Merge tag 'media/v4.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / drivers / gpu / drm / vmwgfx / vmwgfx_resource.c
1 /**************************************************************************
2 *
3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34 #include "vmwgfx_binding.h"
35
36 #define VMW_RES_EVICT_ERR_COUNT 10
37
38 struct vmw_user_dma_buffer {
39 struct ttm_prime_object prime;
40 struct vmw_dma_buffer dma;
41 };
42
43 struct vmw_bo_user_rep {
44 uint32_t handle;
45 uint64_t map_handle;
46 };
47
48 struct vmw_stream {
49 struct vmw_resource res;
50 uint32_t stream_id;
51 };
52
53 struct vmw_user_stream {
54 struct ttm_base_object base;
55 struct vmw_stream stream;
56 };
57
58
59 static uint64_t vmw_user_stream_size;
60
61 static const struct vmw_res_func vmw_stream_func = {
62 .res_type = vmw_res_stream,
63 .needs_backup = false,
64 .may_evict = false,
65 .type_name = "video streams",
66 .backup_placement = NULL,
67 .create = NULL,
68 .destroy = NULL,
69 .bind = NULL,
70 .unbind = NULL
71 };
72
73 static inline struct vmw_dma_buffer *
74 vmw_dma_buffer(struct ttm_buffer_object *bo)
75 {
76 return container_of(bo, struct vmw_dma_buffer, base);
77 }
78
79 static inline struct vmw_user_dma_buffer *
80 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
81 {
82 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
83 return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
84 }
85
86 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
87 {
88 kref_get(&res->kref);
89 return res;
90 }
91
92 struct vmw_resource *
93 vmw_resource_reference_unless_doomed(struct vmw_resource *res)
94 {
95 return kref_get_unless_zero(&res->kref) ? res : NULL;
96 }
97
98 /**
99 * vmw_resource_release_id - release a resource id to the id manager.
100 *
101 * @res: Pointer to the resource.
102 *
103 * Release the resource id to the resource id manager and set it to -1
104 */
105 void vmw_resource_release_id(struct vmw_resource *res)
106 {
107 struct vmw_private *dev_priv = res->dev_priv;
108 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
109
110 write_lock(&dev_priv->resource_lock);
111 if (res->id != -1)
112 idr_remove(idr, res->id);
113 res->id = -1;
114 write_unlock(&dev_priv->resource_lock);
115 }
116
117 static void vmw_resource_release(struct kref *kref)
118 {
119 struct vmw_resource *res =
120 container_of(kref, struct vmw_resource, kref);
121 struct vmw_private *dev_priv = res->dev_priv;
122 int id;
123 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
124
125 write_lock(&dev_priv->resource_lock);
126 res->avail = false;
127 list_del_init(&res->lru_head);
128 write_unlock(&dev_priv->resource_lock);
129 if (res->backup) {
130 struct ttm_buffer_object *bo = &res->backup->base;
131
132 ttm_bo_reserve(bo, false, false, false, NULL);
133 if (!list_empty(&res->mob_head) &&
134 res->func->unbind != NULL) {
135 struct ttm_validate_buffer val_buf;
136
137 val_buf.bo = bo;
138 val_buf.shared = false;
139 res->func->unbind(res, false, &val_buf);
140 }
141 res->backup_dirty = false;
142 list_del_init(&res->mob_head);
143 ttm_bo_unreserve(bo);
144 vmw_dmabuf_unreference(&res->backup);
145 }
146
147 if (likely(res->hw_destroy != NULL)) {
148 mutex_lock(&dev_priv->binding_mutex);
149 vmw_binding_res_list_kill(&res->binding_head);
150 mutex_unlock(&dev_priv->binding_mutex);
151 res->hw_destroy(res);
152 }
153
154 id = res->id;
155 if (res->res_free != NULL)
156 res->res_free(res);
157 else
158 kfree(res);
159
160 write_lock(&dev_priv->resource_lock);
161 if (id != -1)
162 idr_remove(idr, id);
163 write_unlock(&dev_priv->resource_lock);
164 }
165
166 void vmw_resource_unreference(struct vmw_resource **p_res)
167 {
168 struct vmw_resource *res = *p_res;
169
170 *p_res = NULL;
171 kref_put(&res->kref, vmw_resource_release);
172 }
173
174
175 /**
176 * vmw_resource_alloc_id - release a resource id to the id manager.
177 *
178 * @res: Pointer to the resource.
179 *
180 * Allocate the lowest free resource from the resource manager, and set
181 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
182 */
183 int vmw_resource_alloc_id(struct vmw_resource *res)
184 {
185 struct vmw_private *dev_priv = res->dev_priv;
186 int ret;
187 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
188
189 BUG_ON(res->id != -1);
190
191 idr_preload(GFP_KERNEL);
192 write_lock(&dev_priv->resource_lock);
193
194 ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
195 if (ret >= 0)
196 res->id = ret;
197
198 write_unlock(&dev_priv->resource_lock);
199 idr_preload_end();
200 return ret < 0 ? ret : 0;
201 }
202
203 /**
204 * vmw_resource_init - initialize a struct vmw_resource
205 *
206 * @dev_priv: Pointer to a device private struct.
207 * @res: The struct vmw_resource to initialize.
208 * @obj_type: Resource object type.
209 * @delay_id: Boolean whether to defer device id allocation until
210 * the first validation.
211 * @res_free: Resource destructor.
212 * @func: Resource function table.
213 */
214 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
215 bool delay_id,
216 void (*res_free) (struct vmw_resource *res),
217 const struct vmw_res_func *func)
218 {
219 kref_init(&res->kref);
220 res->hw_destroy = NULL;
221 res->res_free = res_free;
222 res->avail = false;
223 res->dev_priv = dev_priv;
224 res->func = func;
225 INIT_LIST_HEAD(&res->lru_head);
226 INIT_LIST_HEAD(&res->mob_head);
227 INIT_LIST_HEAD(&res->binding_head);
228 res->id = -1;
229 res->backup = NULL;
230 res->backup_offset = 0;
231 res->backup_dirty = false;
232 res->res_dirty = false;
233 if (delay_id)
234 return 0;
235 else
236 return vmw_resource_alloc_id(res);
237 }
238
239 /**
240 * vmw_resource_activate
241 *
242 * @res: Pointer to the newly created resource
243 * @hw_destroy: Destroy function. NULL if none.
244 *
245 * Activate a resource after the hardware has been made aware of it.
246 * Set tye destroy function to @destroy. Typically this frees the
247 * resource and destroys the hardware resources associated with it.
248 * Activate basically means that the function vmw_resource_lookup will
249 * find it.
