x86: make 32bit use irq_cfg_alloc, etc
[deliverable/linux.git] / drivers / hwmon / lm85.c
1 /*
2 lm85.c - Part of lm_sensors, Linux kernel modules for hardware
3 monitoring
4 Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
5 Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
6 Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
7 Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
8
9 Chip details at <http://www.national.com/ds/LM/LM85.pdf>
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/slab.h>
29 #include <linux/jiffies.h>
30 #include <linux/i2c.h>
31 #include <linux/hwmon.h>
32 #include <linux/hwmon-vid.h>
33 #include <linux/hwmon-sysfs.h>
34 #include <linux/err.h>
35 #include <linux/mutex.h>
36
37 /* Addresses to scan */
38 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
39
40 /* Insmod parameters */
41 I2C_CLIENT_INSMOD_6(lm85b, lm85c, adm1027, adt7463, emc6d100, emc6d102);
42
43 /* The LM85 registers */
44
45 #define LM85_REG_IN(nr) (0x20 + (nr))
46 #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
47 #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
48
49 #define LM85_REG_TEMP(nr) (0x25 + (nr))
50 #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
51 #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
52
53 /* Fan speeds are LSB, MSB (2 bytes) */
54 #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
55 #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
56
57 #define LM85_REG_PWM(nr) (0x30 + (nr))
58
59 #define LM85_REG_COMPANY 0x3e
60 #define LM85_REG_VERSTEP 0x3f
61 /* These are the recognized values for the above regs */
62 #define LM85_COMPANY_NATIONAL 0x01
63 #define LM85_COMPANY_ANALOG_DEV 0x41
64 #define LM85_COMPANY_SMSC 0x5c
65 #define LM85_VERSTEP_VMASK 0xf0
66 #define LM85_VERSTEP_GENERIC 0x60
67 #define LM85_VERSTEP_LM85C 0x60
68 #define LM85_VERSTEP_LM85B 0x62
69 #define LM85_VERSTEP_ADM1027 0x60
70 #define LM85_VERSTEP_ADT7463 0x62
71 #define LM85_VERSTEP_ADT7463C 0x6A
72 #define LM85_VERSTEP_EMC6D100_A0 0x60
73 #define LM85_VERSTEP_EMC6D100_A1 0x61
74 #define LM85_VERSTEP_EMC6D102 0x65
75
76 #define LM85_REG_CONFIG 0x40
77
78 #define LM85_REG_ALARM1 0x41
79 #define LM85_REG_ALARM2 0x42
80
81 #define LM85_REG_VID 0x43
82
83 /* Automated FAN control */
84 #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
85 #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
86 #define LM85_REG_AFAN_SPIKE1 0x62
87 #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
88 #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
89 #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
90 #define LM85_REG_AFAN_HYST1 0x6d
91 #define LM85_REG_AFAN_HYST2 0x6e
92
93 #define ADM1027_REG_EXTEND_ADC1 0x76
94 #define ADM1027_REG_EXTEND_ADC2 0x77
95
96 #define EMC6D100_REG_ALARM3 0x7d
97 /* IN5, IN6 and IN7 */
98 #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
99 #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
100 #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
101 #define EMC6D102_REG_EXTEND_ADC1 0x85
102 #define EMC6D102_REG_EXTEND_ADC2 0x86
103 #define EMC6D102_REG_EXTEND_ADC3 0x87
104 #define EMC6D102_REG_EXTEND_ADC4 0x88
105
106
107 /* Conversions. Rounding and limit checking is only done on the TO_REG
108 variants. Note that you should be a bit careful with which arguments
109 these macros are called: arguments may be evaluated more than once.
110 */
111
112 /* IN are scaled acording to built-in resistors */
113 static const int lm85_scaling[] = { /* .001 Volts */
114 2500, 2250, 3300, 5000, 12000,
115 3300, 1500, 1800 /*EMC6D100*/
116 };
117 #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
118
119 #define INS_TO_REG(n, val) \
120 SENSORS_LIMIT(SCALE(val, lm85_scaling[n], 192), 0, 255)
121
122 #define INSEXT_FROM_REG(n, val, ext) \
123 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
124
125 #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
126
127 /* FAN speed is measured using 90kHz clock */
128 static inline u16 FAN_TO_REG(unsigned long val)
129 {
130 if (!val)
131 return 0xffff;
132 return SENSORS_LIMIT(5400000 / val, 1, 0xfffe);
133 }
134 #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
135 5400000 / (val))
136
137 /* Temperature is reported in .001 degC increments */
138 #define TEMP_TO_REG(val) \
139 SENSORS_LIMIT(SCALE(val, 1000, 1), -127, 127)
140 #define TEMPEXT_FROM_REG(val, ext) \
141 SCALE(((val) << 4) + (ext), 16, 1000)
142 #define TEMP_FROM_REG(val) ((val) * 1000)
143
144 #define PWM_TO_REG(val) SENSORS_LIMIT(val, 0, 255)
145 #define PWM_FROM_REG(val) (val)
146
147
148 /* ZONEs have the following parameters:
149 * Limit (low) temp, 1. degC
150 * Hysteresis (below limit), 1. degC (0-15)
151 * Range of speed control, .1 degC (2-80)
152 * Critical (high) temp, 1. degC
153 *
154 * FAN PWMs have the following parameters:
155 * Reference Zone, 1, 2, 3, etc.
156 * Spinup time, .05 sec
157 * PWM value at limit/low temp, 1 count
158 * PWM Frequency, 1. Hz
159 * PWM is Min or OFF below limit, flag
160 * Invert PWM output, flag
161 *
162 * Some chips filter the temp, others the fan.
