iwlwifi: mvm: Disable uAPSD for D3 image
[deliverable/linux.git] / drivers / i2c / i2c-core.c
1 /* i2c-core.c - a device driver for the iic-bus interface */
2 /* ------------------------------------------------------------------------- */
3 /* Copyright (C) 1995-99 Simon G. Vogl
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
18 MA 02110-1301 USA. */
19 /* ------------------------------------------------------------------------- */
20
21 /* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>.
22 All SMBus-related things are written by Frodo Looijaard <frodol@dds.nl>
23 SMBus 2.0 support by Mark Studebaker <mdsxyz123@yahoo.com> and
24 Jean Delvare <khali@linux-fr.org>
25 Mux support by Rodolfo Giometti <giometti@enneenne.com> and
26 Michael Lawnick <michael.lawnick.ext@nsn.com>
27 OF support is copyright (c) 2008 Jochen Friedrich <jochen@scram.de>
28 (based on a previous patch from Jon Smirl <jonsmirl@gmail.com>) and
29 (c) 2013 Wolfram Sang <wsa@the-dreams.de>
30 */
31
32 #include <linux/module.h>
33 #include <linux/kernel.h>
34 #include <linux/delay.h>
35 #include <linux/errno.h>
36 #include <linux/gpio.h>
37 #include <linux/slab.h>
38 #include <linux/i2c.h>
39 #include <linux/init.h>
40 #include <linux/idr.h>
41 #include <linux/mutex.h>
42 #include <linux/of.h>
43 #include <linux/of_device.h>
44 #include <linux/of_irq.h>
45 #include <linux/completion.h>
46 #include <linux/hardirq.h>
47 #include <linux/irqflags.h>
48 #include <linux/rwsem.h>
49 #include <linux/pm_runtime.h>
50 #include <linux/acpi.h>
51 #include <asm/uaccess.h>
52
53 #include "i2c-core.h"
54
55
56 /* core_lock protects i2c_adapter_idr, and guarantees
57 that device detection, deletion of detected devices, and attach_adapter
58 calls are serialized */
59 static DEFINE_MUTEX(core_lock);
60 static DEFINE_IDR(i2c_adapter_idr);
61
62 static struct device_type i2c_client_type;
63 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver);
64
65 /* ------------------------------------------------------------------------- */
66
67 static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
68 const struct i2c_client *client)
69 {
70 while (id->name[0]) {
71 if (strcmp(client->name, id->name) == 0)
72 return id;
73 id++;
74 }
75 return NULL;
76 }
77
78 static int i2c_device_match(struct device *dev, struct device_driver *drv)
79 {
80 struct i2c_client *client = i2c_verify_client(dev);
81 struct i2c_driver *driver;
82
83 if (!client)
84 return 0;
85
86 /* Attempt an OF style match */
87 if (of_driver_match_device(dev, drv))
88 return 1;
89
90 /* Then ACPI style match */
91 if (acpi_driver_match_device(dev, drv))
92 return 1;
93
94 driver = to_i2c_driver(drv);
95 /* match on an id table if there is one */
96 if (driver->id_table)
97 return i2c_match_id(driver->id_table, client) != NULL;
98
99 return 0;
100 }
101
102
103 /* uevent helps with hotplug: modprobe -q $(MODALIAS) */
104 static int i2c_device_uevent(struct device *dev, struct kobj_uevent_env *env)
105 {
106 struct i2c_client *client = to_i2c_client(dev);
107
108 if (add_uevent_var(env, "MODALIAS=%s%s",
109 I2C_MODULE_PREFIX, client->name))
110 return -ENOMEM;
111 dev_dbg(dev, "uevent\n");
112 return 0;
113 }
114
115 /* i2c bus recovery routines */
116 static int get_scl_gpio_value(struct i2c_adapter *adap)
117 {
118 return gpio_get_value(adap->bus_recovery_info->scl_gpio);
119 }
120
121 static void set_scl_gpio_value(struct i2c_adapter *adap, int val)
122 {
123 gpio_set_value(adap->bus_recovery_info->scl_gpio, val);
124 }
125
126 static int get_sda_gpio_value(struct i2c_adapter *adap)
127 {
128 return gpio_get_value(adap->bus_recovery_info->sda_gpio);
129 }
130
131 static int i2c_get_gpios_for_recovery(struct i2c_adapter *adap)
132 {
133 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
134 struct device *dev = &adap->dev;
135 int ret = 0;
136
137 ret = gpio_request_one(bri->scl_gpio, GPIOF_OPEN_DRAIN |
138 GPIOF_OUT_INIT_HIGH, "i2c-scl");
139 if (ret) {
140 dev_warn(dev, "Can't get SCL gpio: %d\n", bri->scl_gpio);
141 return ret;
142 }
143
144 if (bri->get_sda) {
145 if (gpio_request_one(bri->sda_gpio, GPIOF_IN, "i2c-sda")) {
146 /* work without SDA polling */
147 dev_warn(dev, "Can't get SDA gpio: %d. Not using SDA polling\n",
148 bri->sda_gpio);
149 bri->get_sda = NULL;
150 }
151 }
152
153 return ret;
154 }
155
156 static void i2c_put_gpios_for_recovery(struct i2c_adapter *adap)
157 {
158 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
159
160 if (bri->get_sda)
161 gpio_free(bri->sda_gpio);
162
163 gpio_free(bri->scl_gpio);
164 }
165
166 /*
167 * We are generating clock pulses. ndelay() determines durating of clk pulses.
168 * We will generate clock with rate 100 KHz and so duration of both clock levels
169 * is: delay in ns = (10^6 / 100) / 2
170 */
171 #define RECOVERY_NDELAY 5000
172 #define RECOVERY_CLK_CNT 9
173
174 static int i2c_generic_recovery(struct i2c_adapter *adap)
175 {
176 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
177 int i = 0, val = 1, ret = 0;
178
179 if (bri->prepare_recovery)
180 bri->prepare_recovery(bri);
181
182 /*
183 * By this time SCL is high, as we need to give 9 falling-rising edges
184 */
185 while (i++ < RECOVERY_CLK_CNT * 2) {
186 if (val) {
187 /* Break if SDA is high */
188 if (bri->get_sda && bri->get_sda(adap))
189 break;
190 /* SCL shouldn't be low here */
191 if (!bri->get_scl(adap)) {
192 dev_err(&adap->dev,
193 "SCL is stuck low, exit recovery\n");
194 ret = -EBUSY;
195 break;
196 }
197 }
198
199 val = !val;
200 bri->set_scl(adap, val);
201 ndelay(RECOVERY_NDELAY);
202 }
203
204 if (bri->unprepare_recovery)
205 bri->unprepare_recovery(bri);
206
207 return ret;
208 }
209
210 int i2c_generic_scl_recovery(struct i2c_adapter *adap)
211 {
212 adap->bus_recovery_info->set_scl(adap, 1);
213 return i2c_generic_recovery(adap);
214 }
215
216 int i2c_generic_gpio_recovery(struct i2c_adapter *adap)
217 {
218 int ret;
219
220 ret = i2c_get_gpios_for_recovery(adap);
221 if (ret)
222 return ret;
223
224 ret = i2c_generic_recovery(adap);
225 i2c_put_gpios_for_recovery(adap);
226
227 return ret;
228 }
229
230 int i2c_recover_bus(struct i2c_adapter *adap)
231 {
232 if (!adap->bus_recovery_info)
233 return -EOPNOTSUPP;
234
235 dev_dbg(&adap->dev, "Trying i2c bus recovery\n");
236 return adap->bus_recovery_info->recover_bus(adap);
237 }
238
239 static int i2c_device_probe(struct device *dev)
240 {
241 struct i2c_client *client = i2c_verify_client(dev);
242 struct i2c_driver *driver;
243 int status;
244
245 if (!client)
246 return 0;
247
248 driver = to_i2c_driver(dev->driver);
249 if (!driver->probe || !driver->id_table)
250 return -ENODEV;
251 client->driver = driver;
252 if (!device_can_wakeup(&client->dev))
253 device_init_wakeup(&client->dev,
254 client->flags & I2C_CLIENT_WAKE);
255 dev_dbg(dev, "probe\n");
256
257 status = driver->probe(client, i2c_match_id(driver->id_table, client));
258 if (status) {
259 client->driver = NULL;
260 i2c_set_clientdata(client, NULL);
261 }
262 return status;
263 }
264
265 static int i2c_device_remove(struct device *dev)
266 {
267 struct i2c_client *client = i2c_verify_client(dev);
268 struct i2c_driver *driver;
269 int status;
270
271 if (!client || !dev->driver)
272 return 0;
273
274 driver = to_i2c_driver(dev->driver);
275 if (driver->remove) {
276 dev_dbg(dev, "remove\n");
277 status = driver->remove(client);
278 } else {
279 dev->driver = NULL;
280 status = 0;
281 }
282 if (status == 0) {
283 client->driver = NULL;
284 i2c_set_clientdata(client, NULL);
285 }
286 return status;
287 }
288
289 static void i2c_device_shutdown(struct device *dev)
290 {
291 struct i2c_client *client = i2c_verify_client(dev);
292 struct i2c_driver *driver;
293
294 if (!client || !dev->driver)
295 return;
296 driver = to_i2c_driver(dev->driver);
297 if (driver->shutdown)
298 driver->shutdown(client);
299 }
300
301 #ifdef CONFIG_PM_SLEEP
302 static int i2c_legacy_suspend(struct device *dev, pm_message_t mesg)
303 {
304 struct i2c_client *client = i2c_verify_client(dev);
305 struct i2c_driver *driver;
306
307 if (!client || !dev->driver)
308 return 0;
309 driver = to_i2c_driver(dev->driver);
310 if (!driver->suspend)
311 return 0;
312 return driver->suspend(client, mesg);
313 }
314
315 static int i2c_legacy_resume(struct device *dev)
316 {
317 struct i2c_client *client = i2c_verify_client(dev);
318 struct i2c_driver *driver;
319
320 if (!client || !dev->driver)
321 return 0;
322 driver = to_i2c_driver(dev->driver);
323 if (!driver->resume)
324 return 0;
325 return driver->resume(client);
326 }
327
328 static int i2c_device_pm_suspend(struct device *dev)
