Merge tag 'dax-locking-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / i2c / busses / i2c-rk3x.c
1 /*
2 * Driver for I2C adapter in Rockchip RK3xxx SoC
3 *
4 * Max Schwarz <max.schwarz@online.de>
5 * based on the patches by Rockchip Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/i2c.h>
15 #include <linux/interrupt.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/platform_device.h>
19 #include <linux/io.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/spinlock.h>
23 #include <linux/clk.h>
24 #include <linux/wait.h>
25 #include <linux/mfd/syscon.h>
26 #include <linux/regmap.h>
27 #include <linux/math64.h>
28
29
30 /* Register Map */
31 #define REG_CON 0x00 /* control register */
32 #define REG_CLKDIV 0x04 /* clock divisor register */
33 #define REG_MRXADDR 0x08 /* slave address for REGISTER_TX */
34 #define REG_MRXRADDR 0x0c /* slave register address for REGISTER_TX */
35 #define REG_MTXCNT 0x10 /* number of bytes to be transmitted */
36 #define REG_MRXCNT 0x14 /* number of bytes to be received */
37 #define REG_IEN 0x18 /* interrupt enable */
38 #define REG_IPD 0x1c /* interrupt pending */
39 #define REG_FCNT 0x20 /* finished count */
40
41 /* Data buffer offsets */
42 #define TXBUFFER_BASE 0x100
43 #define RXBUFFER_BASE 0x200
44
45 /* REG_CON bits */
46 #define REG_CON_EN BIT(0)
47 enum {
48 REG_CON_MOD_TX = 0, /* transmit data */
49 REG_CON_MOD_REGISTER_TX, /* select register and restart */
50 REG_CON_MOD_RX, /* receive data */
51 REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
52 * register addr */
53 };
54 #define REG_CON_MOD(mod) ((mod) << 1)
55 #define REG_CON_MOD_MASK (BIT(1) | BIT(2))
56 #define REG_CON_START BIT(3)
57 #define REG_CON_STOP BIT(4)
58 #define REG_CON_LASTACK BIT(5) /* 1: send NACK after last received byte */
59 #define REG_CON_ACTACK BIT(6) /* 1: stop if NACK is received */
60
61 /* REG_MRXADDR bits */
62 #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
63
64 /* REG_IEN/REG_IPD bits */
65 #define REG_INT_BTF BIT(0) /* a byte was transmitted */
66 #define REG_INT_BRF BIT(1) /* a byte was received */
67 #define REG_INT_MBTF BIT(2) /* master data transmit finished */
68 #define REG_INT_MBRF BIT(3) /* master data receive finished */
69 #define REG_INT_START BIT(4) /* START condition generated */
70 #define REG_INT_STOP BIT(5) /* STOP condition generated */
71 #define REG_INT_NAKRCV BIT(6) /* NACK received */
72 #define REG_INT_ALL 0x7f
73
74 /* Constants */
75 #define WAIT_TIMEOUT 1000 /* ms */
76 #define DEFAULT_SCL_RATE (100 * 1000) /* Hz */
77
78 enum rk3x_i2c_state {
79 STATE_IDLE,
80 STATE_START,
81 STATE_READ,
82 STATE_WRITE,
83 STATE_STOP
84 };
85
86 /**
87 * @grf_offset: offset inside the grf regmap for setting the i2c type
88 */
89 struct rk3x_i2c_soc_data {
90 int grf_offset;
91 };
92
93 struct rk3x_i2c {
94 struct i2c_adapter adap;
95 struct device *dev;
96 struct rk3x_i2c_soc_data *soc_data;
97
98 /* Hardware resources */
99 void __iomem *regs;
100 struct clk *clk;
101 struct notifier_block clk_rate_nb;
102
103 /* Settings */
104 struct i2c_timings t;
105
106 /* Synchronization & notification */
107 spinlock_t lock;
108 wait_queue_head_t wait;
109 bool busy;
110
111 /* Current message */
112 struct i2c_msg *msg;
113 u8 addr;
114 unsigned int mode;
115 bool is_last_msg;
116
117 /* I2C state machine */
118 enum rk3x_i2c_state state;
119 unsigned int processed; /* sent/received bytes */
120 int error;
121 };
122
123 static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
124 unsigned int offset)
125 {
126 writel(value, i2c->regs + offset);
127 }
128
129 static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
130 {
131 return readl(i2c->regs + offset);
132 }
133
134 /* Reset all interrupt pending bits */
135 static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
136 {
137 i2c_writel(i2c, REG_INT_ALL, REG_IPD);
138 }
139
140 /**
141 * Generate a START condition, which triggers a REG_INT_START interrupt.
