Merge remote-tracking branches 'spi/topic/octeon', 'spi/topic/omap2-mcspi', 'spi...
[deliverable/linux.git] / drivers / hv / vmbus_drv.c
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
21 *
22 */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include "hyperv_vmbus.h"
45
46 static struct acpi_device *hv_acpi_dev;
47
48 static struct completion probe_event;
49
50
51 static void hyperv_report_panic(struct pt_regs *regs)
52 {
53 static bool panic_reported;
54
55 /*
56 * We prefer to report panic on 'die' chain as we have proper
57 * registers to report, but if we miss it (e.g. on BUG()) we need
58 * to report it on 'panic'.
59 */
60 if (panic_reported)
61 return;
62 panic_reported = true;
63
64 wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
65 wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
66 wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
67 wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
68 wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
69
70 /*
71 * Let Hyper-V know there is crash data available
72 */
73 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
74 }
75
76 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
77 void *args)
78 {
79 struct pt_regs *regs;
80
81 regs = current_pt_regs();
82
83 hyperv_report_panic(regs);
84 return NOTIFY_DONE;
85 }
86
87 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
88 void *args)
89 {
90 struct die_args *die = (struct die_args *)args;
91 struct pt_regs *regs = die->regs;
92
93 hyperv_report_panic(regs);
94 return NOTIFY_DONE;
95 }
96
97 static struct notifier_block hyperv_die_block = {
98 .notifier_call = hyperv_die_event,
99 };
100 static struct notifier_block hyperv_panic_block = {
101 .notifier_call = hyperv_panic_event,
102 };
103
104 struct resource *hyperv_mmio;
105
106 static int vmbus_exists(void)
107 {
108 if (hv_acpi_dev == NULL)
109 return -ENODEV;
110
111 return 0;
112 }
113
114 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
115 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
116 {
117 int i;
118 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
119 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
120 }
121
122 static u8 channel_monitor_group(struct vmbus_channel *channel)
123 {
124 return (u8)channel->offermsg.monitorid / 32;
125 }
126
127 static u8 channel_monitor_offset(struct vmbus_channel *channel)
128 {
129 return (u8)channel->offermsg.monitorid % 32;
130 }
131
132 static u32 channel_pending(struct vmbus_channel *channel,
133 struct hv_monitor_page *monitor_page)
134 {
135 u8 monitor_group = channel_monitor_group(channel);
136 return monitor_page->trigger_group[monitor_group].pending;
137 }
138
139 static u32 channel_latency(struct vmbus_channel *channel,
140 struct hv_monitor_page *monitor_page)
141 {
142 u8 monitor_group = channel_monitor_group(channel);
143 u8 monitor_offset = channel_monitor_offset(channel);
144 return monitor_page->latency[monitor_group][monitor_offset];
145 }
146
147 static u32 channel_conn_id(struct vmbus_channel *channel,
148 struct hv_monitor_page *monitor_page)
149 {
150 u8 monitor_group = channel_monitor_group(channel);
151 u8 monitor_offset = channel_monitor_offset(channel);
152 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
153 }
154
155 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
156 char *buf)
157 {
158 struct hv_device *hv_dev = device_to_hv_device(dev);
159
160 if (!hv_dev->channel)
161 return -ENODEV;
162 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
163 }
164 static DEVICE_ATTR_RO(id);
165
166 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
167 char *buf)
168 {
169 struct hv_device *hv_dev = device_to_hv_device(dev);
170
171 if (!hv_dev->channel)
172 return -ENODEV;
173 return sprintf(buf, "%d\n", hv_dev->channel->state);
174 }
175 static DEVICE_ATTR_RO(state);
176
177 static ssize_t monitor_id_show(struct device *dev,
178 struct device_attribute *dev_attr, char *buf)
179 {
180 struct hv_device *hv_dev = device_to_hv_device(dev);
181
182 if (!hv_dev->channel)
183 return -ENODEV;
184 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
185 }
186 static DEVICE_ATTR_RO(monitor_id);
187
188 static ssize_t class_id_show(struct device *dev,
189 struct device_attribute *dev_attr, char *buf)
190 {
191 struct hv_device *hv_dev = device_to_hv_device(dev);
192
193 if (!hv_dev->channel)
194 return -ENODEV;
195 return sprintf(buf, "{%pUl}\n",
196 hv_dev->channel->offermsg.offer.if_type.b);
197 }
198 static DEVICE_ATTR_RO(class_id);
199
200 static ssize_t device_id_show(struct device *dev,
201 struct device_attribute *dev_attr, char *buf)
202 {
203 struct hv_device *hv_dev = device_to_hv_device(dev);
204
205 if (!hv_dev->channel)
206 return -ENODEV;
207 return sprintf(buf, "{%pUl}\n",
208 hv_dev->channel->offermsg.offer.if_instance.b);
209 }
210 static DEVICE_ATTR_RO(device_id);
211
212 static ssize_t modalias_show(struct device *dev,
213 struct device_attribute *dev_attr, char *buf)
214 {
215 struct hv_device *hv_dev = device_to_hv_device(dev);
216 char alias_name[VMBUS_ALIAS_LEN + 1];