163 * Filter constant (or disabled) .1 seconds
164 */
165
166 /* These are the zone temperature range encodings in .001 degree C */
167 static const int lm85_range_map[] = {
168 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
169 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
170 };
171
172 static int RANGE_TO_REG(int range)
173 {
174 int i;
175
176 if (range >= lm85_range_map[15])
177 return 15;
178
179 /* Find the closest match */
180 for (i = 14; i >= 0; --i) {
181 if (range >= lm85_range_map[i]) {
182 if ((lm85_range_map[i + 1] - range) <
183 (range - lm85_range_map[i]))
184 return i + 1;
185 return i;
186 }
187 }
188
189 return 0;
190 }
191 #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
192
193 /* These are the PWM frequency encodings */
194 static const int lm85_freq_map[] = { /* .1 Hz */
195 100, 150, 230, 300, 380, 470, 620, 940
196 };
197
198 static int FREQ_TO_REG(int freq)
199 {
200 int i;
201
202 if (freq >= lm85_freq_map[7])
203 return 7;
204 for (i = 0; i < 7; ++i)
205 if (freq <= lm85_freq_map[i])
206 break;
207 return i;
208 }
209 #define FREQ_FROM_REG(val) lm85_freq_map[(val) & 0x07]
210
211 /* Since we can't use strings, I'm abusing these numbers
212 * to stand in for the following meanings:
213 * 1 -- PWM responds to Zone 1
214 * 2 -- PWM responds to Zone 2
215 * 3 -- PWM responds to Zone 3
216 * 23 -- PWM responds to the higher temp of Zone 2 or 3
217 * 123 -- PWM responds to highest of Zone 1, 2, or 3
218 * 0 -- PWM is always at 0% (ie, off)
219 * -1 -- PWM is always at 100%
220 * -2 -- PWM responds to manual control
221 */
222
223 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
224 #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
225
226 static int ZONE_TO_REG(int zone)
227 {
228 int i;
229
230 for (i = 0; i <= 7; ++i)
231 if (zone == lm85_zone_map[i])
232 break;
233 if (i > 7) /* Not found. */
234 i = 3; /* Always 100% */
235 return i << 5;
236 }
237
238 #define HYST_TO_REG(val) SENSORS_LIMIT(((val) + 500) / 1000, 0, 15)
239 #define HYST_FROM_REG(val) ((val) * 1000)
240
241 /* Chip sampling rates
242 *
243 * Some sensors are not updated more frequently than once per second
244 * so it doesn't make sense to read them more often than that.
245 * We cache the results and return the saved data if the driver
246 * is called again before a second has elapsed.
247 *
248 * Also, there is significant configuration data for this chip
249 * given the automatic PWM fan control that is possible. There
250 * are about 47 bytes of config data to only 22 bytes of actual
251 * readings. So, we keep the config data up to date in the cache
252 * when it is written and only sample it once every 1 *minute*
253 */
254 #define LM85_DATA_INTERVAL (HZ + HZ / 2)
255 #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
256
257 /* LM85 can automatically adjust fan speeds based on temperature
258 * This structure encapsulates an entire Zone config. There are
259 * three zones (one for each temperature input) on the lm85
260 */
261 struct lm85_zone {
262 s8 limit; /* Low temp limit */
263 u8 hyst; /* Low limit hysteresis. (0-15) */
264 u8 range; /* Temp range, encoded */
265 s8 critical; /* "All fans ON" temp limit */
266 u8 off_desired; /* Actual "off" temperature specified. Preserved
267 * to prevent "drift" as other autofan control
268 * values change.
269 */
270 u8 max_desired; /* Actual "max" temperature specified. Preserved
271 * to prevent "drift" as other autofan control
272 * values change.
273 */
274 };
275
276 struct lm85_autofan {
277 u8 config; /* Register value */
278 u8 freq; /* PWM frequency, encoded */
279 u8 min_pwm; /* Minimum PWM value, encoded */
280 u8 min_off; /* Min PWM or OFF below "limit", flag */
281 };
282
283 /* For each registered chip, we need to keep some data in memory.
284 The structure is dynamically allocated. */
285 struct lm85_data {
286 struct i2c_client client;
287 struct device *hwmon_dev;
288 enum chips type;
289
290 struct mutex update_lock;
291 int valid; /* !=0 if following fields are valid */
292 unsigned long last_reading; /* In jiffies */
293 unsigned long last_config; /* In jiffies */
294
295 u8 in[8]; /* Register value */
296 u8 in_max[8]; /* Register value */
297 u8 in_min[8]; /* Register value */
298 s8 temp[3]; /* Register value */
299 s8 temp_min[3]; /* Register value */
300 s8 temp_max[3]; /* Register value */
301 u16 fan[4]; /* Register value */
302 u16 fan_min[4]; /* Register value */
303 u8 pwm[3]; /* Register value */
304 u8 temp_ext[3]; /* Decoded values */
305 u8 in_ext[8]; /* Decoded values */
306 u8 vid; /* Register value */
307 u8 vrm; /* VRM version */
308 u32 alarms; /* Register encoding, combined */
309 struct lm85_autofan autofan[3];
310 struct lm85_zone zone[3];
311 };
312
313 static int lm85_attach_adapter(struct i2c_adapter *adapter);
314 static int lm85_detect(struct i2c_adapter *adapter, int address,
315 int kind);
316 static int lm85_detach_client(struct i2c_client *client);
317
318 static int lm85_read_value(struct i2c_client *client, u8 reg);
319 static void lm85_write_value(struct i2c_client *client, u8 reg, int value);
320 static struct lm85_data *lm85_update_device(struct device *dev);
321
322
323 static struct i2c_driver lm85_driver = {
324 .driver = {
325 .name = "lm85",
326 },
327 .attach_adapter = lm85_attach_adapter,
328 .detach_client = lm85_detach_client,
329 };
330
331
332 /* 4 Fans */
333 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
334 char *buf)
335 {
336 int nr = to_sensor_dev_attr(attr)->index;
337 struct lm85_data *data = lm85_update_device(dev);
338 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
339 }
340
341 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
342 char *buf)
343 {
344 int nr = to_sensor_dev_attr(attr)->index;
345 struct lm85_data *data = lm85_update_device(dev);
346 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
347 }
348
349 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
350 const char *buf, size_t count)
351 {
352 int nr = to_sensor_dev_attr(attr)->index;
353 struct i2c_client *client = to_i2c_client(dev);
354 struct lm85_data *data = i2c_get_clientdata(client);
355 unsigned long val = simple_strtoul(buf, NULL, 10);
356
357 mutex_lock(&data->update_lock);
358 data->fan_min[nr] = FAN_TO_REG(val);
359 lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
360 mutex_unlock(&data->update_lock);
361 return count;
362 }
363
364 #define show_fan_offset(offset) \
365 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
366 show_fan, NULL, offset - 1); \
367 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
368 show_fan_min, set_fan_min, offset - 1)
369
370 show_fan_offset(1);
371 show_fan_offset(2);
372 show_fan_offset(3);
373 show_fan_offset(4);
374
375 /* vid, vrm, alarms */
376
377 static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
378 char *buf)
379 {
380 struct lm85_data *data = lm85_update_device(dev);
381 int vid;
382
383 if (data->type == adt7463 && (data->vid & 0x80)) {
384 /* 6-pin VID (VRM 10) */