250 */
251 void vmw_resource_activate(struct vmw_resource *res,
252 void (*hw_destroy) (struct vmw_resource *))
253 {
254 struct vmw_private *dev_priv = res->dev_priv;
255
256 write_lock(&dev_priv->resource_lock);
257 res->avail = true;
258 res->hw_destroy = hw_destroy;
259 write_unlock(&dev_priv->resource_lock);
260 }
261
262 static struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
263 struct idr *idr, int id)
264 {
265 struct vmw_resource *res;
266
267 read_lock(&dev_priv->resource_lock);
268 res = idr_find(idr, id);
269 if (!res || !res->avail || !kref_get_unless_zero(&res->kref))
270 res = NULL;
271
272 read_unlock(&dev_priv->resource_lock);
273
274 if (unlikely(res == NULL))
275 return NULL;
276
277 return res;
278 }
279
280 /**
281 * vmw_user_resource_lookup_handle - lookup a struct resource from a
282 * TTM user-space handle and perform basic type checks
283 *
284 * @dev_priv: Pointer to a device private struct
285 * @tfile: Pointer to a struct ttm_object_file identifying the caller
286 * @handle: The TTM user-space handle
287 * @converter: Pointer to an object describing the resource type
288 * @p_res: On successful return the location pointed to will contain
289 * a pointer to a refcounted struct vmw_resource.
290 *
291 * If the handle can't be found or is associated with an incorrect resource
292 * type, -EINVAL will be returned.
293 */
294 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
295 struct ttm_object_file *tfile,
296 uint32_t handle,
297 const struct vmw_user_resource_conv
298 *converter,
299 struct vmw_resource **p_res)
300 {
301 struct ttm_base_object *base;
302 struct vmw_resource *res;
303 int ret = -EINVAL;
304
305 base = ttm_base_object_lookup(tfile, handle);
306 if (unlikely(base == NULL))
307 return -EINVAL;
308
309 if (unlikely(ttm_base_object_type(base) != converter->object_type))
310 goto out_bad_resource;
311
312 res = converter->base_obj_to_res(base);
313
314 read_lock(&dev_priv->resource_lock);
315 if (!res->avail || res->res_free != converter->res_free) {
316 read_unlock(&dev_priv->resource_lock);
317 goto out_bad_resource;
318 }
319
320 kref_get(&res->kref);
321 read_unlock(&dev_priv->resource_lock);
322
323 *p_res = res;
324 ret = 0;
325
326 out_bad_resource:
327 ttm_base_object_unref(&base);
328
329 return ret;
330 }
331
332 /**
333 * Helper function that looks either a surface or dmabuf.
334 *
335 * The pointer this pointed at by out_surf and out_buf needs to be null.
336 */
337 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
338 struct ttm_object_file *tfile,
339 uint32_t handle,
340 struct vmw_surface **out_surf,
341 struct vmw_dma_buffer **out_buf)
342 {
343 struct vmw_resource *res;
344 int ret;
345
346 BUG_ON(*out_surf || *out_buf);
347
348 ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
349 user_surface_converter,
350 &res);
351 if (!ret) {
352 *out_surf = vmw_res_to_srf(res);
353 return 0;
354 }
355
356 *out_surf = NULL;
357 ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
358 return ret;
359 }
360
361 /**
362 * Buffer management.
363 */
364
365 /**
366 * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
367 *
368 * @dev_priv: Pointer to a struct vmw_private identifying the device.
369 * @size: The requested buffer size.
370 * @user: Whether this is an ordinary dma buffer or a user dma buffer.
371 */
372 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
373 bool user)
374 {
375 static size_t struct_size, user_struct_size;
376 size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
377 size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
378
379 if (unlikely(struct_size == 0)) {
380 size_t backend_size = ttm_round_pot(vmw_tt_size);
381
382 struct_size = backend_size +
383 ttm_round_pot(sizeof(struct vmw_dma_buffer));
384 user_struct_size = backend_size +
385 ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
386 }
387
388 if (dev_priv->map_mode == vmw_dma_alloc_coherent)
389 page_array_size +=
390 ttm_round_pot(num_pages * sizeof(dma_addr_t));
391
392 return ((user) ? user_struct_size : struct_size) +
393 page_array_size;
394 }
395
396 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
397 {
398 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
399
400 kfree(vmw_bo);
401 }
402
403 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
404 {
405 struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
406
407 ttm_prime_object_kfree(vmw_user_bo, prime);
408 }
409
410 int vmw_dmabuf_init(struct vmw_private *dev_priv,
411 struct vmw_dma_buffer *vmw_bo,
412 size_t size, struct ttm_placement *placement,
413 bool interruptible,
414 void (*bo_free) (struct ttm_buffer_object *bo))
415 {
416 struct ttm_bo_device *bdev = &dev_priv->bdev;
417 size_t acc_size;
418 int ret;
419 bool user = (bo_free == &vmw_user_dmabuf_destroy);
420
421 BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
422
423 acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
424 memset(vmw_bo, 0, sizeof(*vmw_bo));
425
426 INIT_LIST_HEAD(&vmw_bo->res_list);
427
428 ret = ttm_bo_init(bdev, &vmw_bo->base, size,
429 ttm_bo_type_device, placement,
430 0, interruptible,
431 NULL, acc_size, NULL, NULL, bo_free);
432 return ret;
433 }
434
435 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
436 {
437 struct vmw_user_dma_buffer *vmw_user_bo;
438 struct ttm_base_object *base = *p_base;
439 struct ttm_buffer_object *bo;
440
441 *p_base = NULL;
442
443 if (unlikely(base == NULL))
444 return;
445
446 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
447 prime.base);
448 bo = &vmw_user_bo->dma.base;
449 ttm_bo_unref(&bo);
450 }
451
452 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
453 enum ttm_ref_type ref_type)
454 {
455 struct vmw_user_dma_buffer *user_bo;
456 user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
457
458 switch (ref_type) {
459 case TTM_REF_SYNCCPU_WRITE:
460 ttm_bo_synccpu_write_release(&user_bo->dma.base);
461 break;
462 default:
463 BUG();
464 }
465 }
466
467 /**
468 * vmw_user_dmabuf_alloc - Allocate a user dma buffer
469 *
470 * @dev_priv: Pointer to a struct device private.
471 * @tfile: Pointer to a struct ttm_object_file on which to register the user
472 * object.
473 * @size: Size of the dma buffer.
474 * @shareable: Boolean whether the buffer is shareable with other open files.
475 * @handle: Pointer to where the handle value should be assigned.
476 * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
477 * should be assigned.
478 */
479 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
480 struct ttm_object_file *tfile,
481 uint32_t size,
482 bool shareable,
483 uint32_t *handle,
484 struct vmw_dma_buffer **p_dma_buf,
485 struct ttm_base_object **p_base)
486 {
487 struct vmw_user_dma_buffer *user_bo;
488 struct ttm_buffer_object *tmp;
489 int ret;
490
491 user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
492 if (unlikely(user_bo == NULL)) {
493 DRM_ERROR("Failed to allocate a buffer.\n");
494 return -ENOMEM;
495 }
496
497 ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
498 (dev_priv->has_mob) ?