217
218 print_alias_name(hv_dev, alias_name);
219 return sprintf(buf, "vmbus:%s\n", alias_name);
220 }
221 static DEVICE_ATTR_RO(modalias);
222
223 static ssize_t server_monitor_pending_show(struct device *dev,
224 struct device_attribute *dev_attr,
225 char *buf)
226 {
227 struct hv_device *hv_dev = device_to_hv_device(dev);
228
229 if (!hv_dev->channel)
230 return -ENODEV;
231 return sprintf(buf, "%d\n",
232 channel_pending(hv_dev->channel,
233 vmbus_connection.monitor_pages[1]));
234 }
235 static DEVICE_ATTR_RO(server_monitor_pending);
236
237 static ssize_t client_monitor_pending_show(struct device *dev,
238 struct device_attribute *dev_attr,
239 char *buf)
240 {
241 struct hv_device *hv_dev = device_to_hv_device(dev);
242
243 if (!hv_dev->channel)
244 return -ENODEV;
245 return sprintf(buf, "%d\n",
246 channel_pending(hv_dev->channel,
247 vmbus_connection.monitor_pages[1]));
248 }
249 static DEVICE_ATTR_RO(client_monitor_pending);
250
251 static ssize_t server_monitor_latency_show(struct device *dev,
252 struct device_attribute *dev_attr,
253 char *buf)
254 {
255 struct hv_device *hv_dev = device_to_hv_device(dev);
256
257 if (!hv_dev->channel)
258 return -ENODEV;
259 return sprintf(buf, "%d\n",
260 channel_latency(hv_dev->channel,
261 vmbus_connection.monitor_pages[0]));
262 }
263 static DEVICE_ATTR_RO(server_monitor_latency);
264
265 static ssize_t client_monitor_latency_show(struct device *dev,
266 struct device_attribute *dev_attr,
267 char *buf)
268 {
269 struct hv_device *hv_dev = device_to_hv_device(dev);
270
271 if (!hv_dev->channel)
272 return -ENODEV;
273 return sprintf(buf, "%d\n",
274 channel_latency(hv_dev->channel,
275 vmbus_connection.monitor_pages[1]));
276 }
277 static DEVICE_ATTR_RO(client_monitor_latency);
278
279 static ssize_t server_monitor_conn_id_show(struct device *dev,
280 struct device_attribute *dev_attr,
281 char *buf)
282 {
283 struct hv_device *hv_dev = device_to_hv_device(dev);
284
285 if (!hv_dev->channel)
286 return -ENODEV;
287 return sprintf(buf, "%d\n",
288 channel_conn_id(hv_dev->channel,
289 vmbus_connection.monitor_pages[0]));
290 }
291 static DEVICE_ATTR_RO(server_monitor_conn_id);
292
293 static ssize_t client_monitor_conn_id_show(struct device *dev,
294 struct device_attribute *dev_attr,
295 char *buf)
296 {
297 struct hv_device *hv_dev = device_to_hv_device(dev);
298
299 if (!hv_dev->channel)
300 return -ENODEV;
301 return sprintf(buf, "%d\n",
302 channel_conn_id(hv_dev->channel,
303 vmbus_connection.monitor_pages[1]));
304 }
305 static DEVICE_ATTR_RO(client_monitor_conn_id);
306
307 static ssize_t out_intr_mask_show(struct device *dev,
308 struct device_attribute *dev_attr, char *buf)
309 {
310 struct hv_device *hv_dev = device_to_hv_device(dev);
311 struct hv_ring_buffer_debug_info outbound;
312
313 if (!hv_dev->channel)
314 return -ENODEV;
315 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
316 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
317 }
318 static DEVICE_ATTR_RO(out_intr_mask);
319
320 static ssize_t out_read_index_show(struct device *dev,
321 struct device_attribute *dev_attr, char *buf)
322 {
323 struct hv_device *hv_dev = device_to_hv_device(dev);
324 struct hv_ring_buffer_debug_info outbound;
325
326 if (!hv_dev->channel)
327 return -ENODEV;
328 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
329 return sprintf(buf, "%d\n", outbound.current_read_index);
330 }
331 static DEVICE_ATTR_RO(out_read_index);
332
333 static ssize_t out_write_index_show(struct device *dev,
334 struct device_attribute *dev_attr,
335 char *buf)
336 {
337 struct hv_device *hv_dev = device_to_hv_device(dev);
338 struct hv_ring_buffer_debug_info outbound;
339
340 if (!hv_dev->channel)
341 return -ENODEV;
342 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
343 return sprintf(buf, "%d\n", outbound.current_write_index);
344 }
345 static DEVICE_ATTR_RO(out_write_index);
346
347 static ssize_t out_read_bytes_avail_show(struct device *dev,
348 struct device_attribute *dev_attr,
349 char *buf)
350 {
351 struct hv_device *hv_dev = device_to_hv_device(dev);
352 struct hv_ring_buffer_debug_info outbound;
353
354 if (!hv_dev->channel)
355 return -ENODEV;
356 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
357 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
358 }
359 static DEVICE_ATTR_RO(out_read_bytes_avail);
360
361 static ssize_t out_write_bytes_avail_show(struct device *dev,
362 struct device_attribute *dev_attr,
363 char *buf)
364 {
365 struct hv_device *hv_dev = device_to_hv_device(dev);
366 struct hv_ring_buffer_debug_info outbound;
367
368 if (!hv_dev->channel)
369 return -ENODEV;
370 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
371 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
372 }
373 static DEVICE_ATTR_RO(out_write_bytes_avail);
374
375 static ssize_t in_intr_mask_show(struct device *dev,
376 struct device_attribute *dev_attr, char *buf)
377 {
378 struct hv_device *hv_dev = device_to_hv_device(dev);
379 struct hv_ring_buffer_debug_info inbound;
380
381 if (!hv_dev->channel)
