drivers:hv: Record MMIO range in use by frame buffer
[deliverable/linux.git] / drivers / hv / vmbus_drv.c
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
21 *
22 */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include "hyperv_vmbus.h"
46
47 static struct acpi_device *hv_acpi_dev;
48
49 static struct completion probe_event;
50
51
52 static void hyperv_report_panic(struct pt_regs *regs)
53 {
54 static bool panic_reported;
55
56 /*
57 * We prefer to report panic on 'die' chain as we have proper
58 * registers to report, but if we miss it (e.g. on BUG()) we need
59 * to report it on 'panic'.
60 */
61 if (panic_reported)
62 return;
63 panic_reported = true;
64
65 wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
66 wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
67 wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
68 wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
69 wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
70
71 /*
72 * Let Hyper-V know there is crash data available
73 */
74 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
75 }
76
77 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
78 void *args)
79 {
80 struct pt_regs *regs;
81
82 regs = current_pt_regs();
83
84 hyperv_report_panic(regs);
85 return NOTIFY_DONE;
86 }
87
88 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
89 void *args)
90 {
91 struct die_args *die = (struct die_args *)args;
92 struct pt_regs *regs = die->regs;
93
94 hyperv_report_panic(regs);
95 return NOTIFY_DONE;
96 }
97
98 static struct notifier_block hyperv_die_block = {
99 .notifier_call = hyperv_die_event,
100 };
101 static struct notifier_block hyperv_panic_block = {
102 .notifier_call = hyperv_panic_event,
103 };
104
105 static const char *fb_mmio_name = "fb_range";
106 static struct resource *fb_mmio;
107 struct resource *hyperv_mmio;
108 DEFINE_SEMAPHORE(hyperv_mmio_lock);
109
110 static int vmbus_exists(void)
111 {
112 if (hv_acpi_dev == NULL)
113 return -ENODEV;
114
115 return 0;
116 }
117
118 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
119 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
120 {
121 int i;
122 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
123 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
124 }
125
126 static u8 channel_monitor_group(struct vmbus_channel *channel)
127 {
128 return (u8)channel->offermsg.monitorid / 32;
129 }
130
131 static u8 channel_monitor_offset(struct vmbus_channel *channel)
132 {
133 return (u8)channel->offermsg.monitorid % 32;
134 }
135
136 static u32 channel_pending(struct vmbus_channel *channel,
137 struct hv_monitor_page *monitor_page)
138 {
139 u8 monitor_group = channel_monitor_group(channel);
140 return monitor_page->trigger_group[monitor_group].pending;
141 }
142
143 static u32 channel_latency(struct vmbus_channel *channel,
144 struct hv_monitor_page *monitor_page)
145 {
146 u8 monitor_group = channel_monitor_group(channel);
147 u8 monitor_offset = channel_monitor_offset(channel);
148 return monitor_page->latency[monitor_group][monitor_offset];
149 }
150
151 static u32 channel_conn_id(struct vmbus_channel *channel,
152 struct hv_monitor_page *monitor_page)
153 {
154 u8 monitor_group = channel_monitor_group(channel);
155 u8 monitor_offset = channel_monitor_offset(channel);
156 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
157 }
158
159 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
160 char *buf)
161 {
162 struct hv_device *hv_dev = device_to_hv_device(dev);
163
164 if (!hv_dev->channel)
165 return -ENODEV;
166 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
167 }
168 static DEVICE_ATTR_RO(id);
169
170 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
171 char *buf)
172 {
173 struct hv_device *hv_dev = device_to_hv_device(dev);
174
175 if (!hv_dev->channel)
176 return -ENODEV;
177 return sprintf(buf, "%d\n", hv_dev->channel->state);
178 }
179 static DEVICE_ATTR_RO(state);
180
181 static ssize_t monitor_id_show(struct device *dev,
182 struct device_attribute *dev_attr, char *buf)
183 {
184 struct hv_device *hv_dev = device_to_hv_device(dev);
185
186 if (!hv_dev->channel)
187 return -ENODEV;
188 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
189 }
190 static DEVICE_ATTR_RO(monitor_id);
191
192 static ssize_t class_id_show(struct device *dev,
193 struct device_attribute *dev_attr, char *buf)
194 {
195 struct hv_device *hv_dev = device_to_hv_device(dev);
196
197 if (!hv_dev->channel)
198 return -ENODEV;
199 return sprintf(buf, "{%pUl}\n",
200 hv_dev->channel->offermsg.offer.if_type.b);
201 }
202 static DEVICE_ATTR_RO(class_id);
203
204 static ssize_t device_id_show(struct device *dev,
205 struct device_attribute *dev_attr, char *buf)
206 {
207 struct hv_device *hv_dev = device_to_hv_device(dev);
208
209 if (!hv_dev->channel)
210 return -ENODEV;
211 return sprintf(buf, "{%pUl}\n",
212 hv_dev->channel->offermsg.offer.if_instance.b);
213 }
214 static DEVICE_ATTR_RO(device_id);
215
216 static ssize_t modalias_show(struct device *dev,
217 struct device_attribute *dev_attr, char *buf)
218 {
219 struct hv_device *hv_dev = device_to_hv_device(dev);