142 */
143 static void rk3x_i2c_start(struct rk3x_i2c *i2c)
144 {
145 u32 val;
146
147 rk3x_i2c_clean_ipd(i2c);
148 i2c_writel(i2c, REG_INT_START, REG_IEN);
149
150 /* enable adapter with correct mode, send START condition */
151 val = REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
152
153 /* if we want to react to NACK, set ACTACK bit */
154 if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
155 val |= REG_CON_ACTACK;
156
157 i2c_writel(i2c, val, REG_CON);
158 }
159
160 /**
161 * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
162 *
163 * @error: Error code to return in rk3x_i2c_xfer
164 */
165 static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
166 {
167 unsigned int ctrl;
168
169 i2c->processed = 0;
170 i2c->msg = NULL;
171 i2c->error = error;
172
173 if (i2c->is_last_msg) {
174 /* Enable stop interrupt */
175 i2c_writel(i2c, REG_INT_STOP, REG_IEN);
176
177 i2c->state = STATE_STOP;
178
179 ctrl = i2c_readl(i2c, REG_CON);
180 ctrl |= REG_CON_STOP;
181 i2c_writel(i2c, ctrl, REG_CON);
182 } else {
183 /* Signal rk3x_i2c_xfer to start the next message. */
184 i2c->busy = false;
185 i2c->state = STATE_IDLE;
186
187 /*
188 * The HW is actually not capable of REPEATED START. But we can
189 * get the intended effect by resetting its internal state
190 * and issuing an ordinary START.
191 */
192 i2c_writel(i2c, 0, REG_CON);
193
194 /* signal that we are finished with the current msg */
195 wake_up(&i2c->wait);
196 }
197 }
198
199 /**
200 * Setup a read according to i2c->msg
201 */
202 static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
203 {
204 unsigned int len = i2c->msg->len - i2c->processed;
205 u32 con;
206
207 con = i2c_readl(i2c, REG_CON);
208
209 /*
210 * The hw can read up to 32 bytes at a time. If we need more than one
211 * chunk, send an ACK after the last byte of the current chunk.
212 */
213 if (len > 32) {
214 len = 32;
215 con &= ~REG_CON_LASTACK;
216 } else {
217 con |= REG_CON_LASTACK;
218 }
219
220 /* make sure we are in plain RX mode if we read a second chunk */
221 if (i2c->processed != 0) {
222 con &= ~REG_CON_MOD_MASK;
223 con |= REG_CON_MOD(REG_CON_MOD_RX);
224 }
225
226 i2c_writel(i2c, con, REG_CON);
227 i2c_writel(i2c, len, REG_MRXCNT);
228 }
229
230 /**
231 * Fill the transmit buffer with data from i2c->msg
232 */
233 static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
234 {
235 unsigned int i, j;
236 u32 cnt = 0;
237 u32 val;
238 u8 byte;
239
240 for (i = 0; i < 8; ++i) {
241 val = 0;
242 for (j = 0; j < 4; ++j) {
243 if ((i2c->processed == i2c->msg->len) && (cnt != 0))
244 break;
245
246 if (i2c->processed == 0 && cnt == 0)
247 byte = (i2c->addr & 0x7f) << 1;
248 else
249 byte = i2c->msg->buf[i2c->processed++];
250
251 val |= byte << (j * 8);
252 cnt++;
253 }
254
255 i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
256
257 if (i2c->processed == i2c->msg->len)
258 break;
259 }
260
261 i2c_writel(i2c, cnt, REG_MTXCNT);
262 }
263
264
265 /* IRQ handlers for individual states */
266
267 static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
268 {
269 if (!(ipd & REG_INT_START)) {
270 rk3x_i2c_stop(i2c, -EIO);
271 dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
272 rk3x_i2c_clean_ipd(i2c);
273 return;
274 }