385 vid = vid_from_reg(data->vid & 0x3f, data->vrm);
386 } else {
387 /* 5-pin VID (VRM 9) */
388 vid = vid_from_reg(data->vid & 0x1f, data->vrm);
389 }
390
391 return sprintf(buf, "%d\n", vid);
392 }
393
394 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
395
396 static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
397 char *buf)
398 {
399 struct lm85_data *data = dev_get_drvdata(dev);
400 return sprintf(buf, "%ld\n", (long) data->vrm);
401 }
402
403 static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
404 const char *buf, size_t count)
405 {
406 struct lm85_data *data = dev_get_drvdata(dev);
407 data->vrm = simple_strtoul(buf, NULL, 10);
408 return count;
409 }
410
411 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
412
413 static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
414 *attr, char *buf)
415 {
416 struct lm85_data *data = lm85_update_device(dev);
417 return sprintf(buf, "%u\n", data->alarms);
418 }
419
420 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
421
422 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
423 char *buf)
424 {
425 int nr = to_sensor_dev_attr(attr)->index;
426 struct lm85_data *data = lm85_update_device(dev);
427 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
428 }
429
430 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
431 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
432 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
433 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
434 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
435 static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
436 static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
437 static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
438 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
439 static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
440 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
441 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
442 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
443 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
444 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
445 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
446 static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
447
448 /* pwm */
449
450 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
451 char *buf)
452 {
453 int nr = to_sensor_dev_attr(attr)->index;
454 struct lm85_data *data = lm85_update_device(dev);
455 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
456 }
457
458 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
459 const char *buf, size_t count)
460 {
461 int nr = to_sensor_dev_attr(attr)->index;
462 struct i2c_client *client = to_i2c_client(dev);
463 struct lm85_data *data = i2c_get_clientdata(client);
464 long val = simple_strtol(buf, NULL, 10);
465
466 mutex_lock(&data->update_lock);
467 data->pwm[nr] = PWM_TO_REG(val);
468 lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
469 mutex_unlock(&data->update_lock);
470 return count;
471 }
472
473 static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
474 *attr, char *buf)
475 {
476 int nr = to_sensor_dev_attr(attr)->index;
477 struct lm85_data *data = lm85_update_device(dev);
478 int pwm_zone, enable;
479
480 pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
481 switch (pwm_zone) {
482 case -1: /* PWM is always at 100% */
483 enable = 0;
484 break;
485 case 0: /* PWM is always at 0% */
486 case -2: /* PWM responds to manual control */
487 enable = 1;
488 break;
489 default: /* PWM in automatic mode */
490 enable = 2;
491 }
492 return sprintf(buf, "%d\n", enable);
493 }
494
495 static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
496 *attr, const char *buf, size_t count)
497 {
498 int nr = to_sensor_dev_attr(attr)->index;
499 struct i2c_client *client = to_i2c_client(dev);
500 struct lm85_data *data = i2c_get_clientdata(client);
501 long val = simple_strtol(buf, NULL, 10);
502 u8 config;
503
504 switch (val) {
505 case 0:
506 config = 3;
507 break;
508 case 1:
509 config = 7;
510 break;
511 case 2:
512 /* Here we have to choose arbitrarily one of the 5 possible
513 configurations; I go for the safest */
514 config = 6;
515 break;
516 default:
517 return -EINVAL;
518 }
519
520 mutex_lock(&data->update_lock);
521 data->autofan[nr].config = lm85_read_value(client,
522 LM85_REG_AFAN_CONFIG(nr));
523 data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
524 | (config << 5);
525 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
526 data->autofan[nr].config);
527 mutex_unlock(&data->update_lock);
528 return count;
529 }
530
531 #define show_pwm_reg(offset) \
532 static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
533 show_pwm, set_pwm, offset - 1); \
534 static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
535 show_pwm_enable, set_pwm_enable, offset - 1)
536
537 show_pwm_reg(1);
538 show_pwm_reg(2);
539 show_pwm_reg(3);
540
541 /* Voltages */
542
543 static ssize_t show_in(struct device *dev, struct device_attribute *attr,
544 char *buf)
545 {
546 int nr = to_sensor_dev_attr(attr)->index;
547 struct lm85_data *data = lm85_update_device(dev);
548 return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
549 data->in_ext[nr]));
550 }
551
552 static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
553 char *buf)
554 {
555 int nr = to_sensor_dev_attr(attr)->index;
556 struct lm85_data *data = lm85_update_device(dev);
557 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
558 }
559
560 static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
561 const char *buf, size_t count)
562 {
563 int nr = to_sensor_dev_attr(attr)->index;
564 struct i2c_client *client = to_i2c_client(dev);
565 struct lm85_data *data = i2c_get_clientdata(client);
566 long val = simple_strtol(buf, NULL, 10);
567
568 mutex_lock(&data->update_lock);
569 data->in_min[nr] = INS_TO_REG(nr, val);
570 lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
571 mutex_unlock(&data->update_lock);
572 return count;
573 }
574
575 static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
576 char *buf)
577 {
578 int nr = to_sensor_dev_attr(attr)->index;
579 struct lm85_data *data = lm85_update_device(dev);
580 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
581 }
582
583 static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
584 const char *buf, size_t count)
585 {
586 int nr = to_sensor_dev_attr(attr)->index;
587 struct i2c_client *client = to_i2c_client(dev);
588 struct lm85_data *data = i2c_get_clientdata(client);
589 long val = simple_strtol(buf, NULL, 10);
590
591 mutex_lock(&data->update_lock);
592 data->in_max[nr] = INS_TO_REG(nr, val);
593 lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
594 mutex_unlock(&data->update_lock);
595 return count;
596 }
597
598 #define show_in_reg(offset) \
599 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
600 show_in, NULL, offset); \
601 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
602 show_in_min, set_in_min, offset); \