220 char alias_name[VMBUS_ALIAS_LEN + 1];
221
222 print_alias_name(hv_dev, alias_name);
223 return sprintf(buf, "vmbus:%s\n", alias_name);
224 }
225 static DEVICE_ATTR_RO(modalias);
226
227 static ssize_t server_monitor_pending_show(struct device *dev,
228 struct device_attribute *dev_attr,
229 char *buf)
230 {
231 struct hv_device *hv_dev = device_to_hv_device(dev);
232
233 if (!hv_dev->channel)
234 return -ENODEV;
235 return sprintf(buf, "%d\n",
236 channel_pending(hv_dev->channel,
237 vmbus_connection.monitor_pages[1]));
238 }
239 static DEVICE_ATTR_RO(server_monitor_pending);
240
241 static ssize_t client_monitor_pending_show(struct device *dev,
242 struct device_attribute *dev_attr,
243 char *buf)
244 {
245 struct hv_device *hv_dev = device_to_hv_device(dev);
246
247 if (!hv_dev->channel)
248 return -ENODEV;
249 return sprintf(buf, "%d\n",
250 channel_pending(hv_dev->channel,
251 vmbus_connection.monitor_pages[1]));
252 }
253 static DEVICE_ATTR_RO(client_monitor_pending);
254
255 static ssize_t server_monitor_latency_show(struct device *dev,
256 struct device_attribute *dev_attr,
257 char *buf)
258 {
259 struct hv_device *hv_dev = device_to_hv_device(dev);
260
261 if (!hv_dev->channel)
262 return -ENODEV;
263 return sprintf(buf, "%d\n",
264 channel_latency(hv_dev->channel,
265 vmbus_connection.monitor_pages[0]));
266 }
267 static DEVICE_ATTR_RO(server_monitor_latency);
268
269 static ssize_t client_monitor_latency_show(struct device *dev,
270 struct device_attribute *dev_attr,
271 char *buf)
272 {
273 struct hv_device *hv_dev = device_to_hv_device(dev);
274
275 if (!hv_dev->channel)
276 return -ENODEV;
277 return sprintf(buf, "%d\n",
278 channel_latency(hv_dev->channel,
279 vmbus_connection.monitor_pages[1]));
280 }
281 static DEVICE_ATTR_RO(client_monitor_latency);
282
283 static ssize_t server_monitor_conn_id_show(struct device *dev,
284 struct device_attribute *dev_attr,
285 char *buf)
286 {
287 struct hv_device *hv_dev = device_to_hv_device(dev);
288
289 if (!hv_dev->channel)
290 return -ENODEV;
291 return sprintf(buf, "%d\n",
292 channel_conn_id(hv_dev->channel,
293 vmbus_connection.monitor_pages[0]));
294 }
295 static DEVICE_ATTR_RO(server_monitor_conn_id);
296
297 static ssize_t client_monitor_conn_id_show(struct device *dev,
298 struct device_attribute *dev_attr,
299 char *buf)
300 {
301 struct hv_device *hv_dev = device_to_hv_device(dev);
302
303 if (!hv_dev->channel)
304 return -ENODEV;
305 return sprintf(buf, "%d\n",
306 channel_conn_id(hv_dev->channel,
307 vmbus_connection.monitor_pages[1]));
308 }
309 static DEVICE_ATTR_RO(client_monitor_conn_id);
310
311 static ssize_t out_intr_mask_show(struct device *dev,
312 struct device_attribute *dev_attr, char *buf)
313 {
314 struct hv_device *hv_dev = device_to_hv_device(dev);
315 struct hv_ring_buffer_debug_info outbound;
316
317 if (!hv_dev->channel)
318 return -ENODEV;
319 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
320 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
321 }
322 static DEVICE_ATTR_RO(out_intr_mask);
323
324 static ssize_t out_read_index_show(struct device *dev,
325 struct device_attribute *dev_attr, char *buf)
326 {
327 struct hv_device *hv_dev = device_to_hv_device(dev);
328 struct hv_ring_buffer_debug_info outbound;
329
330 if (!hv_dev->channel)
331 return -ENODEV;
332 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
333 return sprintf(buf, "%d\n", outbound.current_read_index);
334 }
335 static DEVICE_ATTR_RO(out_read_index);
336
337 static ssize_t out_write_index_show(struct device *dev,
338 struct device_attribute *dev_attr,
339 char *buf)
340 {
341 struct hv_device *hv_dev = device_to_hv_device(dev);
342 struct hv_ring_buffer_debug_info outbound;
343
344 if (!hv_dev->channel)
345 return -ENODEV;
346 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
347 return sprintf(buf, "%d\n", outbound.current_write_index);
348 }
349 static DEVICE_ATTR_RO(out_write_index);
350
351 static ssize_t out_read_bytes_avail_show(struct device *dev,
352 struct device_attribute *dev_attr,
353 char *buf)
354 {
355 struct hv_device *hv_dev = device_to_hv_device(dev);
356 struct hv_ring_buffer_debug_info outbound;
357
358 if (!hv_dev->channel)
359 return -ENODEV;
360 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
361 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
362 }
363 static DEVICE_ATTR_RO(out_read_bytes_avail);
364
365 static ssize_t out_write_bytes_avail_show(struct device *dev,
366 struct device_attribute *dev_attr,
367 char *buf)
368 {
369 struct hv_device *hv_dev = device_to_hv_device(dev);
370 struct hv_ring_buffer_debug_info outbound;
371
372 if (!hv_dev->channel)
373 return -ENODEV;
374 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
375 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
376 }
377 static DEVICE_ATTR_RO(out_write_bytes_avail);
378
379 static ssize_t in_intr_mask_show(struct device *dev,
380 struct device_attribute *dev_attr, char *buf)
381 {
382 struct hv_device *hv_dev = device_to_hv_device(dev);
383 struct hv_ring_buffer_debug_info inbound;
384