275
276 /* ack interrupt */
277 i2c_writel(i2c, REG_INT_START, REG_IPD);
278
279 /* disable start bit */
280 i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
281
282 /* enable appropriate interrupts and transition */
283 if (i2c->mode == REG_CON_MOD_TX) {
284 i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
285 i2c->state = STATE_WRITE;
286 rk3x_i2c_fill_transmit_buf(i2c);
287 } else {
288 /* in any other case, we are going to be reading. */
289 i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
290 i2c->state = STATE_READ;
291 rk3x_i2c_prepare_read(i2c);
292 }
293 }
294
295 static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
296 {
297 if (!(ipd & REG_INT_MBTF)) {
298 rk3x_i2c_stop(i2c, -EIO);
299 dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
300 rk3x_i2c_clean_ipd(i2c);
301 return;
302 }
303
304 /* ack interrupt */
305 i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
306
307 /* are we finished? */
308 if (i2c->processed == i2c->msg->len)
309 rk3x_i2c_stop(i2c, i2c->error);
310 else
311 rk3x_i2c_fill_transmit_buf(i2c);
312 }
313
314 static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
315 {
316 unsigned int i;
317 unsigned int len = i2c->msg->len - i2c->processed;
318 u32 uninitialized_var(val);
319 u8 byte;
320
321 /* we only care for MBRF here. */
322 if (!(ipd & REG_INT_MBRF))
323 return;
324
325 /* ack interrupt */
326 i2c_writel(i2c, REG_INT_MBRF, REG_IPD);
327
328 /* Can only handle a maximum of 32 bytes at a time */
329 if (len > 32)
330 len = 32;
331
332 /* read the data from receive buffer */
333 for (i = 0; i < len; ++i) {
334 if (i % 4 == 0)
335 val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
336
337 byte = (val >> ((i % 4) * 8)) & 0xff;
338 i2c->msg->buf[i2c->processed++] = byte;
339 }
340
341 /* are we finished? */
342 if (i2c->processed == i2c->msg->len)
343 rk3x_i2c_stop(i2c, i2c->error);
344 else
345 rk3x_i2c_prepare_read(i2c);
346 }
347
348 static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
349 {
350 unsigned int con;
351
352 if (!(ipd & REG_INT_STOP)) {
353 rk3x_i2c_stop(i2c, -EIO);
354 dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
355 rk3x_i2c_clean_ipd(i2c);
356 return;
357 }
358
359 /* ack interrupt */
360 i2c_writel(i2c, REG_INT_STOP, REG_IPD);
361
362 /* disable STOP bit */
363 con = i2c_readl(i2c, REG_CON);
364 con &= ~REG_CON_STOP;
365 i2c_writel(i2c, con, REG_CON);
366
367 i2c->busy = false;
368 i2c->state = STATE_IDLE;
369
370 /* signal rk3x_i2c_xfer that we are finished */
371 wake_up(&i2c->wait);
372 }
373
374 static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
375 {
376 struct rk3x_i2c *i2c = dev_id;
377 unsigned int ipd;
378
379 spin_lock(&i2c->lock);
380
381 ipd = i2c_readl(i2c, REG_IPD);
382 if (i2c->state == STATE_IDLE) {
383 dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
384 rk3x_i2c_clean_ipd(i2c);
385 goto out;
386 }
387
388 dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
389
390 /* Clean interrupt bits we don't care about */
391 ipd &= ~(REG_INT_BRF | REG_INT_BTF);
392
393 if (ipd & REG_INT_NAKRCV) {
394 /*
395 * We got a NACK in the last operation. Depending on whether
396 * IGNORE_NAK is set, we have to stop the operation and report
397 * an error.