499 &vmw_sys_placement :
500 &vmw_vram_sys_placement, true,
501 &vmw_user_dmabuf_destroy);
502 if (unlikely(ret != 0))
503 return ret;
504
505 tmp = ttm_bo_reference(&user_bo->dma.base);
506 ret = ttm_prime_object_init(tfile,
507 size,
508 &user_bo->prime,
509 shareable,
510 ttm_buffer_type,
511 &vmw_user_dmabuf_release,
512 &vmw_user_dmabuf_ref_obj_release);
513 if (unlikely(ret != 0)) {
514 ttm_bo_unref(&tmp);
515 goto out_no_base_object;
516 }
517
518 *p_dma_buf = &user_bo->dma;
519 if (p_base) {
520 *p_base = &user_bo->prime.base;
521 kref_get(&(*p_base)->refcount);
522 }
523 *handle = user_bo->prime.base.hash.key;
524
525 out_no_base_object:
526 return ret;
527 }
528
529 /**
530 * vmw_user_dmabuf_verify_access - verify access permissions on this
531 * buffer object.
532 *
533 * @bo: Pointer to the buffer object being accessed
534 * @tfile: Identifying the caller.
535 */
536 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
537 struct ttm_object_file *tfile)
538 {
539 struct vmw_user_dma_buffer *vmw_user_bo;
540
541 if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
542 return -EPERM;
543
544 vmw_user_bo = vmw_user_dma_buffer(bo);
545
546 /* Check that the caller has opened the object. */
547 if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
548 return 0;
549
550 DRM_ERROR("Could not grant buffer access.\n");
551 return -EPERM;
552 }
553
554 /**
555 * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
556 * access, idling previous GPU operations on the buffer and optionally
557 * blocking it for further command submissions.
558 *
559 * @user_bo: Pointer to the buffer object being grabbed for CPU access
560 * @tfile: Identifying the caller.
561 * @flags: Flags indicating how the grab should be performed.
562 *
563 * A blocking grab will be automatically released when @tfile is closed.
564 */
565 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
566 struct ttm_object_file *tfile,
567 uint32_t flags)
568 {
569 struct ttm_buffer_object *bo = &user_bo->dma.base;
570 bool existed;
571 int ret;
572
573 if (flags & drm_vmw_synccpu_allow_cs) {
574 bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
575 long lret;
576
577 if (nonblock)
578 return reservation_object_test_signaled_rcu(bo->resv, true) ? 0 : -EBUSY;
579
580 lret = reservation_object_wait_timeout_rcu(bo->resv, true, true, MAX_SCHEDULE_TIMEOUT);
581 if (!lret)
582 return -EBUSY;
583 else if (lret < 0)
584 return lret;
585 return 0;
586 }
587
588 ret = ttm_bo_synccpu_write_grab
589 (bo, !!(flags & drm_vmw_synccpu_dontblock));
590 if (unlikely(ret != 0))
591 return ret;
592
593 ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
594 TTM_REF_SYNCCPU_WRITE, &existed);
595 if (ret != 0 || existed)
596 ttm_bo_synccpu_write_release(&user_bo->dma.base);
597
598 return ret;
599 }
600
601 /**
602 * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
603 * and unblock command submission on the buffer if blocked.
604 *
605 * @handle: Handle identifying the buffer object.
606 * @tfile: Identifying the caller.
607 * @flags: Flags indicating the type of release.
608 */
609 static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
610 struct ttm_object_file *tfile,
611 uint32_t flags)
612 {
613 if (!(flags & drm_vmw_synccpu_allow_cs))
614 return ttm_ref_object_base_unref(tfile, handle,
615 TTM_REF_SYNCCPU_WRITE);
616
617 return 0;
618 }
619
620 /**
621 * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
622 * functionality.
623 *
624 * @dev: Identifies the drm device.
625 * @data: Pointer to the ioctl argument.
626 * @file_priv: Identifies the caller.
627 *
628 * This function checks the ioctl arguments for validity and calls the
629 * relevant synccpu functions.
630 */
631 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
632 struct drm_file *file_priv)
633 {
634 struct drm_vmw_synccpu_arg *arg =
635 (struct drm_vmw_synccpu_arg *) data;
636 struct vmw_dma_buffer *dma_buf;
637 struct vmw_user_dma_buffer *user_bo;
638 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
639 struct ttm_base_object *buffer_base;
640 int ret;
641
642 if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
643 || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
644 drm_vmw_synccpu_dontblock |
645 drm_vmw_synccpu_allow_cs)) != 0) {
646 DRM_ERROR("Illegal synccpu flags.\n");
647 return -EINVAL;
648 }
649
650 switch (arg->op) {
651 case drm_vmw_synccpu_grab:
652 ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
653 &buffer_base);
654 if (unlikely(ret != 0))
655 return ret;
656
657 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
658 dma);
659 ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
660 vmw_dmabuf_unreference(&dma_buf);
661 ttm_base_object_unref(&buffer_base);
662 if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
663 ret != -EBUSY)) {
664 DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
665 (unsigned int) arg->handle);
666 return ret;
667 }
668 break;
669 case drm_vmw_synccpu_release:
670 ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
671 arg->flags);
672 if (unlikely(ret != 0)) {
673 DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
674 (unsigned int) arg->handle);
675 return ret;
676 }
677 break;
678 default:
679 DRM_ERROR("Invalid synccpu operation.\n");
680 return -EINVAL;
681 }
682
683 return 0;
684 }
685
686 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
687 struct drm_file *file_priv)
688 {
689 struct vmw_private *dev_priv = vmw_priv(dev);
690 union drm_vmw_alloc_dmabuf_arg *arg =
691 (union drm_vmw_alloc_dmabuf_arg *)data;
692 struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
693 struct drm_vmw_dmabuf_rep *rep = &arg->rep;
694 struct vmw_dma_buffer *dma_buf;
695 uint32_t handle;
696 int ret;
697
698 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
699 if (unlikely(ret != 0))
700 return ret;
701
702 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
703 req->size, false, &handle, &dma_buf,
704 NULL);
705 if (unlikely(ret != 0))
706 goto out_no_dmabuf;
707
708 rep->handle = handle;
709 rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
710 rep->cur_gmr_id = handle;
711 rep->cur_gmr_offset = 0;
712
713 vmw_dmabuf_unreference(&dma_buf);
714
715 out_no_dmabuf:
716 ttm_read_unlock(&dev_priv->reservation_sem);
717
718 return ret;
719 }
720
721 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
722 struct drm_file *file_priv)
723 {
724 struct drm_vmw_unref_dmabuf_arg *arg =
725 (struct drm_vmw_unref_dmabuf_arg *)data;
726
727 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
728 arg->handle,
729 TTM_REF_USAGE);
730 }
731
732 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
733 uint32_t handle, struct vmw_dma_buffer **out,
734 struct ttm_base_object **p_base)
735 {
736 struct vmw_user_dma_buffer *vmw_user_bo;
737 struct ttm_base_object *base;