329 {
330 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
331
332 if (pm)
333 return pm_generic_suspend(dev);
334 else
335 return i2c_legacy_suspend(dev, PMSG_SUSPEND);
336 }
337
338 static int i2c_device_pm_resume(struct device *dev)
339 {
340 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
341
342 if (pm)
343 return pm_generic_resume(dev);
344 else
345 return i2c_legacy_resume(dev);
346 }
347
348 static int i2c_device_pm_freeze(struct device *dev)
349 {
350 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
351
352 if (pm)
353 return pm_generic_freeze(dev);
354 else
355 return i2c_legacy_suspend(dev, PMSG_FREEZE);
356 }
357
358 static int i2c_device_pm_thaw(struct device *dev)
359 {
360 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
361
362 if (pm)
363 return pm_generic_thaw(dev);
364 else
365 return i2c_legacy_resume(dev);
366 }
367
368 static int i2c_device_pm_poweroff(struct device *dev)
369 {
370 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
371
372 if (pm)
373 return pm_generic_poweroff(dev);
374 else
375 return i2c_legacy_suspend(dev, PMSG_HIBERNATE);
376 }
377
378 static int i2c_device_pm_restore(struct device *dev)
379 {
380 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
381
382 if (pm)
383 return pm_generic_restore(dev);
384 else
385 return i2c_legacy_resume(dev);
386 }
387 #else /* !CONFIG_PM_SLEEP */
388 #define i2c_device_pm_suspend NULL
389 #define i2c_device_pm_resume NULL
390 #define i2c_device_pm_freeze NULL
391 #define i2c_device_pm_thaw NULL
392 #define i2c_device_pm_poweroff NULL
393 #define i2c_device_pm_restore NULL
394 #endif /* !CONFIG_PM_SLEEP */
395
396 static void i2c_client_dev_release(struct device *dev)
397 {
398 kfree(to_i2c_client(dev));
399 }
400
401 static ssize_t
402 show_name(struct device *dev, struct device_attribute *attr, char *buf)
403 {
404 return sprintf(buf, "%s\n", dev->type == &i2c_client_type ?
405 to_i2c_client(dev)->name : to_i2c_adapter(dev)->name);
406 }
407
408 static ssize_t
409 show_modalias(struct device *dev, struct device_attribute *attr, char *buf)
410 {
411 struct i2c_client *client = to_i2c_client(dev);
412 return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name);
413 }
414
415 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
416 static DEVICE_ATTR(modalias, S_IRUGO, show_modalias, NULL);
417
418 static struct attribute *i2c_dev_attrs[] = {
419 &dev_attr_name.attr,
420 /* modalias helps coldplug: modprobe $(cat .../modalias) */
421 &dev_attr_modalias.attr,
422 NULL
423 };
424
425 static struct attribute_group i2c_dev_attr_group = {
426 .attrs = i2c_dev_attrs,
427 };
428
429 static const struct attribute_group *i2c_dev_attr_groups[] = {
430 &i2c_dev_attr_group,
431 NULL
432 };
433
434 static const struct dev_pm_ops i2c_device_pm_ops = {
435 .suspend = i2c_device_pm_suspend,
436 .resume = i2c_device_pm_resume,
437 .freeze = i2c_device_pm_freeze,
438 .thaw = i2c_device_pm_thaw,
439 .poweroff = i2c_device_pm_poweroff,
440 .restore = i2c_device_pm_restore,
441 SET_RUNTIME_PM_OPS(
442 pm_generic_runtime_suspend,
443 pm_generic_runtime_resume,
444 NULL
445 )
446 };
447
448 struct bus_type i2c_bus_type = {
449 .name = "i2c",
450 .match = i2c_device_match,
451 .probe = i2c_device_probe,
452 .remove = i2c_device_remove,
453 .shutdown = i2c_device_shutdown,
454 .pm = &i2c_device_pm_ops,
455 };
456 EXPORT_SYMBOL_GPL(i2c_bus_type);
457
458 static struct device_type i2c_client_type = {
459 .groups = i2c_dev_attr_groups,
460 .uevent = i2c_device_uevent,
461 .release = i2c_client_dev_release,
462 };
463
464
465 /**
466 * i2c_verify_client - return parameter as i2c_client, or NULL
467 * @dev: device, probably from some driver model iterator
468 *
469 * When traversing the driver model tree, perhaps using driver model
470 * iterators like @device_for_each_child(), you can't assume very much
471 * about the nodes you find. Use this function to avoid oopses caused
472 * by wrongly treating some non-I2C device as an i2c_client.
473 */
474 struct i2c_client *i2c_verify_client(struct device *dev)
475 {
476 return (dev->type == &i2c_client_type)
477 ? to_i2c_client(dev)
478 : NULL;
479 }
480 EXPORT_SYMBOL(i2c_verify_client);
481
482
483 /* This is a permissive address validity check, I2C address map constraints
484 * are purposely not enforced, except for the general call address. */
485 static int i2c_check_client_addr_validity(const struct i2c_client *client)
486 {
487 if (client->flags & I2C_CLIENT_TEN) {
488 /* 10-bit address, all values are valid */
489 if (client->addr > 0x3ff)
490 return -EINVAL;
491 } else {
492 /* 7-bit address, reject the general call address */
493 if (client->addr == 0x00 || client->addr > 0x7f)
494 return -EINVAL;
495 }
496 return 0;
497 }
498
499 /* And this is a strict address validity check, used when probing. If a
500 * device uses a reserved address, then it shouldn't be probed. 7-bit
501 * addressing is assumed, 10-bit address devices are rare and should be
502 * explicitly enumerated. */
503 static int i2c_check_addr_validity(unsigned short addr)
504 {
505 /*
506 * Reserved addresses per I2C specification:
507 * 0x00 General call address / START byte
508 * 0x01 CBUS address
509 * 0x02 Reserved for different bus format
510 * 0x03 Reserved for future purposes
511 * 0x04-0x07 Hs-mode master code
512 * 0x78-0x7b 10-bit slave addressing
513 * 0x7c-0x7f Reserved for future purposes
514 */
515 if (addr < 0x08 || addr > 0x77)
516 return -EINVAL;
517 return 0;
518 }
519
520 static int __i2c_check_addr_busy(struct device *dev, void *addrp)
521 {
522 struct i2c_client *client = i2c_verify_client(dev);
523 int addr = *(int *)addrp;
524
525 if (client && client->addr == addr)
526 return -EBUSY;
527 return 0;
528 }
529
530 /* walk up mux tree */
531 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr)
532 {
533 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
534 int result;
535
536 result = device_for_each_child(&adapter->dev, &addr,
537 __i2c_check_addr_busy);
538
539 if (!result && parent)
540 result = i2c_check_mux_parents(parent, addr);
541
542 return result;
543 }
544
545 /* recurse down mux tree */
546 static int i2c_check_mux_children(struct device *dev, void *addrp)
547 {
548 int result;
549
550 if (dev->type == &i2c_adapter_type)
551 result = device_for_each_child(dev, addrp,
552 i2c_check_mux_children);
553 else
554 result = __i2c_check_addr_busy(dev, addrp);
555
556 return result;
557 }
558
559 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr)
560 {
561 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
562 int result = 0;
563
564 if (parent)
565 result = i2c_check_mux_parents(parent, addr);
566
567 if (!result)
568 result = device_for_each_child(&adapter->dev, &addr,
569 i2c_check_mux_children);
570
571 return result;
572 }
573
574 /**
575 * i2c_lock_adapter - Get exclusive access to an I2C bus segment
576 * @adapter: Target I2C bus segment
577 */
578 void i2c_lock_adapter(struct i2c_adapter *adapter)
579 {
580 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
581
582 if (parent)
583 i2c_lock_adapter(parent);
584 else
585 rt_mutex_lock(&adapter->bus_lock);
586 }
587 EXPORT_SYMBOL_GPL(i2c_lock_adapter);
588
589 /**
590 * i2c_trylock_adapter - Try to get exclusive access to an I2C bus segment
591 * @adapter: Target I2C bus segment
592 */
593 static int i2c_trylock_adapter(struct i2c_adapter *adapter)
594 {
595 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
596
597 if (parent)
598 return i2c_trylock_adapter(parent);
599 else
600 return rt_mutex_trylock(&adapter->bus_lock);
601 }
602
603 /**
604 * i2c_unlock_adapter - Release exclusive access to an I2C bus segment
605 * @adapter: Target I2C bus segment
606 */
607 void i2c_unlock_adapter(struct i2c_adapter *adapter)
608 {
609 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
610
611 if (parent)
612 i2c_unlock_adapter(parent);
613 else
614 rt_mutex_unlock(&adapter->bus_lock);
615 }
616 EXPORT_SYMBOL_GPL(i2c_unlock_adapter);
617
618 /**
619 * i2c_new_device - instantiate an i2c device
620 * @adap: the adapter managing the device
621 * @info: describes one I2C device; bus_num is ignored
622 * Context: can sleep
623 *
624 * Create an i2c device. Binding is handled through driver model
625 * probe()/remove() methods. A driver may be bound to this device when we
626 * return from this function, or any later moment (e.g. maybe hotplugging will
627 * load the driver module). This call is not appropriate for use by mainboard
628 * initialization logic, which usually runs during an arch_initcall() long
629 * before any i2c_adapter could exist.