398 */
399 i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
400
401 ipd &= ~REG_INT_NAKRCV;
402
403 if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
404 rk3x_i2c_stop(i2c, -ENXIO);
405 }
406
407 /* is there anything left to handle? */
408 if ((ipd & REG_INT_ALL) == 0)
409 goto out;
410
411 switch (i2c->state) {
412 case STATE_START:
413 rk3x_i2c_handle_start(i2c, ipd);
414 break;
415 case STATE_WRITE:
416 rk3x_i2c_handle_write(i2c, ipd);
417 break;
418 case STATE_READ:
419 rk3x_i2c_handle_read(i2c, ipd);
420 break;
421 case STATE_STOP:
422 rk3x_i2c_handle_stop(i2c, ipd);
423 break;
424 case STATE_IDLE:
425 break;
426 }
427
428 out:
429 spin_unlock(&i2c->lock);
430 return IRQ_HANDLED;
431 }
432
433 /**
434 * Calculate divider values for desired SCL frequency
435 *
436 * @clk_rate: I2C input clock rate
437 * @t: Known I2C timing information.
438 * @div_low: Divider output for low
439 * @div_high: Divider output for high
440 *
441 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
442 * a best-effort divider value is returned in divs. If the target rate is
443 * too high, we silently use the highest possible rate.
444 */
445 static int rk3x_i2c_calc_divs(unsigned long clk_rate,
446 struct i2c_timings *t,
447 unsigned long *div_low,
448 unsigned long *div_high)
449 {
450 unsigned long spec_min_low_ns, spec_min_high_ns;
451 unsigned long spec_setup_start, spec_max_data_hold_ns;
452 unsigned long data_hold_buffer_ns;
453
454 unsigned long min_low_ns, min_high_ns;
455 unsigned long max_low_ns, min_total_ns;
456
457 unsigned long clk_rate_khz, scl_rate_khz;
458
459 unsigned long min_low_div, min_high_div;
460 unsigned long max_low_div;
461
462 unsigned long min_div_for_hold, min_total_div;
463 unsigned long extra_div, extra_low_div, ideal_low_div;
464
465 int ret = 0;
466
467 /* Only support standard-mode and fast-mode */
468 if (WARN_ON(t->bus_freq_hz > 400000))
469 t->bus_freq_hz = 400000;
470
471 /* prevent scl_rate_khz from becoming 0 */
472 if (WARN_ON(t->bus_freq_hz < 1000))
473 t->bus_freq_hz = 1000;
474
475 /*
476 * min_low_ns: The minimum number of ns we need to hold low to
477 * meet I2C specification, should include fall time.
478 * min_high_ns: The minimum number of ns we need to hold high to
479 * meet I2C specification, should include rise time.
480 * max_low_ns: The maximum number of ns we can hold low to meet
481 * I2C specification.
482 *
483 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
484 * This is because the i2c host on Rockchip holds the data line
485 * for half the low time.
486 */
487 if (t->bus_freq_hz <= 100000) {
488 /* Standard-mode */
489 spec_min_low_ns = 4700;
490 spec_setup_start = 4700;
491 spec_min_high_ns = 4000;
492 spec_max_data_hold_ns = 3450;
493 data_hold_buffer_ns = 50;
494 } else {
495 /* Fast-mode */
496 spec_min_low_ns = 1300;
497 spec_setup_start = 600;
498 spec_min_high_ns = 600;
499 spec_max_data_hold_ns = 900;
500 data_hold_buffer_ns = 50;
501 }
502 min_high_ns = t->scl_rise_ns + spec_min_high_ns;
503
504 /*
505 * Timings for repeated start:
506 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
507 * - controller appears to keep SCL high for 2x programmed clk high.