603 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
604 show_in_max, set_in_max, offset)
605
606 show_in_reg(0);
607 show_in_reg(1);
608 show_in_reg(2);
609 show_in_reg(3);
610 show_in_reg(4);
611 show_in_reg(5);
612 show_in_reg(6);
613 show_in_reg(7);
614
615 /* Temps */
616
617 static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
618 char *buf)
619 {
620 int nr = to_sensor_dev_attr(attr)->index;
621 struct lm85_data *data = lm85_update_device(dev);
622 return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
623 data->temp_ext[nr]));
624 }
625
626 static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
627 char *buf)
628 {
629 int nr = to_sensor_dev_attr(attr)->index;
630 struct lm85_data *data = lm85_update_device(dev);
631 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
632 }
633
634 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
635 const char *buf, size_t count)
636 {
637 int nr = to_sensor_dev_attr(attr)->index;
638 struct i2c_client *client = to_i2c_client(dev);
639 struct lm85_data *data = i2c_get_clientdata(client);
640 long val = simple_strtol(buf, NULL, 10);
641
642 mutex_lock(&data->update_lock);
643 data->temp_min[nr] = TEMP_TO_REG(val);
644 lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
645 mutex_unlock(&data->update_lock);
646 return count;
647 }
648
649 static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
650 char *buf)
651 {
652 int nr = to_sensor_dev_attr(attr)->index;
653 struct lm85_data *data = lm85_update_device(dev);
654 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
655 }
656
657 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
658 const char *buf, size_t count)
659 {
660 int nr = to_sensor_dev_attr(attr)->index;
661 struct i2c_client *client = to_i2c_client(dev);
662 struct lm85_data *data = i2c_get_clientdata(client);
663 long val = simple_strtol(buf, NULL, 10);
664
665 mutex_lock(&data->update_lock);
666 data->temp_max[nr] = TEMP_TO_REG(val);
667 lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
668 mutex_unlock(&data->update_lock);
669 return count;
670 }
671
672 #define show_temp_reg(offset) \
673 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
674 show_temp, NULL, offset - 1); \
675 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
676 show_temp_min, set_temp_min, offset - 1); \
677 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
678 show_temp_max, set_temp_max, offset - 1);
679
680 show_temp_reg(1);
681 show_temp_reg(2);
682 show_temp_reg(3);
683
684
685 /* Automatic PWM control */
686
687 static ssize_t show_pwm_auto_channels(struct device *dev,
688 struct device_attribute *attr, char *buf)
689 {
690 int nr = to_sensor_dev_attr(attr)->index;
691 struct lm85_data *data = lm85_update_device(dev);
692 return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
693 }
694
695 static ssize_t set_pwm_auto_channels(struct device *dev,
696 struct device_attribute *attr, const char *buf, size_t count)
697 {
698 int nr = to_sensor_dev_attr(attr)->index;
699 struct i2c_client *client = to_i2c_client(dev);
700 struct lm85_data *data = i2c_get_clientdata(client);
701 long val = simple_strtol(buf, NULL, 10);
702
703 mutex_lock(&data->update_lock);
704 data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
705 | ZONE_TO_REG(val);
706 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
707 data->autofan[nr].config);
708 mutex_unlock(&data->update_lock);
709 return count;
710 }
711
712 static ssize_t show_pwm_auto_pwm_min(struct device *dev,
713 struct device_attribute *attr, char *buf)
714 {
715 int nr = to_sensor_dev_attr(attr)->index;
716 struct lm85_data *data = lm85_update_device(dev);
717 return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
718 }
719
720 static ssize_t set_pwm_auto_pwm_min(struct device *dev,
721 struct device_attribute *attr, const char *buf, size_t count)
722 {
723 int nr = to_sensor_dev_attr(attr)->index;
724 struct i2c_client *client = to_i2c_client(dev);
725 struct lm85_data *data = i2c_get_clientdata(client);
726 long val = simple_strtol(buf, NULL, 10);
727
728 mutex_lock(&data->update_lock);
729 data->autofan[nr].min_pwm = PWM_TO_REG(val);
730 lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
731 data->autofan[nr].min_pwm);
732 mutex_unlock(&data->update_lock);
733 return count;
734 }
735
736 static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
737 struct device_attribute *attr, char *buf)
738 {
739 int nr = to_sensor_dev_attr(attr)->index;
740 struct lm85_data *data = lm85_update_device(dev);
741 return sprintf(buf, "%d\n", data->autofan[nr].min_off);
742 }
743
744 static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
745 struct device_attribute *attr, const char *buf, size_t count)
746 {
747 int nr = to_sensor_dev_attr(attr)->index;
748 struct i2c_client *client = to_i2c_client(dev);
749 struct lm85_data *data = i2c_get_clientdata(client);
750 long val = simple_strtol(buf, NULL, 10);
751 u8 tmp;
752
753 mutex_lock(&data->update_lock);
754 data->autofan[nr].min_off = val;
755 tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
756 tmp &= ~(0x20 << nr);
757 if (data->autofan[nr].min_off)
758 tmp |= 0x20 << nr;
759 lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
760 mutex_unlock(&data->update_lock);
761 return count;
762 }
763
764 static ssize_t show_pwm_auto_pwm_freq(struct device *dev,
765 struct device_attribute *attr, char *buf)
766 {
767 int nr = to_sensor_dev_attr(attr)->index;
768 struct lm85_data *data = lm85_update_device(dev);
769 return sprintf(buf, "%d\n", FREQ_FROM_REG(data->autofan[nr].freq));
770 }
771
772 static ssize_t set_pwm_auto_pwm_freq(struct device *dev,
773 struct device_attribute *attr, const char *buf, size_t count)
774 {
775 int nr = to_sensor_dev_attr(attr)->index;
776 struct i2c_client *client = to_i2c_client(dev);
777 struct lm85_data *data = i2c_get_clientdata(client);
778 long val = simple_strtol(buf, NULL, 10);
779
780 mutex_lock(&data->update_lock);
781 data->autofan[nr].freq = FREQ_TO_REG(val);
782 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
783 (data->zone[nr].range << 4)
784 | data->autofan[nr].freq);
785 mutex_unlock(&data->update_lock);
786 return count;
787 }
788
789 #define pwm_auto(offset) \
790 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
791 S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
792 set_pwm_auto_channels, offset - 1); \
793 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
794 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
795 set_pwm_auto_pwm_min, offset - 1); \
796 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
797 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
798 set_pwm_auto_pwm_minctl, offset - 1); \
799 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_freq, \
800 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_freq, \
801 set_pwm_auto_pwm_freq, offset - 1);
802
803 pwm_auto(1);
804 pwm_auto(2);
805 pwm_auto(3);
806
807 /* Temperature settings for automatic PWM control */
808
809 static ssize_t show_temp_auto_temp_off(struct device *dev,