630 *
631 * This returns the new i2c client, which may be saved for later use with
632 * i2c_unregister_device(); or NULL to indicate an error.
633 */
634 struct i2c_client *
635 i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
636 {
637 struct i2c_client *client;
638 int status;
639
640 client = kzalloc(sizeof *client, GFP_KERNEL);
641 if (!client)
642 return NULL;
643
644 client->adapter = adap;
645
646 client->dev.platform_data = info->platform_data;
647
648 if (info->archdata)
649 client->dev.archdata = *info->archdata;
650
651 client->flags = info->flags;
652 client->addr = info->addr;
653 client->irq = info->irq;
654
655 strlcpy(client->name, info->type, sizeof(client->name));
656
657 /* Check for address validity */
658 status = i2c_check_client_addr_validity(client);
659 if (status) {
660 dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
661 client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
662 goto out_err_silent;
663 }
664
665 /* Check for address business */
666 status = i2c_check_addr_busy(adap, client->addr);
667 if (status)
668 goto out_err;
669
670 client->dev.parent = &client->adapter->dev;
671 client->dev.bus = &i2c_bus_type;
672 client->dev.type = &i2c_client_type;
673 client->dev.of_node = info->of_node;
674 ACPI_HANDLE_SET(&client->dev, info->acpi_node.handle);
675
676 /* For 10-bit clients, add an arbitrary offset to avoid collisions */
677 dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
678 client->addr | ((client->flags & I2C_CLIENT_TEN)
679 ? 0xa000 : 0));
680 status = device_register(&client->dev);
681 if (status)
682 goto out_err;
683
684 dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
685 client->name, dev_name(&client->dev));
686
687 return client;
688
689 out_err:
690 dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "
691 "(%d)\n", client->name, client->addr, status);
692 out_err_silent:
693 kfree(client);
694 return NULL;
695 }
696 EXPORT_SYMBOL_GPL(i2c_new_device);
697
698
699 /**
700 * i2c_unregister_device - reverse effect of i2c_new_device()
701 * @client: value returned from i2c_new_device()
702 * Context: can sleep
703 */
704 void i2c_unregister_device(struct i2c_client *client)
705 {
706 device_unregister(&client->dev);
707 }
708 EXPORT_SYMBOL_GPL(i2c_unregister_device);
709
710
711 static const struct i2c_device_id dummy_id[] = {
712 { "dummy", 0 },
713 { },
714 };
715
716 static int dummy_probe(struct i2c_client *client,
717 const struct i2c_device_id *id)
718 {
719 return 0;
720 }
721
722 static int dummy_remove(struct i2c_client *client)
723 {
724 return 0;
725 }
726
727 static struct i2c_driver dummy_driver = {
728 .driver.name = "dummy",
729 .probe = dummy_probe,
730 .remove = dummy_remove,
731 .id_table = dummy_id,
732 };
733
734 /**
735 * i2c_new_dummy - return a new i2c device bound to a dummy driver
736 * @adapter: the adapter managing the device
737 * @address: seven bit address to be used
738 * Context: can sleep
739 *
740 * This returns an I2C client bound to the "dummy" driver, intended for use
741 * with devices that consume multiple addresses. Examples of such chips
742 * include various EEPROMS (like 24c04 and 24c08 models).
743 *
744 * These dummy devices have two main uses. First, most I2C and SMBus calls
745 * except i2c_transfer() need a client handle; the dummy will be that handle.
746 * And second, this prevents the specified address from being bound to a
747 * different driver.
748 *
749 * This returns the new i2c client, which should be saved for later use with
750 * i2c_unregister_device(); or NULL to indicate an error.
751 */
752 struct i2c_client *i2c_new_dummy(struct i2c_adapter *adapter, u16 address)
753 {
754 struct i2c_board_info info = {
755 I2C_BOARD_INFO("dummy", address),
756 };
757
758 return i2c_new_device(adapter, &info);
759 }
760 EXPORT_SYMBOL_GPL(i2c_new_dummy);
761
762 /* ------------------------------------------------------------------------- */
763
764 /* I2C bus adapters -- one roots each I2C or SMBUS segment */
765
766 static void i2c_adapter_dev_release(struct device *dev)
767 {
768 struct i2c_adapter *adap = to_i2c_adapter(dev);
769 complete(&adap->dev_released);
770 }
771
772 /*
773 * This function is only needed for mutex_lock_nested, so it is never
774 * called unless locking correctness checking is enabled. Thus we
775 * make it inline to avoid a compiler warning. That's what gcc ends up
776 * doing anyway.
777 */
778 static inline unsigned int i2c_adapter_depth(struct i2c_adapter *adapter)
779 {
780 unsigned int depth = 0;
781
782 while ((adapter = i2c_parent_is_i2c_adapter(adapter)))
783 depth++;
784
785 return depth;
786 }
787
788 /*
789 * Let users instantiate I2C devices through sysfs. This can be used when
790 * platform initialization code doesn't contain the proper data for
791 * whatever reason. Also useful for drivers that do device detection and
792 * detection fails, either because the device uses an unexpected address,
793 * or this is a compatible device with different ID register values.
794 *
795 * Parameter checking may look overzealous, but we really don't want
796 * the user to provide incorrect parameters.
797 */
798 static ssize_t
799 i2c_sysfs_new_device(struct device *dev, struct device_attribute *attr,
800 const char *buf, size_t count)
801 {
802 struct i2c_adapter *adap = to_i2c_adapter(dev);
803 struct i2c_board_info info;
804 struct i2c_client *client;
805 char *blank, end;
806 int res;
807
808 memset(&info, 0, sizeof(struct i2c_board_info));
809
810 blank = strchr(buf, ' ');
811 if (!blank) {
812 dev_err(dev, "%s: Missing parameters\n", "new_device");
813 return -EINVAL;
814 }
815 if (blank - buf > I2C_NAME_SIZE - 1) {
816 dev_err(dev, "%s: Invalid device name\n", "new_device");
817 return -EINVAL;
818 }
819 memcpy(info.type, buf, blank - buf);
820
821 /* Parse remaining parameters, reject extra parameters */
822 res = sscanf(++blank, "%hi%c", &info.addr, &end);
823 if (res < 1) {
824 dev_err(dev, "%s: Can't parse I2C address\n", "new_device");
825 return -EINVAL;
826 }
827 if (res > 1 && end != '\n') {
828 dev_err(dev, "%s: Extra parameters\n", "new_device");
829 return -EINVAL;
830 }
831
832 client = i2c_new_device(adap, &info);
833 if (!client)
834 return -EINVAL;
835
836 /* Keep track of the added device */
837 mutex_lock(&adap->userspace_clients_lock);
838 list_add_tail(&client->detected, &adap->userspace_clients);
839 mutex_unlock(&adap->userspace_clients_lock);
840 dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device",
841 info.type, info.addr);
842
843 return count;
844 }
845
846 /*
847 * And of course let the users delete the devices they instantiated, if
848 * they got it wrong. This interface can only be used to delete devices
849 * instantiated by i2c_sysfs_new_device above. This guarantees that we
850 * don't delete devices to which some kernel code still has references.
