Merge tag 'for-4.5' of git://git.osdn.jp/gitroot/uclinux-h8/linux
[deliverable/linux.git] / drivers / hv / vmbus_drv.c
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
21 *
22 */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include "hyperv_vmbus.h"
45
46 static struct acpi_device *hv_acpi_dev;
47
48 static struct tasklet_struct msg_dpc;
49 static struct completion probe_event;
50
51
52 static void hyperv_report_panic(struct pt_regs *regs)
53 {
54 static bool panic_reported;
55
56 /*
57 * We prefer to report panic on 'die' chain as we have proper
58 * registers to report, but if we miss it (e.g. on BUG()) we need
59 * to report it on 'panic'.
60 */
61 if (panic_reported)
62 return;
63 panic_reported = true;
64
65 wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
66 wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
67 wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
68 wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
69 wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
70
71 /*
72 * Let Hyper-V know there is crash data available
73 */
74 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
75 }
76
77 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
78 void *args)
79 {
80 struct pt_regs *regs;
81
82 regs = current_pt_regs();
83
84 hyperv_report_panic(regs);
85 return NOTIFY_DONE;
86 }
87
88 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
89 void *args)
90 {
91 struct die_args *die = (struct die_args *)args;
92 struct pt_regs *regs = die->regs;
93
94 hyperv_report_panic(regs);
95 return NOTIFY_DONE;
96 }
97
98 static struct notifier_block hyperv_die_block = {
99 .notifier_call = hyperv_die_event,
100 };
101 static struct notifier_block hyperv_panic_block = {
102 .notifier_call = hyperv_panic_event,
103 };
104
105 struct resource *hyperv_mmio;
106
107 static int vmbus_exists(void)
108 {
109 if (hv_acpi_dev == NULL)
110 return -ENODEV;
111
112 return 0;
113 }
114
115 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
116 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
117 {
118 int i;
119 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
120 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
121 }
122
123 static u8 channel_monitor_group(struct vmbus_channel *channel)
124 {
125 return (u8)channel->offermsg.monitorid / 32;
126 }
127
128 static u8 channel_monitor_offset(struct vmbus_channel *channel)
129 {
130 return (u8)channel->offermsg.monitorid % 32;
131 }
132
133 static u32 channel_pending(struct vmbus_channel *channel,
134 struct hv_monitor_page *monitor_page)
135 {
136 u8 monitor_group = channel_monitor_group(channel);
137 return monitor_page->trigger_group[monitor_group].pending;
138 }
139
140 static u32 channel_latency(struct vmbus_channel *channel,
141 struct hv_monitor_page *monitor_page)
142 {
143 u8 monitor_group = channel_monitor_group(channel);
144 u8 monitor_offset = channel_monitor_offset(channel);
145 return monitor_page->latency[monitor_group][monitor_offset];
146 }
147
148 static u32 channel_conn_id(struct vmbus_channel *channel,
149 struct hv_monitor_page *monitor_page)
150 {
151 u8 monitor_group = channel_monitor_group(channel);
152 u8 monitor_offset = channel_monitor_offset(channel);
153 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
154 }
155
156 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
157 char *buf)
158 {
159 struct hv_device *hv_dev = device_to_hv_device(dev);
160
161 if (!hv_dev->channel)
162 return -ENODEV;
163 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
164 }
165 static DEVICE_ATTR_RO(id);
166
167 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
168 char *buf)
169 {
170 struct hv_device *hv_dev = device_to_hv_device(dev);
171
172 if (!hv_dev->channel)
173 return -ENODEV;
174 return sprintf(buf, "%d\n", hv_dev->channel->state);
175 }
176 static DEVICE_ATTR_RO(state);
177
178 static ssize_t monitor_id_show(struct device *dev,
179 struct device_attribute *dev_attr, char *buf)
180 {
181 struct hv_device *hv_dev = device_to_hv_device(dev);
182
183 if (!hv_dev->channel)
184 return -ENODEV;
185 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
186 }
187 static DEVICE_ATTR_RO(monitor_id);
188
189 static ssize_t class_id_show(struct device *dev,
190 struct device_attribute *dev_attr, char *buf)
191 {
192 struct hv_device *hv_dev = device_to_hv_device(dev);
193
194 if (!hv_dev->channel)
195 return -ENODEV;
196 return sprintf(buf, "{%pUl}\n",
197 hv_dev->channel->offermsg.offer.if_type.b);
198 }
199 static DEVICE_ATTR_RO(class_id);
200
201 static ssize_t device_id_show(struct device *dev,
202 struct device_attribute *dev_attr, char *buf)
203 {
204 struct hv_device *hv_dev = device_to_hv_device(dev);
205
206 if (!hv_dev->channel)
207 return -ENODEV;
208 return sprintf(buf, "{%pUl}\n",
209 hv_dev->channel->offermsg.offer.if_instance.b);
210 }
211 static DEVICE_ATTR_RO(device_id);