385 if (!hv_dev->channel)
386 return -ENODEV;
387 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
388 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
389 }
390 static DEVICE_ATTR_RO(in_intr_mask);
391
392 static ssize_t in_read_index_show(struct device *dev,
393 struct device_attribute *dev_attr, char *buf)
394 {
395 struct hv_device *hv_dev = device_to_hv_device(dev);
396 struct hv_ring_buffer_debug_info inbound;
397
398 if (!hv_dev->channel)
399 return -ENODEV;
400 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
401 return sprintf(buf, "%d\n", inbound.current_read_index);
402 }
403 static DEVICE_ATTR_RO(in_read_index);
404
405 static ssize_t in_write_index_show(struct device *dev,
406 struct device_attribute *dev_attr, char *buf)
407 {
408 struct hv_device *hv_dev = device_to_hv_device(dev);
409 struct hv_ring_buffer_debug_info inbound;
410
411 if (!hv_dev->channel)
412 return -ENODEV;
413 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
414 return sprintf(buf, "%d\n", inbound.current_write_index);
415 }
416 static DEVICE_ATTR_RO(in_write_index);
417
418 static ssize_t in_read_bytes_avail_show(struct device *dev,
419 struct device_attribute *dev_attr,
420 char *buf)
421 {
422 struct hv_device *hv_dev = device_to_hv_device(dev);
423 struct hv_ring_buffer_debug_info inbound;
424
425 if (!hv_dev->channel)
426 return -ENODEV;
427 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
428 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
429 }
430 static DEVICE_ATTR_RO(in_read_bytes_avail);
431
432 static ssize_t in_write_bytes_avail_show(struct device *dev,
433 struct device_attribute *dev_attr,
434 char *buf)
435 {
436 struct hv_device *hv_dev = device_to_hv_device(dev);
437 struct hv_ring_buffer_debug_info inbound;
438
439 if (!hv_dev->channel)
440 return -ENODEV;
441 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
442 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
443 }
444 static DEVICE_ATTR_RO(in_write_bytes_avail);
445
446 static ssize_t channel_vp_mapping_show(struct device *dev,
447 struct device_attribute *dev_attr,
448 char *buf)
449 {
450 struct hv_device *hv_dev = device_to_hv_device(dev);
451 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
452 unsigned long flags;
453 int buf_size = PAGE_SIZE, n_written, tot_written;
454 struct list_head *cur;
455
456 if (!channel)
457 return -ENODEV;
458
459 tot_written = snprintf(buf, buf_size, "%u:%u\n",
460 channel->offermsg.child_relid, channel->target_cpu);
461
462 spin_lock_irqsave(&channel->lock, flags);
463
464 list_for_each(cur, &channel->sc_list) {
465 if (tot_written >= buf_size - 1)
466 break;
467
468 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
469 n_written = scnprintf(buf + tot_written,
470 buf_size - tot_written,
471 "%u:%u\n",
472 cur_sc->offermsg.child_relid,
473 cur_sc->target_cpu);
474 tot_written += n_written;
475 }
476
477 spin_unlock_irqrestore(&channel->lock, flags);
478
479 return tot_written;
480 }
481 static DEVICE_ATTR_RO(channel_vp_mapping);
482
483 static ssize_t vendor_show(struct device *dev,
484 struct device_attribute *dev_attr,
485 char *buf)
486 {
487 struct hv_device *hv_dev = device_to_hv_device(dev);
488 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
489 }
490 static DEVICE_ATTR_RO(vendor);
491
492 static ssize_t device_show(struct device *dev,
493 struct device_attribute *dev_attr,
494 char *buf)
495 {
496 struct hv_device *hv_dev = device_to_hv_device(dev);
497 return sprintf(buf, "0x%x\n", hv_dev->device_id);
498 }
499 static DEVICE_ATTR_RO(device);
500
501 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
502 static struct attribute *vmbus_attrs[] = {
503 &dev_attr_id.attr,
504 &dev_attr_state.attr,
505 &dev_attr_monitor_id.attr,
506 &dev_attr_class_id.attr,
507 &dev_attr_device_id.attr,
508 &dev_attr_modalias.attr,
509 &dev_attr_server_monitor_pending.attr,
510 &dev_attr_client_monitor_pending.attr,
511 &dev_attr_server_monitor_latency.attr,
512 &dev_attr_client_monitor_latency.attr,
513 &dev_attr_server_monitor_conn_id.attr,
514 &dev_attr_client_monitor_conn_id.attr,
515 &dev_attr_out_intr_mask.attr,
516 &dev_attr_out_read_index.attr,
517 &dev_attr_out_write_index.attr,
518 &dev_attr_out_read_bytes_avail.attr,
519 &dev_attr_out_write_bytes_avail.attr,
520 &dev_attr_in_intr_mask.attr,
521 &dev_attr_in_read_index.attr,
522 &dev_attr_in_write_index.attr,
523 &dev_attr_in_read_bytes_avail.attr,
524 &dev_attr_in_write_bytes_avail.attr,
525 &dev_attr_channel_vp_mapping.attr,
526 &dev_attr_vendor.attr,
527 &dev_attr_device.attr,
528 NULL,
529 };
530 ATTRIBUTE_GROUPS(vmbus);
531
532 /*
533 * vmbus_uevent - add uevent for our device
534 *
535 * This routine is invoked when a device is added or removed on the vmbus to
536 * generate a uevent to udev in the userspace. The udev will then look at its
537 * rule and the uevent generated here to load the appropriate driver
538 *
539 * The alias string will be of the form vmbus:guid where guid is the string
540 * representation of the device guid (each byte of the guid will be
541 * represented with two hex characters.