738
739 base = ttm_base_object_lookup(tfile, handle);
740 if (unlikely(base == NULL)) {
741 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
742 (unsigned long)handle);
743 return -ESRCH;
744 }
745
746 if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
747 ttm_base_object_unref(&base);
748 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
749 (unsigned long)handle);
750 return -EINVAL;
751 }
752
753 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
754 prime.base);
755 (void)ttm_bo_reference(&vmw_user_bo->dma.base);
756 if (p_base)
757 *p_base = base;
758 else
759 ttm_base_object_unref(&base);
760 *out = &vmw_user_bo->dma;
761
762 return 0;
763 }
764
765 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
766 struct vmw_dma_buffer *dma_buf,
767 uint32_t *handle)
768 {
769 struct vmw_user_dma_buffer *user_bo;
770
771 if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
772 return -EINVAL;
773
774 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
775
776 *handle = user_bo->prime.base.hash.key;
777 return ttm_ref_object_add(tfile, &user_bo->prime.base,
778 TTM_REF_USAGE, NULL);
779 }
780
781 /*
782 * Stream management
783 */
784
785 static void vmw_stream_destroy(struct vmw_resource *res)
786 {
787 struct vmw_private *dev_priv = res->dev_priv;
788 struct vmw_stream *stream;
789 int ret;
790
791 DRM_INFO("%s: unref\n", __func__);
792 stream = container_of(res, struct vmw_stream, res);
793
794 ret = vmw_overlay_unref(dev_priv, stream->stream_id);
795 WARN_ON(ret != 0);
796 }
797
798 static int vmw_stream_init(struct vmw_private *dev_priv,
799 struct vmw_stream *stream,
800 void (*res_free) (struct vmw_resource *res))
801 {
802 struct vmw_resource *res = &stream->res;
803 int ret;
804
805 ret = vmw_resource_init(dev_priv, res, false, res_free,
806 &vmw_stream_func);
807
808 if (unlikely(ret != 0)) {
809 if (res_free == NULL)
810 kfree(stream);
811 else
812 res_free(&stream->res);
813 return ret;
814 }
815
816 ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
817 if (ret) {
818 vmw_resource_unreference(&res);
819 return ret;
820 }
821
822 DRM_INFO("%s: claimed\n", __func__);
823
824 vmw_resource_activate(&stream->res, vmw_stream_destroy);
825 return 0;
826 }
827
828 static void vmw_user_stream_free(struct vmw_resource *res)
829 {
830 struct vmw_user_stream *stream =
831 container_of(res, struct vmw_user_stream, stream.res);
832 struct vmw_private *dev_priv = res->dev_priv;
833
834 ttm_base_object_kfree(stream, base);
835 ttm_mem_global_free(vmw_mem_glob(dev_priv),
836 vmw_user_stream_size);
837 }
838
839 /**
840 * This function is called when user space has no more references on the
841 * base object. It releases the base-object's reference on the resource object.
842 */
843
844 static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
845 {
846 struct ttm_base_object *base = *p_base;
847 struct vmw_user_stream *stream =
848 container_of(base, struct vmw_user_stream, base);
849 struct vmw_resource *res = &stream->stream.res;
850
851 *p_base = NULL;
852 vmw_resource_unreference(&res);
853 }
854
855 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
856 struct drm_file *file_priv)
857 {
858 struct vmw_private *dev_priv = vmw_priv(dev);
859 struct vmw_resource *res;
860 struct vmw_user_stream *stream;
861 struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
862 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
863 struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
864 int ret = 0;
865
866
867 res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
868 if (unlikely(res == NULL))
869 return -EINVAL;
870
871 if (res->res_free != &vmw_user_stream_free) {
872 ret = -EINVAL;
873 goto out;
874 }
875
876 stream = container_of(res, struct vmw_user_stream, stream.res);
877 if (stream->base.tfile != tfile) {
878 ret = -EINVAL;
879 goto out;
880 }
881
882 ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
883 out:
884 vmw_resource_unreference(&res);
885 return ret;
886 }
887
888 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
889 struct drm_file *file_priv)
890 {
891 struct vmw_private *dev_priv = vmw_priv(dev);
892 struct vmw_user_stream *stream;
893 struct vmw_resource *res;
894 struct vmw_resource *tmp;
895 struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
896 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
897 int ret;
898
899 /*
900 * Approximate idr memory usage with 128 bytes. It will be limited
901 * by maximum number_of streams anyway?
902 */
903
904 if (unlikely(vmw_user_stream_size == 0))
905 vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
906
907 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
908 if (unlikely(ret != 0))
909 return ret;
910
911 ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
912 vmw_user_stream_size,
913 false, true);
914 ttm_read_unlock(&dev_priv->reservation_sem);
915 if (unlikely(ret != 0)) {
916 if (ret != -ERESTARTSYS)
917 DRM_ERROR("Out of graphics memory for stream"
918 " creation.\n");
919
920 goto out_ret;
921 }
922
923 stream = kmalloc(sizeof(*stream), GFP_KERNEL);
924 if (unlikely(stream == NULL)) {
925 ttm_mem_global_free(vmw_mem_glob(dev_priv),
926 vmw_user_stream_size);
927 ret = -ENOMEM;
928 goto out_ret;
929 }
930
931 res = &stream->stream.res;
932 stream->base.shareable = false;
933 stream->base.tfile = NULL;
934
935 /*
936 * From here on, the destructor takes over resource freeing.
937 */
938
939 ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
940 if (unlikely(ret != 0))
941 goto out_ret;
942
943 tmp = vmw_resource_reference(res);
944 ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
945 &vmw_user_stream_base_release, NULL);
946
947 if (unlikely(ret != 0)) {
948 vmw_resource_unreference(&tmp);
949 goto out_err;
950 }
951
952 arg->stream_id = res->id;
953 out_err:
954 vmw_resource_unreference(&res);
955 out_ret:
956 return ret;
957 }
958
959 int vmw_user_stream_lookup(struct vmw_private *dev_priv,
960 struct ttm_object_file *tfile,
961 uint32_t *inout_id, struct vmw_resource **out)
962 {
963 struct vmw_user_stream *stream;
964 struct vmw_resource *res;
965 int ret;
966
967 res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
968 *inout_id);
969 if (unlikely(res == NULL))
970 return -EINVAL;
971
972 if (res->res_free != &vmw_user_stream_free) {
973 ret = -EINVAL;
974 goto err_ref;
975 }
976
977 stream = container_of(res, struct vmw_user_stream, stream.res);
978 if (stream->base.tfile != tfile) {
979 ret = -EPERM;
980 goto err_ref;
981 }
982
983 *inout_id = stream->stream.stream_id;
984 *out = res;
985 return 0;
986 err_ref:
987 vmw_resource_unreference(&res);
988 return ret;
989 }
990
991
992 /**
993 * vmw_dumb_create - Create a dumb kms buffer
994 *
995 * @file_priv: Pointer to a struct drm_file identifying the caller.