810 struct device_attribute *attr, char *buf)
811 {
812 int nr = to_sensor_dev_attr(attr)->index;
813 struct lm85_data *data = lm85_update_device(dev);
814 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
815 HYST_FROM_REG(data->zone[nr].hyst));
816 }
817
818 static ssize_t set_temp_auto_temp_off(struct device *dev,
819 struct device_attribute *attr, const char *buf, size_t count)
820 {
821 int nr = to_sensor_dev_attr(attr)->index;
822 struct i2c_client *client = to_i2c_client(dev);
823 struct lm85_data *data = i2c_get_clientdata(client);
824 int min;
825 long val = simple_strtol(buf, NULL, 10);
826
827 mutex_lock(&data->update_lock);
828 min = TEMP_FROM_REG(data->zone[nr].limit);
829 data->zone[nr].off_desired = TEMP_TO_REG(val);
830 data->zone[nr].hyst = HYST_TO_REG(min - val);
831 if (nr == 0 || nr == 1) {
832 lm85_write_value(client, LM85_REG_AFAN_HYST1,
833 (data->zone[0].hyst << 4)
834 | data->zone[1].hyst);
835 } else {
836 lm85_write_value(client, LM85_REG_AFAN_HYST2,
837 (data->zone[2].hyst << 4));
838 }
839 mutex_unlock(&data->update_lock);
840 return count;
841 }
842
843 static ssize_t show_temp_auto_temp_min(struct device *dev,
844 struct device_attribute *attr, char *buf)
845 {
846 int nr = to_sensor_dev_attr(attr)->index;
847 struct lm85_data *data = lm85_update_device(dev);
848 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
849 }
850
851 static ssize_t set_temp_auto_temp_min(struct device *dev,
852 struct device_attribute *attr, const char *buf, size_t count)
853 {
854 int nr = to_sensor_dev_attr(attr)->index;
855 struct i2c_client *client = to_i2c_client(dev);
856 struct lm85_data *data = i2c_get_clientdata(client);
857 long val = simple_strtol(buf, NULL, 10);
858
859 mutex_lock(&data->update_lock);
860 data->zone[nr].limit = TEMP_TO_REG(val);
861 lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
862 data->zone[nr].limit);
863
864 /* Update temp_auto_max and temp_auto_range */
865 data->zone[nr].range = RANGE_TO_REG(
866 TEMP_FROM_REG(data->zone[nr].max_desired) -
867 TEMP_FROM_REG(data->zone[nr].limit));
868 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
869 ((data->zone[nr].range & 0x0f) << 4)
870 | (data->autofan[nr].freq & 0x07));
871
872 /* Update temp_auto_hyst and temp_auto_off */
873 data->zone[nr].hyst = HYST_TO_REG(TEMP_FROM_REG(
874 data->zone[nr].limit) - TEMP_FROM_REG(
875 data->zone[nr].off_desired));
876 if (nr == 0 || nr == 1) {
877 lm85_write_value(client, LM85_REG_AFAN_HYST1,
878 (data->zone[0].hyst << 4)
879 | data->zone[1].hyst);
880 } else {
881 lm85_write_value(client, LM85_REG_AFAN_HYST2,
882 (data->zone[2].hyst << 4));
883 }
884 mutex_unlock(&data->update_lock);
885 return count;
886 }
887
888 static ssize_t show_temp_auto_temp_max(struct device *dev,
889 struct device_attribute *attr, char *buf)
890 {
891 int nr = to_sensor_dev_attr(attr)->index;
892 struct lm85_data *data = lm85_update_device(dev);
893 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
894 RANGE_FROM_REG(data->zone[nr].range));
895 }
896
897 static ssize_t set_temp_auto_temp_max(struct device *dev,
898 struct device_attribute *attr, const char *buf, size_t count)
899 {
900 int nr = to_sensor_dev_attr(attr)->index;
901 struct i2c_client *client = to_i2c_client(dev);
902 struct lm85_data *data = i2c_get_clientdata(client);
903 int min;
904 long val = simple_strtol(buf, NULL, 10);
905
906 mutex_lock(&data->update_lock);
907 min = TEMP_FROM_REG(data->zone[nr].limit);
908 data->zone[nr].max_desired = TEMP_TO_REG(val);
909 data->zone[nr].range = RANGE_TO_REG(
910 val - min);
911 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
912 ((data->zone[nr].range & 0x0f) << 4)
913 | (data->autofan[nr].freq & 0x07));
914 mutex_unlock(&data->update_lock);
915 return count;
916 }
917
918 static ssize_t show_temp_auto_temp_crit(struct device *dev,
919 struct device_attribute *attr, char *buf)
920 {
921 int nr = to_sensor_dev_attr(attr)->index;
922 struct lm85_data *data = lm85_update_device(dev);
923 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
924 }
925
926 static ssize_t set_temp_auto_temp_crit(struct device *dev,
927 struct device_attribute *attr, const char *buf, size_t count)
928 {
929 int nr = to_sensor_dev_attr(attr)->index;
930 struct i2c_client *client = to_i2c_client(dev);
931 struct lm85_data *data = i2c_get_clientdata(client);
932 long val = simple_strtol(buf, NULL, 10);
933
934 mutex_lock(&data->update_lock);
935 data->zone[nr].critical = TEMP_TO_REG(val);
936 lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
937 data->zone[nr].critical);
938 mutex_unlock(&data->update_lock);
939 return count;
940 }
941
942 #define temp_auto(offset) \
943 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
944 S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
945 set_temp_auto_temp_off, offset - 1); \
946 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
947 S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
948 set_temp_auto_temp_min, offset - 1); \
949 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
950 S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
951 set_temp_auto_temp_max, offset - 1); \
952 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
953 S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
954 set_temp_auto_temp_crit, offset - 1);
955
956 temp_auto(1);
957 temp_auto(2);
958 temp_auto(3);
959
960 static int lm85_attach_adapter(struct i2c_adapter *adapter)
961 {
962 if (!(adapter->class & I2C_CLASS_HWMON))
963 return 0;
964 return i2c_probe(adapter, &addr_data, lm85_detect);
965 }
966
967 static struct attribute *lm85_attributes[] = {
968 &sensor_dev_attr_fan1_input.dev_attr.attr,
969 &sensor_dev_attr_fan2_input.dev_attr.attr,
970 &sensor_dev_attr_fan3_input.dev_attr.attr,
971 &sensor_dev_attr_fan4_input.dev_attr.attr,
972 &sensor_dev_attr_fan1_min.dev_attr.attr,
973 &sensor_dev_attr_fan2_min.dev_attr.attr,
974 &sensor_dev_attr_fan3_min.dev_attr.attr,
975 &sensor_dev_attr_fan4_min.dev_attr.attr,
976 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
977 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
978 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
979 &sensor_dev_attr_fan4_alarm.dev_attr.attr,
980
981 &sensor_dev_attr_pwm1.dev_attr.attr,
982 &sensor_dev_attr_pwm2.dev_attr.attr,
983 &sensor_dev_attr_pwm3.dev_attr.attr,
984 &sensor_dev_attr_pwm1_enable.dev_attr.attr,
985 &sensor_dev_attr_pwm2_enable.dev_attr.attr,
986 &sensor_dev_attr_pwm3_enable.dev_attr.attr,
987
988 &sensor_dev_attr_in0_input.dev_attr.attr,
989 &sensor_dev_attr_in1_input.dev_attr.attr,
990 &sensor_dev_attr_in2_input.dev_attr.attr,
991 &sensor_dev_attr_in3_input.dev_attr.attr,
992 &sensor_dev_attr_in0_min.dev_attr.attr,
993 &sensor_dev_attr_in1_min.dev_attr.attr,
994 &sensor_dev_attr_in2_min.dev_attr.attr,
995 &sensor_dev_attr_in3_min.dev_attr.attr,
996 &sensor_dev_attr_in0_max.dev_attr.attr,
997 &sensor_dev_attr_in1_max.dev_attr.attr,
998 &sensor_dev_attr_in2_max.dev_attr.attr,
999 &sensor_dev_attr_in3_max.dev_attr.attr,