212
213 static ssize_t modalias_show(struct device *dev,
214 struct device_attribute *dev_attr, char *buf)
215 {
216 struct hv_device *hv_dev = device_to_hv_device(dev);
217 char alias_name[VMBUS_ALIAS_LEN + 1];
218
219 print_alias_name(hv_dev, alias_name);
220 return sprintf(buf, "vmbus:%s\n", alias_name);
221 }
222 static DEVICE_ATTR_RO(modalias);
223
224 static ssize_t server_monitor_pending_show(struct device *dev,
225 struct device_attribute *dev_attr,
226 char *buf)
227 {
228 struct hv_device *hv_dev = device_to_hv_device(dev);
229
230 if (!hv_dev->channel)
231 return -ENODEV;
232 return sprintf(buf, "%d\n",
233 channel_pending(hv_dev->channel,
234 vmbus_connection.monitor_pages[1]));
235 }
236 static DEVICE_ATTR_RO(server_monitor_pending);
237
238 static ssize_t client_monitor_pending_show(struct device *dev,
239 struct device_attribute *dev_attr,
240 char *buf)
241 {
242 struct hv_device *hv_dev = device_to_hv_device(dev);
243
244 if (!hv_dev->channel)
245 return -ENODEV;
246 return sprintf(buf, "%d\n",
247 channel_pending(hv_dev->channel,
248 vmbus_connection.monitor_pages[1]));
249 }
250 static DEVICE_ATTR_RO(client_monitor_pending);
251
252 static ssize_t server_monitor_latency_show(struct device *dev,
253 struct device_attribute *dev_attr,
254 char *buf)
255 {
256 struct hv_device *hv_dev = device_to_hv_device(dev);
257
258 if (!hv_dev->channel)
259 return -ENODEV;
260 return sprintf(buf, "%d\n",
261 channel_latency(hv_dev->channel,
262 vmbus_connection.monitor_pages[0]));
263 }
264 static DEVICE_ATTR_RO(server_monitor_latency);
265
266 static ssize_t client_monitor_latency_show(struct device *dev,
267 struct device_attribute *dev_attr,
268 char *buf)
269 {
270 struct hv_device *hv_dev = device_to_hv_device(dev);
271
272 if (!hv_dev->channel)
273 return -ENODEV;
274 return sprintf(buf, "%d\n",
275 channel_latency(hv_dev->channel,
276 vmbus_connection.monitor_pages[1]));
277 }
278 static DEVICE_ATTR_RO(client_monitor_latency);
279
280 static ssize_t server_monitor_conn_id_show(struct device *dev,
281 struct device_attribute *dev_attr,
282 char *buf)
283 {
284 struct hv_device *hv_dev = device_to_hv_device(dev);
285
286 if (!hv_dev->channel)
287 return -ENODEV;
288 return sprintf(buf, "%d\n",
289 channel_conn_id(hv_dev->channel,
290 vmbus_connection.monitor_pages[0]));
291 }
292 static DEVICE_ATTR_RO(server_monitor_conn_id);
293
294 static ssize_t client_monitor_conn_id_show(struct device *dev,
295 struct device_attribute *dev_attr,
296 char *buf)
297 {
298 struct hv_device *hv_dev = device_to_hv_device(dev);
299
300 if (!hv_dev->channel)
301 return -ENODEV;
302 return sprintf(buf, "%d\n",
303 channel_conn_id(hv_dev->channel,
304 vmbus_connection.monitor_pages[1]));
305 }
306 static DEVICE_ATTR_RO(client_monitor_conn_id);
307
308 static ssize_t out_intr_mask_show(struct device *dev,
309 struct device_attribute *dev_attr, char *buf)
310 {
311 struct hv_device *hv_dev = device_to_hv_device(dev);
312 struct hv_ring_buffer_debug_info outbound;
313
314 if (!hv_dev->channel)
315 return -ENODEV;
316 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
317 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
318 }
319 static DEVICE_ATTR_RO(out_intr_mask);
320
321 static ssize_t out_read_index_show(struct device *dev,
322 struct device_attribute *dev_attr, char *buf)
323 {
324 struct hv_device *hv_dev = device_to_hv_device(dev);
325 struct hv_ring_buffer_debug_info outbound;
326
327 if (!hv_dev->channel)
328 return -ENODEV;
329 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
330 return sprintf(buf, "%d\n", outbound.current_read_index);
331 }
332 static DEVICE_ATTR_RO(out_read_index);
333
334 static ssize_t out_write_index_show(struct device *dev,
335 struct device_attribute *dev_attr,
336 char *buf)
337 {
338 struct hv_device *hv_dev = device_to_hv_device(dev);
339 struct hv_ring_buffer_debug_info outbound;
340
341 if (!hv_dev->channel)
342 return -ENODEV;
343 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
344 return sprintf(buf, "%d\n", outbound.current_write_index);
345 }
346 static DEVICE_ATTR_RO(out_write_index);
347
348 static ssize_t out_read_bytes_avail_show(struct device *dev,
349 struct device_attribute *dev_attr,
350 char *buf)
351 {
352 struct hv_device *hv_dev = device_to_hv_device(dev);
353 struct hv_ring_buffer_debug_info outbound;
354
355 if (!hv_dev->channel)
356 return -ENODEV;
357 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
358 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
359 }
360 static DEVICE_ATTR_RO(out_read_bytes_avail);
361
362 static ssize_t out_write_bytes_avail_show(struct device *dev,
363 struct device_attribute *dev_attr,
364 char *buf)
365 {
366 struct hv_device *hv_dev = device_to_hv_device(dev);
367 struct hv_ring_buffer_debug_info outbound;
368
369 if (!hv_dev->channel)
370 return -ENODEV;