996 * @dev: Pointer to the drm device.
997 * @args: Pointer to a struct drm_mode_create_dumb structure
998 *
999 * This is a driver callback for the core drm create_dumb functionality.
1000 * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
1001 * that the arguments have a different format.
1002 */
1003 int vmw_dumb_create(struct drm_file *file_priv,
1004 struct drm_device *dev,
1005 struct drm_mode_create_dumb *args)
1006 {
1007 struct vmw_private *dev_priv = vmw_priv(dev);
1008 struct vmw_dma_buffer *dma_buf;
1009 int ret;
1010
1011 args->pitch = args->width * ((args->bpp + 7) / 8);
1012 args->size = args->pitch * args->height;
1013
1014 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1015 if (unlikely(ret != 0))
1016 return ret;
1017
1018 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
1019 args->size, false, &args->handle,
1020 &dma_buf, NULL);
1021 if (unlikely(ret != 0))
1022 goto out_no_dmabuf;
1023
1024 vmw_dmabuf_unreference(&dma_buf);
1025 out_no_dmabuf:
1026 ttm_read_unlock(&dev_priv->reservation_sem);
1027 return ret;
1028 }
1029
1030 /**
1031 * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
1032 *
1033 * @file_priv: Pointer to a struct drm_file identifying the caller.
1034 * @dev: Pointer to the drm device.
1035 * @handle: Handle identifying the dumb buffer.
1036 * @offset: The address space offset returned.
1037 *
1038 * This is a driver callback for the core drm dumb_map_offset functionality.
1039 */
1040 int vmw_dumb_map_offset(struct drm_file *file_priv,
1041 struct drm_device *dev, uint32_t handle,
1042 uint64_t *offset)
1043 {
1044 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1045 struct vmw_dma_buffer *out_buf;
1046 int ret;
1047
1048 ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
1049 if (ret != 0)
1050 return -EINVAL;
1051
1052 *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
1053 vmw_dmabuf_unreference(&out_buf);
1054 return 0;
1055 }
1056
1057 /**
1058 * vmw_dumb_destroy - Destroy a dumb boffer
1059 *
1060 * @file_priv: Pointer to a struct drm_file identifying the caller.
1061 * @dev: Pointer to the drm device.
1062 * @handle: Handle identifying the dumb buffer.
1063 *
1064 * This is a driver callback for the core drm dumb_destroy functionality.
1065 */
1066 int vmw_dumb_destroy(struct drm_file *file_priv,
1067 struct drm_device *dev,
1068 uint32_t handle)
1069 {
1070 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1071 handle, TTM_REF_USAGE);
1072 }
1073
1074 /**
1075 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
1076 *
1077 * @res: The resource for which to allocate a backup buffer.
1078 * @interruptible: Whether any sleeps during allocation should be
1079 * performed while interruptible.
1080 */
1081 static int vmw_resource_buf_alloc(struct vmw_resource *res,
1082 bool interruptible)
1083 {
1084 unsigned long size =
1085 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
1086 struct vmw_dma_buffer *backup;
1087 int ret;
1088
1089 if (likely(res->backup)) {
1090 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
1091 return 0;
1092 }
1093
1094 backup = kzalloc(sizeof(*backup), GFP_KERNEL);
1095 if (unlikely(backup == NULL))
1096 return -ENOMEM;
1097
1098 ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
1099 res->func->backup_placement,
1100 interruptible,
1101 &vmw_dmabuf_bo_free);
1102 if (unlikely(ret != 0))
1103 goto out_no_dmabuf;
1104
1105 res->backup = backup;
1106
1107 out_no_dmabuf:
1108 return ret;
1109 }
1110
1111 /**
1112 * vmw_resource_do_validate - Make a resource up-to-date and visible
1113 * to the device.
1114 *
1115 * @res: The resource to make visible to the device.
1116 * @val_buf: Information about a buffer possibly
1117 * containing backup data if a bind operation is needed.
1118 *
1119 * On hardware resource shortage, this function returns -EBUSY and
1120 * should be retried once resources have been freed up.
1121 */
1122 static int vmw_resource_do_validate(struct vmw_resource *res,
1123 struct ttm_validate_buffer *val_buf)
1124 {
1125 int ret = 0;
1126 const struct vmw_res_func *func = res->func;
1127
1128 if (unlikely(res->id == -1)) {
1129 ret = func->create(res);
1130 if (unlikely(ret != 0))
1131 return ret;
1132 }
1133
1134 if (func->bind &&
1135 ((func->needs_backup && list_empty(&res->mob_head) &&
1136 val_buf->bo != NULL) ||
1137 (!func->needs_backup && val_buf->bo != NULL))) {
1138 ret = func->bind(res, val_buf);
1139 if (unlikely(ret != 0))
1140 goto out_bind_failed;
1141 if (func->needs_backup)
1142 list_add_tail(&res->mob_head, &res->backup->res_list);
1143 }
1144
1145 /*
1146 * Only do this on write operations, and move to
1147 * vmw_resource_unreserve if it can be called after
1148 * backup buffers have been unreserved. Otherwise
1149 * sort out locking.
1150 */
1151 res->res_dirty = true;
1152
1153 return 0;
1154
1155 out_bind_failed:
1156 func->destroy(res);
1157
1158 return ret;
1159 }
1160
1161 /**
1162 * vmw_resource_unreserve - Unreserve a resource previously reserved for
1163 * command submission.
1164 *
1165 * @res: Pointer to the struct vmw_resource to unreserve.
1166 * @switch_backup: Backup buffer has been switched.
1167 * @new_backup: Pointer to new backup buffer if command submission
1168 * switched. May be NULL.
1169 * @new_backup_offset: New backup offset if @switch_backup is true.
1170 *
1171 * Currently unreserving a resource means putting it back on the device's
1172 * resource lru list, so that it can be evicted if necessary.
