type type;
1327
1328 mutex_lock(&dev_priv->cmdbuf_mutex);
1329
1330 for (type = 0; type < vmw_res_max; ++type)
1331 vmw_resource_evict_type(dev_priv, type);
1332
1333 mutex_unlock(&dev_priv->cmdbuf_mutex);
1334 }
This page took 0.059656 seconds and 6 git commands to generate.