Merge branch 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[deliverable/linux.git] / drivers / hv / vmbus_drv.c
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
21 *
22 */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47
48 static struct acpi_device *hv_acpi_dev;
49
50 static struct completion probe_event;
51
52
53 static void hyperv_report_panic(struct pt_regs *regs)
54 {
55 static bool panic_reported;
56
57 /*
58 * We prefer to report panic on 'die' chain as we have proper
59 * registers to report, but if we miss it (e.g. on BUG()) we need
60 * to report it on 'panic'.
61 */
62 if (panic_reported)
63 return;
64 panic_reported = true;
65
66 wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
67 wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
68 wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
69 wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
70 wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
71
72 /*
73 * Let Hyper-V know there is crash data available
74 */
75 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
76 }
77
78 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
79 void *args)
80 {
81 struct pt_regs *regs;
82
83 regs = current_pt_regs();
84
85 hyperv_report_panic(regs);
86 return NOTIFY_DONE;
87 }
88
89 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
90 void *args)
91 {
92 struct die_args *die = (struct die_args *)args;
93 struct pt_regs *regs = die->regs;
94
95 hyperv_report_panic(regs);
96 return NOTIFY_DONE;
97 }
98
99 static struct notifier_block hyperv_die_block = {
100 .notifier_call = hyperv_die_event,
101 };
102 static struct notifier_block hyperv_panic_block = {
103 .notifier_call = hyperv_panic_event,
104 };
105
106 static const char *fb_mmio_name = "fb_range";
107 static struct resource *fb_mmio;
108 struct resource *hyperv_mmio;
109 DEFINE_SEMAPHORE(hyperv_mmio_lock);
110
111 static int vmbus_exists(void)
112 {
113 if (hv_acpi_dev == NULL)
114 return -ENODEV;
115
116 return 0;
117 }
118
119 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
120 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
121 {
122 int i;
123 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
124 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
125 }
126
127 static u8 channel_monitor_group(struct vmbus_channel *channel)
128 {
129 return (u8)channel->offermsg.monitorid / 32;
130 }
131
132 static u8 channel_monitor_offset(struct vmbus_channel *channel)
133 {
134 return (u8)channel->offermsg.monitorid % 32;
135 }
136
137 static u32 channel_pending(struct vmbus_channel *channel,
138 struct hv_monitor_page *monitor_page)
139 {
140 u8 monitor_group = channel_monitor_group(channel);
141 return monitor_page->trigger_group[monitor_group].pending;
142 }
143
144 static u32 channel_latency(struct vmbus_channel *channel,
145 struct hv_monitor_page *monitor_page)
146 {
147 u8 monitor_group = channel_monitor_group(channel);
148 u8 monitor_offset = channel_monitor_offset(channel);
149 return monitor_page->latency[monitor_group][monitor_offset];
150 }
151
152 static u32 channel_conn_id(struct vmbus_channel *channel,
153 struct hv_monitor_page *monitor_page)
154 {
155 u8 monitor_group = channel_monitor_group(channel);
156 u8 monitor_offset = channel_monitor_offset(channel);
157 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
158 }
159
160 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
161 char *buf)
162 {
163 struct hv_device *hv_dev = device_to_hv_device(dev);
164
165 if (!hv_dev->channel)
166 return -ENODEV;
167 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
168 }
169 static DEVICE_ATTR_RO(id);
170
171 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
172 char *buf)
173 {
174 struct hv_device *hv_dev = device_to_hv_device(dev);
175
176 if (!hv_dev->channel)
177 return -ENODEV;
178 return sprintf(buf, "%d\n", hv_dev->channel->state);
179 }
180 static DEVICE_ATTR_RO(state);
181
182 static ssize_t monitor_id_show(struct device *dev,
183 struct device_attribute *dev_attr, char *buf)
184 {
185 struct hv_device *hv_dev = device_to_hv_device(dev);
186
187 if (!hv_dev->channel)
188 return -ENODEV;
189 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
190 }
191 static DEVICE_ATTR_RO(monitor_id);
192
193 static ssize_t class_id_show(struct device *dev,
194 struct device_attribute *dev_attr, char *buf)
195 {
196 struct hv_device *hv_dev = device_to_hv_device(dev);
197
198 if (!hv_dev->channel)
199 return -ENODEV;
200 return sprintf(buf, "{%pUl}\n",
201 hv_dev->channel->offermsg.offer.if_type.b);
202 }
203 static DEVICE_ATTR_RO(class_id);
204
205 static ssize_t device_id_show(struct device *dev,
206 struct device_attribute *dev_attr, char *buf)
207 {
208 struct hv_device *hv_dev = device_to_hv_device(dev);
209
210 if (!hv_dev->channel)
211 return -ENODEV;
212 return sprintf(buf, "{%pUl}\n",
213 hv_dev->channel->offermsg.offer.if_instance.b);
214 }
215 static DEVICE_ATTR_RO(device_id);
216
217 static ssize_t modalias_show(struct device *dev,
218 struct device_attribute *dev_attr, char *buf)
219 {
220 struct hv_device *hv_dev = device_to_hv_device(dev);