508 *
509 * We need to account for those rules in picking our "high" time so
510 * we meet tSU;STA and tHD;STA times.
511 */
512 min_high_ns = max(min_high_ns,
513 DIV_ROUND_UP((t->scl_rise_ns + spec_setup_start) * 1000, 875));
514 min_high_ns = max(min_high_ns,
515 DIV_ROUND_UP((t->scl_rise_ns + spec_setup_start +
516 t->sda_fall_ns + spec_min_high_ns), 2));
517
518 min_low_ns = t->scl_fall_ns + spec_min_low_ns;
519 max_low_ns = spec_max_data_hold_ns * 2 - data_hold_buffer_ns;
520 min_total_ns = min_low_ns + min_high_ns;
521
522 /* Adjust to avoid overflow */
523 clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
524 scl_rate_khz = t->bus_freq_hz / 1000;
525
526 /*
527 * We need the total div to be >= this number
528 * so we don't clock too fast.
529 */
530 min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
531
532 /* These are the min dividers needed for min hold times. */
533 min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
534 min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
535 min_div_for_hold = (min_low_div + min_high_div);
536
537 /*
538 * This is the maximum divider so we don't go over the maximum.
539 * We don't round up here (we round down) since this is a maximum.
540 */
541 max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
542
543 if (min_low_div > max_low_div) {
544 WARN_ONCE(true,
545 "Conflicting, min_low_div %lu, max_low_div %lu\n",
546 min_low_div, max_low_div);
547 max_low_div = min_low_div;
548 }
549
550 if (min_div_for_hold > min_total_div) {
551 /*
552 * Time needed to meet hold requirements is important.
553 * Just use that.
554 */
555 *div_low = min_low_div;
556 *div_high = min_high_div;
557 } else {
558 /*
559 * We've got to distribute some time among the low and high
560 * so we don't run too fast.
561 */
562 extra_div = min_total_div - min_div_for_hold;
563
564 /*
565 * We'll try to split things up perfectly evenly,
566 * biasing slightly towards having a higher div
567 * for low (spend more time low).
568 */
569 ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
570 scl_rate_khz * 8 * min_total_ns);
571
572 /* Don't allow it to go over the maximum */
573 if (ideal_low_div > max_low_div)
574 ideal_low_div = max_low_div;
575
576 /*
577 * Handle when the ideal low div is going to take up
578 * more than we have.
579 */
580 if (ideal_low_div > min_low_div + extra_div)
581 ideal_low_div = min_low_div + extra_div;
582
583 /* Give low the "ideal" and give high whatever extra is left */
584 extra_low_div = ideal_low_div - min_low_div;
585 *div_low = ideal_low_div;
586 *div_high = min_high_div + (extra_div - extra_low_div);
587 }
588
589 /*
590 * Adjust to the fact that the hardware has an implicit "+1".
591 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
592 */
593 *div_low = *div_low - 1;
594 *div_high = *div_high - 1;
595
596 /* Maximum divider supported by hw is 0xffff */
597 if (*div_low > 0xffff) {
598 *div_low = 0xffff;
599 ret = -EINVAL;
600 }
601
602 if (*div_high > 0xffff) {
603 *div_high = 0xffff;
604 ret = -EINVAL;
605 }
606
607 return ret;
608 }
609
610 static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
611 {
612 struct i2c_timings *t = &i2c->t;
613 unsigned long div_low, div_high;
614 u64 t_low_ns, t_high_ns;
615 int ret;
616
617 ret = rk3x_i2c_calc_divs(clk_rate, t, &div_low, &div_high);
618 WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
619
620 clk_enable(i2c->clk);
621 i2c_writel(i2c, (div_high << 16) | (div_low & 0xffff), REG_CLKDIV);
622 clk_disable(i2c->clk);
623
624 t_low_ns = div_u64(((u64)div_low + 1) * 8 * 1000000000, clk_rate);
625 t_high_ns = div_u64(((u64)div_high + 1) * 8 * 1000000000, clk_rate);
626 dev_dbg(i2c->dev,
627 "CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
628 clk_rate / 1000,
629 1000000000 / t->bus_freq_hz,
630 t_low_ns, t_high_ns);
631 }
632
633 /**
634 * rk3x_i2c_clk_notifier_cb - Clock rate change callback
635 * @nb: Pointer to notifier block
636 * @event: Notification reason
637 * @data: Pointer to notification data object
638 *
639 * The callback checks whether a valid bus frequency can be generated after the
640 * change. If so, the change is acknowledged, otherwise the change is aborted.