1173 */
1174 void vmw_resource_unreserve(struct vmw_resource *res,
1175 bool switch_backup,
1176 struct vmw_dma_buffer *new_backup,
1177 unsigned long new_backup_offset)
1178 {
1179 struct vmw_private *dev_priv = res->dev_priv;
1180
1181 if (!list_empty(&res->lru_head))
1182 return;
1183
1184 if (switch_backup && new_backup != res->backup) {
1185 if (res->backup) {
1186 lockdep_assert_held(&res->backup->base.resv->lock.base);
1187 list_del_init(&res->mob_head);
1188 vmw_dmabuf_unreference(&res->backup);
1189 }
1190
1191 if (new_backup) {
1192 res->backup = vmw_dmabuf_reference(new_backup);
1193 lockdep_assert_held(&new_backup->base.resv->lock.base);
1194 list_add_tail(&res->mob_head, &new_backup->res_list);
1195 } else {
1196 res->backup = NULL;
1197 }
1198 }
1199 if (switch_backup)
1200 res->backup_offset = new_backup_offset;
1201
1202 if (!res->func->may_evict || res->id == -1 || res->pin_count)
1203 return;
1204
1205 write_lock(&dev_priv->resource_lock);
1206 list_add_tail(&res->lru_head,
1207 &res->dev_priv->res_lru[res->func->res_type]);
1208 write_unlock(&dev_priv->resource_lock);
1209 }
1210
1211 /**
1212 * vmw_resource_check_buffer - Check whether a backup buffer is needed
1213 * for a resource and in that case, allocate
1214 * one, reserve and validate it.
1215 *
1216 * @res: The resource for which to allocate a backup buffer.
1217 * @interruptible: Whether any sleeps during allocation should be
1218 * performed while interruptible.
1219 * @val_buf: On successful return contains data about the
1220 * reserved and validated backup buffer.
1221 */
1222 static int
1223 vmw_resource_check_buffer(struct vmw_resource *res,
1224 bool interruptible,
1225 struct ttm_validate_buffer *val_buf)
1226 {
1227 struct list_head val_list;
1228 bool backup_dirty = false;
1229 int ret;
1230
1231 if (unlikely(res->backup == NULL)) {
1232 ret = vmw_resource_buf_alloc(res, interruptible);
1233 if (unlikely(ret != 0))
1234 return ret;
1235 }
1236
1237 INIT_LIST_HEAD(&val_list);
1238 val_buf->bo = ttm_bo_reference(&res->backup->base);
1239 val_buf->shared = false;
1240 list_add_tail(&val_buf->head, &val_list);
1241 ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
1242 if (unlikely(ret != 0))
1243 goto out_no_reserve;
1244
1245 if (res->func->needs_backup && list_empty(&res->mob_head))
1246 return 0;
1247
1248 backup_dirty = res->backup_dirty;
1249 ret = ttm_bo_validate(&res->backup->base,
1250 res->func->backup_placement,
1251 true, false);
1252
1253 if (unlikely(ret != 0))
1254 goto out_no_validate;
1255
1256 return 0;
1257
1258 out_no_validate:
1259 ttm_eu_backoff_reservation(NULL, &val_list);
1260 out_no_reserve:
1261 ttm_bo_unref(&val_buf->bo);
1262 if (backup_dirty)
1263 vmw_dmabuf_unreference(&res->backup);
1264
1265 return ret;
1266 }
1267
1268 /**
1269 * vmw_resource_reserve - Reserve a resource for command submission
1270 *
1271 * @res: The resource to reserve.
1272 *
1273 * This function takes the resource off the LRU list and make sure
1274 * a backup buffer is present for guest-backed resources. However,
1275 * the buffer may not be bound to the resource at this point.
1276 *
1277 */
1278 int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
1279 bool no_backup)
1280 {
1281 struct vmw_private *dev_priv = res->dev_priv;
1282 int ret;
1283
1284 write_lock(&dev_priv->resource_lock);
1285 list_del_init(&res->lru_head);
1286 write_unlock(&dev_priv->resource_lock);
1287
1288 if (res->func->needs_backup && res->backup == NULL &&
1289 !no_backup) {
1290 ret = vmw_resource_buf_alloc(res, interruptible);
1291 if (unlikely(ret != 0)) {
1292 DRM_ERROR("Failed to allocate a backup buffer "
1293 "of size %lu. bytes\n",
1294 (unsigned long) res->backup_size);
1295 return ret;
1296 }
1297 }
1298
1299 return 0;
1300 }
1301
1302 /**
1303 * vmw_resource_backoff_reservation - Unreserve and unreference a
1304 * backup buffer
1305 *.
1306 * @val_buf: Backup buffer information.
1307 */
1308 static void
1309 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1310 {
1311 struct list_head val_list;
1312
1313 if (likely(val_buf->bo == NULL))
1314 return;
1315
1316 INIT_LIST_HEAD(&val_list);
1317 list_add_tail(&val_buf->head, &val_list);
1318 ttm_eu_backoff_reservation(NULL, &val_list);
1319 ttm_bo_unref(&val_buf->bo);
1320 }
1321
1322 /**
1323 * vmw_resource_do_evict - Evict a resource, and transfer its data
1324 * to a backup buffer.
1325 *
1326 * @res: The resource to evict.
1327 * @interruptible: Whether to wait interruptible.
1328 */
1329 static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1330 {
1331 struct ttm_validate_buffer val_buf;
1332 const struct vmw_res_func *func = res->func;
1333 int ret;
1334
1335 BUG_ON(!func->may_evict);
1336
1337 val_buf.bo = NULL;
1338 val_buf.shared = false;
1339 ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1340 if (unlikely(ret != 0))
1341 return ret;
1342
1343 if (unlikely(func->unbind != NULL &&
1344 (!func->needs_backup || !list_empty(&res->mob_head)))) {
1345 ret = func->unbind(res, res->res_dirty, &val_buf);
1346 if (unlikely(ret != 0))
1347 goto out_no_unbind;
1348 list_del_init(&res->mob_head);
1349 }
1350 ret = func->destroy(res);
1351 res->backup_dirty = true;
1352 res->res_dirty = false;
1353 out_no_unbind:
1354 vmw_resource_backoff_reservation(&val_buf);
1355
1356 return ret;
1357 }
1358
1359
1360 /**
1361 * vmw_resource_validate - Make a resource up-to-date and visible
1362 * to the device.
1363 *
1364 * @res: The resource to make visible to the device.
1365 *
1366 * On succesful return, any backup DMA buffer pointed to by @res->backup will
1367 * be reserved and validated.
1368 * On hardware resource shortage, this function will repeatedly evict
1369 * resources of the same type until the validation succeeds.