851 *
852 * Parameter checking may look overzealous, but we really don't want
853 * the user to delete the wrong device.
854 */
855 static ssize_t
856 i2c_sysfs_delete_device(struct device *dev, struct device_attribute *attr,
857 const char *buf, size_t count)
858 {
859 struct i2c_adapter *adap = to_i2c_adapter(dev);
860 struct i2c_client *client, *next;
861 unsigned short addr;
862 char end;
863 int res;
864
865 /* Parse parameters, reject extra parameters */
866 res = sscanf(buf, "%hi%c", &addr, &end);
867 if (res < 1) {
868 dev_err(dev, "%s: Can't parse I2C address\n", "delete_device");
869 return -EINVAL;
870 }
871 if (res > 1 && end != '\n') {
872 dev_err(dev, "%s: Extra parameters\n", "delete_device");
873 return -EINVAL;
874 }
875
876 /* Make sure the device was added through sysfs */
877 res = -ENOENT;
878 mutex_lock_nested(&adap->userspace_clients_lock,
879 i2c_adapter_depth(adap));
880 list_for_each_entry_safe(client, next, &adap->userspace_clients,
881 detected) {
882 if (client->addr == addr) {
883 dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
884 "delete_device", client->name, client->addr);
885
886 list_del(&client->detected);
887 i2c_unregister_device(client);
888 res = count;
889 break;
890 }
891 }
892 mutex_unlock(&adap->userspace_clients_lock);
893
894 if (res < 0)
895 dev_err(dev, "%s: Can't find device in list\n",
896 "delete_device");
897 return res;
898 }
899
900 static DEVICE_ATTR(new_device, S_IWUSR, NULL, i2c_sysfs_new_device);
901 static DEVICE_ATTR_IGNORE_LOCKDEP(delete_device, S_IWUSR, NULL,
902 i2c_sysfs_delete_device);
903
904 static struct attribute *i2c_adapter_attrs[] = {
905 &dev_attr_name.attr,
906 &dev_attr_new_device.attr,
907 &dev_attr_delete_device.attr,
908 NULL
909 };
910
911 static struct attribute_group i2c_adapter_attr_group = {
912 .attrs = i2c_adapter_attrs,
913 };
914
915 static const struct attribute_group *i2c_adapter_attr_groups[] = {
916 &i2c_adapter_attr_group,
917 NULL
918 };
919
920 struct device_type i2c_adapter_type = {
921 .groups = i2c_adapter_attr_groups,
922 .release = i2c_adapter_dev_release,
923 };
924 EXPORT_SYMBOL_GPL(i2c_adapter_type);
925
926 /**
927 * i2c_verify_adapter - return parameter as i2c_adapter or NULL
928 * @dev: device, probably from some driver model iterator
929 *
930 * When traversing the driver model tree, perhaps using driver model
931 * iterators like @device_for_each_child(), you can't assume very much
932 * about the nodes you find. Use this function to avoid oopses caused
933 * by wrongly treating some non-I2C device as an i2c_adapter.
934 */
935 struct i2c_adapter *i2c_verify_adapter(struct device *dev)
936 {
937 return (dev->type == &i2c_adapter_type)
938 ? to_i2c_adapter(dev)
939 : NULL;
940 }
941 EXPORT_SYMBOL(i2c_verify_adapter);
942
943 #ifdef CONFIG_I2C_COMPAT
944 static struct class_compat *i2c_adapter_compat_class;
945 #endif
946
947 static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
948 {
949 struct i2c_devinfo *devinfo;
950
951 down_read(&__i2c_board_lock);
952 list_for_each_entry(devinfo, &__i2c_board_list, list) {
953 if (devinfo->busnum == adapter->nr
954 && !i2c_new_device(adapter,
955 &devinfo->board_info))
956 dev_err(&adapter->dev,
957 "Can't create device at 0x%02x\n",
958 devinfo->board_info.addr);
959 }
960 up_read(&__i2c_board_lock);
961 }
962
963 /* OF support code */
964
965 #if IS_ENABLED(CONFIG_OF)
966 static void of_i2c_register_devices(struct i2c_adapter *adap)
967 {
968 void *result;
969 struct device_node *node;
970
971 /* Only register child devices if the adapter has a node pointer set */
972 if (!adap->dev.of_node)
973 return;
974
975 dev_dbg(&adap->dev, "of_i2c: walking child nodes\n");
976
977 for_each_available_child_of_node(adap->dev.of_node, node) {
978 struct i2c_board_info info = {};
979 struct dev_archdata dev_ad = {};
980 const __be32 *addr;
981 int len;
982
983 dev_dbg(&adap->dev, "of_i2c: register %s\n", node->full_name);
984
985 if (of_modalias_node(node, info.type, sizeof(info.type)) < 0) {
986 dev_err(&adap->dev, "of_i2c: modalias failure on %s\n",
987 node->full_name);
988 continue;
989 }
990
991 addr = of_get_property(node, "reg", &len);
992 if (!addr || (len < sizeof(int))) {
993 dev_err(&adap->dev, "of_i2c: invalid reg on %s\n",
994 node->full_name);
995 continue;
996 }
997
998 info.addr = be32_to_cpup(addr);
999 if (info.addr > (1 << 10) - 1) {
1000 dev_err(&adap->dev, "of_i2c: invalid addr=%x on %s\n",
1001 info.addr, node->full_name);
1002 continue;
1003 }
1004
1005 info.irq = irq_of_parse_and_map(node, 0);
1006 info.of_node = of_node_get(node);
1007 info.archdata = &dev_ad;
1008
1009 if (of_get_property(node, "wakeup-source", NULL))
1010 info.flags |= I2C_CLIENT_WAKE;
1011
1012 request_module("%s%s", I2C_MODULE_PREFIX, info.type);
1013
1014 result = i2c_new_device(adap, &info);
1015 if (result == NULL) {
1016 dev_err(&adap->dev, "of_i2c: Failure registering %s\n",
1017 node->full_name);
1018 of_node_put(node);
1019 irq_dispose_mapping(info.irq);
1020 continue;
1021 }
1022 }
1023 }
1024
1025 static int of_dev_node_match(struct device *dev, void *data)
1026 {
1027 return dev->of_node == data;
1028 }
1029
1030 /* must call put_device() when done with returned i2c_client device */
1031 struct i2c_client *of_find_i2c_device_by_node(struct device_node *node)
1032 {
1033 struct device *dev;
1034
1035 dev = bus_find_device(&i2c_bus_type, NULL, node,
1036 of_dev_node_match);
1037 if (!dev)
1038 return NULL;
1039
1040 return i2c_verify_client(dev);
1041 }
1042 EXPORT_SYMBOL(of_find_i2c_device_by_node);
1043
1044 /* must call put_device() when done with returned i2c_adapter device */
1045 struct i2c_adapter *of_find_i2c_adapter_by_node(struct device_node *node)
1046 {
1047 struct device *dev;
1048
1049 dev = bus_find_device(&i2c_bus_type, NULL, node,
1050 of_dev_node_match);
1051 if (!dev)
1052 return NULL;
1053
1054 return i2c_verify_adapter(dev);
1055 }
1056 EXPORT_SYMBOL(of_find_i2c_adapter_by_node);
1057 #else
1058 static void of_i2c_register_devices(struct i2c_adapter *adap) { }
1059 #endif /* CONFIG_OF */
1060
1061 /* ACPI support code */
1062
1063 #if IS_ENABLED(CONFIG_ACPI)
1064 static int acpi_i2c_add_resource(struct acpi_resource *ares, void *data)
1065 {
1066 struct i2c_board_info *info = data;
1067
1068 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1069 struct acpi_resource_i2c_serialbus *sb;
1070
1071 sb = &ares->data.i2c_serial_bus;
1072 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_I2C) {
1073 info->addr = sb->slave_address;
1074 if (sb->access_mode == ACPI_I2C_10BIT_MODE)
1075 info->flags |= I2C_CLIENT_TEN;
1076 }
1077 } else if (info->irq < 0) {
1078 struct resource r;
1079
1080 if (acpi_dev_resource_interrupt(ares, 0, &r))
1081 info->irq = r.start;
1082 }
1083
1084 /* Tell the ACPI core to skip this resource */
1085 return 1;
1086 }
1087
1088 static acpi_status acpi_i2c_add_device(acpi_handle handle, u32 level,
1089 void *data, void **return_value)
1090 {
1091 struct i2c_adapter *adapter = data;
1092 struct list_head resource_list;
1093 struct i2c_board_info info;
1094 struct acpi_device *adev;
1095 int ret;
1096
1097 if (acpi_bus_get_device(handle, &adev))
1098 return AE_OK;
1099 if (acpi_bus_get_status(adev) || !adev->status.present)
1100 return AE_OK;
1101
1102 memset(&info, 0, sizeof(info));
1103 info.acpi_node.handle = handle;
1104 info.irq = -1;
1105
1106 INIT_LIST_HEAD(&resource_list);
1107 ret = acpi_dev_get_resources(adev, &resource_list,
1108 acpi_i2c_add_resource, &info);
1109 acpi_dev_free_resource_list(&resource_list);
1110
1111 if (ret < 0 || !info.addr)
1112 return AE_OK;
1113
1114 strlcpy(info.type, dev_name(&adev->dev), sizeof(info.type));
1115 if (!i2c_new_device(adapter, &info)) {
1116 dev_err(&adapter->dev,
1117 "failed to add I2C device %s from ACPI\n",
1118 dev_name(&adev->dev));
1119 }
1120
1121 return AE_OK;
1122 }
1123
1124 /**
1125 * acpi_i2c_register_devices - enumerate I2C slave devices behind adapter
1126 * @adap: pointer to adapter
1127 *
1128 * Enumerate all I2C slave devices behind this adapter by walking the ACPI
1129 * namespace. When a device is found it will be added to the Linux device
1130 * model and bound to the corresponding ACPI handle.