371 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
372 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
373 }
374 static DEVICE_ATTR_RO(out_write_bytes_avail);
375
376 static ssize_t in_intr_mask_show(struct device *dev,
377 struct device_attribute *dev_attr, char *buf)
378 {
379 struct hv_device *hv_dev = device_to_hv_device(dev);
380 struct hv_ring_buffer_debug_info inbound;
381
382 if (!hv_dev->channel)
383 return -ENODEV;
384 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
385 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
386 }
387 static DEVICE_ATTR_RO(in_intr_mask);
388
389 static ssize_t in_read_index_show(struct device *dev,
390 struct device_attribute *dev_attr, char *buf)
391 {
392 struct hv_device *hv_dev = device_to_hv_device(dev);
393 struct hv_ring_buffer_debug_info inbound;
394
395 if (!hv_dev->channel)
396 return -ENODEV;
397 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
398 return sprintf(buf, "%d\n", inbound.current_read_index);
399 }
400 static DEVICE_ATTR_RO(in_read_index);
401
402 static ssize_t in_write_index_show(struct device *dev,
403 struct device_attribute *dev_attr, char *buf)
404 {
405 struct hv_device *hv_dev = device_to_hv_device(dev);
406 struct hv_ring_buffer_debug_info inbound;
407
408 if (!hv_dev->channel)
409 return -ENODEV;
410 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
411 return sprintf(buf, "%d\n", inbound.current_write_index);
412 }
413 static DEVICE_ATTR_RO(in_write_index);
414
415 static ssize_t in_read_bytes_avail_show(struct device *dev,
416 struct device_attribute *dev_attr,
417 char *buf)
418 {
419 struct hv_device *hv_dev = device_to_hv_device(dev);
420 struct hv_ring_buffer_debug_info inbound;
421
422 if (!hv_dev->channel)
423 return -ENODEV;
424 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
425 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
426 }
427 static DEVICE_ATTR_RO(in_read_bytes_avail);
428
429 static ssize_t in_write_bytes_avail_show(struct device *dev,
430 struct device_attribute *dev_attr,
431 char *buf)
432 {
433 struct hv_device *hv_dev = device_to_hv_device(dev);
434 struct hv_ring_buffer_debug_info inbound;
435
436 if (!hv_dev->channel)
437 return -ENODEV;
438 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
439 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
440 }
441 static DEVICE_ATTR_RO(in_write_bytes_avail);
442
443 static ssize_t channel_vp_mapping_show(struct device *dev,
444 struct device_attribute *dev_attr,
445 char *buf)
446 {
447 struct hv_device *hv_dev = device_to_hv_device(dev);
448 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
449 unsigned long flags;
450 int buf_size = PAGE_SIZE, n_written, tot_written;
451 struct list_head *cur;
452
453 if (!channel)
454 return -ENODEV;
455
456 tot_written = snprintf(buf, buf_size, "%u:%u\n",
457 channel->offermsg.child_relid, channel->target_cpu);
458
459 spin_lock_irqsave(&channel->lock, flags);
460
461 list_for_each(cur, &channel->sc_list) {
462 if (tot_written >= buf_size - 1)
463 break;
464
465 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
466 n_written = scnprintf(buf + tot_written,
467 buf_size - tot_written,
468 "%u:%u\n",
469 cur_sc->offermsg.child_relid,
470 cur_sc->target_cpu);
471 tot_written += n_written;
472 }
473
474 spin_unlock_irqrestore(&channel->lock, flags);
475
476 return tot_written;
477 }
478 static DEVICE_ATTR_RO(channel_vp_mapping);
479
480 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
481 static struct attribute *vmbus_attrs[] = {
482 &dev_attr_id.attr,
483 &dev_attr_state.attr,
484 &dev_attr_monitor_id.attr,
485 &dev_attr_class_id.attr,
486 &dev_attr_device_id.attr,
487 &dev_attr_modalias.attr,
488 &dev_attr_server_monitor_pending.attr,
489 &dev_attr_client_monitor_pending.attr,
490 &dev_attr_server_monitor_latency.attr,
491 &dev_attr_client_monitor_latency.attr,
492 &dev_attr_server_monitor_conn_id.attr,
493 &dev_attr_client_monitor_conn_id.attr,
494 &dev_attr_out_intr_mask.attr,
495 &dev_attr_out_read_index.attr,
496 &dev_attr_out_write_index.attr,
497 &dev_attr_out_read_bytes_avail.attr,
498 &dev_attr_out_write_bytes_avail.attr,
499 &dev_attr_in_intr_mask.attr,
500 &dev_attr_in_read_index.attr,
501 &dev_attr_in_write_index.attr,
502 &dev_attr_in_read_bytes_avail.attr,
503 &dev_attr_in_write_bytes_avail.attr,
504 &dev_attr_channel_vp_mapping.attr,
505 NULL,
506 };
507 ATTRIBUTE_GROUPS(vmbus);
508
509 /*
510 * vmbus_uevent - add uevent for our device
511 *
512 * This routine is invoked when a device is added or removed on the vmbus to
513 * generate a uevent to udev in the userspace. The udev will then look at its
514 * rule and the uevent generated here to load the appropriate driver
515 *
516 * The alias string will be of the form vmbus:guid where guid is the string
517 * representation of the device guid (each byte of the guid will be
518 * represented with two hex characters.