221 char alias_name[VMBUS_ALIAS_LEN + 1];
222
223 print_alias_name(hv_dev, alias_name);
224 return sprintf(buf, "vmbus:%s\n", alias_name);
225 }
226 static DEVICE_ATTR_RO(modalias);
227
228 static ssize_t server_monitor_pending_show(struct device *dev,
229 struct device_attribute *dev_attr,
230 char *buf)
231 {
232 struct hv_device *hv_dev = device_to_hv_device(dev);
233
234 if (!hv_dev->channel)
235 return -ENODEV;
236 return sprintf(buf, "%d\n",
237 channel_pending(hv_dev->channel,
238 vmbus_connection.monitor_pages[1]));
239 }
240 static DEVICE_ATTR_RO(server_monitor_pending);
241
242 static ssize_t client_monitor_pending_show(struct device *dev,
243 struct device_attribute *dev_attr,
244 char *buf)
245 {
246 struct hv_device *hv_dev = device_to_hv_device(dev);
247
248 if (!hv_dev->channel)
249 return -ENODEV;
250 return sprintf(buf, "%d\n",
251 channel_pending(hv_dev->channel,
252 vmbus_connection.monitor_pages[1]));
253 }
254 static DEVICE_ATTR_RO(client_monitor_pending);
255
256 static ssize_t server_monitor_latency_show(struct device *dev,
257 struct device_attribute *dev_attr,
258 char *buf)
259 {
260 struct hv_device *hv_dev = device_to_hv_device(dev);
261
262 if (!hv_dev->channel)
263 return -ENODEV;
264 return sprintf(buf, "%d\n",
265 channel_latency(hv_dev->channel,
266 vmbus_connection.monitor_pages[0]));
267 }
268 static DEVICE_ATTR_RO(server_monitor_latency);
269
270 static ssize_t client_monitor_latency_show(struct device *dev,
271 struct device_attribute *dev_attr,
272 char *buf)
273 {
274 struct hv_device *hv_dev = device_to_hv_device(dev);
275
276 if (!hv_dev->channel)
277 return -ENODEV;
278 return sprintf(buf, "%d\n",
279 channel_latency(hv_dev->channel,
280 vmbus_connection.monitor_pages[1]));
281 }
282 static DEVICE_ATTR_RO(client_monitor_latency);
283
284 static ssize_t server_monitor_conn_id_show(struct device *dev,
285 struct device_attribute *dev_attr,
286 char *buf)
287 {
288 struct hv_device *hv_dev = device_to_hv_device(dev);
289
290 if (!hv_dev->channel)
291 return -ENODEV;
292 return sprintf(buf, "%d\n",
293 channel_conn_id(hv_dev->channel,
294 vmbus_connection.monitor_pages[0]));
295 }
296 static DEVICE_ATTR_RO(server_monitor_conn_id);
297
298 static ssize_t client_monitor_conn_id_show(struct device *dev,
299 struct device_attribute *dev_attr,
300 char *buf)
301 {
302 struct hv_device *hv_dev = device_to_hv_device(dev);
303
304 if (!hv_dev->channel)
305 return -ENODEV;
306 return sprintf(buf, "%d\n",
307 channel_conn_id(hv_dev->channel,
308 vmbus_connection.monitor_pages[1]));
309 }
310 static DEVICE_ATTR_RO(client_monitor_conn_id);
311
312 static ssize_t out_intr_mask_show(struct device *dev,
313 struct device_attribute *dev_attr, char *buf)
314 {
315 struct hv_device *hv_dev = device_to_hv_device(dev);
316 struct hv_ring_buffer_debug_info outbound;
317
318 if (!hv_dev->channel)
319 return -ENODEV;
320 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
321 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
322 }
323 static DEVICE_ATTR_RO(out_intr_mask);
324
325 static ssize_t out_read_index_show(struct device *dev,
326 struct device_attribute *dev_attr, char *buf)
327 {
328 struct hv_device *hv_dev = device_to_hv_device(dev);
329 struct hv_ring_buffer_debug_info outbound;
330
331 if (!hv_dev->channel)
332 return -ENODEV;
333 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
334 return sprintf(buf, "%d\n", outbound.current_read_index);
335 }
336 static DEVICE_ATTR_RO(out_read_index);
337
338 static ssize_t out_write_index_show(struct device *dev,
339 struct device_attribute *dev_attr,
340 char *buf)
341 {
342 struct hv_device *hv_dev = device_to_hv_device(dev);
343 struct hv_ring_buffer_debug_info outbound;
344
345 if (!hv_dev->channel)
346 return -ENODEV;
347 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
348 return sprintf(buf, "%d\n", outbound.current_write_index);
349 }
350 static DEVICE_ATTR_RO(out_write_index);
351
352 static ssize_t out_read_bytes_avail_show(struct device *dev,
353 struct device_attribute *dev_attr,
354 char *buf)
355 {
356 struct hv_device *hv_dev = device_to_hv_device(dev);
357 struct hv_ring_buffer_debug_info outbound;
358
359 if (!hv_dev->channel)
360 return -ENODEV;
361 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
362 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
363 }
364 static DEVICE_ATTR_RO(out_read_bytes_avail);
365
366 static ssize_t out_write_bytes_avail_show(struct device *dev,
367 struct device_attribute *dev_attr,
368 char *buf)
369 {
370 struct hv_device *hv_dev = device_to_hv_device(dev);
371 struct hv_ring_buffer_debug_info outbound;
372
373 if (!hv_dev->channel)
374 return -ENODEV;
375 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
376 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
377 }
378 static DEVICE_ATTR_RO(out_write_bytes_avail);
379
380 static ssize_t in_intr_mask_show(struct device *dev,
381 struct device_attribute *dev_attr, char *buf)
382 {
383 struct hv_device *hv_dev = device_to_hv_device(dev);
384 struct hv_ring_buffer_debug_info inbound;
385