1131 */
1132 static void acpi_i2c_register_devices(struct i2c_adapter *adap)
1133 {
1134 acpi_handle handle;
1135 acpi_status status;
1136
1137 handle = ACPI_HANDLE(adap->dev.parent);
1138 if (!handle)
1139 return;
1140
1141 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1142 acpi_i2c_add_device, NULL,
1143 adap, NULL);
1144 if (ACPI_FAILURE(status))
1145 dev_warn(&adap->dev, "failed to enumerate I2C slaves\n");
1146 }
1147 #else
1148 static inline void acpi_i2c_register_devices(struct i2c_adapter *adap) {}
1149 #endif /* CONFIG_ACPI */
1150
1151 static int i2c_do_add_adapter(struct i2c_driver *driver,
1152 struct i2c_adapter *adap)
1153 {
1154 /* Detect supported devices on that bus, and instantiate them */
1155 i2c_detect(adap, driver);
1156
1157 /* Let legacy drivers scan this bus for matching devices */
1158 if (driver->attach_adapter) {
1159 dev_warn(&adap->dev, "%s: attach_adapter method is deprecated\n",
1160 driver->driver.name);
1161 dev_warn(&adap->dev, "Please use another way to instantiate "
1162 "your i2c_client\n");
1163 /* We ignore the return code; if it fails, too bad */
1164 driver->attach_adapter(adap);
1165 }
1166 return 0;
1167 }
1168
1169 static int __process_new_adapter(struct device_driver *d, void *data)
1170 {
1171 return i2c_do_add_adapter(to_i2c_driver(d), data);
1172 }
1173
1174 static int i2c_register_adapter(struct i2c_adapter *adap)
1175 {
1176 int res = 0;
1177
1178 /* Can't register until after driver model init */
1179 if (unlikely(WARN_ON(!i2c_bus_type.p))) {
1180 res = -EAGAIN;
1181 goto out_list;
1182 }
1183
1184 /* Sanity checks */
1185 if (unlikely(adap->name[0] == '\0')) {
1186 pr_err("i2c-core: Attempt to register an adapter with "
1187 "no name!\n");
1188 return -EINVAL;
1189 }
1190 if (unlikely(!adap->algo)) {
1191 pr_err("i2c-core: Attempt to register adapter '%s' with "
1192 "no algo!\n", adap->name);
1193 return -EINVAL;
1194 }
1195
1196 rt_mutex_init(&adap->bus_lock);
1197 mutex_init(&adap->userspace_clients_lock);
1198 INIT_LIST_HEAD(&adap->userspace_clients);
1199
1200 /* Set default timeout to 1 second if not already set */
1201 if (adap->timeout == 0)
1202 adap->timeout = HZ;
1203
1204 dev_set_name(&adap->dev, "i2c-%d", adap->nr);
1205 adap->dev.bus = &i2c_bus_type;
1206 adap->dev.type = &i2c_adapter_type;
1207 res = device_register(&adap->dev);
1208 if (res)
1209 goto out_list;
1210
1211 dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
1212
1213 #ifdef CONFIG_I2C_COMPAT
1214 res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
1215 adap->dev.parent);
1216 if (res)
1217 dev_warn(&adap->dev,
1218 "Failed to create compatibility class link\n");
1219 #endif
1220
1221 /* bus recovery specific initialization */
1222 if (adap->bus_recovery_info) {
1223 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
1224
1225 if (!bri->recover_bus) {
1226 dev_err(&adap->dev, "No recover_bus() found, not using recovery\n");
1227 adap->bus_recovery_info = NULL;
1228 goto exit_recovery;
1229 }
1230
1231 /* Generic GPIO recovery */
1232 if (bri->recover_bus == i2c_generic_gpio_recovery) {
1233 if (!gpio_is_valid(bri->scl_gpio)) {
1234 dev_err(&adap->dev, "Invalid SCL gpio, not using recovery\n");
1235 adap->bus_recovery_info = NULL;
1236 goto exit_recovery;
1237 }
1238
1239 if (gpio_is_valid(bri->sda_gpio))
1240 bri->get_sda = get_sda_gpio_value;
1241 else
1242 bri->get_sda = NULL;
1243
1244 bri->get_scl = get_scl_gpio_value;
1245 bri->set_scl = set_scl_gpio_value;
1246 } else if (!bri->set_scl || !bri->get_scl) {
1247 /* Generic SCL recovery */
1248 dev_err(&adap->dev, "No {get|set}_gpio() found, not using recovery\n");
1249 adap->bus_recovery_info = NULL;
1250 }
1251 }
1252
1253 exit_recovery:
1254 /* create pre-declared device nodes */
1255 of_i2c_register_devices(adap);
1256 acpi_i2c_register_devices(adap);
1257
1258 if (adap->nr < __i2c_first_dynamic_bus_num)
1259 i2c_scan_static_board_info(adap);
1260
1261 /* Notify drivers */
1262 mutex_lock(&core_lock);
1263 bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
1264 mutex_unlock(&core_lock);
1265
1266 return 0;
1267
1268 out_list:
1269 mutex_lock(&core_lock);
1270 idr_remove(&i2c_adapter_idr, adap->nr);
1271 mutex_unlock(&core_lock);
1272 return res;
1273 }
1274
1275 /**
1276 * __i2c_add_numbered_adapter - i2c_add_numbered_adapter where nr is never -1
1277 * @adap: the adapter to register (with adap->nr initialized)
1278 * Context: can sleep
1279 *
1280 * See i2c_add_numbered_adapter() for details.
1281 */
1282 static int __i2c_add_numbered_adapter(struct i2c_adapter *adap)
1283 {
1284 int id;
1285
1286 mutex_lock(&core_lock);
1287 id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1,
1288 GFP_KERNEL);
1289 mutex_unlock(&core_lock);
1290 if (id < 0)
1291 return id == -ENOSPC ? -EBUSY : id;
1292
1293 return i2c_register_adapter(adap);
1294 }
1295
1296 /**
1297 * i2c_add_adapter - declare i2c adapter, use dynamic bus number
1298 * @adapter: the adapter to add
1299 * Context: can sleep
1300 *
1301 * This routine is used to declare an I2C adapter when its bus number
1302 * doesn't matter or when its bus number is specified by an dt alias.
1303 * Examples of bases when the bus number doesn't matter: I2C adapters
1304 * dynamically added by USB links or PCI plugin cards.
1305 *
1306 * When this returns zero, a new bus number was allocated and stored
1307 * in adap->nr, and the specified adapter became available for clients.
1308 * Otherwise, a negative errno value is returned.
1309 */
1310 int i2c_add_adapter(struct i2c_adapter *adapter)
1311 {
1312 struct device *dev = &adapter->dev;
1313 int id;
1314
1315 if (dev->of_node) {
1316 id = of_alias_get_id(dev->of_node, "i2c");
1317 if (id >= 0) {
1318 adapter->nr = id;
1319 return __i2c_add_numbered_adapter(adapter);
1320 }
1321 }
1322
1323 mutex_lock(&core_lock);
1324 id = idr_alloc(&i2c_adapter_idr, adapter,
1325 __i2c_first_dynamic_bus_num, 0, GFP_KERNEL);
1326 mutex_unlock(&core_lock);
1327 if (id < 0)
1328 return id;
1329
1330 adapter->nr = id;
1331
1332 return i2c_register_adapter(adapter);
1333 }
1334 EXPORT_SYMBOL(i2c_add_adapter);
1335
1336 /**
1337 * i2c_add_numbered_adapter - declare i2c adapter, use static bus number
1338 * @adap: the adapter to register (with adap->nr initialized)
1339 * Context: can sleep
1340 *
1341 * This routine is used to declare an I2C adapter when its bus number
1342 * matters. For example, use it for I2C adapters from system-on-chip CPUs,
1343 * or otherwise built in to the system's mainboard, and where i2c_board_info
1344 * is used to properly configure I2C devices.