519 */
520 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
521 {
522 struct hv_device *dev = device_to_hv_device(device);
523 int ret;
524 char alias_name[VMBUS_ALIAS_LEN + 1];
525
526 print_alias_name(dev, alias_name);
527 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
528 return ret;
529 }
530
531 static const uuid_le null_guid;
532
533 static inline bool is_null_guid(const uuid_le *guid)
534 {
535 if (uuid_le_cmp(*guid, null_guid))
536 return false;
537 return true;
538 }
539
540 /*
541 * Return a matching hv_vmbus_device_id pointer.
542 * If there is no match, return NULL.
543 */
544 static const struct hv_vmbus_device_id *hv_vmbus_get_id(
545 const struct hv_vmbus_device_id *id,
546 const uuid_le *guid)
547 {
548 for (; !is_null_guid(&id->guid); id++)
549 if (!uuid_le_cmp(id->guid, *guid))
550 return id;
551
552 return NULL;
553 }
554
555
556
557 /*
558 * vmbus_match - Attempt to match the specified device to the specified driver
559 */
560 static int vmbus_match(struct device *device, struct device_driver *driver)
561 {
562 struct hv_driver *drv = drv_to_hv_drv(driver);
563 struct hv_device *hv_dev = device_to_hv_device(device);
564
565 if (hv_vmbus_get_id(drv->id_table, &hv_dev->dev_type))
566 return 1;
567
568 return 0;
569 }
570
571 /*
572 * vmbus_probe - Add the new vmbus's child device
573 */
574 static int vmbus_probe(struct device *child_device)
575 {
576 int ret = 0;
577 struct hv_driver *drv =
578 drv_to_hv_drv(child_device->driver);
579 struct hv_device *dev = device_to_hv_device(child_device);
580 const struct hv_vmbus_device_id *dev_id;
581
582 dev_id = hv_vmbus_get_id(drv->id_table, &dev->dev_type);
583 if (drv->probe) {
584 ret = drv->probe(dev, dev_id);
585 if (ret != 0)
586 pr_err("probe failed for device %s (%d)\n",
587 dev_name(child_device), ret);
588
589 } else {
590 pr_err("probe not set for driver %s\n",
591 dev_name(child_device));
592 ret = -ENODEV;
593 }
594 return ret;
595 }
596
597 /*
598 * vmbus_remove - Remove a vmbus device
599 */
600 static int vmbus_remove(struct device *child_device)
601 {
602 struct hv_driver *drv;
603 struct hv_device *dev = device_to_hv_device(child_device);
604
605 if (child_device->driver) {
606 drv = drv_to_hv_drv(child_device->driver);
607 if (drv->remove)
608 drv->remove(dev);
609 }
610
611 return 0;
612 }
613
614
615 /*
616 * vmbus_shutdown - Shutdown a vmbus device
617 */
618 static void vmbus_shutdown(struct device *child_device)
619 {
620 struct hv_driver *drv;
621 struct hv_device *dev = device_to_hv_device(child_device);
622
623
624 /* The device may not be attached yet */
625 if (!child_device->driver)
626 return;
627
628 drv = drv_to_hv_drv(child_device->driver);
629
630 if (drv->shutdown)
631 drv->shutdown(dev);
632
633 return;
634 }
635
636
637 /*
638 * vmbus_device_release - Final callback release of the vmbus child device
639 */
640 static void vmbus_device_release(struct device *device)
641 {
642 struct hv_device *hv_dev = device_to_hv_device(device);
643 struct vmbus_channel *channel = hv_dev->channel;
644
645 hv_process_channel_removal(channel,
646 channel->offermsg.child_relid);
647 kfree(hv_dev);
648
649 }
650
651 /* The one and only one */
652 static struct bus_type hv_bus = {
653 .name = "vmbus",
654 .match = vmbus_match,
655 .shutdown = vmbus_shutdown,
656 .remove = vmbus_remove,
657 .probe = vmbus_probe,
658 .uevent = vmbus_uevent,
659 .dev_groups = vmbus_groups,
660 };
661
662 struct onmessage_work_context {
663 struct work_struct work;
664 struct hv_message msg;
665 };
666
667 static void vmbus_onmessage_work(struct work_struct *work)
668 {
669 struct onmessage_work_context *ctx;
670
671 /* Do not process messages if we're in DISCONNECTED state */
672 if (vmbus_connection.conn_state == DISCONNECTED)
673 return;
674
675 ctx = container_of(work, struct onmessage_work_context,
676 work);
677 vmbus_onmessage(&ctx->msg);
678 kfree(ctx);
679 }
680
681 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
682 {
683 struct clock_event_device *dev = hv_context.clk_evt[cpu];
684
685 if (dev->event_handler)
686 dev->event_handler(dev);
687
688 msg->header.message_type = HVMSG_NONE;
689
690 /*
691 * Make sure the write to MessageType (ie set to
692 * HVMSG_NONE) happens before we read the
693 * MessagePending and EOMing. Otherwise, the EOMing