542 */
543 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
544 {
545 struct hv_device *dev = device_to_hv_device(device);
546 int ret;
547 char alias_name[VMBUS_ALIAS_LEN + 1];
548
549 print_alias_name(dev, alias_name);
550 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
551 return ret;
552 }
553
554 static const uuid_le null_guid;
555
556 static inline bool is_null_guid(const uuid_le *guid)
557 {
558 if (uuid_le_cmp(*guid, null_guid))
559 return false;
560 return true;
561 }
562
563 /*
564 * Return a matching hv_vmbus_device_id pointer.
565 * If there is no match, return NULL.
566 */
567 static const struct hv_vmbus_device_id *hv_vmbus_get_id(
568 const struct hv_vmbus_device_id *id,
569 const uuid_le *guid)
570 {
571 for (; !is_null_guid(&id->guid); id++)
572 if (!uuid_le_cmp(id->guid, *guid))
573 return id;
574
575 return NULL;
576 }
577
578
579
580 /*
581 * vmbus_match - Attempt to match the specified device to the specified driver
582 */
583 static int vmbus_match(struct device *device, struct device_driver *driver)
584 {
585 struct hv_driver *drv = drv_to_hv_drv(driver);
586 struct hv_device *hv_dev = device_to_hv_device(device);
587
588 /* The hv_sock driver handles all hv_sock offers. */
589 if (is_hvsock_channel(hv_dev->channel))
590 return drv->hvsock;
591
592 if (hv_vmbus_get_id(drv->id_table, &hv_dev->dev_type))
593 return 1;
594
595 return 0;
596 }
597
598 /*
599 * vmbus_probe - Add the new vmbus's child device
600 */
601 static int vmbus_probe(struct device *child_device)
602 {
603 int ret = 0;
604 struct hv_driver *drv =
605 drv_to_hv_drv(child_device->driver);
606 struct hv_device *dev = device_to_hv_device(child_device);
607 const struct hv_vmbus_device_id *dev_id;
608
609 dev_id = hv_vmbus_get_id(drv->id_table, &dev->dev_type);
610 if (drv->probe) {
611 ret = drv->probe(dev, dev_id);
612 if (ret != 0)
613 pr_err("probe failed for device %s (%d)\n",
614 dev_name(child_device), ret);
615
616 } else {
617 pr_err("probe not set for driver %s\n",
618 dev_name(child_device));
619 ret = -ENODEV;
620 }
621 return ret;
622 }
623
624 /*
625 * vmbus_remove - Remove a vmbus device
626 */
627 static int vmbus_remove(struct device *child_device)
628 {
629 struct hv_driver *drv;
630 struct hv_device *dev = device_to_hv_device(child_device);
631
632 if (child_device->driver) {
633 drv = drv_to_hv_drv(child_device->driver);
634 if (drv->remove)
635 drv->remove(dev);
636 }
637
638 return 0;
639 }
640
641
642 /*
643 * vmbus_shutdown - Shutdown a vmbus device
644 */
645 static void vmbus_shutdown(struct device *child_device)
646 {
647 struct hv_driver *drv;
648 struct hv_device *dev = device_to_hv_device(child_device);
649
650
651 /* The device may not be attached yet */
652 if (!child_device->driver)
653 return;
654
655 drv = drv_to_hv_drv(child_device->driver);
656
657 if (drv->shutdown)
658 drv->shutdown(dev);
659
660 return;
661 }
662
663
664 /*
665 * vmbus_device_release - Final callback release of the vmbus child device
666 */
667 static void vmbus_device_release(struct device *device)
668 {
669 struct hv_device *hv_dev = device_to_hv_device(device);
670 struct vmbus_channel *channel = hv_dev->channel;
671
672 hv_process_channel_removal(channel,
673 channel->offermsg.child_relid);
674 kfree(hv_dev);
675
676 }
677
678 /* The one and only one */
679 static struct bus_type hv_bus = {
680 .name = "vmbus",
681 .match = vmbus_match,
682 .shutdown = vmbus_shutdown,
683 .remove = vmbus_remove,
684 .probe = vmbus_probe,
685 .uevent = vmbus_uevent,
686 .dev_groups = vmbus_groups,
687 };
688
689 struct onmessage_work_context {
690 struct work_struct work;
691 struct hv_message msg;
692 };
693
694 static void vmbus_onmessage_work(struct work_struct *work)
695 {
696 struct onmessage_work_context *ctx;
697
698 /* Do not process messages if we're in DISCONNECTED state */
699 if (vmbus_connection.conn_state == DISCONNECTED)
700 return;
701
702 ctx = container_of(work, struct onmessage_work_context,
703 work);
704 vmbus_onmessage(&ctx->msg);
705 kfree(ctx);
706 }
707
708 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
709 {
710 struct clock_event_device *dev = hv_context.clk_evt[cpu];
711
712 if (dev->event_handler)
713 dev->event_handler(dev);
714
715 vmbus_signal_eom(msg);
716 }
717
718 void vmbus_on_msg_dpc(unsigned long data)
719 {
720 int cpu = smp_processor_id();