641 * New dividers are written to the HW in the pre- or post change notification
642 * depending on the scaling direction.
643 *
644 * Code adapted from i2c-cadence.c.
645 *
646 * Return: NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
647 * to acknowedge the change, NOTIFY_DONE if the notification is
648 * considered irrelevant.
649 */
650 static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
651 event, void *data)
652 {
653 struct clk_notifier_data *ndata = data;
654 struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
655 unsigned long div_low, div_high;
656
657 switch (event) {
658 case PRE_RATE_CHANGE:
659 if (rk3x_i2c_calc_divs(ndata->new_rate, &i2c->t,
660 &div_low, &div_high) != 0)
661 return NOTIFY_STOP;
662
663 /* scale up */
664 if (ndata->new_rate > ndata->old_rate)
665 rk3x_i2c_adapt_div(i2c, ndata->new_rate);
666
667 return NOTIFY_OK;
668 case POST_RATE_CHANGE:
669 /* scale down */
670 if (ndata->new_rate < ndata->old_rate)
671 rk3x_i2c_adapt_div(i2c, ndata->new_rate);
672 return NOTIFY_OK;
673 case ABORT_RATE_CHANGE:
674 /* scale up */
675 if (ndata->new_rate > ndata->old_rate)
676 rk3x_i2c_adapt_div(i2c, ndata->old_rate);
677 return NOTIFY_OK;
678 default:
679 return NOTIFY_DONE;
680 }
681 }
682
683 /**
684 * Setup I2C registers for an I2C operation specified by msgs, num.
685 *
686 * Must be called with i2c->lock held.
687 *
688 * @msgs: I2C msgs to process
689 * @num: Number of msgs
690 *
691 * returns: Number of I2C msgs processed or negative in case of error
692 */
693 static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
694 {
695 u32 addr = (msgs[0].addr & 0x7f) << 1;
696 int ret = 0;
697
698 /*
699 * The I2C adapter can issue a small (len < 4) write packet before
700 * reading. This speeds up SMBus-style register reads.
701 * The MRXADDR/MRXRADDR hold the slave address and the slave register
702 * address in this case.
703 */
704
705 if (num >= 2 && msgs[0].len < 4 &&
706 !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
707 u32 reg_addr = 0;
708 int i;
709
710 dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
711 addr >> 1);
712
713 /* Fill MRXRADDR with the register address(es) */
714 for (i = 0; i < msgs[0].len; ++i) {
715 reg_addr |= msgs[0].buf[i] << (i * 8);
716 reg_addr |= REG_MRXADDR_VALID(i);
717 }
718
719 /* msgs[0] is handled by hw. */
720 i2c->msg = &msgs[1];
721
722 i2c->mode = REG_CON_MOD_REGISTER_TX;
723
724 i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
725 i2c_writel(i2c, reg_addr, REG_MRXRADDR);
726
727 ret = 2;
728 } else {
729 /*
730 * We'll have to do it the boring way and process the msgs
731 * one-by-one.
732 */
733
734 if (msgs[0].flags & I2C_M_RD) {
735 addr |= 1; /* set read bit */
736
737 /*
738 * We have to transmit the slave addr first. Use
739 * MOD_REGISTER_TX for that purpose.