694 * will not deliver any more messages since there is
695 * no empty slot
696 */
697 mb();
698
699 if (msg->header.message_flags.msg_pending) {
700 /*
701 * This will cause message queue rescan to
702 * possibly deliver another msg from the
703 * hypervisor
704 */
705 wrmsrl(HV_X64_MSR_EOM, 0);
706 }
707 }
708
709 static void vmbus_on_msg_dpc(unsigned long data)
710 {
711 int cpu = smp_processor_id();
712 void *page_addr = hv_context.synic_message_page[cpu];
713 struct hv_message *msg = (struct hv_message *)page_addr +
714 VMBUS_MESSAGE_SINT;
715 struct vmbus_channel_message_header *hdr;
716 struct vmbus_channel_message_table_entry *entry;
717 struct onmessage_work_context *ctx;
718
719 while (1) {
720 if (msg->header.message_type == HVMSG_NONE)
721 /* no msg */
722 break;
723
724 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
725
726 if (hdr->msgtype >= CHANNELMSG_COUNT) {
727 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
728 goto msg_handled;
729 }
730
731 entry = &channel_message_table[hdr->msgtype];
732 if (entry->handler_type == VMHT_BLOCKING) {
733 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
734 if (ctx == NULL)
735 continue;
736
737 INIT_WORK(&ctx->work, vmbus_onmessage_work);
738 memcpy(&ctx->msg, msg, sizeof(*msg));
739
740 queue_work(vmbus_connection.work_queue, &ctx->work);
741 } else
742 entry->message_handler(hdr);
743
744 msg_handled:
745 msg->header.message_type = HVMSG_NONE;
746
747 /*
748 * Make sure the write to MessageType (ie set to
749 * HVMSG_NONE) happens before we read the
750 * MessagePending and EOMing. Otherwise, the EOMing
751 * will not deliver any more messages since there is
752 * no empty slot
753 */
754 mb();
755
756 if (msg->header.message_flags.msg_pending) {
757 /*
758 * This will cause message queue rescan to
759 * possibly deliver another msg from the
760 * hypervisor
761 */
762 wrmsrl(HV_X64_MSR_EOM, 0);
763 }
764 }
765 }
766
767 static void vmbus_isr(void)
768 {
769 int cpu = smp_processor_id();
770 void *page_addr;
771 struct hv_message *msg;
772 union hv_synic_event_flags *event;
773 bool handled = false;
774
775 page_addr = hv_context.synic_event_page[cpu];
776 if (page_addr == NULL)
777 return;
778
779 event = (union hv_synic_event_flags *)page_addr +
780 VMBUS_MESSAGE_SINT;
781 /*
782 * Check for events before checking for messages. This is the order
783 * in which events and messages are checked in Windows guests on
784 * Hyper-V, and the Windows team suggested we do the same.
785 */
786
787 if ((vmbus_proto_version == VERSION_WS2008) ||
788 (vmbus_proto_version == VERSION_WIN7)) {
789
790 /* Since we are a child, we only need to check bit 0 */
791 if (sync_test_and_clear_bit(0,
792 (unsigned long *) &event->flags32[0])) {
793 handled = true;
794 }
795 } else {
796 /*
797 * Our host is win8 or above. The signaling mechanism
798 * has changed and we can directly look at the event page.
799 * If bit n is set then we have an interrup on the channel
800 * whose id is n.
801 */
802 handled = true;
803 }
804
805 if (handled)
806 tasklet_schedule(hv_context.event_dpc[cpu]);
807
808
809 page_addr = hv_context.synic_message_page[cpu];
810 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
811
812 /* Check if there are actual msgs to be processed */
813 if (msg->header.message_type != HVMSG_NONE) {
814 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
815 hv_process_timer_expiration(msg, cpu);
816 else
817 tasklet_schedule(&msg_dpc);
818 }
819 }
820
821
822 /*
823 * vmbus_bus_init -Main vmbus driver initialization routine.
824 *
825 * Here, we
826 * - initialize the vmbus driver context
827 * - invoke the vmbus hv main init routine
828 * - retrieve the channel offers
829 */
830 static int vmbus_bus_init(void)
831 {
832 int ret;
833
834 /* Hypervisor initialization...setup hypercall page..etc */
835 ret = hv_init();
836 if (ret != 0) {
837 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
838 return ret;
839 }
840
841 tasklet_init(&msg_dpc, vmbus_on_msg_dpc, 0);
842
843 ret = bus_register(&hv_bus);
844 if (ret)
845 goto err_cleanup;
846
847 hv_setup_vmbus_irq(vmbus_isr);
848
849 ret = hv_synic_alloc();
850 if (ret)
851 goto err_alloc;
852 /*
853 * Initialize the per-cpu interrupt state and
854 * connect to the host.