382 return -ENODEV;
383 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
384 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
385 }
386 static DEVICE_ATTR_RO(in_intr_mask);
387
388 static ssize_t in_read_index_show(struct device *dev,
389 struct device_attribute *dev_attr, char *buf)
390 {
391 struct hv_device *hv_dev = device_to_hv_device(dev);
392 struct hv_ring_buffer_debug_info inbound;
393
394 if (!hv_dev->channel)
395 return -ENODEV;
396 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
397 return sprintf(buf, "%d\n", inbound.current_read_index);
398 }
399 static DEVICE_ATTR_RO(in_read_index);
400
401 static ssize_t in_write_index_show(struct device *dev,
402 struct device_attribute *dev_attr, char *buf)
403 {
404 struct hv_device *hv_dev = device_to_hv_device(dev);
405 struct hv_ring_buffer_debug_info inbound;
406
407 if (!hv_dev->channel)
408 return -ENODEV;
409 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
410 return sprintf(buf, "%d\n", inbound.current_write_index);
411 }
412 static DEVICE_ATTR_RO(in_write_index);
413
414 static ssize_t in_read_bytes_avail_show(struct device *dev,
415 struct device_attribute *dev_attr,
416 char *buf)
417 {
418 struct hv_device *hv_dev = device_to_hv_device(dev);
419 struct hv_ring_buffer_debug_info inbound;
420
421 if (!hv_dev->channel)
422 return -ENODEV;
423 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
424 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
425 }
426 static DEVICE_ATTR_RO(in_read_bytes_avail);
427
428 static ssize_t in_write_bytes_avail_show(struct device *dev,
429 struct device_attribute *dev_attr,
430 char *buf)
431 {
432 struct hv_device *hv_dev = device_to_hv_device(dev);
433 struct hv_ring_buffer_debug_info inbound;
434
435 if (!hv_dev->channel)
436 return -ENODEV;
437 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
438 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
439 }
440 static DEVICE_ATTR_RO(in_write_bytes_avail);
441
442 static ssize_t channel_vp_mapping_show(struct device *dev,
443 struct device_attribute *dev_attr,
444 char *buf)
445 {
446 struct hv_device *hv_dev = device_to_hv_device(dev);
447 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
448 unsigned long flags;
449 int buf_size = PAGE_SIZE, n_written, tot_written;
450 struct list_head *cur;
451
452 if (!channel)
453 return -ENODEV;
454
455 tot_written = snprintf(buf, buf_size, "%u:%u\n",
456 channel->offermsg.child_relid, channel->target_cpu);
457
458 spin_lock_irqsave(&channel->lock, flags);
459
460 list_for_each(cur, &channel->sc_list) {
461 if (tot_written >= buf_size - 1)
462 break;
463
464 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
465 n_written = scnprintf(buf + tot_written,
466 buf_size - tot_written,
467 "%u:%u\n",
468 cur_sc->offermsg.child_relid,
469 cur_sc->target_cpu);
470 tot_written += n_written;
471 }
472
473 spin_unlock_irqrestore(&channel->lock, flags);
474
475 return tot_written;
476 }
477 static DEVICE_ATTR_RO(channel_vp_mapping);
478
479 static ssize_t vendor_show(struct device *dev,
480 struct device_attribute *dev_attr,
481 char *buf)
482 {
483 struct hv_device *hv_dev = device_to_hv_device(dev);
484 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
485 }
486 static DEVICE_ATTR_RO(vendor);
487
488 static ssize_t device_show(struct device *dev,
489 struct device_attribute *dev_attr,
490 char *buf)
491 {
492 struct hv_device *hv_dev = device_to_hv_device(dev);
493 return sprintf(buf, "0x%x\n", hv_dev->device_id);
494 }
495 static DEVICE_ATTR_RO(device);
496
497 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
498 static struct attribute *vmbus_attrs[] = {
499 &dev_attr_id.attr,
500 &dev_attr_state.attr,
501 &dev_attr_monitor_id.attr,
502 &dev_attr_class_id.attr,
503 &dev_attr_device_id.attr,
504 &dev_attr_modalias.attr,
505 &dev_attr_server_monitor_pending.attr,
506 &dev_attr_client_monitor_pending.attr,
507 &dev_attr_server_monitor_latency.attr,
508 &dev_attr_client_monitor_latency.attr,
509 &dev_attr_server_monitor_conn_id.attr,
510 &dev_attr_client_monitor_conn_id.attr,
511 &dev_attr_out_intr_mask.attr,
512 &dev_attr_out_read_index.attr,
513 &dev_attr_out_write_index.attr,
514 &dev_attr_out_read_bytes_avail.attr,
515 &dev_attr_out_write_bytes_avail.attr,
516 &dev_attr_in_intr_mask.attr,
517 &dev_attr_in_read_index.attr,
518 &dev_attr_in_write_index.attr,
519 &dev_attr_in_read_bytes_avail.attr,
520 &dev_attr_in_write_bytes_avail.attr,
521 &dev_attr_channel_vp_mapping.attr,
522 &dev_attr_vendor.attr,
523 &dev_attr_device.attr,
524 NULL,
525 };
526 ATTRIBUTE_GROUPS(vmbus);
527
528 /*
529 * vmbus_uevent - add uevent for our device
530 *
531 * This routine is invoked when a device is added or removed on the vmbus to
532 * generate a uevent to udev in the userspace. The udev will then look at its
533 * rule and the uevent generated here to load the appropriate driver
534 *
535 * The alias string will be of the form vmbus:guid where guid is the string
536 * representation of the device guid (each byte of the guid will be
537 * represented with two hex characters.