740 */
741 i2c->mode = REG_CON_MOD_REGISTER_TX;
742 i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
743 REG_MRXADDR);
744 i2c_writel(i2c, 0, REG_MRXRADDR);
745 } else {
746 i2c->mode = REG_CON_MOD_TX;
747 }
748
749 i2c->msg = &msgs[0];
750
751 ret = 1;
752 }
753
754 i2c->addr = msgs[0].addr;
755 i2c->busy = true;
756 i2c->state = STATE_START;
757 i2c->processed = 0;
758 i2c->error = 0;
759
760 rk3x_i2c_clean_ipd(i2c);
761
762 return ret;
763 }
764
765 static int rk3x_i2c_xfer(struct i2c_adapter *adap,
766 struct i2c_msg *msgs, int num)
767 {
768 struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
769 unsigned long timeout, flags;
770 int ret = 0;
771 int i;
772
773 spin_lock_irqsave(&i2c->lock, flags);
774
775 clk_enable(i2c->clk);
776
777 i2c->is_last_msg = false;
778
779 /*
780 * Process msgs. We can handle more than one message at once (see
781 * rk3x_i2c_setup()).
782 */
783 for (i = 0; i < num; i += ret) {
784 ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
785
786 if (ret < 0) {
787 dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
788 break;
789 }
790
791 if (i + ret >= num)
792 i2c->is_last_msg = true;
793
794 spin_unlock_irqrestore(&i2c->lock, flags);
795
796 rk3x_i2c_start(i2c);
797
798 timeout = wait_event_timeout(i2c->wait, !i2c->busy,
799 msecs_to_jiffies(WAIT_TIMEOUT));
800
801 spin_lock_irqsave(&i2c->lock, flags);
802
803 if (timeout == 0) {
804 dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
805 i2c_readl(i2c, REG_IPD), i2c->state);
806
807 /* Force a STOP condition without interrupt */
808 i2c_writel(i2c, 0, REG_IEN);
809 i2c_writel(i2c, REG_CON_EN | REG_CON_STOP, REG_CON);
810
811 i2c->state = STATE_IDLE;
812
813 ret = -ETIMEDOUT;
814 break;
815 }
816
817 if (i2c->error) {
818 ret = i2c->error;
819 break;
820 }
821 }
822
823 clk_disable(i2c->clk);
824 spin_unlock_irqrestore(&i2c->lock, flags);
825
826 return ret < 0 ? ret : num;
827 }
828
829 static u32 rk3x_i2c_func(struct i2c_adapter *adap)
830 {
831 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
832 }
833
834 static const struct i2c_algorithm rk3x_i2c_algorithm = {
835 .master_xfer = rk3x_i2c_xfer,
836 .functionality = rk3x_i2c_func,
837 };
838
839 static struct rk3x_i2c_soc_data soc_data[3] = {
840 { .grf_offset = 0x154 }, /* rk3066 */
841 { .grf_offset = 0x0a4 }, /* rk3188 */
842 { .grf_offset = -1 }, /* no I2C switching needed */
843 };
844
845 static const struct of_device_id rk3x_i2c_match[] = {
846 { .compatible = "rockchip,rk3066-i2c", .data = (void *)&soc_data[0] },
847 { .compatible = "rockchip,rk3188-i2c", .data = (void *)&soc_data[1] },
848 { .compatible = "rockchip,rk3228-i2c", .data = (void *)&soc_data[2] },
849 { .compatible = "rockchip,rk3288-i2c", .data = (void *)&soc_data[2] },
850 {},
851 };
852 MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
853
854 static int rk3x_i2c_probe(struct platform_device *pdev)
855 {
856 struct device_node *np = pdev->dev.of_node;
857 const struct of_device_id *match;
858 struct rk3x_i2c *i2c;
859 struct resource *mem;
860 int ret = 0;
861 int bus_nr;
862 u32 value;
863 int irq;
864 unsigned long clk_rate;
865
866 i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
867 if (!i2c)
868 return -ENOMEM;
869
870 match = of_match_node(rk3x_i2c_match, np);
871 i2c->soc_data = (struct rk3x_i2c_soc_data *)match->data;
872
873 /* use common interface to get I2C timing properties */
874 i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
875
876 strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
877 i2c->adap.owner = THIS_MODULE;
878 i2c->adap.algo = &rk3x_i2c_algorithm;
879 i2c->adap.retries = 3;
880 i2c->adap.dev.of_node = np;
881 i2c->adap.algo_data = i2c;
882 i2c->adap.dev.parent = &pdev->dev;
883
884 i2c->dev = &pdev->dev;
885
886 spin_lock_init(&i2c->lock);
887 init_waitqueue_head(&i2c->wait);
888
889 i2c->clk = devm_clk_get(&pdev->dev, NULL);
890 if (IS_ERR(i2c->clk)) {
891 dev_err(&pdev->dev, "cannot get clock\n");
892 return PTR_ERR(i2c->clk);
893 }
894
895 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
896 i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
897 if (IS_ERR(i2c->regs))
898 return PTR_ERR(i2c->regs);
899
900 /* Try to set the I2C adapter number from dt */
901 bus_nr = of_alias_get_id(np, "i2c");
902
903 /*
904 * Switch to new interface if the SoC also offers the old one.