855 */
856 on_each_cpu(hv_synic_init, NULL, 1);
857 ret = vmbus_connect();
858 if (ret)
859 goto err_connect;
860
861 if (vmbus_proto_version > VERSION_WIN7)
862 cpu_hotplug_disable();
863
864 /*
865 * Only register if the crash MSRs are available
866 */
867 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
868 register_die_notifier(&hyperv_die_block);
869 atomic_notifier_chain_register(&panic_notifier_list,
870 &hyperv_panic_block);
871 }
872
873 vmbus_request_offers();
874
875 return 0;
876
877 err_connect:
878 on_each_cpu(hv_synic_cleanup, NULL, 1);
879 err_alloc:
880 hv_synic_free();
881 hv_remove_vmbus_irq();
882
883 bus_unregister(&hv_bus);
884
885 err_cleanup:
886 hv_cleanup();
887
888 return ret;
889 }
890
891 /**
892 * __vmbus_child_driver_register() - Register a vmbus's driver
893 * @hv_driver: Pointer to driver structure you want to register
894 * @owner: owner module of the drv
895 * @mod_name: module name string
896 *
897 * Registers the given driver with Linux through the 'driver_register()' call
898 * and sets up the hyper-v vmbus handling for this driver.
899 * It will return the state of the 'driver_register()' call.
900 *
901 */
902 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
903 {
904 int ret;
905
906 pr_info("registering driver %s\n", hv_driver->name);
907
908 ret = vmbus_exists();
909 if (ret < 0)
910 return ret;
911
912 hv_driver->driver.name = hv_driver->name;
913 hv_driver->driver.owner = owner;
914 hv_driver->driver.mod_name = mod_name;
915 hv_driver->driver.bus = &hv_bus;
916
917 ret = driver_register(&hv_driver->driver);
918
919 return ret;
920 }
921 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
922
923 /**
924 * vmbus_driver_unregister() - Unregister a vmbus's driver
925 * @hv_driver: Pointer to driver structure you want to
926 * un-register
927 *
928 * Un-register the given driver that was previous registered with a call to
929 * vmbus_driver_register()
930 */
931 void vmbus_driver_unregister(struct hv_driver *hv_driver)
932 {
933 pr_info("unregistering driver %s\n", hv_driver->name);
934
935 if (!vmbus_exists())
936 driver_unregister(&hv_driver->driver);
937 }
938 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
939
940 /*
941 * vmbus_device_create - Creates and registers a new child device
942 * on the vmbus.
943 */
944 struct hv_device *vmbus_device_create(const uuid_le *type,
945 const uuid_le *instance,
946 struct vmbus_channel *channel)
947 {
948 struct hv_device *child_device_obj;
949
950 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
951 if (!child_device_obj) {
952 pr_err("Unable to allocate device object for child device\n");
953 return NULL;
954 }
955
956 child_device_obj->channel = channel;
957 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
958 memcpy(&child_device_obj->dev_instance, instance,
959 sizeof(uuid_le));
960
961
962 return child_device_obj;
963 }
964
965 /*
966 * vmbus_device_register - Register the child device
967 */
968 int vmbus_device_register(struct hv_device *child_device_obj)
969 {
970 int ret = 0;
971
972 dev_set_name(&child_device_obj->device, "vmbus_%d",
973 child_device_obj->channel->id);
974
975 child_device_obj->device.bus = &hv_bus;
976 child_device_obj->device.parent = &hv_acpi_dev->dev;
977 child_device_obj->device.release = vmbus_device_release;
978
979 /*
980 * Register with the LDM. This will kick off the driver/device
981 * binding...which will eventually call vmbus_match() and vmbus_probe()
982 */
983 ret = device_register(&child_device_obj->device);
984
985 if (ret)
986 pr_err("Unable to register child device\n");
987 else
988 pr_debug("child device %s registered\n",
989 dev_name(&child_device_obj->device));
990
991 return ret;
992 }
993
994 /*
995 * vmbus_device_unregister - Remove the specified child device
996 * from the vmbus.
997 */
998 void vmbus_device_unregister(struct hv_device *device_obj)
999 {
1000 pr_debug("child device %s unregistered\n",
1001 dev_name(&device_obj->device));
1002
1003 /*
1004 * Kick off the process of unregistering the device.
1005 * This will call vmbus_remove() and eventually vmbus_device_release()
1006 */
1007 device_unregister(&device_obj->device);
1008 }
1009
1010
1011 /*
1012 * VMBUS is an acpi enumerated device. Get the information we
1013 * need from DSDT.
1014 */
1015 #define VTPM_BASE_ADDRESS 0xfed40000
1016 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1017 {
1018 resource_size_t start = 0;
1019 resource_size_t end = 0;
1020 struct resource *new_res;
1021 struct resource **old_res = &hyperv_mmio;
1022 struct resource **prev_res = NULL;
1023
1024 switch (res->type) {
1025
1026 /*
1027 * "Address" descriptors are for bus windows. Ignore
1028 * "memory" descriptors, which are for registers on
1029 * devices.