721 void *page_addr = hv_context.synic_message_page[cpu];
722 struct hv_message *msg = (struct hv_message *)page_addr +
723 VMBUS_MESSAGE_SINT;
724 struct vmbus_channel_message_header *hdr;
725 struct vmbus_channel_message_table_entry *entry;
726 struct onmessage_work_context *ctx;
727
728 if (msg->header.message_type == HVMSG_NONE)
729 /* no msg */
730 return;
731
732 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
733
734 if (hdr->msgtype >= CHANNELMSG_COUNT) {
735 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
736 goto msg_handled;
737 }
738
739 entry = &channel_message_table[hdr->msgtype];
740 if (entry->handler_type == VMHT_BLOCKING) {
741 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
742 if (ctx == NULL)
743 return;
744
745 INIT_WORK(&ctx->work, vmbus_onmessage_work);
746 memcpy(&ctx->msg, msg, sizeof(*msg));
747
748 queue_work(vmbus_connection.work_queue, &ctx->work);
749 } else
750 entry->message_handler(hdr);
751
752 msg_handled:
753 vmbus_signal_eom(msg);
754 }
755
756 static void vmbus_isr(void)
757 {
758 int cpu = smp_processor_id();
759 void *page_addr;
760 struct hv_message *msg;
761 union hv_synic_event_flags *event;
762 bool handled = false;
763
764 page_addr = hv_context.synic_event_page[cpu];
765 if (page_addr == NULL)
766 return;
767
768 event = (union hv_synic_event_flags *)page_addr +
769 VMBUS_MESSAGE_SINT;
770 /*
771 * Check for events before checking for messages. This is the order
772 * in which events and messages are checked in Windows guests on
773 * Hyper-V, and the Windows team suggested we do the same.
774 */
775
776 if ((vmbus_proto_version == VERSION_WS2008) ||
777 (vmbus_proto_version == VERSION_WIN7)) {
778
779 /* Since we are a child, we only need to check bit 0 */
780 if (sync_test_and_clear_bit(0,
781 (unsigned long *) &event->flags32[0])) {
782 handled = true;
783 }
784 } else {
785 /*
786 * Our host is win8 or above. The signaling mechanism
787 * has changed and we can directly look at the event page.
788 * If bit n is set then we have an interrup on the channel
789 * whose id is n.
790 */
791 handled = true;
792 }
793
794 if (handled)
795 tasklet_schedule(hv_context.event_dpc[cpu]);
796
797
798 page_addr = hv_context.synic_message_page[cpu];
799 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
800
801 /* Check if there are actual msgs to be processed */
802 if (msg->header.message_type != HVMSG_NONE) {
803 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
804 hv_process_timer_expiration(msg, cpu);
805 else
806 tasklet_schedule(hv_context.msg_dpc[cpu]);
807 }
808 }
809
810
811 /*
812 * vmbus_bus_init -Main vmbus driver initialization routine.
813 *
814 * Here, we
815 * - initialize the vmbus driver context
816 * - invoke the vmbus hv main init routine
817 * - retrieve the channel offers
818 */
819 static int vmbus_bus_init(void)
820 {
821 int ret;
822
823 /* Hypervisor initialization...setup hypercall page..etc */
824 ret = hv_init();
825 if (ret != 0) {
826 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
827 return ret;
828 }
829
830 ret = bus_register(&hv_bus);
831 if (ret)
832 goto err_cleanup;
833
834 hv_setup_vmbus_irq(vmbus_isr);
835
836 ret = hv_synic_alloc();
837 if (ret)
838 goto err_alloc;
839 /*
840 * Initialize the per-cpu interrupt state and
841 * connect to the host.
842 */
843 on_each_cpu(hv_synic_init, NULL, 1);
844 ret = vmbus_connect();
845 if (ret)
846 goto err_connect;
847
848 if (vmbus_proto_version > VERSION_WIN7)
849 cpu_hotplug_disable();
850
851 /*
852 * Only register if the crash MSRs are available
853 */
854 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
855 register_die_notifier(&hyperv_die_block);
856 atomic_notifier_chain_register(&panic_notifier_list,
857 &hyperv_panic_block);
858 }
859
860 vmbus_request_offers();
861
862 return 0;
863
864 err_connect:
865 on_each_cpu(hv_synic_cleanup, NULL, 1);
866 err_alloc:
867 hv_synic_free();
868 hv_remove_vmbus_irq();
869
870 bus_unregister(&hv_bus);
871
872 err_cleanup:
873 hv_cleanup();
874
875 return ret;
876 }
877
878 /**
879 * __vmbus_child_driver_register() - Register a vmbus's driver
880 * @hv_driver: Pointer to driver structure you want to register
881 * @owner: owner module of the drv
882 * @mod_name: module name string
883 *
884 * Registers the given driver with Linux through the 'driver_register()' call
885 * and sets up the hyper-v vmbus handling for this driver.