538 */
539 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
540 {
541 struct hv_device *dev = device_to_hv_device(device);
542 int ret;
543 char alias_name[VMBUS_ALIAS_LEN + 1];
544
545 print_alias_name(dev, alias_name);
546 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
547 return ret;
548 }
549
550 static const uuid_le null_guid;
551
552 static inline bool is_null_guid(const uuid_le *guid)
553 {
554 if (uuid_le_cmp(*guid, null_guid))
555 return false;
556 return true;
557 }
558
559 /*
560 * Return a matching hv_vmbus_device_id pointer.
561 * If there is no match, return NULL.
562 */
563 static const struct hv_vmbus_device_id *hv_vmbus_get_id(
564 const struct hv_vmbus_device_id *id,
565 const uuid_le *guid)
566 {
567 for (; !is_null_guid(&id->guid); id++)
568 if (!uuid_le_cmp(id->guid, *guid))
569 return id;
570
571 return NULL;
572 }
573
574
575
576 /*
577 * vmbus_match - Attempt to match the specified device to the specified driver
578 */
579 static int vmbus_match(struct device *device, struct device_driver *driver)
580 {
581 struct hv_driver *drv = drv_to_hv_drv(driver);
582 struct hv_device *hv_dev = device_to_hv_device(device);
583
584 /* The hv_sock driver handles all hv_sock offers. */
585 if (is_hvsock_channel(hv_dev->channel))
586 return drv->hvsock;
587
588 if (hv_vmbus_get_id(drv->id_table, &hv_dev->dev_type))
589 return 1;
590
591 return 0;
592 }
593
594 /*
595 * vmbus_probe - Add the new vmbus's child device
596 */
597 static int vmbus_probe(struct device *child_device)
598 {
599 int ret = 0;
600 struct hv_driver *drv =
601 drv_to_hv_drv(child_device->driver);
602 struct hv_device *dev = device_to_hv_device(child_device);
603 const struct hv_vmbus_device_id *dev_id;
604
605 dev_id = hv_vmbus_get_id(drv->id_table, &dev->dev_type);
606 if (drv->probe) {
607 ret = drv->probe(dev, dev_id);
608 if (ret != 0)
609 pr_err("probe failed for device %s (%d)\n",
610 dev_name(child_device), ret);
611
612 } else {
613 pr_err("probe not set for driver %s\n",
614 dev_name(child_device));
615 ret = -ENODEV;
616 }
617 return ret;
618 }
619
620 /*
621 * vmbus_remove - Remove a vmbus device
622 */
623 static int vmbus_remove(struct device *child_device)
624 {
625 struct hv_driver *drv;
626 struct hv_device *dev = device_to_hv_device(child_device);
627
628 if (child_device->driver) {
629 drv = drv_to_hv_drv(child_device->driver);
630 if (drv->remove)
631 drv->remove(dev);
632 }
633
634 return 0;
635 }
636
637
638 /*
639 * vmbus_shutdown - Shutdown a vmbus device
640 */
641 static void vmbus_shutdown(struct device *child_device)
642 {
643 struct hv_driver *drv;
644 struct hv_device *dev = device_to_hv_device(child_device);
645
646
647 /* The device may not be attached yet */
648 if (!child_device->driver)
649 return;
650
651 drv = drv_to_hv_drv(child_device->driver);
652
653 if (drv->shutdown)
654 drv->shutdown(dev);
655
656 return;
657 }
658
659
660 /*
661 * vmbus_device_release - Final callback release of the vmbus child device
662 */
663 static void vmbus_device_release(struct device *device)
664 {
665 struct hv_device *hv_dev = device_to_hv_device(device);
666 struct vmbus_channel *channel = hv_dev->channel;
667
668 hv_process_channel_removal(channel,
669 channel->offermsg.child_relid);
670 kfree(hv_dev);
671
672 }
673
674 /* The one and only one */
675 static struct bus_type hv_bus = {
676 .name = "vmbus",
677 .match = vmbus_match,
678 .shutdown = vmbus_shutdown,
679 .remove = vmbus_remove,
680 .probe = vmbus_probe,
681 .uevent = vmbus_uevent,
682 .dev_groups = vmbus_groups,
683 };
684
685 struct onmessage_work_context {
686 struct work_struct work;
687 struct hv_message msg;
688 };
689
690 static void vmbus_onmessage_work(struct work_struct *work)
691 {
692 struct onmessage_work_context *ctx;
693
694 /* Do not process messages if we're in DISCONNECTED state */