1370 */
1371 int vmw_resource_validate(struct vmw_resource *res)
1372 {
1373 int ret;
1374 struct vmw_resource *evict_res;
1375 struct vmw_private *dev_priv = res->dev_priv;
1376 struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1377 struct ttm_validate_buffer val_buf;
1378 unsigned err_count = 0;
1379
1380 if (!res->func->create)
1381 return 0;
1382
1383 val_buf.bo = NULL;
1384 val_buf.shared = false;
1385 if (res->backup)
1386 val_buf.bo = &res->backup->base;
1387 do {
1388 ret = vmw_resource_do_validate(res, &val_buf);
1389 if (likely(ret != -EBUSY))
1390 break;
1391
1392 write_lock(&dev_priv->resource_lock);
1393 if (list_empty(lru_list) || !res->func->may_evict) {
1394 DRM_ERROR("Out of device device resources "
1395 "for %s.\n", res->func->type_name);
1396 ret = -EBUSY;
1397 write_unlock(&dev_priv->resource_lock);
1398 break;
1399 }
1400
1401 evict_res = vmw_resource_reference
1402 (list_first_entry(lru_list, struct vmw_resource,
1403 lru_head));
1404 list_del_init(&evict_res->lru_head);
1405
1406 write_unlock(&dev_priv->resource_lock);
1407
1408 ret = vmw_resource_do_evict(evict_res, true);
1409 if (unlikely(ret != 0)) {
1410 write_lock(&dev_priv->resource_lock);
1411 list_add_tail(&evict_res->lru_head, lru_list);
1412 write_unlock(&dev_priv->resource_lock);
1413 if (ret == -ERESTARTSYS ||
1414 ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1415 vmw_resource_unreference(&evict_res);
1416 goto out_no_validate;
1417 }
1418 }
1419
1420 vmw_resource_unreference(&evict_res);
1421 } while (1);
1422
1423 if (unlikely(ret != 0))
1424 goto out_no_validate;
1425 else if (!res->func->needs_backup && res->backup) {
1426 list_del_init(&res->mob_head);
1427 vmw_dmabuf_unreference(&res->backup);
1428 }
1429
1430 return 0;
1431
1432 out_no_validate:
1433 return ret;
1434 }
1435
1436 /**
1437 * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1438 * object without unreserving it.
1439 *
1440 * @bo: Pointer to the struct ttm_buffer_object to fence.
1441 * @fence: Pointer to the fence. If NULL, this function will
1442 * insert a fence into the command stream..
1443 *
1444 * Contrary to the ttm_eu version of this function, it takes only
1445 * a single buffer object instead of a list, and it also doesn't
1446 * unreserve the buffer object, which needs to be done separately.
1447 */
1448 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1449 struct vmw_fence_obj *fence)
1450 {
1451 struct ttm_bo_device *bdev = bo->bdev;
1452
1453 struct vmw_private *dev_priv =
1454 container_of(bdev, struct vmw_private, bdev);
1455
1456 if (fence == NULL) {
1457 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1458 reservation_object_add_excl_fence(bo->resv, &fence->base);
1459 fence_put(&fence->base);
1460 } else
1461 reservation_object_add_excl_fence(bo->resv, &fence->base);
1462 }
1463
1464 /**
1465 * vmw_resource_move_notify - TTM move_notify_callback
1466 *
1467 * @bo: The TTM buffer object about to move.
1468 * @mem: The struct ttm_mem_reg indicating to what memory
1469 * region the move is taking place.
1470 *
1471 * Evicts the Guest Backed hardware resource if the backup
1472 * buffer is being moved out of MOB memory.
1473 * Note that this function should not race with the resource
1474 * validation code as long as it accesses only members of struct
1475 * resource that remain static while bo::res is !NULL and
1476 * while we have @bo reserved. struct resource::backup is *not* a
1477 * static member. The resource validation code will take care
1478 * to set @bo::res to NULL, while having @bo reserved when the
1479 * buffer is no longer bound to the resource, so @bo:res can be
1480 * used to determine whether there is a need to unbind and whether
1481 * it is safe to unbind.
1482 */
1483 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1484 struct ttm_mem_reg *mem)
1485 {
1486 struct vmw_dma_buffer *dma_buf;
1487
1488 if (mem == NULL)
1489 return;
1490
1491 if (bo->destroy != vmw_dmabuf_bo_free &&
1492 bo->destroy != vmw_user_dmabuf_destroy)
1493 return;
1494
1495 dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1496
1497 if (mem->mem_type != VMW_PL_MOB) {
1498 struct vmw_resource *res, *n;
1499 struct ttm_validate_buffer val_buf;
1500
1501 val_buf.bo = bo;
1502 val_buf.shared = false;
1503
1504 list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1505
1506 if (unlikely(res->func->unbind == NULL))
1507 continue;
1508
1509 (void) res->func->unbind(res, true, &val_buf);
1510 res->backup_dirty = true;
1511 res->res_dirty = false;
1512 list_del_init(&res->mob_head);
1513 }
1514
1515 (void) ttm_bo_wait(bo, false, false, false);
1516 }
1517 }
1518
1519
1520
1521 /**
1522 * vmw_query_readback_all - Read back cached query states
1523 *
1524 * @dx_query_mob: Buffer containing the DX query MOB
1525 *
1526 * Read back cached states from the device if they exist. This function
1527 * assumings binding_mutex is held.
1528 */
1529 int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
1530 {
1531 struct vmw_resource *dx_query_ctx;
1532 struct vmw_private *dev_priv;
1533 struct {
1534 SVGA3dCmdHeader header;
1535 SVGA3dCmdDXReadbackAllQuery body;
1536 } *cmd;
1537
1538
1539 /* No query bound, so do nothing */
1540 if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
1541 return 0;
1542
1543 dx_query_ctx = dx_query_mob->dx_query_ctx;
1544 dev_priv = dx_query_ctx->dev_priv;
1545
1546 cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
1547 if (unlikely(cmd == NULL)) {
1548 DRM_ERROR("Failed reserving FIFO space for "
1549 "query MOB read back.\n");
1550 return -ENOMEM;
1551 }
1552
1553 cmd->header.id = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
1554 cmd->header.size = sizeof(cmd->body);
1555 cmd->body.cid = dx_query_ctx->id;
1556
1557 vmw_fifo_commit(dev_priv, sizeof(*cmd));
1558
1559 /* Triggers a rebind the next time affected context is bound */
1560 dx_query_mob->dx_query_ctx = NULL;
1561
1562 return 0;
1563 }
1564
1565
1566
1567 /**
1568 * vmw_query_move_notify - Read back cached query states
1569 *
1570 * @bo: The TTM buffer object about to move.
1571 * @mem: The memory region @bo is moving to.
1572 *
1573 * Called before the query MOB is swapped out to read back cached query
1574 * states from the device.