886 * It will return the state of the 'driver_register()' call.
887 *
888 */
889 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
890 {
891 int ret;
892
893 pr_info("registering driver %s\n", hv_driver->name);
894
895 ret = vmbus_exists();
896 if (ret < 0)
897 return ret;
898
899 hv_driver->driver.name = hv_driver->name;
900 hv_driver->driver.owner = owner;
901 hv_driver->driver.mod_name = mod_name;
902 hv_driver->driver.bus = &hv_bus;
903
904 ret = driver_register(&hv_driver->driver);
905
906 return ret;
907 }
908 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
909
910 /**
911 * vmbus_driver_unregister() - Unregister a vmbus's driver
912 * @hv_driver: Pointer to driver structure you want to
913 * un-register
914 *
915 * Un-register the given driver that was previous registered with a call to
916 * vmbus_driver_register()
917 */
918 void vmbus_driver_unregister(struct hv_driver *hv_driver)
919 {
920 pr_info("unregistering driver %s\n", hv_driver->name);
921
922 if (!vmbus_exists())
923 driver_unregister(&hv_driver->driver);
924 }
925 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
926
927 /*
928 * vmbus_device_create - Creates and registers a new child device
929 * on the vmbus.
930 */
931 struct hv_device *vmbus_device_create(const uuid_le *type,
932 const uuid_le *instance,
933 struct vmbus_channel *channel)
934 {
935 struct hv_device *child_device_obj;
936
937 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
938 if (!child_device_obj) {
939 pr_err("Unable to allocate device object for child device\n");
940 return NULL;
941 }
942
943 child_device_obj->channel = channel;
944 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
945 memcpy(&child_device_obj->dev_instance, instance,
946 sizeof(uuid_le));
947 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
948
949
950 return child_device_obj;
951 }
952
953 /*
954 * vmbus_device_register - Register the child device
955 */
956 int vmbus_device_register(struct hv_device *child_device_obj)
957 {
958 int ret = 0;
959
960 dev_set_name(&child_device_obj->device, "vmbus_%d",
961 child_device_obj->channel->id);
962
963 child_device_obj->device.bus = &hv_bus;
964 child_device_obj->device.parent = &hv_acpi_dev->dev;
965 child_device_obj->device.release = vmbus_device_release;
966
967 /*
968 * Register with the LDM. This will kick off the driver/device
969 * binding...which will eventually call vmbus_match() and vmbus_probe()
970 */
971 ret = device_register(&child_device_obj->device);
972
973 if (ret)
974 pr_err("Unable to register child device\n");
975 else
976 pr_debug("child device %s registered\n",
977 dev_name(&child_device_obj->device));
978
979 return ret;
980 }
981
982 /*
983 * vmbus_device_unregister - Remove the specified child device
984 * from the vmbus.
985 */
986 void vmbus_device_unregister(struct hv_device *device_obj)
987 {
988 pr_debug("child device %s unregistered\n",
989 dev_name(&device_obj->device));
990
991 /*
992 * Kick off the process of unregistering the device.
993 * This will call vmbus_remove() and eventually vmbus_device_release()
994 */
995 device_unregister(&device_obj->device);
996 }
997
998
999 /*
1000 * VMBUS is an acpi enumerated device. Get the information we
1001 * need from DSDT.
1002 */
1003 #define VTPM_BASE_ADDRESS 0xfed40000
1004 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1005 {
1006 resource_size_t start = 0;
1007 resource_size_t end = 0;
1008 struct resource *new_res;
1009 struct resource **old_res = &hyperv_mmio;
1010 struct resource **prev_res = NULL;
1011
1012 switch (res->type) {
1013
1014 /*
1015 * "Address" descriptors are for bus windows. Ignore
1016 * "memory" descriptors, which are for registers on
1017 * devices.
1018 */
1019 case ACPI_RESOURCE_TYPE_ADDRESS32:
1020 start = res->data.address32.address.minimum;
1021 end = res->data.address32.address.maximum;
1022 break;
1023
1024 case ACPI_RESOURCE_TYPE_ADDRESS64:
1025 start = res->data.address64.address.minimum;
1026 end = res->data.address64.address.maximum;
1027 break;
1028
1029 default:
1030 /* Unused resource type */
1031 return AE_OK;
1032
1033 }
1034 /*
1035 * Ignore ranges that are below 1MB, as they're not
1036 * necessary or useful here.
1037 */
1038 if (end < 0x100000)
1039 return AE_OK;
1040
1041 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1042 if (!new_res)
1043 return AE_NO_MEMORY;
1044
1045 /* If this range overlaps the virtual TPM, truncate it. */
1046 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1047 end = VTPM_BASE_ADDRESS;
1048
1049 new_res->name = "hyperv mmio";
1050 new_res->flags = IORESOURCE_MEM;
1051 new_res->start = start;
1052 new_res->end = end;
1053
1054 /*
1055 * If two ranges are adjacent, merge them.