1000 &sensor_dev_attr_in0_alarm.dev_attr.attr,
1001 &sensor_dev_attr_in1_alarm.dev_attr.attr,
1002 &sensor_dev_attr_in2_alarm.dev_attr.attr,
1003 &sensor_dev_attr_in3_alarm.dev_attr.attr,
1004
1005 &sensor_dev_attr_temp1_input.dev_attr.attr,
1006 &sensor_dev_attr_temp2_input.dev_attr.attr,
1007 &sensor_dev_attr_temp3_input.dev_attr.attr,
1008 &sensor_dev_attr_temp1_min.dev_attr.attr,
1009 &sensor_dev_attr_temp2_min.dev_attr.attr,
1010 &sensor_dev_attr_temp3_min.dev_attr.attr,
1011 &sensor_dev_attr_temp1_max.dev_attr.attr,
1012 &sensor_dev_attr_temp2_max.dev_attr.attr,
1013 &sensor_dev_attr_temp3_max.dev_attr.attr,
1014 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
1015 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
1016 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
1017 &sensor_dev_attr_temp1_fault.dev_attr.attr,
1018 &sensor_dev_attr_temp3_fault.dev_attr.attr,
1019
1020 &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1021 &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1022 &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1023 &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1024 &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1025 &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1026 &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1027 &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1028 &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1029 &sensor_dev_attr_pwm1_auto_pwm_freq.dev_attr.attr,
1030 &sensor_dev_attr_pwm2_auto_pwm_freq.dev_attr.attr,
1031 &sensor_dev_attr_pwm3_auto_pwm_freq.dev_attr.attr,
1032
1033 &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1034 &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1035 &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1036 &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1037 &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1038 &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1039 &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1040 &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1041 &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1042 &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1043 &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1044 &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1045
1046 &dev_attr_vrm.attr,
1047 &dev_attr_cpu0_vid.attr,
1048 &dev_attr_alarms.attr,
1049 NULL
1050 };
1051
1052 static const struct attribute_group lm85_group = {
1053 .attrs = lm85_attributes,
1054 };
1055
1056 static struct attribute *lm85_attributes_in4[] = {
1057 &sensor_dev_attr_in4_input.dev_attr.attr,
1058 &sensor_dev_attr_in4_min.dev_attr.attr,
1059 &sensor_dev_attr_in4_max.dev_attr.attr,
1060 &sensor_dev_attr_in4_alarm.dev_attr.attr,
1061 NULL
1062 };
1063
1064 static const struct attribute_group lm85_group_in4 = {
1065 .attrs = lm85_attributes_in4,
1066 };
1067
1068 static struct attribute *lm85_attributes_in567[] = {
1069 &sensor_dev_attr_in5_input.dev_attr.attr,
1070 &sensor_dev_attr_in6_input.dev_attr.attr,
1071 &sensor_dev_attr_in7_input.dev_attr.attr,
1072 &sensor_dev_attr_in5_min.dev_attr.attr,
1073 &sensor_dev_attr_in6_min.dev_attr.attr,
1074 &sensor_dev_attr_in7_min.dev_attr.attr,
1075 &sensor_dev_attr_in5_max.dev_attr.attr,
1076 &sensor_dev_attr_in6_max.dev_attr.attr,
1077 &sensor_dev_attr_in7_max.dev_attr.attr,
1078 &sensor_dev_attr_in5_alarm.dev_attr.attr,
1079 &sensor_dev_attr_in6_alarm.dev_attr.attr,
1080 &sensor_dev_attr_in7_alarm.dev_attr.attr,
1081 NULL
1082 };
1083
1084 static const struct attribute_group lm85_group_in567 = {
1085 .attrs = lm85_attributes_in567,
1086 };
1087
1088 static void lm85_init_client(struct i2c_client *client)
1089 {
1090 int value;
1091
1092 /* Start monitoring if needed */
1093 value = lm85_read_value(client, LM85_REG_CONFIG);
1094 if (!(value & 0x01)) {
1095 dev_info(&client->dev, "Starting monitoring\n");
1096 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1097 }
1098
1099 /* Warn about unusual configuration bits */
1100 if (value & 0x02)
1101 dev_warn(&client->dev, "Device configuration is locked\n");
1102 if (!(value & 0x04))
1103 dev_warn(&client->dev, "Device is not ready\n");
1104 }
1105
1106 static int lm85_detect(struct i2c_adapter *adapter, int address,
1107 int kind)
1108 {
1109 int company, verstep;
1110 struct i2c_client *client;
1111 struct lm85_data *data;
1112 int err = 0;
1113 const char *type_name;
1114
1115 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1116 /* We need to be able to do byte I/O */
1117 goto ERROR0;
1118 }
1119
1120 /* OK. For now, we presume we have a valid client. We now create the
1121 client structure, even though we cannot fill it completely yet.
1122 But it allows us to access lm85_{read,write}_value. */
1123
1124 if (!(data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL))) {
1125 err = -ENOMEM;
1126 goto ERROR0;
1127 }
1128
1129 client = &data->client;
1130 i2c_set_clientdata(client, data);
1131 client->addr = address;
1132 client->adapter = adapter;
1133 client->driver = &lm85_driver;
1134
1135 /* Now, we do the remaining detection. */
1136
1137 company = lm85_read_value(client, LM85_REG_COMPANY);
1138 verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1139
1140 dev_dbg(&adapter->dev, "Detecting device at %d,0x%02x with"
1141 " COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1142 i2c_adapter_id(client->adapter), client->addr,
1143 company, verstep);
1144
1145 /* If auto-detecting, Determine the chip type. */
1146 if (kind <= 0) {
1147 dev_dbg(&adapter->dev, "Autodetecting device at %d,0x%02x ...\n",
1148 i2c_adapter_id(adapter), address);
1149 if (company == LM85_COMPANY_NATIONAL
1150 && verstep == LM85_VERSTEP_LM85C) {
1151 kind = lm85c;
1152 } else if (company == LM85_COMPANY_NATIONAL
1153 && verstep == LM85_VERSTEP_LM85B) {
1154 kind = lm85b;
1155 } else if (company == LM85_COMPANY_NATIONAL
1156 && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
1157 dev_err(&adapter->dev, "Unrecognized version/stepping 0x%02x"
1158 " Defaulting to LM85.\n", verstep);
1159 kind = any_chip;
1160 } else if (company == LM85_COMPANY_ANALOG_DEV
1161 && verstep == LM85_VERSTEP_ADM1027) {
1162 kind = adm1027;
1163 } else if (company == LM85_COMPANY_ANALOG_DEV
1164 && (verstep == LM85_VERSTEP_ADT7463
1165 || verstep == LM85_VERSTEP_ADT7463C)) {
1166 kind = adt7463;
1167 } else if (company == LM85_COMPANY_ANALOG_DEV
1168 && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
1169 dev_err(&adapter->dev, "Unrecognized version/stepping 0x%02x"
1170 " Defaulting to Generic LM85.\n", verstep);
1171 kind = any_chip;
1172 } else if (company == LM85_COMPANY_SMSC
1173 && (verstep == LM85_VERSTEP_EMC6D100_A0
1174 || verstep == LM85_VERSTEP_EMC6D100_A1)) {
1175 /* Unfortunately, we can't tell a '100 from a '101
1176 * from the registers. Since a '101 is a '100
1177 * in a package with fewer pins and therefore no
1178 * 3.3V, 1.5V or 1.8V inputs, perhaps if those
1179 * inputs read 0, then it's a '101.