386 if (!hv_dev->channel)
387 return -ENODEV;
388 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
389 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
390 }
391 static DEVICE_ATTR_RO(in_intr_mask);
392
393 static ssize_t in_read_index_show(struct device *dev,
394 struct device_attribute *dev_attr, char *buf)
395 {
396 struct hv_device *hv_dev = device_to_hv_device(dev);
397 struct hv_ring_buffer_debug_info inbound;
398
399 if (!hv_dev->channel)
400 return -ENODEV;
401 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
402 return sprintf(buf, "%d\n", inbound.current_read_index);
403 }
404 static DEVICE_ATTR_RO(in_read_index);
405
406 static ssize_t in_write_index_show(struct device *dev,
407 struct device_attribute *dev_attr, char *buf)
408 {
409 struct hv_device *hv_dev = device_to_hv_device(dev);
410 struct hv_ring_buffer_debug_info inbound;
411
412 if (!hv_dev->channel)
413 return -ENODEV;
414 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
415 return sprintf(buf, "%d\n", inbound.current_write_index);
416 }
417 static DEVICE_ATTR_RO(in_write_index);
418
419 static ssize_t in_read_bytes_avail_show(struct device *dev,
420 struct device_attribute *dev_attr,
421 char *buf)
422 {
423 struct hv_device *hv_dev = device_to_hv_device(dev);
424 struct hv_ring_buffer_debug_info inbound;
425
426 if (!hv_dev->channel)
427 return -ENODEV;
428 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
429 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
430 }
431 static DEVICE_ATTR_RO(in_read_bytes_avail);
432
433 static ssize_t in_write_bytes_avail_show(struct device *dev,
434 struct device_attribute *dev_attr,
435 char *buf)
436 {
437 struct hv_device *hv_dev = device_to_hv_device(dev);
438 struct hv_ring_buffer_debug_info inbound;
439
440 if (!hv_dev->channel)
441 return -ENODEV;
442 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
443 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
444 }
445 static DEVICE_ATTR_RO(in_write_bytes_avail);
446
447 static ssize_t channel_vp_mapping_show(struct device *dev,
448 struct device_attribute *dev_attr,
449 char *buf)
450 {
451 struct hv_device *hv_dev = device_to_hv_device(dev);
452 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
453 unsigned long flags;
454 int buf_size = PAGE_SIZE, n_written, tot_written;
455 struct list_head *cur;
456
457 if (!channel)
458 return -ENODEV;
459
460 tot_written = snprintf(buf, buf_size, "%u:%u\n",
461 channel->offermsg.child_relid, channel->target_cpu);
462
463 spin_lock_irqsave(&channel->lock, flags);
464
465 list_for_each(cur, &channel->sc_list) {
466 if (tot_written >= buf_size - 1)
467 break;
468
469 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
470 n_written = scnprintf(buf + tot_written,
471 buf_size - tot_written,
472 "%u:%u\n",
473 cur_sc->offermsg.child_relid,
474 cur_sc->target_cpu);
475 tot_written += n_written;
476 }
477
478 spin_unlock_irqrestore(&channel->lock, flags);
479
480 return tot_written;
481 }
482 static DEVICE_ATTR_RO(channel_vp_mapping);
483
484 static ssize_t vendor_show(struct device *dev,
485 struct device_attribute *dev_attr,
486 char *buf)
487 {
488 struct hv_device *hv_dev = device_to_hv_device(dev);
489 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
490 }
491 static DEVICE_ATTR_RO(vendor);
492
493 static ssize_t device_show(struct device *dev,
494 struct device_attribute *dev_attr,
495 char *buf)
496 {
497 struct hv_device *hv_dev = device_to_hv_device(dev);
498 return sprintf(buf, "0x%x\n", hv_dev->device_id);
499 }
500 static DEVICE_ATTR_RO(device);
501
502 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
503 static struct attribute *vmbus_attrs[] = {
504 &dev_attr_id.attr,
505 &dev_attr_state.attr,
506 &dev_attr_monitor_id.attr,
507 &dev_attr_class_id.attr,
508 &dev_attr_device_id.attr,
509 &dev_attr_modalias.attr,
510 &dev_attr_server_monitor_pending.attr,
511 &dev_attr_client_monitor_pending.attr,
512 &dev_attr_server_monitor_latency.attr,
513 &dev_attr_client_monitor_latency.attr,
514 &dev_attr_server_monitor_conn_id.attr,
515 &dev_attr_client_monitor_conn_id.attr,
516 &dev_attr_out_intr_mask.attr,
517 &dev_attr_out_read_index.attr,
518 &dev_attr_out_write_index.attr,
519 &dev_attr_out_read_bytes_avail.attr,
520 &dev_attr_out_write_bytes_avail.attr,
521 &dev_attr_in_intr_mask.attr,
522 &dev_attr_in_read_index.attr,
523 &dev_attr_in_write_index.attr,
524 &dev_attr_in_read_bytes_avail.attr,
525 &dev_attr_in_write_bytes_avail.attr,
526 &dev_attr_channel_vp_mapping.attr,
527 &dev_attr_vendor.attr,
528 &dev_attr_device.attr,
529 NULL,
530 };
531 ATTRIBUTE_GROUPS(vmbus);
532
533 /*
534 * vmbus_uevent - add uevent for our device
535 *
536 * This routine is invoked when a device is added or removed on the vmbus to
537 * generate a uevent to udev in the userspace. The udev will then look at its
538 * rule and the uevent generated here to load the appropriate driver
539 *
540 * The alias string will be of the form vmbus:guid where guid is the string
541 * representation of the device guid (each byte of the guid will be
542 * represented with two hex characters.