1030 */
1031 case ACPI_RESOURCE_TYPE_ADDRESS32:
1032 start = res->data.address32.address.minimum;
1033 end = res->data.address32.address.maximum;
1034 break;
1035
1036 case ACPI_RESOURCE_TYPE_ADDRESS64:
1037 start = res->data.address64.address.minimum;
1038 end = res->data.address64.address.maximum;
1039 break;
1040
1041 default:
1042 /* Unused resource type */
1043 return AE_OK;
1044
1045 }
1046 /*
1047 * Ignore ranges that are below 1MB, as they're not
1048 * necessary or useful here.
1049 */
1050 if (end < 0x100000)
1051 return AE_OK;
1052
1053 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1054 if (!new_res)
1055 return AE_NO_MEMORY;
1056
1057 /* If this range overlaps the virtual TPM, truncate it. */
1058 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1059 end = VTPM_BASE_ADDRESS;
1060
1061 new_res->name = "hyperv mmio";
1062 new_res->flags = IORESOURCE_MEM;
1063 new_res->start = start;
1064 new_res->end = end;
1065
1066 /*
1067 * Stick ranges from higher in address space at the front of the list.
1068 * If two ranges are adjacent, merge them.
1069 */
1070 do {
1071 if (!*old_res) {
1072 *old_res = new_res;
1073 break;
1074 }
1075
1076 if (((*old_res)->end + 1) == new_res->start) {
1077 (*old_res)->end = new_res->end;
1078 kfree(new_res);
1079 break;
1080 }
1081
1082 if ((*old_res)->start == new_res->end + 1) {
1083 (*old_res)->start = new_res->start;
1084 kfree(new_res);
1085 break;
1086 }
1087
1088 if ((*old_res)->end < new_res->start) {
1089 new_res->sibling = *old_res;
1090 if (prev_res)
1091 (*prev_res)->sibling = new_res;
1092 *old_res = new_res;
1093 break;
1094 }
1095
1096 prev_res = old_res;
1097 old_res = &(*old_res)->sibling;
1098
1099 } while (1);
1100
1101 return AE_OK;
1102 }
1103
1104 static int vmbus_acpi_remove(struct acpi_device *device)
1105 {
1106 struct resource *cur_res;
1107 struct resource *next_res;
1108
1109 if (hyperv_mmio) {
1110 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1111 next_res = cur_res->sibling;
1112 kfree(cur_res);
1113 }
1114 }
1115
1116 return 0;
1117 }
1118
1119 /**
1120 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1121 * @new: If successful, supplied a pointer to the
1122 * allocated MMIO space.
1123 * @device_obj: Identifies the caller
1124 * @min: Minimum guest physical address of the
1125 * allocation
1126 * @max: Maximum guest physical address
1127 * @size: Size of the range to be allocated
1128 * @align: Alignment of the range to be allocated
1129 * @fb_overlap_ok: Whether this allocation can be allowed
1130 * to overlap the video frame buffer.
1131 *
1132 * This function walks the resources granted to VMBus by the
1133 * _CRS object in the ACPI namespace underneath the parent
1134 * "bridge" whether that's a root PCI bus in the Generation 1
1135 * case or a Module Device in the Generation 2 case. It then
1136 * attempts to allocate from the global MMIO pool in a way that
1137 * matches the constraints supplied in these parameters and by
1138 * that _CRS.
1139 *
1140 * Return: 0 on success, -errno on failure
1141 */
1142 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1143 resource_size_t min, resource_size_t max,
1144 resource_size_t size, resource_size_t align,
1145 bool fb_overlap_ok)
1146 {
1147 struct resource *iter;
1148 resource_size_t range_min, range_max, start, local_min, local_max;
1149 const char *dev_n = dev_name(&device_obj->device);
1150 u32 fb_end = screen_info.lfb_base + (screen_info.lfb_size << 1);
1151 int i;
1152
1153 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1154 if ((iter->start >= max) || (iter->end <= min))
1155 continue;
1156
1157 range_min = iter->start;
1158 range_max = iter->end;
1159
1160 /* If this range overlaps the frame buffer, split it into
1161 two tries. */
1162 for (i = 0; i < 2; i++) {
1163 local_min = range_min;
1164 local_max = range_max;
1165 if (fb_overlap_ok || (range_min >= fb_end) ||
1166 (range_max <= screen_info.lfb_base)) {
1167 i++;
1168 } else {
1169 if ((range_min <= screen_info.lfb_base) &&
1170 (range_max >= screen_info.lfb_base)) {
1171 /*
1172 * The frame buffer is in this window,
1173 * so trim this into the part that
1174 * preceeds the frame buffer.