1345 *
1346 * If the requested bus number is set to -1, then this function will behave
1347 * identically to i2c_add_adapter, and will dynamically assign a bus number.
1348 *
1349 * If no devices have pre-been declared for this bus, then be sure to
1350 * register the adapter before any dynamically allocated ones. Otherwise
1351 * the required bus ID may not be available.
1352 *
1353 * When this returns zero, the specified adapter became available for
1354 * clients using the bus number provided in adap->nr. Also, the table
1355 * of I2C devices pre-declared using i2c_register_board_info() is scanned,
1356 * and the appropriate driver model device nodes are created. Otherwise, a
1357 * negative errno value is returned.
1358 */
1359 int i2c_add_numbered_adapter(struct i2c_adapter *adap)
1360 {
1361 if (adap->nr == -1) /* -1 means dynamically assign bus id */
1362 return i2c_add_adapter(adap);
1363
1364 return __i2c_add_numbered_adapter(adap);
1365 }
1366 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
1367
1368 static void i2c_do_del_adapter(struct i2c_driver *driver,
1369 struct i2c_adapter *adapter)
1370 {
1371 struct i2c_client *client, *_n;
1372
1373 /* Remove the devices we created ourselves as the result of hardware
1374 * probing (using a driver's detect method) */
1375 list_for_each_entry_safe(client, _n, &driver->clients, detected) {
1376 if (client->adapter == adapter) {
1377 dev_dbg(&adapter->dev, "Removing %s at 0x%x\n",
1378 client->name, client->addr);
1379 list_del(&client->detected);
1380 i2c_unregister_device(client);
1381 }
1382 }
1383 }
1384
1385 static int __unregister_client(struct device *dev, void *dummy)
1386 {
1387 struct i2c_client *client = i2c_verify_client(dev);
1388 if (client && strcmp(client->name, "dummy"))
1389 i2c_unregister_device(client);
1390 return 0;
1391 }
1392
1393 static int __unregister_dummy(struct device *dev, void *dummy)
1394 {
1395 struct i2c_client *client = i2c_verify_client(dev);
1396 if (client)
1397 i2c_unregister_device(client);
1398 return 0;
1399 }
1400
1401 static int __process_removed_adapter(struct device_driver *d, void *data)
1402 {
1403 i2c_do_del_adapter(to_i2c_driver(d), data);
1404 return 0;
1405 }
1406
1407 /**
1408 * i2c_del_adapter - unregister I2C adapter
1409 * @adap: the adapter being unregistered
1410 * Context: can sleep
1411 *
1412 * This unregisters an I2C adapter which was previously registered
1413 * by @i2c_add_adapter or @i2c_add_numbered_adapter.
1414 */
1415 void i2c_del_adapter(struct i2c_adapter *adap)
1416 {
1417 struct i2c_adapter *found;
1418 struct i2c_client *client, *next;
1419
1420 /* First make sure that this adapter was ever added */
1421 mutex_lock(&core_lock);
1422 found = idr_find(&i2c_adapter_idr, adap->nr);
1423 mutex_unlock(&core_lock);
1424 if (found != adap) {
1425 pr_debug("i2c-core: attempting to delete unregistered "
1426 "adapter [%s]\n", adap->name);
1427 return;
1428 }
1429
1430 /* Tell drivers about this removal */
1431 mutex_lock(&core_lock);
1432 bus_for_each_drv(&i2c_bus_type, NULL, adap,
1433 __process_removed_adapter);
1434 mutex_unlock(&core_lock);
1435
1436 /* Remove devices instantiated from sysfs */
1437 mutex_lock_nested(&adap->userspace_clients_lock,
1438 i2c_adapter_depth(adap));
1439 list_for_each_entry_safe(client, next, &adap->userspace_clients,
1440 detected) {
1441 dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
1442 client->addr);
1443 list_del(&client->detected);
1444 i2c_unregister_device(client);
1445 }
1446 mutex_unlock(&adap->userspace_clients_lock);
1447
1448 /* Detach any active clients. This can't fail, thus we do not
1449 * check the returned value. This is a two-pass process, because
1450 * we can't remove the dummy devices during the first pass: they
1451 * could have been instantiated by real devices wishing to clean
1452 * them up properly, so we give them a chance to do that first. */
1453 device_for_each_child(&adap->dev, NULL, __unregister_client);
1454 device_for_each_child(&adap->dev, NULL, __unregister_dummy);
1455
1456 #ifdef CONFIG_I2C_COMPAT
1457 class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,
1458 adap->dev.parent);
1459 #endif
1460
1461 /* device name is gone after device_unregister */
1462 dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);
1463
1464 /* clean up the sysfs representation */
1465 init_completion(&adap->dev_released);
1466 device_unregister(&adap->dev);
1467
1468 /* wait for sysfs to drop all references */
1469 wait_for_completion(&adap->dev_released);
1470
1471 /* free bus id */
1472 mutex_lock(&core_lock);
1473 idr_remove(&i2c_adapter_idr, adap->nr);
1474 mutex_unlock(&core_lock);
1475
1476 /* Clear the device structure in case this adapter is ever going to be
1477 added again */
1478 memset(&adap->dev, 0, sizeof(adap->dev));
1479 }
1480 EXPORT_SYMBOL(i2c_del_adapter);
1481
1482 /* ------------------------------------------------------------------------- */
1483
1484 int i2c_for_each_dev(void *data, int (*fn)(struct device *, void *))
1485 {
1486 int res;
1487
1488 mutex_lock(&core_lock);
1489 res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn);
1490 mutex_unlock(&core_lock);
1491
1492 return res;
1493 }
1494 EXPORT_SYMBOL_GPL(i2c_for_each_dev);
1495
1496 static int __process_new_driver(struct device *dev, void *data)
1497 {
1498 if (dev->type != &i2c_adapter_type)
1499 return 0;
1500 return i2c_do_add_adapter(data, to_i2c_adapter(dev));
1501 }
1502
1503 /*
1504 * An i2c_driver is used with one or more i2c_client (device) nodes to access
1505 * i2c slave chips, on a bus instance associated with some i2c_adapter.
1506 */
1507
1508 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
1509 {
1510 int res;
1511
1512 /* Can't register until after driver model init */
1513 if (unlikely(WARN_ON(!i2c_bus_type.p)))
1514 return -EAGAIN;
1515
1516 /* add the driver to the list of i2c drivers in the driver core */
1517 driver->driver.owner = owner;
1518 driver->driver.bus = &i2c_bus_type;
1519
1520 /* When registration returns, the driver core
1521 * will have called probe() for all matching-but-unbound devices.
1522 */
1523 res = driver_register(&driver->driver);
1524 if (res)
1525 return res;
1526
1527 /* Drivers should switch to dev_pm_ops instead. */
1528 if (driver->suspend)
1529 pr_warn("i2c-core: driver [%s] using legacy suspend method\n",
1530 driver->driver.name);
1531 if (driver->resume)
1532 pr_warn("i2c-core: driver [%s] using legacy resume method\n",
1533 driver->driver.name);
1534
1535 pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name);
1536
1537 INIT_LIST_HEAD(&driver->clients);
1538 /* Walk the adapters that are already present */
1539 i2c_for_each_dev(driver, __process_new_driver);
1540
1541 return 0;
1542 }
1543 EXPORT_SYMBOL(i2c_register_driver);
1544
1545 static int __process_removed_driver(struct device *dev, void *data)
1546 {
1547 if (dev->type == &i2c_adapter_type)
1548 i2c_do_del_adapter(data, to_i2c_adapter(dev));
1549 return 0;
1550 }
1551
1552 /**
1553 * i2c_del_driver - unregister I2C driver
1554 * @driver: the driver being unregistered
1555 * Context: can sleep
1556 */
1557 void i2c_del_driver(struct i2c_driver *driver)
1558 {
1559 i2c_for_each_dev(driver, __process_removed_driver);
1560
1561 driver_unregister(&driver->driver);
1562 pr_debug("i2c-core: driver [%s] unregistered\n", driver->driver.name);
1563 }
1564 EXPORT_SYMBOL(i2c_del_driver);
1565
1566 /* ------------------------------------------------------------------------- */
1567
1568 /**
1569 * i2c_use_client - increments the reference count of the i2c client structure
1570 * @client: the client being referenced
1571 *
1572 * Each live reference to a client should be refcounted. The driver model does
1573 * that automatically as part of driver binding, so that most drivers don't
1574 * need to do this explicitly: they hold a reference until they're unbound
1575 * from the device.
1576 *
1577 * A pointer to the client with the incremented reference counter is returned.
1578 */
1579 struct i2c_client *i2c_use_client(struct i2c_client *client)
1580 {
1581 if (client && get_device(&client->dev))
1582 return client;
1583 return NULL;
1584 }
1585 EXPORT_SYMBOL(i2c_use_client);
1586
1587 /**
1588 * i2c_release_client - release a use of the i2c client structure
1589 * @client: the client being no longer referenced
1590 *
1591 * Must be called when a user of a client is finished with it.