543 */
544 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
545 {
546 struct hv_device *dev = device_to_hv_device(device);
547 int ret;
548 char alias_name[VMBUS_ALIAS_LEN + 1];
549
550 print_alias_name(dev, alias_name);
551 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
552 return ret;
553 }
554
555 static const uuid_le null_guid;
556
557 static inline bool is_null_guid(const uuid_le *guid)
558 {
559 if (uuid_le_cmp(*guid, null_guid))
560 return false;
561 return true;
562 }
563
564 /*
565 * Return a matching hv_vmbus_device_id pointer.
566 * If there is no match, return NULL.
567 */
568 static const struct hv_vmbus_device_id *hv_vmbus_get_id(
569 const struct hv_vmbus_device_id *id,
570 const uuid_le *guid)
571 {
572 for (; !is_null_guid(&id->guid); id++)
573 if (!uuid_le_cmp(id->guid, *guid))
574 return id;
575
576 return NULL;
577 }
578
579
580
581 /*
582 * vmbus_match - Attempt to match the specified device to the specified driver
583 */
584 static int vmbus_match(struct device *device, struct device_driver *driver)
585 {
586 struct hv_driver *drv = drv_to_hv_drv(driver);
587 struct hv_device *hv_dev = device_to_hv_device(device);
588
589 /* The hv_sock driver handles all hv_sock offers. */
590 if (is_hvsock_channel(hv_dev->channel))
591 return drv->hvsock;
592
593 if (hv_vmbus_get_id(drv->id_table, &hv_dev->dev_type))
594 return 1;
595
596 return 0;
597 }
598
599 /*
600 * vmbus_probe - Add the new vmbus's child device
601 */
602 static int vmbus_probe(struct device *child_device)
603 {
604 int ret = 0;
605 struct hv_driver *drv =
606 drv_to_hv_drv(child_device->driver);
607 struct hv_device *dev = device_to_hv_device(child_device);
608 const struct hv_vmbus_device_id *dev_id;
609
610 dev_id = hv_vmbus_get_id(drv->id_table, &dev->dev_type);
611 if (drv->probe) {
612 ret = drv->probe(dev, dev_id);
613 if (ret != 0)
614 pr_err("probe failed for device %s (%d)\n",
615 dev_name(child_device), ret);
616
617 } else {
618 pr_err("probe not set for driver %s\n",
619 dev_name(child_device));
620 ret = -ENODEV;
621 }
622 return ret;
623 }
624
625 /*
626 * vmbus_remove - Remove a vmbus device
627 */
628 static int vmbus_remove(struct device *child_device)
629 {
630 struct hv_driver *drv;
631 struct hv_device *dev = device_to_hv_device(child_device);
632
633 if (child_device->driver) {
634 drv = drv_to_hv_drv(child_device->driver);
635 if (drv->remove)
636 drv->remove(dev);
637 }
638
639 return 0;
640 }
641
642
643 /*
644 * vmbus_shutdown - Shutdown a vmbus device
645 */
646 static void vmbus_shutdown(struct device *child_device)
647 {
648 struct hv_driver *drv;
649 struct hv_device *dev = device_to_hv_device(child_device);
650
651
652 /* The device may not be attached yet */
653 if (!child_device->driver)
654 return;
655
656 drv = drv_to_hv_drv(child_device->driver);
657
658 if (drv->shutdown)
659 drv->shutdown(dev);
660
661 return;
662 }
663
664
665 /*
666 * vmbus_device_release - Final callback release of the vmbus child device
667 */
668 static void vmbus_device_release(struct device *device)
669 {
670 struct hv_device *hv_dev = device_to_hv_device(device);
671 struct vmbus_channel *channel = hv_dev->channel;
672
673 hv_process_channel_removal(channel,
674 channel->offermsg.child_relid);
675 kfree(hv_dev);
676
677 }
678
679 /* The one and only one */
680 static struct bus_type hv_bus = {
681 .name = "vmbus",
682 .match = vmbus_match,
683 .shutdown = vmbus_shutdown,
684 .remove = vmbus_remove,
685 .probe = vmbus_probe,
686 .uevent = vmbus_uevent,
687 .dev_groups = vmbus_groups,
688 };
689
690 struct onmessage_work_context {
691 struct work_struct work;
692 struct hv_message msg;
693 };
694
695 static void vmbus_onmessage_work(struct work_struct *work)
696 {
697 struct onmessage_work_context *ctx;
698
699 /* Do not process messages if we're in DISCONNECTED state */
700 if (vmbus_connection.conn_state == DISCONNECTED)
701 return;
702
703 ctx = container_of(work, struct onmessage_work_context,
704 work);
705 vmbus_onmessage(&ctx->msg);
706 kfree(ctx);
707 }
708
709 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
710 {
711 struct clock_event_device *dev = hv_context.clk_evt[cpu];
712
713 if (dev->event_handler)
714 dev->event_handler(dev);
715
716 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
717 }
718
719 void vmbus_on_msg_dpc(unsigned long data)
720 {
721 int cpu = smp_processor_id();
722 void *page_addr = hv_context.synic_message_page[cpu];