1180 */
1181 kind = emc6d100;
1182 } else if (company == LM85_COMPANY_SMSC
1183 && verstep == LM85_VERSTEP_EMC6D102) {
1184 kind = emc6d102;
1185 } else if (company == LM85_COMPANY_SMSC
1186 && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
1187 dev_err(&adapter->dev, "lm85: Detected SMSC chip\n");
1188 dev_err(&adapter->dev, "lm85: Unrecognized version/stepping 0x%02x"
1189 " Defaulting to Generic LM85.\n", verstep);
1190 kind = any_chip;
1191 } else if (kind == any_chip
1192 && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
1193 dev_err(&adapter->dev, "Generic LM85 Version 6 detected\n");
1194 /* Leave kind as "any_chip" */
1195 } else {
1196 dev_dbg(&adapter->dev, "Autodetection failed\n");
1197 /* Not an LM85... */
1198 if (kind == any_chip) { /* User used force=x,y */
1199 dev_err(&adapter->dev, "Generic LM85 Version 6 not"
1200 " found at %d,0x%02x. Try force_lm85c.\n",
1201 i2c_adapter_id(adapter), address);
1202 }
1203 err = 0;
1204 goto ERROR1;
1205 }
1206 }
1207
1208 /* Fill in the chip specific driver values */
1209 switch (kind) {
1210 case lm85b:
1211 type_name = "lm85b";
1212 break;
1213 case lm85c:
1214 type_name = "lm85c";
1215 break;
1216 case adm1027:
1217 type_name = "adm1027";
1218 break;
1219 case adt7463:
1220 type_name = "adt7463";
1221 break;
1222 case emc6d100:
1223 type_name = "emc6d100";
1224 break;
1225 case emc6d102:
1226 type_name = "emc6d102";
1227 break;
1228 default:
1229 type_name = "lm85";
1230 }
1231 strlcpy(client->name, type_name, I2C_NAME_SIZE);
1232
1233 /* Fill in the remaining client fields */
1234 data->type = kind;
1235 mutex_init(&data->update_lock);
1236
1237 /* Tell the I2C layer a new client has arrived */
1238 err = i2c_attach_client(client);
1239 if (err)
1240 goto ERROR1;
1241
1242 /* Set the VRM version */
1243 data->vrm = vid_which_vrm();
1244
1245 /* Initialize the LM85 chip */
1246 lm85_init_client(client);
1247
1248 /* Register sysfs hooks */
1249 err = sysfs_create_group(&client->dev.kobj, &lm85_group);
1250 if (err)
1251 goto ERROR2;
1252
1253 /* The ADT7463 has an optional VRM 10 mode where pin 21 is used
1254 as a sixth digital VID input rather than an analog input. */
1255 data->vid = lm85_read_value(client, LM85_REG_VID);
1256 if (!(kind == adt7463 && (data->vid & 0x80)))
1257 if ((err = sysfs_create_group(&client->dev.kobj,
1258 &lm85_group_in4)))
1259 goto ERROR3;
1260
1261 /* The EMC6D100 has 3 additional voltage inputs */
1262 if (kind == emc6d100)
1263 if ((err = sysfs_create_group(&client->dev.kobj,
1264 &lm85_group_in567)))
1265 goto ERROR3;
1266
1267 data->hwmon_dev = hwmon_device_register(&client->dev);
1268 if (IS_ERR(data->hwmon_dev)) {
1269 err = PTR_ERR(data->hwmon_dev);
1270 goto ERROR3;
1271 }
1272
1273 return 0;
1274
1275 /* Error out and cleanup code */
1276 ERROR3:
1277 sysfs_remove_group(&client->dev.kobj, &lm85_group);
1278 sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
1279 if (kind == emc6d100)
1280 sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
1281 ERROR2:
1282 i2c_detach_client(client);
1283 ERROR1:
1284 kfree(data);
1285 ERROR0:
1286 return err;
1287 }
1288
1289 static int lm85_detach_client(struct i2c_client *client)
1290 {
1291 struct lm85_data *data = i2c_get_clientdata(client);
1292 hwmon_device_unregister(data->hwmon_dev);
1293 sysfs_remove_group(&client->dev.kobj, &lm85_group);
1294 sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
1295 if (data->type == emc6d100)
1296 sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
1297 i2c_detach_client(client);
1298 kfree(data);
1299 return 0;
1300 }
1301
1302
1303 static int lm85_read_value(struct i2c_client *client, u8 reg)
1304 {
1305 int res;
1306
1307 /* What size location is it? */
1308 switch (reg) {
1309 case LM85_REG_FAN(0): /* Read WORD data */
1310 case LM85_REG_FAN(1):
1311 case LM85_REG_FAN(2):
1312 case LM85_REG_FAN(3):
1313 case LM85_REG_FAN_MIN(0):
1314 case LM85_REG_FAN_MIN(1):
1315 case LM85_REG_FAN_MIN(2):
1316 case LM85_REG_FAN_MIN(3):
1317 case LM85_REG_ALARM1: /* Read both bytes at once */
1318 res = i2c_smbus_read_byte_data(client, reg) & 0xff;
1319 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
1320 break;
1321 default: /* Read BYTE data */
1322 res = i2c_smbus_read_byte_data(client, reg);
1323 break;
1324 }
1325
1326 return res;
1327 }
1328
1329 static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
1330 {
1331 switch (reg) {
1332 case LM85_REG_FAN(0): /* Write WORD data */
1333 case LM85_REG_FAN(1):
1334 case LM85_REG_FAN(2):
1335 case LM85_REG_FAN(3):
1336 case LM85_REG_FAN_MIN(0):
1337 case LM85_REG_FAN_MIN(1):
1338 case LM85_REG_FAN_MIN(2):
1339 case LM85_REG_FAN_MIN(3):
1340 /* NOTE: ALARM is read only, so not included here */
1341 i2c_smbus_write_byte_data(client, reg, value & 0xff);
1342 i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
1343 break;
1344 default: /* Write BYTE data */
1345 i2c_smbus_write_byte_data(client, reg, value);
1346 break;
1347 }
1348 }
1349
1350 static struct lm85_data *lm85_update_device(struct device *dev)
1351 {
1352 struct i2c_client *client = to_i2c_client(dev);
1353 struct lm85_data *data = i2c_get_clientdata(client);
1354 int i;
1355
1356 mutex_lock(&data->update_lock);
1357
1358 if (!data->valid ||
1359 time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
1360 /* Things that change quickly */
1361 dev_dbg(&client->dev, "Reading sensor values\n");
1362
1363 /* Have to read extended bits first to "freeze" the
1364 * more significant bits that are read later.