695 if (vmbus_connection.conn_state == DISCONNECTED)
696 return;
697
698 ctx = container_of(work, struct onmessage_work_context,
699 work);
700 vmbus_onmessage(&ctx->msg);
701 kfree(ctx);
702 }
703
704 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
705 {
706 struct clock_event_device *dev = hv_context.clk_evt[cpu];
707
708 if (dev->event_handler)
709 dev->event_handler(dev);
710
711 vmbus_signal_eom(msg);
712 }
713
714 void vmbus_on_msg_dpc(unsigned long data)
715 {
716 int cpu = smp_processor_id();
717 void *page_addr = hv_context.synic_message_page[cpu];
718 struct hv_message *msg = (struct hv_message *)page_addr +
719 VMBUS_MESSAGE_SINT;
720 struct vmbus_channel_message_header *hdr;
721 struct vmbus_channel_message_table_entry *entry;
722 struct onmessage_work_context *ctx;
723
724 if (msg->header.message_type == HVMSG_NONE)
725 /* no msg */
726 return;
727
728 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
729
730 if (hdr->msgtype >= CHANNELMSG_COUNT) {
731 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
732 goto msg_handled;
733 }
734
735 entry = &channel_message_table[hdr->msgtype];
736 if (entry->handler_type == VMHT_BLOCKING) {
737 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
738 if (ctx == NULL)
739 return;
740
741 INIT_WORK(&ctx->work, vmbus_onmessage_work);
742 memcpy(&ctx->msg, msg, sizeof(*msg));
743
744 queue_work(vmbus_connection.work_queue, &ctx->work);
745 } else
746 entry->message_handler(hdr);
747
748 msg_handled:
749 vmbus_signal_eom(msg);
750 }
751
752 static void vmbus_isr(void)
753 {
754 int cpu = smp_processor_id();
755 void *page_addr;
756 struct hv_message *msg;
757 union hv_synic_event_flags *event;
758 bool handled = false;
759
760 page_addr = hv_context.synic_event_page[cpu];
761 if (page_addr == NULL)
762 return;
763
764 event = (union hv_synic_event_flags *)page_addr +
765 VMBUS_MESSAGE_SINT;
766 /*
767 * Check for events before checking for messages. This is the order
768 * in which events and messages are checked in Windows guests on
769 * Hyper-V, and the Windows team suggested we do the same.
770 */
771
772 if ((vmbus_proto_version == VERSION_WS2008) ||
773 (vmbus_proto_version == VERSION_WIN7)) {
774
775 /* Since we are a child, we only need to check bit 0 */
776 if (sync_test_and_clear_bit(0,
777 (unsigned long *) &event->flags32[0])) {
778 handled = true;
779 }
780 } else {
781 /*
782 * Our host is win8 or above. The signaling mechanism
783 * has changed and we can directly look at the event page.
784 * If bit n is set then we have an interrup on the channel
785 * whose id is n.
786 */
787 handled = true;
788 }
789
790 if (handled)
791 tasklet_schedule(hv_context.event_dpc[cpu]);
792
793
794 page_addr = hv_context.synic_message_page[cpu];
795 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
796
797 /* Check if there are actual msgs to be processed */
798 if (msg->header.message_type != HVMSG_NONE) {
799 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
800 hv_process_timer_expiration(msg, cpu);
801 else
802 tasklet_schedule(hv_context.msg_dpc[cpu]);
803 }
804 }
805
806
807 /*
808 * vmbus_bus_init -Main vmbus driver initialization routine.
809 *
810 * Here, we
811 * - initialize the vmbus driver context
812 * - invoke the vmbus hv main init routine
813 * - retrieve the channel offers
814 */
815 static int vmbus_bus_init(void)
816 {
817 int ret;
818
819 /* Hypervisor initialization...setup hypercall page..etc */
820 ret = hv_init();
821 if (ret != 0) {
822 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
823 return ret;
824 }
825
826 ret = bus_register(&hv_bus);
827 if (ret)
828 goto err_cleanup;
829
830 hv_setup_vmbus_irq(vmbus_isr);
831
832 ret = hv_synic_alloc();
833 if (ret)
834 goto err_alloc;
835 /*
836 * Initialize the per-cpu interrupt state and
837 * connect to the host.