723 struct hv_message *msg = (struct hv_message *)page_addr +
724 VMBUS_MESSAGE_SINT;
725 struct vmbus_channel_message_header *hdr;
726 struct vmbus_channel_message_table_entry *entry;
727 struct onmessage_work_context *ctx;
728 u32 message_type = msg->header.message_type;
729
730 if (message_type == HVMSG_NONE)
731 /* no msg */
732 return;
733
734 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
735
736 if (hdr->msgtype >= CHANNELMSG_COUNT) {
737 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
738 goto msg_handled;
739 }
740
741 entry = &channel_message_table[hdr->msgtype];
742 if (entry->handler_type == VMHT_BLOCKING) {
743 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
744 if (ctx == NULL)
745 return;
746
747 INIT_WORK(&ctx->work, vmbus_onmessage_work);
748 memcpy(&ctx->msg, msg, sizeof(*msg));
749
750 queue_work(vmbus_connection.work_queue, &ctx->work);
751 } else
752 entry->message_handler(hdr);
753
754 msg_handled:
755 vmbus_signal_eom(msg, message_type);
756 }
757
758 static void vmbus_isr(void)
759 {
760 int cpu = smp_processor_id();
761 void *page_addr;
762 struct hv_message *msg;
763 union hv_synic_event_flags *event;
764 bool handled = false;
765
766 page_addr = hv_context.synic_event_page[cpu];
767 if (page_addr == NULL)
768 return;
769
770 event = (union hv_synic_event_flags *)page_addr +
771 VMBUS_MESSAGE_SINT;
772 /*
773 * Check for events before checking for messages. This is the order
774 * in which events and messages are checked in Windows guests on
775 * Hyper-V, and the Windows team suggested we do the same.
776 */
777
778 if ((vmbus_proto_version == VERSION_WS2008) ||
779 (vmbus_proto_version == VERSION_WIN7)) {
780
781 /* Since we are a child, we only need to check bit 0 */
782 if (sync_test_and_clear_bit(0,
783 (unsigned long *) &event->flags32[0])) {
784 handled = true;
785 }
786 } else {
787 /*
788 * Our host is win8 or above. The signaling mechanism
789 * has changed and we can directly look at the event page.
790 * If bit n is set then we have an interrup on the channel
791 * whose id is n.
792 */
793 handled = true;
794 }
795
796 if (handled)
797 tasklet_schedule(hv_context.event_dpc[cpu]);
798
799
800 page_addr = hv_context.synic_message_page[cpu];
801 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
802
803 /* Check if there are actual msgs to be processed */
804 if (msg->header.message_type != HVMSG_NONE) {
805 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
806 hv_process_timer_expiration(msg, cpu);
807 else
808 tasklet_schedule(hv_context.msg_dpc[cpu]);
809 }
810
811 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
812 }
813
814
815 /*
816 * vmbus_bus_init -Main vmbus driver initialization routine.
817 *
818 * Here, we
819 * - initialize the vmbus driver context
820 * - invoke the vmbus hv main init routine
821 * - retrieve the channel offers
822 */
823 static int vmbus_bus_init(void)
824 {
825 int ret;
826
827 /* Hypervisor initialization...setup hypercall page..etc */
828 ret = hv_init();
829 if (ret != 0) {
830 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
831 return ret;
832 }
833
834 ret = bus_register(&hv_bus);
835 if (ret)
836 goto err_cleanup;
837
838 hv_setup_vmbus_irq(vmbus_isr);
839
840 ret = hv_synic_alloc();
841 if (ret)
842 goto err_alloc;
843 /*
844 * Initialize the per-cpu interrupt state and
845 * connect to the host.
846 */
847 on_each_cpu(hv_synic_init, NULL, 1);
848 ret = vmbus_connect();
849 if (ret)
850 goto err_connect;
851
852 if (vmbus_proto_version > VERSION_WIN7)
853 cpu_hotplug_disable();
854
855 /*
856 * Only register if the crash MSRs are available
857 */
858 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
859 register_die_notifier(&hyperv_die_block);
860 atomic_notifier_chain_register(&panic_notifier_list,
861 &hyperv_panic_block);
862 }
863
864 vmbus_request_offers();
865
866 return 0;
867
868 err_connect:
869 on_each_cpu(hv_synic_cleanup, NULL, 1);
870 err_alloc:
871 hv_synic_free();
872 hv_remove_vmbus_irq();
873
874 bus_unregister(&hv_bus);
875
876 err_cleanup:
877 hv_cleanup();
878
879 return ret;
880 }
881
882 /**
883 * __vmbus_child_driver_register() - Register a vmbus's driver
884 * @hv_driver: Pointer to driver structure you want to register
885 * @owner: owner module of the drv
886 * @mod_name: module name string
887 *
888 * Registers the given driver with Linux through the 'driver_register()' call
889 * and sets up the hyper-v vmbus handling for this driver.