1365 * There are 2 additional resolution bits per channel and we
1366 * have room for 4, so we shift them to the left.
1367 */
1368 if (data->type == adm1027 || data->type == adt7463) {
1369 int ext1 = lm85_read_value(client,
1370 ADM1027_REG_EXTEND_ADC1);
1371 int ext2 = lm85_read_value(client,
1372 ADM1027_REG_EXTEND_ADC2);
1373 int val = (ext1 << 8) + ext2;
1374
1375 for (i = 0; i <= 4; i++)
1376 data->in_ext[i] =
1377 ((val >> (i * 2)) & 0x03) << 2;
1378
1379 for (i = 0; i <= 2; i++)
1380 data->temp_ext[i] =
1381 (val >> ((i + 4) * 2)) & 0x0c;
1382 }
1383
1384 data->vid = lm85_read_value(client, LM85_REG_VID);
1385
1386 for (i = 0; i <= 3; ++i) {
1387 data->in[i] =
1388 lm85_read_value(client, LM85_REG_IN(i));
1389 data->fan[i] =
1390 lm85_read_value(client, LM85_REG_FAN(i));
1391 }
1392
1393 if (!(data->type == adt7463 && (data->vid & 0x80))) {
1394 data->in[4] = lm85_read_value(client,
1395 LM85_REG_IN(4));
1396 }
1397
1398 for (i = 0; i <= 2; ++i) {
1399 data->temp[i] =
1400 lm85_read_value(client, LM85_REG_TEMP(i));
1401 data->pwm[i] =
1402 lm85_read_value(client, LM85_REG_PWM(i));
1403 }
1404
1405 data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
1406
1407 if (data->type == emc6d100) {
1408 /* Three more voltage sensors */
1409 for (i = 5; i <= 7; ++i) {
1410 data->in[i] = lm85_read_value(client,
1411 EMC6D100_REG_IN(i));
1412 }
1413 /* More alarm bits */
1414 data->alarms |= lm85_read_value(client,
1415 EMC6D100_REG_ALARM3) << 16;
1416 } else if (data->type == emc6d102) {
1417 /* Have to read LSB bits after the MSB ones because
1418 the reading of the MSB bits has frozen the
1419 LSBs (backward from the ADM1027).
1420 */
1421 int ext1 = lm85_read_value(client,
1422 EMC6D102_REG_EXTEND_ADC1);
1423 int ext2 = lm85_read_value(client,
1424 EMC6D102_REG_EXTEND_ADC2);
1425 int ext3 = lm85_read_value(client,
1426 EMC6D102_REG_EXTEND_ADC3);
1427 int ext4 = lm85_read_value(client,
1428 EMC6D102_REG_EXTEND_ADC4);
1429 data->in_ext[0] = ext3 & 0x0f;
1430 data->in_ext[1] = ext4 & 0x0f;
1431 data->in_ext[2] = ext4 >> 4;
1432 data->in_ext[3] = ext3 >> 4;
1433 data->in_ext[4] = ext2 >> 4;
1434
1435 data->temp_ext[0] = ext1 & 0x0f;
1436 data->temp_ext[1] = ext2 & 0x0f;
1437 data->temp_ext[2] = ext1 >> 4;
1438 }
1439
1440 data->last_reading = jiffies;
1441 } /* last_reading */
1442
1443 if (!data->valid ||
1444 time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
1445 /* Things that don't change often */
1446 dev_dbg(&client->dev, "Reading config values\n");
1447
1448 for (i = 0; i <= 3; ++i) {
1449 data->in_min[i] =
1450 lm85_read_value(client, LM85_REG_IN_MIN(i));
1451 data->in_max[i] =
1452 lm85_read_value(client, LM85_REG_IN_MAX(i));
1453 data->fan_min[i] =
1454 lm85_read_value(client, LM85_REG_FAN_MIN(i));
1455 }
1456
1457 if (!(data->type == adt7463 && (data->vid & 0x80))) {
1458 data->in_min[4] = lm85_read_value(client,
1459 LM85_REG_IN_MIN(4));
1460 data->in_max[4] = lm85_read_value(client,
1461 LM85_REG_IN_MAX(4));
1462 }
1463
1464 if (data->type == emc6d100) {
1465 for (i = 5; i <= 7; ++i) {
1466 data->in_min[i] = lm85_read_value(client,
1467 EMC6D100_REG_IN_MIN(i));
1468 data->in_max[i] = lm85_read_value(client,
1469 EMC6D100_REG_IN_MAX(i));
1470 }
1471 }
1472
1473 for (i = 0; i <= 2; ++i) {
1474 int val;
1475
1476 data->temp_min[i] =
1477 lm85_read_value(client, LM85_REG_TEMP_MIN(i));
1478 data->temp_max[i] =
1479 lm85_read_value(client, LM85_REG_TEMP_MAX(i));
1480
1481 data->autofan[i].config =
1482 lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
1483 val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
1484 data->autofan[i].freq = val & 0x07;
1485 data->zone[i].range = val >> 4;
1486 data->autofan[i].min_pwm =
1487 lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
1488 data->zone[i].limit =
1489 lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
1490 data->zone[i].critical =
1491 lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
1492 }
1493
1494 i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1495 data->autofan[0].min_off = (i & 0x20) != 0;
1496 data->autofan[1].min_off = (i & 0x40) != 0;
1497 data->autofan[2].min_off = (i & 0x80) != 0;
1498
1499 i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
1500 data->zone[0].hyst = i >> 4;
1501 data->zone[1].hyst = i & 0x0f;
1502
1503 i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
1504 data->zone[2].hyst = i >> 4;
1505
1506 data->last_config = jiffies;
1507 } /* last_config */
1508
1509 data->valid = 1;
1510
1511 mutex_unlock(&data->update_lock);
1512
1513 return data;
1514 }
1515
1516
1517 static int __init sm_lm85_init(void)
1518 {
1519 return i2c_add_driver(&lm85_driver);
1520 }
1521
1522 static void __exit sm_lm85_exit(void)
1523 {
1524 i2c_del_driver(&lm85_driver);
1525 }
1526
1527 MODULE_LICENSE("GPL");
1528 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1529 "Margit Schubert-While <margitsw@t-online.de>, "
1530 "Justin Thiessen <jthiessen@penguincomputing.com>");
1531 MODULE_DESCRIPTION("LM85-B, LM85-C driver");
1532
1533 module_init(sm_lm85_init);
1534 module_exit(sm_lm85_exit);
This page took 0.067094 seconds and 5 git commands to generate.