1056 */
1057 do {
1058 if (!*old_res) {
1059 *old_res = new_res;
1060 break;
1061 }
1062
1063 if (((*old_res)->end + 1) == new_res->start) {
1064 (*old_res)->end = new_res->end;
1065 kfree(new_res);
1066 break;
1067 }
1068
1069 if ((*old_res)->start == new_res->end + 1) {
1070 (*old_res)->start = new_res->start;
1071 kfree(new_res);
1072 break;
1073 }
1074
1075 if ((*old_res)->start > new_res->end) {
1076 new_res->sibling = *old_res;
1077 if (prev_res)
1078 (*prev_res)->sibling = new_res;
1079 *old_res = new_res;
1080 break;
1081 }
1082
1083 prev_res = old_res;
1084 old_res = &(*old_res)->sibling;
1085
1086 } while (1);
1087
1088 return AE_OK;
1089 }
1090
1091 static int vmbus_acpi_remove(struct acpi_device *device)
1092 {
1093 struct resource *cur_res;
1094 struct resource *next_res;
1095
1096 if (hyperv_mmio) {
1097 if (fb_mmio) {
1098 __release_region(hyperv_mmio, fb_mmio->start,
1099 resource_size(fb_mmio));
1100 fb_mmio = NULL;
1101 }
1102
1103 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1104 next_res = cur_res->sibling;
1105 kfree(cur_res);
1106 }
1107 }
1108
1109 return 0;
1110 }
1111
1112 static void vmbus_reserve_fb(void)
1113 {
1114 int size;
1115 /*
1116 * Make a claim for the frame buffer in the resource tree under the
1117 * first node, which will be the one below 4GB. The length seems to
1118 * be underreported, particularly in a Generation 1 VM. So start out
1119 * reserving a larger area and make it smaller until it succeeds.
1120 */
1121
1122 if (screen_info.lfb_base) {
1123 if (efi_enabled(EFI_BOOT))
1124 size = max_t(__u32, screen_info.lfb_size, 0x800000);
1125 else
1126 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1127
1128 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1129 fb_mmio = __request_region(hyperv_mmio,
1130 screen_info.lfb_base, size,
1131 fb_mmio_name, 0);
1132 }
1133 }
1134 }
1135
1136 /**
1137 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1138 * @new: If successful, supplied a pointer to the
1139 * allocated MMIO space.
1140 * @device_obj: Identifies the caller
1141 * @min: Minimum guest physical address of the
1142 * allocation
1143 * @max: Maximum guest physical address
1144 * @size: Size of the range to be allocated
1145 * @align: Alignment of the range to be allocated
1146 * @fb_overlap_ok: Whether this allocation can be allowed
1147 * to overlap the video frame buffer.
1148 *
1149 * This function walks the resources granted to VMBus by the
1150 * _CRS object in the ACPI namespace underneath the parent
1151 * "bridge" whether that's a root PCI bus in the Generation 1
1152 * case or a Module Device in the Generation 2 case. It then
1153 * attempts to allocate from the global MMIO pool in a way that
1154 * matches the constraints supplied in these parameters and by
1155 * that _CRS.
1156 *
1157 * Return: 0 on success, -errno on failure
1158 */
1159 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1160 resource_size_t min, resource_size_t max,
1161 resource_size_t size, resource_size_t align,
1162 bool fb_overlap_ok)
1163 {
1164 struct resource *iter, *shadow;
1165 resource_size_t range_min, range_max, start, local_min, local_max;
1166 const char *dev_n = dev_name(&device_obj->device);
1167 u32 fb_end = screen_info.lfb_base + (screen_info.lfb_size << 1);
1168 int i, retval;
1169
1170 retval = -ENXIO;
1171 down(&hyperv_mmio_lock);
1172
1173 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1174 if ((iter->start >= max) || (iter->end <= min))
1175 continue;
1176
1177 range_min = iter->start;
1178 range_max = iter->end;
1179
1180 /* If this range overlaps the frame buffer, split it into
1181 two tries. */
1182 for (i = 0; i < 2; i++) {
1183 local_min = range_min;
1184 local_max = range_max;
1185 if (fb_overlap_ok || (range_min >= fb_end) ||
1186 (range_max <= screen_info.lfb_base)) {
1187 i++;
1188 } else {
1189 if ((range_min <= screen_info.lfb_base) &&
1190 (range_max >= screen_info.lfb_base)) {
1191 /*
1192 * The frame buffer is in this window,
1193 * so trim this into the part that
1194 * preceeds the frame buffer.
1195 */
1196 local_max = screen_info.lfb_base - 1;
1197 range_min = fb_end;
1198 } else {
1199 range_min = fb_end;
1200 continue;
1201 }
1202 }
1203
1204 start = (local_min + align - 1) & ~(align - 1);
1205 for (; start + size - 1 <= local_max; start += align) {
1206 shadow = __request_region(iter, start,
1207 size,
1208 NULL,
1209 IORESOURCE_BUSY);
1210 if (!shadow)
1211 continue;
1212
1213 *new = request_mem_region_exclusive(start, size,
1214 dev_n);
1215 if (*new) {
1216 shadow->name = (char *)*new;
1217 retval = 0;
1218 goto exit;
1219 }
1220
1221 __release_region(iter, start, size);
1222 }
1223 }
1224 }
1225
1226 exit:
1227 up(&hyperv_mmio_lock);
1228 return retval;
1229 }
1230 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1231
1232 /**
1233 * vmbus_free_mmio() - Free a memory-mapped I/O range.
1234 * @start: Base address of region to release.
1235 * @size: Size of the range to be allocated
1236 *
1237 * This function releases anything requested by
1238 * vmbus_mmio_allocate().