890 * It will return the state of the 'driver_register()' call.
891 *
892 */
893 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
894 {
895 int ret;
896
897 pr_info("registering driver %s\n", hv_driver->name);
898
899 ret = vmbus_exists();
900 if (ret < 0)
901 return ret;
902
903 hv_driver->driver.name = hv_driver->name;
904 hv_driver->driver.owner = owner;
905 hv_driver->driver.mod_name = mod_name;
906 hv_driver->driver.bus = &hv_bus;
907
908 ret = driver_register(&hv_driver->driver);
909
910 return ret;
911 }
912 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
913
914 /**
915 * vmbus_driver_unregister() - Unregister a vmbus's driver
916 * @hv_driver: Pointer to driver structure you want to
917 * un-register
918 *
919 * Un-register the given driver that was previous registered with a call to
920 * vmbus_driver_register()
921 */
922 void vmbus_driver_unregister(struct hv_driver *hv_driver)
923 {
924 pr_info("unregistering driver %s\n", hv_driver->name);
925
926 if (!vmbus_exists())
927 driver_unregister(&hv_driver->driver);
928 }
929 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
930
931 /*
932 * vmbus_device_create - Creates and registers a new child device
933 * on the vmbus.
934 */
935 struct hv_device *vmbus_device_create(const uuid_le *type,
936 const uuid_le *instance,
937 struct vmbus_channel *channel)
938 {
939 struct hv_device *child_device_obj;
940
941 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
942 if (!child_device_obj) {
943 pr_err("Unable to allocate device object for child device\n");
944 return NULL;
945 }
946
947 child_device_obj->channel = channel;
948 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
949 memcpy(&child_device_obj->dev_instance, instance,
950 sizeof(uuid_le));
951 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
952
953
954 return child_device_obj;
955 }
956
957 /*
958 * vmbus_device_register - Register the child device
959 */
960 int vmbus_device_register(struct hv_device *child_device_obj)
961 {
962 int ret = 0;
963
964 dev_set_name(&child_device_obj->device, "vmbus_%d",
965 child_device_obj->channel->id);
966
967 child_device_obj->device.bus = &hv_bus;
968 child_device_obj->device.parent = &hv_acpi_dev->dev;
969 child_device_obj->device.release = vmbus_device_release;
970
971 /*
972 * Register with the LDM. This will kick off the driver/device
973 * binding...which will eventually call vmbus_match() and vmbus_probe()
974 */
975 ret = device_register(&child_device_obj->device);
976
977 if (ret)
978 pr_err("Unable to register child device\n");
979 else
980 pr_debug("child device %s registered\n",
981 dev_name(&child_device_obj->device));
982
983 return ret;
984 }
985
986 /*
987 * vmbus_device_unregister - Remove the specified child device
988 * from the vmbus.
989 */
990 void vmbus_device_unregister(struct hv_device *device_obj)
991 {
992 pr_debug("child device %s unregistered\n",
993 dev_name(&device_obj->device));
994
995 /*
996 * Kick off the process of unregistering the device.
997 * This will call vmbus_remove() and eventually vmbus_device_release()
998 */
999 device_unregister(&device_obj->device);
1000 }
1001
1002
1003 /*
1004 * VMBUS is an acpi enumerated device. Get the information we
1005 * need from DSDT.
1006 */
1007 #define VTPM_BASE_ADDRESS 0xfed40000
1008 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1009 {
1010 resource_size_t start = 0;
1011 resource_size_t end = 0;
1012 struct resource *new_res;
1013 struct resource **old_res = &hyperv_mmio;
1014 struct resource **prev_res = NULL;
1015
1016 switch (res->type) {
1017
1018 /*
1019 * "Address" descriptors are for bus windows. Ignore
1020 * "memory" descriptors, which are for registers on
1021 * devices.
1022 */
1023 case ACPI_RESOURCE_TYPE_ADDRESS32:
1024 start = res->data.address32.address.minimum;
1025 end = res->data.address32.address.maximum;
1026 break;
1027
1028 case ACPI_RESOURCE_TYPE_ADDRESS64:
1029 start = res->data.address64.address.minimum;
1030 end = res->data.address64.address.maximum;
1031 break;
1032
1033 default:
1034 /* Unused resource type */
1035 return AE_OK;
1036
1037 }
1038 /*
1039 * Ignore ranges that are below 1MB, as they're not
1040 * necessary or useful here.
1041 */
1042 if (end < 0x100000)
1043 return AE_OK;
1044
1045 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1046 if (!new_res)
1047 return AE_NO_MEMORY;
1048
1049 /* If this range overlaps the virtual TPM, truncate it. */
1050 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1051 end = VTPM_BASE_ADDRESS;
1052
1053 new_res->name = "hyperv mmio";
1054 new_res->flags = IORESOURCE_MEM;
1055 new_res->start = start;
1056 new_res->end = end;
1057
1058 /*
1059 * If two ranges are adjacent, merge them.