1175 */
1176 local_max = screen_info.lfb_base - 1;
1177 range_min = fb_end;
1178 } else {
1179 range_min = fb_end;
1180 continue;
1181 }
1182 }
1183
1184 start = (local_min + align - 1) & ~(align - 1);
1185 for (; start + size - 1 <= local_max; start += align) {
1186 *new = request_mem_region_exclusive(start, size,
1187 dev_n);
1188 if (*new)
1189 return 0;
1190 }
1191 }
1192 }
1193
1194 return -ENXIO;
1195 }
1196 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1197
1198 /**
1199 * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1200 * @cpu_number: CPU number in Linux terms
1201 *
1202 * This function returns the mapping between the Linux processor
1203 * number and the hypervisor's virtual processor number, useful
1204 * in making hypercalls and such that talk about specific
1205 * processors.
1206 *
1207 * Return: Virtual processor number in Hyper-V terms
1208 */
1209 int vmbus_cpu_number_to_vp_number(int cpu_number)
1210 {
1211 return hv_context.vp_index[cpu_number];
1212 }
1213 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1214
1215 static int vmbus_acpi_add(struct acpi_device *device)
1216 {
1217 acpi_status result;
1218 int ret_val = -ENODEV;
1219 struct acpi_device *ancestor;
1220
1221 hv_acpi_dev = device;
1222
1223 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1224 vmbus_walk_resources, NULL);
1225
1226 if (ACPI_FAILURE(result))
1227 goto acpi_walk_err;
1228 /*
1229 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1230 * firmware) is the VMOD that has the mmio ranges. Get that.
1231 */
1232 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1233 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1234 vmbus_walk_resources, NULL);
1235
1236 if (ACPI_FAILURE(result))
1237 continue;
1238 if (hyperv_mmio)
1239 break;
1240 }
1241 ret_val = 0;
1242
1243 acpi_walk_err:
1244 complete(&probe_event);
1245 if (ret_val)
1246 vmbus_acpi_remove(device);
1247 return ret_val;
1248 }
1249
1250 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1251 {"VMBUS", 0},
1252 {"VMBus", 0},
1253 {"", 0},
1254 };
1255 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1256
1257 static struct acpi_driver vmbus_acpi_driver = {
1258 .name = "vmbus",
1259 .ids = vmbus_acpi_device_ids,
1260 .ops = {
1261 .add = vmbus_acpi_add,
1262 .remove = vmbus_acpi_remove,
1263 },
1264 };
1265
1266 static void hv_kexec_handler(void)
1267 {
1268 int cpu;
1269
1270 hv_synic_clockevents_cleanup();
1271 vmbus_initiate_unload();
1272 for_each_online_cpu(cpu)
1273 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1274 hv_cleanup();
1275 };
1276
1277 static void hv_crash_handler(struct pt_regs *regs)
1278 {
1279 vmbus_initiate_unload();
1280 /*
1281 * In crash handler we can't schedule synic cleanup for all CPUs,
1282 * doing the cleanup for current CPU only. This should be sufficient
1283 * for kdump.
1284 */
1285 hv_synic_cleanup(NULL);
1286 hv_cleanup();
1287 };
1288
1289 static int __init hv_acpi_init(void)
1290 {
1291 int ret, t;
1292
1293 if (x86_hyper != &x86_hyper_ms_hyperv)
1294 return -ENODEV;
1295
1296 init_completion(&probe_event);
1297
1298 /*
1299 * Get ACPI resources first.
1300 */
1301 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1302
1303 if (ret)
1304 return ret;
1305
1306 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1307 if (t == 0) {
1308 ret = -ETIMEDOUT;
1309 goto cleanup;
1310 }
1311
1312 ret = vmbus_bus_init();
1313 if (ret)
1314 goto cleanup;
1315
1316 hv_setup_kexec_handler(hv_kexec_handler);
1317 hv_setup_crash_handler(hv_crash_handler);
1318
1319 return 0;
1320
1321 cleanup:
1322 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1323 hv_acpi_dev = NULL;
1324 return ret;
1325 }
1326
1327 static void __exit vmbus_exit(void)
1328 {
1329 int cpu;
1330
1331 hv_remove_kexec_handler();
1332 hv_remove_crash_handler();
1333 vmbus_connection.conn_state = DISCONNECTED;
1334 hv_synic_clockevents_cleanup();
1335 vmbus_disconnect();
1336 hv_remove_vmbus_irq();
1337 tasklet_kill(&msg_dpc);
1338 vmbus_free_channels();
1339 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1340 unregister_die_notifier(&hyperv_die_block);
1341 atomic_notifier_chain_unregister(&panic_notifier_list,
1342 &hyperv_panic_block);
1343 }
1344 bus_unregister(&hv_bus);
1345 hv_cleanup();
1346 for_each_online_cpu(cpu) {
1347 tasklet_kill(hv_context.event_dpc[cpu]);
1348 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1349 }
1350 hv_synic_free();
1351 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1352 if (vmbus_proto_version > VERSION_WIN7)
1353 cpu_hotplug_enable();
1354 }
1355
1356
1357 MODULE_LICENSE("GPL");
1358
1359 subsys_initcall(hv_acpi_init);
1360 module_exit(vmbus_exit);
This page took 0.063963 seconds and 5 git commands to generate.