905 * The control bit is located in the GRF register space.
906 */
907 if (i2c->soc_data->grf_offset >= 0) {
908 struct regmap *grf;
909
910 grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
911 if (IS_ERR(grf)) {
912 dev_err(&pdev->dev,
913 "rk3x-i2c needs 'rockchip,grf' property\n");
914 return PTR_ERR(grf);
915 }
916
917 if (bus_nr < 0) {
918 dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
919 return -EINVAL;
920 }
921
922 /* 27+i: write mask, 11+i: value */
923 value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
924
925 ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
926 if (ret != 0) {
927 dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
928 return ret;
929 }
930 }
931
932 /* IRQ setup */
933 irq = platform_get_irq(pdev, 0);
934 if (irq < 0) {
935 dev_err(&pdev->dev, "cannot find rk3x IRQ\n");
936 return irq;
937 }
938
939 ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
940 0, dev_name(&pdev->dev), i2c);
941 if (ret < 0) {
942 dev_err(&pdev->dev, "cannot request IRQ\n");
943 return ret;
944 }
945
946 platform_set_drvdata(pdev, i2c);
947
948 ret = clk_prepare(i2c->clk);
949 if (ret < 0) {
950 dev_err(&pdev->dev, "Could not prepare clock\n");
951 return ret;
952 }
953
954 i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
955 ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
956 if (ret != 0) {
957 dev_err(&pdev->dev, "Unable to register clock notifier\n");
958 goto err_clk;
959 }
960
961 clk_rate = clk_get_rate(i2c->clk);
962 rk3x_i2c_adapt_div(i2c, clk_rate);
963
964 ret = i2c_add_adapter(&i2c->adap);
965 if (ret < 0) {
966 dev_err(&pdev->dev, "Could not register adapter\n");
967 goto err_clk_notifier;
968 }
969
970 dev_info(&pdev->dev, "Initialized RK3xxx I2C bus at %p\n", i2c->regs);
971
972 return 0;
973
974 err_clk_notifier:
975 clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
976 err_clk:
977 clk_unprepare(i2c->clk);
978 return ret;
979 }
980
981 static int rk3x_i2c_remove(struct platform_device *pdev)
982 {
983 struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
984
985 i2c_del_adapter(&i2c->adap);
986
987 clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
988 clk_unprepare(i2c->clk);
989
990 return 0;
991 }
992
993 static struct platform_driver rk3x_i2c_driver = {
994 .probe = rk3x_i2c_probe,
995 .remove = rk3x_i2c_remove,
996 .driver = {
997 .name = "rk3x-i2c",
998 .of_match_table = rk3x_i2c_match,
999 },
1000 };
1001
1002 module_platform_driver(rk3x_i2c_driver);
1003
1004 MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
1005 MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
1006 MODULE_LICENSE("GPL v2");
This page took 0.067463 seconds and 5 git commands to generate.