1592 */
1593 void i2c_release_client(struct i2c_client *client)
1594 {
1595 if (client)
1596 put_device(&client->dev);
1597 }
1598 EXPORT_SYMBOL(i2c_release_client);
1599
1600 struct i2c_cmd_arg {
1601 unsigned cmd;
1602 void *arg;
1603 };
1604
1605 static int i2c_cmd(struct device *dev, void *_arg)
1606 {
1607 struct i2c_client *client = i2c_verify_client(dev);
1608 struct i2c_cmd_arg *arg = _arg;
1609
1610 if (client && client->driver && client->driver->command)
1611 client->driver->command(client, arg->cmd, arg->arg);
1612 return 0;
1613 }
1614
1615 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg)
1616 {
1617 struct i2c_cmd_arg cmd_arg;
1618
1619 cmd_arg.cmd = cmd;
1620 cmd_arg.arg = arg;
1621 device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd);
1622 }
1623 EXPORT_SYMBOL(i2c_clients_command);
1624
1625 static int __init i2c_init(void)
1626 {
1627 int retval;
1628
1629 retval = bus_register(&i2c_bus_type);
1630 if (retval)
1631 return retval;
1632 #ifdef CONFIG_I2C_COMPAT
1633 i2c_adapter_compat_class = class_compat_register("i2c-adapter");
1634 if (!i2c_adapter_compat_class) {
1635 retval = -ENOMEM;
1636 goto bus_err;
1637 }
1638 #endif
1639 retval = i2c_add_driver(&dummy_driver);
1640 if (retval)
1641 goto class_err;
1642 return 0;
1643
1644 class_err:
1645 #ifdef CONFIG_I2C_COMPAT
1646 class_compat_unregister(i2c_adapter_compat_class);
1647 bus_err:
1648 #endif
1649 bus_unregister(&i2c_bus_type);
1650 return retval;
1651 }
1652
1653 static void __exit i2c_exit(void)
1654 {
1655 i2c_del_driver(&dummy_driver);
1656 #ifdef CONFIG_I2C_COMPAT
1657 class_compat_unregister(i2c_adapter_compat_class);
1658 #endif
1659 bus_unregister(&i2c_bus_type);
1660 }
1661
1662 /* We must initialize early, because some subsystems register i2c drivers
1663 * in subsys_initcall() code, but are linked (and initialized) before i2c.
1664 */
1665 postcore_initcall(i2c_init);
1666 module_exit(i2c_exit);
1667
1668 /* ----------------------------------------------------
1669 * the functional interface to the i2c busses.
1670 * ----------------------------------------------------
1671 */
1672
1673 /**
1674 * __i2c_transfer - unlocked flavor of i2c_transfer
1675 * @adap: Handle to I2C bus
1676 * @msgs: One or more messages to execute before STOP is issued to
1677 * terminate the operation; each message begins with a START.
1678 * @num: Number of messages to be executed.
1679 *
1680 * Returns negative errno, else the number of messages executed.
1681 *
1682 * Adapter lock must be held when calling this function. No debug logging
1683 * takes place. adap->algo->master_xfer existence isn't checked.
1684 */
1685 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1686 {
1687 unsigned long orig_jiffies;
1688 int ret, try;
1689
1690 /* Retry automatically on arbitration loss */
1691 orig_jiffies = jiffies;
1692 for (ret = 0, try = 0; try <= adap->retries; try++) {
1693 ret = adap->algo->master_xfer(adap, msgs, num);
1694 if (ret != -EAGAIN)
1695 break;
1696 if (time_after(jiffies, orig_jiffies + adap->timeout))
1697 break;
1698 }
1699
1700 return ret;
1701 }
1702 EXPORT_SYMBOL(__i2c_transfer);
1703
1704 /**
1705 * i2c_transfer - execute a single or combined I2C message
1706 * @adap: Handle to I2C bus
1707 * @msgs: One or more messages to execute before STOP is issued to
1708 * terminate the operation; each message begins with a START.
1709 * @num: Number of messages to be executed.
1710 *
1711 * Returns negative errno, else the number of messages executed.
1712 *
1713 * Note that there is no requirement that each message be sent to
1714 * the same slave address, although that is the most common model.
1715 */
1716 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1717 {
1718 int ret;
1719
1720 /* REVISIT the fault reporting model here is weak:
1721 *
1722 * - When we get an error after receiving N bytes from a slave,
1723 * there is no way to report "N".
1724 *
1725 * - When we get a NAK after transmitting N bytes to a slave,
1726 * there is no way to report "N" ... or to let the master
1727 * continue executing the rest of this combined message, if
1728 * that's the appropriate response.
1729 *
1730 * - When for example "num" is two and we successfully complete
1731 * the first message but get an error part way through the
1732 * second, it's unclear whether that should be reported as
1733 * one (discarding status on the second message) or errno
1734 * (discarding status on the first one).
1735 */
1736
1737 if (adap->algo->master_xfer) {
1738 #ifdef DEBUG
1739 for (ret = 0; ret < num; ret++) {
1740 dev_dbg(&adap->dev, "master_xfer[%d] %c, addr=0x%02x, "
1741 "len=%d%s\n", ret, (msgs[ret].flags & I2C_M_RD)
1742 ? 'R' : 'W', msgs[ret].addr, msgs[ret].len,
1743 (msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : "");
1744 }
1745 #endif
1746
1747 if (in_atomic() || irqs_disabled()) {
1748 ret = i2c_trylock_adapter(adap);
1749 if (!ret)
1750 /* I2C activity is ongoing. */
1751 return -EAGAIN;
1752 } else {
1753 i2c_lock_adapter(adap);
1754 }
1755
1756 ret = __i2c_transfer(adap, msgs, num);
1757 i2c_unlock_adapter(adap);
1758
1759 return ret;
1760 } else {
1761 dev_dbg(&adap->dev, "I2C level transfers not supported\n");
1762 return -EOPNOTSUPP;
1763 }
1764 }
1765 EXPORT_SYMBOL(i2c_transfer);
1766
1767 /**
1768 * i2c_master_send - issue a single I2C message in master transmit mode
1769 * @client: Handle to slave device
1770 * @buf: Data that will be written to the slave
1771 * @count: How many bytes to write, must be less than 64k since msg.len is u16
1772 *
1773 * Returns negative errno, or else the number of bytes written.
1774 */
1775 int i2c_master_send(const struct i2c_client *client, const char *buf, int count)
1776 {
1777 int ret;
1778 struct i2c_adapter *adap = client->adapter;
1779 struct i2c_msg msg;
1780
1781 msg.addr = client->addr;
1782 msg.flags = client->flags & I2C_M_TEN;
1783 msg.len = count;
1784 msg.buf = (char *)buf;
1785
1786 ret = i2c_transfer(adap, &msg, 1);
1787
1788 /*
1789 * If everything went ok (i.e. 1 msg transmitted), return #bytes
1790 * transmitted, else error code.
1791 */
1792 return (ret == 1) ? count : ret;
1793 }
1794 EXPORT_SYMBOL(i2c_master_send);
1795
1796 /**
1797 * i2c_master_recv - issue a single I2C message in master receive mode
1798 * @client: Handle to slave device
1799 * @buf: Where to store data read from slave
1800 * @count: How many bytes to read, must be less than 64k since msg.len is u16
1801 *
1802 * Returns negative errno, or else the number of bytes read.
1803 */
1804 int i2c_master_recv(const struct i2c_client *client, char *buf, int count)
1805 {
1806 struct i2c_adapter *adap = client->adapter;
1807 struct i2c_msg msg;
1808 int ret;
1809
1810 msg.addr = client->addr;
1811 msg.flags = client->flags & I2C_M_TEN;
1812 msg.flags |= I2C_M_RD;
1813 msg.len = count;
1814 msg.buf = buf;
1815
1816 ret = i2c_transfer(adap, &msg, 1);
1817
1818 /*
1819 * If everything went ok (i.e. 1 msg received), return #bytes received,
1820 * else error code.
1821 */
1822 return (ret == 1) ? count : ret;
1823 }
1824 EXPORT_SYMBOL(i2c_master_recv);
1825
1826 /* ----------------------------------------------------
1827 * the i2c address scanning function
1828 * Will not work for 10-bit addresses!
1829 * ----------------------------------------------------
1830 */
1831
1832 /*
1833 * Legacy default probe function, mostly relevant for SMBus. The default
1834 * probe method is a quick write, but it is known to corrupt the 24RF08
1835 * EEPROMs due to a state machine bug, and could also irreversibly
1836 * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f,
1837 * we use a short byte read instead. Also, some bus drivers don't implement
1838 * quick write, so we fallback to a byte read in that case too.
1839 * On x86, there is another special case for FSC hardware monitoring chips,
1840 * which want regular byte reads (address 0x73.) Fortunately, these are the
1841 * only known chips using this I2C address on PC hardware.