838 */
839 on_each_cpu(hv_synic_init, NULL, 1);
840 ret = vmbus_connect();
841 if (ret)
842 goto err_connect;
843
844 if (vmbus_proto_version > VERSION_WIN7)
845 cpu_hotplug_disable();
846
847 /*
848 * Only register if the crash MSRs are available
849 */
850 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
851 register_die_notifier(&hyperv_die_block);
852 atomic_notifier_chain_register(&panic_notifier_list,
853 &hyperv_panic_block);
854 }
855
856 vmbus_request_offers();
857
858 return 0;
859
860 err_connect:
861 on_each_cpu(hv_synic_cleanup, NULL, 1);
862 err_alloc:
863 hv_synic_free();
864 hv_remove_vmbus_irq();
865
866 bus_unregister(&hv_bus);
867
868 err_cleanup:
869 hv_cleanup();
870
871 return ret;
872 }
873
874 /**
875 * __vmbus_child_driver_register() - Register a vmbus's driver
876 * @hv_driver: Pointer to driver structure you want to register
877 * @owner: owner module of the drv
878 * @mod_name: module name string
879 *
880 * Registers the given driver with Linux through the 'driver_register()' call
881 * and sets up the hyper-v vmbus handling for this driver.
882 * It will return the state of the 'driver_register()' call.
883 *
884 */
885 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
886 {
887 int ret;
888
889 pr_info("registering driver %s\n", hv_driver->name);
890
891 ret = vmbus_exists();
892 if (ret < 0)
893 return ret;
894
895 hv_driver->driver.name = hv_driver->name;
896 hv_driver->driver.owner = owner;
897 hv_driver->driver.mod_name = mod_name;
898 hv_driver->driver.bus = &hv_bus;
899
900 ret = driver_register(&hv_driver->driver);
901
902 return ret;
903 }
904 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
905
906 /**
907 * vmbus_driver_unregister() - Unregister a vmbus's driver
908 * @hv_driver: Pointer to driver structure you want to
909 * un-register
910 *
911 * Un-register the given driver that was previous registered with a call to
912 * vmbus_driver_register()
913 */
914 void vmbus_driver_unregister(struct hv_driver *hv_driver)
915 {
916 pr_info("unregistering driver %s\n", hv_driver->name);
917
918 if (!vmbus_exists())
919 driver_unregister(&hv_driver->driver);
920 }
921 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
922
923 /*
924 * vmbus_device_create - Creates and registers a new child device
925 * on the vmbus.
926 */
927 struct hv_device *vmbus_device_create(const uuid_le *type,
928 const uuid_le *instance,
929 struct vmbus_channel *channel)
930 {
931 struct hv_device *child_device_obj;
932
933 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
934 if (!child_device_obj) {
935 pr_err("Unable to allocate device object for child device\n");
936 return NULL;
937 }
938
939 child_device_obj->channel = channel;
940 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
941 memcpy(&child_device_obj->dev_instance, instance,
942 sizeof(uuid_le));
943 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
944
945
946 return child_device_obj;
947 }
948
949 /*
950 * vmbus_device_register - Register the child device
951 */
952 int vmbus_device_register(struct hv_device *child_device_obj)
953 {
954 int ret = 0;
955
956 dev_set_name(&child_device_obj->device, "vmbus_%d",
957 child_device_obj->channel->id);
958
959 child_device_obj->device.bus = &hv_bus;
960 child_device_obj->device.parent = &hv_acpi_dev->dev;
961 child_device_obj->device.release = vmbus_device_release;
962
963 /*
964 * Register with the LDM. This will kick off the driver/device
965 * binding...which will eventually call vmbus_match() and vmbus_probe()
966 */
967 ret = device_register(&child_device_obj->device);
968
969 if (ret)
970 pr_err("Unable to register child device\n");
971 else
972 pr_debug("child device %s registered\n",
973 dev_name(&child_device_obj->device));
974
975 return ret;
976 }
977
978 /*
979 * vmbus_device_unregister - Remove the specified child device
980 * from the vmbus.
981 */
982 void vmbus_device_unregister(struct hv_device *device_obj)
983 {
984 pr_debug("child device %s unregistered\n",
985 dev_name(&device_obj->device));
986
987 /*
988 * Kick off the process of unregistering the device.
989 * This will call vmbus_remove() and eventually vmbus_device_release()
990 */
991 device_unregister(&device_obj->device);
992 }
993
994
995 /*
996 * VMBUS is an acpi enumerated device. Get the information we
997 * need from DSDT.
998 */
999 #define VTPM_BASE_ADDRESS 0xfed40000
1000 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1001 {
1002 resource_size_t start = 0;
1003 resource_size_t end = 0;
1004 struct resource *new_res;
1005 struct resource **old_res = &hyperv_mmio;
1006 struct resource **prev_res = NULL;
1007
1008 switch (res->type) {
1009
1010 /*
1011 * "Address" descriptors are for bus windows. Ignore
1012 * "memory" descriptors, which are for registers on
1013 * devices.