1575 */
1576 void vmw_query_move_notify(struct ttm_buffer_object *bo,
1577 struct ttm_mem_reg *mem)
1578 {
1579 struct vmw_dma_buffer *dx_query_mob;
1580 struct ttm_bo_device *bdev = bo->bdev;
1581 struct vmw_private *dev_priv;
1582
1583
1584 dev_priv = container_of(bdev, struct vmw_private, bdev);
1585
1586 mutex_lock(&dev_priv->binding_mutex);
1587
1588 dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
1589 if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
1590 mutex_unlock(&dev_priv->binding_mutex);
1591 return;
1592 }
1593
1594 /* If BO is being moved from MOB to system memory */
1595 if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
1596 struct vmw_fence_obj *fence;
1597
1598 (void) vmw_query_readback_all(dx_query_mob);
1599 mutex_unlock(&dev_priv->binding_mutex);
1600
1601 /* Create a fence and attach the BO to it */
1602 (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1603 vmw_fence_single_bo(bo, fence);
1604
1605 if (fence != NULL)
1606 vmw_fence_obj_unreference(&fence);
1607
1608 (void) ttm_bo_wait(bo, false, false, false);
1609 } else
1610 mutex_unlock(&dev_priv->binding_mutex);
1611
1612 }
1613
1614 /**
1615 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1616 *
1617 * @res: The resource being queried.
1618 */
1619 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1620 {
1621 return res->func->needs_backup;
1622 }
1623
1624 /**
1625 * vmw_resource_evict_type - Evict all resources of a specific type
1626 *
1627 * @dev_priv: Pointer to a device private struct
1628 * @type: The resource type to evict
1629 *
1630 * To avoid thrashing starvation or as part of the hibernation sequence,
1631 * try to evict all evictable resources of a specific type.
1632 */
1633 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1634 enum vmw_res_type type)
1635 {
1636 struct list_head *lru_list = &dev_priv->res_lru[type];
1637 struct vmw_resource *evict_res;
1638 unsigned err_count = 0;
1639 int ret;
1640
1641 do {
1642 write_lock(&dev_priv->resource_lock);
1643
1644 if (list_empty(lru_list))
1645 goto out_unlock;
1646
1647 evict_res = vmw_resource_reference(
1648 list_first_entry(lru_list, struct vmw_resource,
1649 lru_head));
1650 list_del_init(&evict_res->lru_head);
1651 write_unlock(&dev_priv->resource_lock);
1652
1653 ret = vmw_resource_do_evict(evict_res, false);
1654 if (unlikely(ret != 0)) {
1655 write_lock(&dev_priv->resource_lock);
1656 list_add_tail(&evict_res->lru_head, lru_list);
1657 write_unlock(&dev_priv->resource_lock);
1658 if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1659 vmw_resource_unreference(&evict_res);
1660 return;
1661 }
1662 }
1663
1664 vmw_resource_unreference(&evict_res);
1665 } while (1);
1666
1667 out_unlock:
1668 write_unlock(&dev_priv->resource_lock);
1669 }
1670
1671 /**
1672 * vmw_resource_evict_all - Evict all evictable resources
1673 *
1674 * @dev_priv: Pointer to a device private struct
1675 *
1676 * To avoid thrashing starvation or as part of the hibernation sequence,
1677 * evict all evictable resources. In particular this means that all
1678 * guest-backed resources that are registered with the device are
1679 * evicted and the OTable becomes clean.
1680 */
1681 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1682 {
1683 enum vmw_res_type type;
1684
1685 mutex_lock(&dev_priv->cmdbuf_mutex);
1686
1687 for (type = 0; type < vmw_res_max; ++type)
1688 vmw_resource_evict_type(dev_priv, type);
1689
1690 mutex_unlock(&dev_priv->cmdbuf_mutex);
1691 }
1692
1693 /**
1694 * vmw_resource_pin - Add a pin reference on a resource
1695 *
1696 * @res: The resource to add a pin reference on
1697 *
1698 * This function adds a pin reference, and if needed validates the resource.
1699 * Having a pin reference means that the resource can never be evicted, and
1700 * its id will never change as long as there is a pin reference.
1701 * This function returns 0 on success and a negative error code on failure.
1702 */
1703 int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
1704 {
1705 struct vmw_private *dev_priv = res->dev_priv;
1706 int ret;
1707
1708 ttm_write_lock(&dev_priv->reservation_sem, interruptible);
1709 mutex_lock(&dev_priv->cmdbuf_mutex);
1710 ret = vmw_resource_reserve(res, interruptible, false);
1711 if (ret)
1712 goto out_no_reserve;
1713
1714 if (res->pin_count == 0) {
1715 struct vmw_dma_buffer *vbo = NULL;
1716
1717 if (res->backup) {
1718 vbo = res->backup;
1719
1720 ttm_bo_reserve(&vbo->base, interruptible, false, false,
1721 NULL);
1722 if (!vbo->pin_count) {
1723 ret = ttm_bo_validate
1724 (&vbo->base,
1725 res->func->backup_placement,
1726 interruptible, false);
1727 if (ret) {
1728 ttm_bo_unreserve(&vbo->base);
1729 goto out_no_validate;
1730 }
1731 }
1732
1733 /* Do we really need to pin the MOB as well? */
1734 vmw_bo_pin_reserved(vbo, true);
1735 }
1736 ret = vmw_resource_validate(res);
1737 if (vbo)
1738 ttm_bo_unreserve(&vbo->base);
1739 if (ret)
1740 goto out_no_validate;
1741 }
1742 res->pin_count++;
1743
1744 out_no_validate:
1745 vmw_resource_unreserve(res, false, NULL, 0UL);
1746 out_no_reserve:
1747 mutex_unlock(&dev_priv->cmdbuf_mutex);
1748 ttm_write_unlock(&dev_priv->reservation_sem);
1749
1750 return ret;
1751 }
1752
1753 /**
1754 * vmw_resource_unpin - Remove a pin reference from a resource
1755 *
1756 * @res: The resource to remove a pin reference from
1757 *
1758 * Having a pin reference means that the resource can never be evicted, and
1759 * its id will never change as long as there is a pin reference.
1760 */
1761 void vmw_resource_unpin(struct vmw_resource *res)
1762 {
1763 struct vmw_private *dev_priv = res->dev_priv;
1764 int ret;
1765
1766 ttm_read_lock(&dev_priv->reservation_sem, false);
1767 mutex_lock(&dev_priv->cmdbuf_mutex);
1768
1769 ret = vmw_resource_reserve(res, false, true);
1770 WARN_ON(ret);
1771
1772 WARN_ON(res->pin_count == 0);
1773 if (--res->pin_count == 0 && res->backup) {
1774 struct vmw_dma_buffer *vbo = res->backup;
1775
1776 ttm_bo_reserve(&vbo->base, false, false, false, NULL);
1777 vmw_bo_pin_reserved(vbo, false);
1778 ttm_bo_unreserve(&vbo->base);
1779 }
1780
1781 vmw_resource_unreserve(res, false, NULL, 0UL);
1782
1783 mutex_unlock(&dev_priv->cmdbuf_mutex);
1784 ttm_read_unlock(&dev_priv->reservation_sem);
1785 }
1786
1787 /**
1788 * vmw_res_type - Return the resource type
1789 *
1790 * @res: Pointer to the resource
1791 */
1792 enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1793 {
1794 return res->func->res_type;
1795 }
This page took 0.069504 seconds and 6 git commands to generate.