1239 */
1240 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1241 {
1242 struct resource *iter;
1243
1244 down(&hyperv_mmio_lock);
1245 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1246 if ((iter->start >= start + size) || (iter->end <= start))
1247 continue;
1248
1249 __release_region(iter, start, size);
1250 }
1251 release_mem_region(start, size);
1252 up(&hyperv_mmio_lock);
1253
1254 }
1255 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1256
1257 /**
1258 * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1259 * @cpu_number: CPU number in Linux terms
1260 *
1261 * This function returns the mapping between the Linux processor
1262 * number and the hypervisor's virtual processor number, useful
1263 * in making hypercalls and such that talk about specific
1264 * processors.
1265 *
1266 * Return: Virtual processor number in Hyper-V terms
1267 */
1268 int vmbus_cpu_number_to_vp_number(int cpu_number)
1269 {
1270 return hv_context.vp_index[cpu_number];
1271 }
1272 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1273
1274 static int vmbus_acpi_add(struct acpi_device *device)
1275 {
1276 acpi_status result;
1277 int ret_val = -ENODEV;
1278 struct acpi_device *ancestor;
1279
1280 hv_acpi_dev = device;
1281
1282 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1283 vmbus_walk_resources, NULL);
1284
1285 if (ACPI_FAILURE(result))
1286 goto acpi_walk_err;
1287 /*
1288 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1289 * firmware) is the VMOD that has the mmio ranges. Get that.
1290 */
1291 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1292 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1293 vmbus_walk_resources, NULL);
1294
1295 if (ACPI_FAILURE(result))
1296 continue;
1297 if (hyperv_mmio) {
1298 vmbus_reserve_fb();
1299 break;
1300 }
1301 }
1302 ret_val = 0;
1303
1304 acpi_walk_err:
1305 complete(&probe_event);
1306 if (ret_val)
1307 vmbus_acpi_remove(device);
1308 return ret_val;
1309 }
1310
1311 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1312 {"VMBUS", 0},
1313 {"VMBus", 0},
1314 {"", 0},
1315 };
1316 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1317
1318 static struct acpi_driver vmbus_acpi_driver = {
1319 .name = "vmbus",
1320 .ids = vmbus_acpi_device_ids,
1321 .ops = {
1322 .add = vmbus_acpi_add,
1323 .remove = vmbus_acpi_remove,
1324 },
1325 };
1326
1327 static void hv_kexec_handler(void)
1328 {
1329 int cpu;
1330
1331 hv_synic_clockevents_cleanup();
1332 vmbus_initiate_unload(false);
1333 for_each_online_cpu(cpu)
1334 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1335 hv_cleanup();
1336 };
1337
1338 static void hv_crash_handler(struct pt_regs *regs)
1339 {
1340 vmbus_initiate_unload(true);
1341 /*
1342 * In crash handler we can't schedule synic cleanup for all CPUs,
1343 * doing the cleanup for current CPU only. This should be sufficient
1344 * for kdump.
1345 */
1346 hv_synic_cleanup(NULL);
1347 hv_cleanup();
1348 };
1349
1350 static int __init hv_acpi_init(void)
1351 {
1352 int ret, t;
1353
1354 if (x86_hyper != &x86_hyper_ms_hyperv)
1355 return -ENODEV;
1356
1357 init_completion(&probe_event);
1358
1359 /*
1360 * Get ACPI resources first.
1361 */
1362 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1363
1364 if (ret)
1365 return ret;
1366
1367 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1368 if (t == 0) {
1369 ret = -ETIMEDOUT;
1370 goto cleanup;
1371 }
1372
1373 ret = vmbus_bus_init();
1374 if (ret)
1375 goto cleanup;
1376
1377 hv_setup_kexec_handler(hv_kexec_handler);
1378 hv_setup_crash_handler(hv_crash_handler);
1379
1380 return 0;
1381
1382 cleanup:
1383 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1384 hv_acpi_dev = NULL;
1385 return ret;
1386 }
1387
1388 static void __exit vmbus_exit(void)
1389 {
1390 int cpu;
1391
1392 hv_remove_kexec_handler();
1393 hv_remove_crash_handler();
1394 vmbus_connection.conn_state = DISCONNECTED;
1395 hv_synic_clockevents_cleanup();
1396 vmbus_disconnect();
1397 hv_remove_vmbus_irq();
1398 for_each_online_cpu(cpu)
1399 tasklet_kill(hv_context.msg_dpc[cpu]);
1400 vmbus_free_channels();
1401 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1402 unregister_die_notifier(&hyperv_die_block);
1403 atomic_notifier_chain_unregister(&panic_notifier_list,
1404 &hyperv_panic_block);
1405 }
1406 bus_unregister(&hv_bus);
1407 hv_cleanup();
1408 for_each_online_cpu(cpu) {
1409 tasklet_kill(hv_context.event_dpc[cpu]);
1410 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1411 }
1412 hv_synic_free();
1413 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1414 if (vmbus_proto_version > VERSION_WIN7)
1415 cpu_hotplug_enable();
1416 }
1417
1418
1419 MODULE_LICENSE("GPL");
1420
1421 subsys_initcall(hv_acpi_init);
1422 module_exit(vmbus_exit);
This page took 0.074261 seconds and 5 git commands to generate.