1014 */
1015 case ACPI_RESOURCE_TYPE_ADDRESS32:
1016 start = res->data.address32.address.minimum;
1017 end = res->data.address32.address.maximum;
1018 break;
1019
1020 case ACPI_RESOURCE_TYPE_ADDRESS64:
1021 start = res->data.address64.address.minimum;
1022 end = res->data.address64.address.maximum;
1023 break;
1024
1025 default:
1026 /* Unused resource type */
1027 return AE_OK;
1028
1029 }
1030 /*
1031 * Ignore ranges that are below 1MB, as they're not
1032 * necessary or useful here.
1033 */
1034 if (end < 0x100000)
1035 return AE_OK;
1036
1037 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1038 if (!new_res)
1039 return AE_NO_MEMORY;
1040
1041 /* If this range overlaps the virtual TPM, truncate it. */
1042 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1043 end = VTPM_BASE_ADDRESS;
1044
1045 new_res->name = "hyperv mmio";
1046 new_res->flags = IORESOURCE_MEM;
1047 new_res->start = start;
1048 new_res->end = end;
1049
1050 /*
1051 * Stick ranges from higher in address space at the front of the list.
1052 * If two ranges are adjacent, merge them.
1053 */
1054 do {
1055 if (!*old_res) {
1056 *old_res = new_res;
1057 break;
1058 }
1059
1060 if (((*old_res)->end + 1) == new_res->start) {
1061 (*old_res)->end = new_res->end;
1062 kfree(new_res);
1063 break;
1064 }
1065
1066 if ((*old_res)->start == new_res->end + 1) {
1067 (*old_res)->start = new_res->start;
1068 kfree(new_res);
1069 break;
1070 }
1071
1072 if ((*old_res)->end < new_res->start) {
1073 new_res->sibling = *old_res;
1074 if (prev_res)
1075 (*prev_res)->sibling = new_res;
1076 *old_res = new_res;
1077 break;
1078 }
1079
1080 prev_res = old_res;
1081 old_res = &(*old_res)->sibling;
1082
1083 } while (1);
1084
1085 return AE_OK;
1086 }
1087
1088 static int vmbus_acpi_remove(struct acpi_device *device)
1089 {
1090 struct resource *cur_res;
1091 struct resource *next_res;
1092
1093 if (hyperv_mmio) {
1094 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1095 next_res = cur_res->sibling;
1096 kfree(cur_res);
1097 }
1098 }
1099
1100 return 0;
1101 }
1102
1103 /**
1104 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1105 * @new: If successful, supplied a pointer to the
1106 * allocated MMIO space.
1107 * @device_obj: Identifies the caller
1108 * @min: Minimum guest physical address of the
1109 * allocation
1110 * @max: Maximum guest physical address
1111 * @size: Size of the range to be allocated
1112 * @align: Alignment of the range to be allocated
1113 * @fb_overlap_ok: Whether this allocation can be allowed
1114 * to overlap the video frame buffer.
1115 *
1116 * This function walks the resources granted to VMBus by the
1117 * _CRS object in the ACPI namespace underneath the parent
1118 * "bridge" whether that's a root PCI bus in the Generation 1
1119 * case or a Module Device in the Generation 2 case. It then
1120 * attempts to allocate from the global MMIO pool in a way that
1121 * matches the constraints supplied in these parameters and by
1122 * that _CRS.
1123 *
1124 * Return: 0 on success, -errno on failure
1125 */
1126 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1127 resource_size_t min, resource_size_t max,
1128 resource_size_t size, resource_size_t align,
1129 bool fb_overlap_ok)
1130 {
1131 struct resource *iter;
1132 resource_size_t range_min, range_max, start, local_min, local_max;
1133 const char *dev_n = dev_name(&device_obj->device);
1134 u32 fb_end = screen_info.lfb_base + (screen_info.lfb_size << 1);
1135 int i;
1136
1137 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1138 if ((iter->start >= max) || (iter->end <= min))
1139 continue;
1140
1141 range_min = iter->start;
1142 range_max = iter->end;
1143
1144 /* If this range overlaps the frame buffer, split it into
1145 two tries. */
1146 for (i = 0; i < 2; i++) {
1147 local_min = range_min;
1148 local_max = range_max;
1149 if (fb_overlap_ok || (range_min >= fb_end) ||
1150 (range_max <= screen_info.lfb_base)) {
1151 i++;
1152 } else {
1153 if ((range_min <= screen_info.lfb_base) &&
1154 (range_max >= screen_info.lfb_base)) {
1155 /*
1156 * The frame buffer is in this window,
1157 * so trim this into the part that
1158 * preceeds the frame buffer.