1060 */
1061 do {
1062 if (!*old_res) {
1063 *old_res = new_res;
1064 break;
1065 }
1066
1067 if (((*old_res)->end + 1) == new_res->start) {
1068 (*old_res)->end = new_res->end;
1069 kfree(new_res);
1070 break;
1071 }
1072
1073 if ((*old_res)->start == new_res->end + 1) {
1074 (*old_res)->start = new_res->start;
1075 kfree(new_res);
1076 break;
1077 }
1078
1079 if ((*old_res)->start > new_res->end) {
1080 new_res->sibling = *old_res;
1081 if (prev_res)
1082 (*prev_res)->sibling = new_res;
1083 *old_res = new_res;
1084 break;
1085 }
1086
1087 prev_res = old_res;
1088 old_res = &(*old_res)->sibling;
1089
1090 } while (1);
1091
1092 return AE_OK;
1093 }
1094
1095 static int vmbus_acpi_remove(struct acpi_device *device)
1096 {
1097 struct resource *cur_res;
1098 struct resource *next_res;
1099
1100 if (hyperv_mmio) {
1101 if (fb_mmio) {
1102 __release_region(hyperv_mmio, fb_mmio->start,
1103 resource_size(fb_mmio));
1104 fb_mmio = NULL;
1105 }
1106
1107 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1108 next_res = cur_res->sibling;
1109 kfree(cur_res);
1110 }
1111 }
1112
1113 return 0;
1114 }
1115
1116 static void vmbus_reserve_fb(void)
1117 {
1118 int size;
1119 /*
1120 * Make a claim for the frame buffer in the resource tree under the
1121 * first node, which will be the one below 4GB. The length seems to
1122 * be underreported, particularly in a Generation 1 VM. So start out
1123 * reserving a larger area and make it smaller until it succeeds.
1124 */
1125
1126 if (screen_info.lfb_base) {
1127 if (efi_enabled(EFI_BOOT))
1128 size = max_t(__u32, screen_info.lfb_size, 0x800000);
1129 else
1130 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1131
1132 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1133 fb_mmio = __request_region(hyperv_mmio,
1134 screen_info.lfb_base, size,
1135 fb_mmio_name, 0);
1136 }
1137 }
1138 }
1139
1140 /**
1141 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1142 * @new: If successful, supplied a pointer to the
1143 * allocated MMIO space.
1144 * @device_obj: Identifies the caller
1145 * @min: Minimum guest physical address of the
1146 * allocation
1147 * @max: Maximum guest physical address
1148 * @size: Size of the range to be allocated
1149 * @align: Alignment of the range to be allocated
1150 * @fb_overlap_ok: Whether this allocation can be allowed
1151 * to overlap the video frame buffer.
1152 *
1153 * This function walks the resources granted to VMBus by the
1154 * _CRS object in the ACPI namespace underneath the parent
1155 * "bridge" whether that's a root PCI bus in the Generation 1
1156 * case or a Module Device in the Generation 2 case. It then
1157 * attempts to allocate from the global MMIO pool in a way that
1158 * matches the constraints supplied in these parameters and by
1159 * that _CRS.
1160 *
1161 * Return: 0 on success, -errno on failure
1162 */
1163 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1164 resource_size_t min, resource_size_t max,
1165 resource_size_t size, resource_size_t align,
1166 bool fb_overlap_ok)
1167 {
1168 struct resource *iter, *shadow;
1169 resource_size_t range_min, range_max, start;
1170 const char *dev_n = dev_name(&device_obj->device);
1171 int retval;
1172
1173 retval = -ENXIO;
1174 down(&hyperv_mmio_lock);
1175
1176 /*
1177 * If overlaps with frame buffers are allowed, then first attempt to
1178 * make the allocation from within the reserved region. Because it
1179 * is already reserved, no shadow allocation is necessary.
1180 */
1181 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1182 !(max < fb_mmio->start)) {
1183
1184 range_min = fb_mmio->start;
1185 range_max = fb_mmio->end;
1186 start = (range_min + align - 1) & ~(align - 1);
1187 for (; start + size - 1 <= range_max; start += align) {
1188 *new = request_mem_region_exclusive(start, size, dev_n);
1189 if (*new) {
1190 retval = 0;
1191 goto exit;
1192 }
1193 }
1194 }
1195
1196 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1197 if ((iter->start >= max) || (iter->end <= min))
1198 continue;
1199
1200 range_min = iter->start;
1201 range_max = iter->end;
1202 start = (range_min + align - 1) & ~(align - 1);
1203 for (; start + size - 1 <= range_max; start += align) {
1204 shadow = __request_region(iter, start, size, NULL,
1205 IORESOURCE_BUSY);
1206 if (!shadow)
1207 continue;
1208
1209 *new = request_mem_region_exclusive(start, size, dev_n);
1210 if (*new) {
1211 shadow->name = (char *)*new;
1212 retval = 0;
1213 goto exit;
1214 }
1215
1216 __release_region(iter, start, size);
1217 }
1218 }
1219
1220 exit:
1221 up(&hyperv_mmio_lock);
1222 return retval;
1223 }
1224 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1225
1226 /**
1227 * vmbus_free_mmio() - Free a memory-mapped I/O range.
1228 * @start: Base address of region to release.
1229 * @size: Size of the range to be allocated
1230 *
1231 * This function releases anything requested by
1232 * vmbus_mmio_allocate().