1159 */
1160 local_max = screen_info.lfb_base - 1;
1161 range_min = fb_end;
1162 } else {
1163 range_min = fb_end;
1164 continue;
1165 }
1166 }
1167
1168 start = (local_min + align - 1) & ~(align - 1);
1169 for (; start + size - 1 <= local_max; start += align) {
1170 *new = request_mem_region_exclusive(start, size,
1171 dev_n);
1172 if (*new)
1173 return 0;
1174 }
1175 }
1176 }
1177
1178 return -ENXIO;
1179 }
1180 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1181
1182 /**
1183 * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1184 * @cpu_number: CPU number in Linux terms
1185 *
1186 * This function returns the mapping between the Linux processor
1187 * number and the hypervisor's virtual processor number, useful
1188 * in making hypercalls and such that talk about specific
1189 * processors.
1190 *
1191 * Return: Virtual processor number in Hyper-V terms
1192 */
1193 int vmbus_cpu_number_to_vp_number(int cpu_number)
1194 {
1195 return hv_context.vp_index[cpu_number];
1196 }
1197 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1198
1199 static int vmbus_acpi_add(struct acpi_device *device)
1200 {
1201 acpi_status result;
1202 int ret_val = -ENODEV;
1203 struct acpi_device *ancestor;
1204
1205 hv_acpi_dev = device;
1206
1207 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1208 vmbus_walk_resources, NULL);
1209
1210 if (ACPI_FAILURE(result))
1211 goto acpi_walk_err;
1212 /*
1213 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1214 * firmware) is the VMOD that has the mmio ranges. Get that.
1215 */
1216 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1217 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1218 vmbus_walk_resources, NULL);
1219
1220 if (ACPI_FAILURE(result))
1221 continue;
1222 if (hyperv_mmio)
1223 break;
1224 }
1225 ret_val = 0;
1226
1227 acpi_walk_err:
1228 complete(&probe_event);
1229 if (ret_val)
1230 vmbus_acpi_remove(device);
1231 return ret_val;
1232 }
1233
1234 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1235 {"VMBUS", 0},
1236 {"VMBus", 0},
1237 {"", 0},
1238 };
1239 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1240
1241 static struct acpi_driver vmbus_acpi_driver = {
1242 .name = "vmbus",
1243 .ids = vmbus_acpi_device_ids,
1244 .ops = {
1245 .add = vmbus_acpi_add,
1246 .remove = vmbus_acpi_remove,
1247 },
1248 };
1249
1250 static void hv_kexec_handler(void)
1251 {
1252 int cpu;
1253
1254 hv_synic_clockevents_cleanup();
1255 vmbus_initiate_unload(false);
1256 for_each_online_cpu(cpu)
1257 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1258 hv_cleanup();
1259 };
1260
1261 static void hv_crash_handler(struct pt_regs *regs)
1262 {
1263 vmbus_initiate_unload(true);
1264 /*
1265 * In crash handler we can't schedule synic cleanup for all CPUs,
1266 * doing the cleanup for current CPU only. This should be sufficient
1267 * for kdump.
1268 */
1269 hv_synic_cleanup(NULL);
1270 hv_cleanup();
1271 };
1272
1273 static int __init hv_acpi_init(void)
1274 {
1275 int ret, t;
1276
1277 if (x86_hyper != &x86_hyper_ms_hyperv)
1278 return -ENODEV;
1279
1280 init_completion(&probe_event);
1281
1282 /*
1283 * Get ACPI resources first.
1284 */
1285 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1286
1287 if (ret)
1288 return ret;
1289
1290 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1291 if (t == 0) {
1292 ret = -ETIMEDOUT;
1293 goto cleanup;
1294 }
1295
1296 ret = vmbus_bus_init();
1297 if (ret)
1298 goto cleanup;
1299
1300 hv_setup_kexec_handler(hv_kexec_handler);
1301 hv_setup_crash_handler(hv_crash_handler);
1302
1303 return 0;
1304
1305 cleanup:
1306 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1307 hv_acpi_dev = NULL;
1308 return ret;
1309 }
1310
1311 static void __exit vmbus_exit(void)
1312 {
1313 int cpu;
1314
1315 hv_remove_kexec_handler();
1316 hv_remove_crash_handler();
1317 vmbus_connection.conn_state = DISCONNECTED;
1318 hv_synic_clockevents_cleanup();
1319 vmbus_disconnect();
1320 hv_remove_vmbus_irq();
1321 for_each_online_cpu(cpu)
1322 tasklet_kill(hv_context.msg_dpc[cpu]);
1323 vmbus_free_channels();
1324 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1325 unregister_die_notifier(&hyperv_die_block);
1326 atomic_notifier_chain_unregister(&panic_notifier_list,
1327 &hyperv_panic_block);
1328 }
1329 bus_unregister(&hv_bus);
1330 hv_cleanup();
1331 for_each_online_cpu(cpu) {
1332 tasklet_kill(hv_context.event_dpc[cpu]);
1333 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1334 }
1335 hv_synic_free();
1336 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1337 if (vmbus_proto_version > VERSION_WIN7)
1338 cpu_hotplug_enable();
1339 }
1340
1341
1342 MODULE_LICENSE("GPL");
1343
1344 subsys_initcall(hv_acpi_init);
1345 module_exit(vmbus_exit);
This page took 0.061672 seconds and 6 git commands to generate.