1233 */
1234 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1235 {
1236 struct resource *iter;
1237
1238 down(&hyperv_mmio_lock);
1239 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1240 if ((iter->start >= start + size) || (iter->end <= start))
1241 continue;
1242
1243 __release_region(iter, start, size);
1244 }
1245 release_mem_region(start, size);
1246 up(&hyperv_mmio_lock);
1247
1248 }
1249 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1250
1251 /**
1252 * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1253 * @cpu_number: CPU number in Linux terms
1254 *
1255 * This function returns the mapping between the Linux processor
1256 * number and the hypervisor's virtual processor number, useful
1257 * in making hypercalls and such that talk about specific
1258 * processors.
1259 *
1260 * Return: Virtual processor number in Hyper-V terms
1261 */
1262 int vmbus_cpu_number_to_vp_number(int cpu_number)
1263 {
1264 return hv_context.vp_index[cpu_number];
1265 }
1266 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1267
1268 static int vmbus_acpi_add(struct acpi_device *device)
1269 {
1270 acpi_status result;
1271 int ret_val = -ENODEV;
1272 struct acpi_device *ancestor;
1273
1274 hv_acpi_dev = device;
1275
1276 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1277 vmbus_walk_resources, NULL);
1278
1279 if (ACPI_FAILURE(result))
1280 goto acpi_walk_err;
1281 /*
1282 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1283 * firmware) is the VMOD that has the mmio ranges. Get that.
1284 */
1285 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1286 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1287 vmbus_walk_resources, NULL);
1288
1289 if (ACPI_FAILURE(result))
1290 continue;
1291 if (hyperv_mmio) {
1292 vmbus_reserve_fb();
1293 break;
1294 }
1295 }
1296 ret_val = 0;
1297
1298 acpi_walk_err:
1299 complete(&probe_event);
1300 if (ret_val)
1301 vmbus_acpi_remove(device);
1302 return ret_val;
1303 }
1304
1305 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1306 {"VMBUS", 0},
1307 {"VMBus", 0},
1308 {"", 0},
1309 };
1310 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1311
1312 static struct acpi_driver vmbus_acpi_driver = {
1313 .name = "vmbus",
1314 .ids = vmbus_acpi_device_ids,
1315 .ops = {
1316 .add = vmbus_acpi_add,
1317 .remove = vmbus_acpi_remove,
1318 },
1319 };
1320
1321 static void hv_kexec_handler(void)
1322 {
1323 int cpu;
1324
1325 hv_synic_clockevents_cleanup();
1326 vmbus_initiate_unload(false);
1327 for_each_online_cpu(cpu)
1328 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1329 hv_cleanup();
1330 };
1331
1332 static void hv_crash_handler(struct pt_regs *regs)
1333 {
1334 vmbus_initiate_unload(true);
1335 /*
1336 * In crash handler we can't schedule synic cleanup for all CPUs,
1337 * doing the cleanup for current CPU only. This should be sufficient
1338 * for kdump.
1339 */
1340 hv_synic_cleanup(NULL);
1341 hv_cleanup();
1342 };
1343
1344 static int __init hv_acpi_init(void)
1345 {
1346 int ret, t;
1347
1348 if (x86_hyper != &x86_hyper_ms_hyperv)
1349 return -ENODEV;
1350
1351 init_completion(&probe_event);
1352
1353 /*
1354 * Get ACPI resources first.
1355 */
1356 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1357
1358 if (ret)
1359 return ret;
1360
1361 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1362 if (t == 0) {
1363 ret = -ETIMEDOUT;
1364 goto cleanup;
1365 }
1366
1367 ret = vmbus_bus_init();
1368 if (ret)
1369 goto cleanup;
1370
1371 hv_setup_kexec_handler(hv_kexec_handler);
1372 hv_setup_crash_handler(hv_crash_handler);
1373
1374 return 0;
1375
1376 cleanup:
1377 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1378 hv_acpi_dev = NULL;
1379 return ret;
1380 }
1381
1382 static void __exit vmbus_exit(void)
1383 {
1384 int cpu;
1385
1386 hv_remove_kexec_handler();
1387 hv_remove_crash_handler();
1388 vmbus_connection.conn_state = DISCONNECTED;
1389 hv_synic_clockevents_cleanup();
1390 vmbus_disconnect();
1391 hv_remove_vmbus_irq();
1392 for_each_online_cpu(cpu)
1393 tasklet_kill(hv_context.msg_dpc[cpu]);
1394 vmbus_free_channels();
1395 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1396 unregister_die_notifier(&hyperv_die_block);
1397 atomic_notifier_chain_unregister(&panic_notifier_list,
1398 &hyperv_panic_block);
1399 }
1400 bus_unregister(&hv_bus);
1401 hv_cleanup();
1402 for_each_online_cpu(cpu) {
1403 tasklet_kill(hv_context.event_dpc[cpu]);
1404 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1405 }
1406 hv_synic_free();
1407 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1408 if (vmbus_proto_version > VERSION_WIN7)
1409 cpu_hotplug_enable();
1410 }
1411
1412
1413 MODULE_LICENSE("GPL");
1414
1415 subsys_initcall(hv_acpi_init);
1416 module_exit(vmbus_exit);
This page took 0.0698800000000001 seconds and 5 git commands to generate.