1842 * Returns 1 if probe succeeded, 0 if not.
1843 */
1844 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr)
1845 {
1846 int err;
1847 union i2c_smbus_data dummy;
1848
1849 #ifdef CONFIG_X86
1850 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON)
1851 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
1852 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1853 I2C_SMBUS_BYTE_DATA, &dummy);
1854 else
1855 #endif
1856 if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50)
1857 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
1858 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
1859 I2C_SMBUS_QUICK, NULL);
1860 else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE))
1861 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1862 I2C_SMBUS_BYTE, &dummy);
1863 else {
1864 dev_warn(&adap->dev, "No suitable probing method supported for address 0x%02X\n",
1865 addr);
1866 err = -EOPNOTSUPP;
1867 }
1868
1869 return err >= 0;
1870 }
1871
1872 static int i2c_detect_address(struct i2c_client *temp_client,
1873 struct i2c_driver *driver)
1874 {
1875 struct i2c_board_info info;
1876 struct i2c_adapter *adapter = temp_client->adapter;
1877 int addr = temp_client->addr;
1878 int err;
1879
1880 /* Make sure the address is valid */
1881 err = i2c_check_addr_validity(addr);
1882 if (err) {
1883 dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
1884 addr);
1885 return err;
1886 }
1887
1888 /* Skip if already in use */
1889 if (i2c_check_addr_busy(adapter, addr))
1890 return 0;
1891
1892 /* Make sure there is something at this address */
1893 if (!i2c_default_probe(adapter, addr))
1894 return 0;
1895
1896 /* Finally call the custom detection function */
1897 memset(&info, 0, sizeof(struct i2c_board_info));
1898 info.addr = addr;
1899 err = driver->detect(temp_client, &info);
1900 if (err) {
1901 /* -ENODEV is returned if the detection fails. We catch it
1902 here as this isn't an error. */
1903 return err == -ENODEV ? 0 : err;
1904 }
1905
1906 /* Consistency check */
1907 if (info.type[0] == '\0') {
1908 dev_err(&adapter->dev, "%s detection function provided "
1909 "no name for 0x%x\n", driver->driver.name,
1910 addr);
1911 } else {
1912 struct i2c_client *client;
1913
1914 /* Detection succeeded, instantiate the device */
1915 dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
1916 info.type, info.addr);
1917 client = i2c_new_device(adapter, &info);
1918 if (client)
1919 list_add_tail(&client->detected, &driver->clients);
1920 else
1921 dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
1922 info.type, info.addr);
1923 }
1924 return 0;
1925 }
1926
1927 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
1928 {
1929 const unsigned short *address_list;
1930 struct i2c_client *temp_client;
1931 int i, err = 0;
1932 int adap_id = i2c_adapter_id(adapter);
1933
1934 address_list = driver->address_list;
1935 if (!driver->detect || !address_list)
1936 return 0;
1937
1938 /* Stop here if the classes do not match */
1939 if (!(adapter->class & driver->class))
1940 return 0;
1941
1942 /* Set up a temporary client to help detect callback */
1943 temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
1944 if (!temp_client)
1945 return -ENOMEM;
1946 temp_client->adapter = adapter;
1947
1948 for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
1949 dev_dbg(&adapter->dev, "found normal entry for adapter %d, "
1950 "addr 0x%02x\n", adap_id, address_list[i]);
1951 temp_client->addr = address_list[i];
1952 err = i2c_detect_address(temp_client, driver);
1953 if (unlikely(err))
1954 break;
1955 }
1956
1957 kfree(temp_client);
1958 return err;
1959 }
1960
1961 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr)
1962 {
1963 return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1964 I2C_SMBUS_QUICK, NULL) >= 0;
1965 }
1966 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read);
1967
1968 struct i2c_client *
1969 i2c_new_probed_device(struct i2c_adapter *adap,
1970 struct i2c_board_info *info,
1971 unsigned short const *addr_list,
1972 int (*probe)(struct i2c_adapter *, unsigned short addr))
1973 {
1974 int i;
1975
1976 if (!probe)
1977 probe = i2c_default_probe;
1978
1979 for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
1980 /* Check address validity */
1981 if (i2c_check_addr_validity(addr_list[i]) < 0) {
1982 dev_warn(&adap->dev, "Invalid 7-bit address "
1983 "0x%02x\n", addr_list[i]);
1984 continue;
1985 }
1986
1987 /* Check address availability */
1988 if (i2c_check_addr_busy(adap, addr_list[i])) {
1989 dev_dbg(&adap->dev, "Address 0x%02x already in "
1990 "use, not probing\n", addr_list[i]);
1991 continue;
1992 }
1993
1994 /* Test address responsiveness */
1995 if (probe(adap, addr_list[i]))
1996 break;
1997 }
1998
1999 if (addr_list[i] == I2C_CLIENT_END) {
2000 dev_dbg(&adap->dev, "Probing failed, no device found\n");
2001 return NULL;
2002 }
2003
2004 info->addr = addr_list[i];
2005 return i2c_new_device(adap, info);
2006 }
2007 EXPORT_SYMBOL_GPL(i2c_new_probed_device);
2008
2009 struct i2c_adapter *i2c_get_adapter(int nr)
2010 {
2011 struct i2c_adapter *adapter;
2012
2013 mutex_lock(&core_lock);
2014 adapter = idr_find(&i2c_adapter_idr, nr);
2015 if (adapter && !try_module_get(adapter->owner))
2016 adapter = NULL;
2017
2018 mutex_unlock(&core_lock);
2019 return adapter;
2020 }
2021 EXPORT_SYMBOL(i2c_get_adapter);
2022
2023 void i2c_put_adapter(struct i2c_adapter *adap)
2024 {
2025 if (adap)
2026 module_put(adap->owner);
2027 }
2028 EXPORT_SYMBOL(i2c_put_adapter);
2029
2030 /* The SMBus parts */
2031
2032 #define POLY (0x1070U << 3)
2033 static u8 crc8(u16 data)
2034 {
2035 int i;
2036
2037 for (i = 0; i < 8; i++) {
2038 if (data & 0x8000)
2039 data = data ^ POLY;
2040 data = data << 1;
2041 }
2042 return (u8)(data >> 8);
2043 }
2044
2045 /* Incremental CRC8 over count bytes in the array pointed to by p */
2046 static u8 i2c_smbus_pec(u8 crc, u8 *p, size_t count)
2047 {
2048 int i;
2049
2050 for (i = 0; i < count; i++)
2051 crc = crc8((crc ^ p[i]) << 8);
2052 return crc;
2053 }
2054
2055 /* Assume a 7-bit address, which is reasonable for SMBus */
2056 static u8 i2c_smbus_msg_pec(u8 pec, struct i2c_msg *msg)
2057 {
2058 /* The address will be sent first */
2059 u8 addr = (msg->addr << 1) | !!(msg->flags & I2C_M_RD);
2060 pec = i2c_smbus_pec(pec, &addr, 1);
2061
2062 /* The data buffer follows */
2063 return i2c_smbus_pec(pec, msg->buf, msg->len);
2064 }
2065
2066 /* Used for write only transactions */
2067 static inline void i2c_smbus_add_pec(struct i2c_msg *msg)
2068 {
2069 msg->buf[msg->len] = i2c_smbus_msg_pec(0, msg);
2070 msg->len++;
2071 }
2072
2073 /* Return <0 on CRC error
2074 If there was a write before this read (most cases) we need to take the
2075 partial CRC from the write part into account.
2076 Note that this function does modify the message (we need to decrease the
2077 message length to hide the CRC byte from the caller). */
2078 static int i2c_smbus_check_pec(u8 cpec, struct i2c_msg *msg)
2079 {
2080 u8 rpec = msg->buf[--msg->len];
2081 cpec = i2c_smbus_msg_pec(cpec, msg);
2082
2083 if (rpec != cpec) {
2084 pr_debug("i2c-core: Bad PEC 0x%02x vs. 0x%02x\n",
2085 rpec, cpec);
2086 return -EBADMSG;
2087 }
2088 return 0;
2089 }
2090
2091 /**
2092 * i2c_smbus_read_byte - SMBus "receive byte" protocol
2093 * @client: Handle to slave device
2094 *
2095 * This executes the SMBus "receive byte" protocol, returning negative errno
2096 * else the byte received from the device.
2097 */
2098 s32 i2c_smbus_read_byte(const struct i2c_client *client)
2099 {
2100 union i2c_smbus_data data;
2101 int status;
2102
2103 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2104 I2C_SMBUS_READ, 0,
2105 I2C_SMBUS_BYTE, &data);
2106 return (status < 0) ? status : data.byte;
2107 }
2108 EXPORT_SYMBOL(i2c_smbus_read_byte);
2109
2110 /**
2111 * i2c_smbus_write_byte - SMBus "send byte" protocol
2112 * @client: Handle to slave device
2113 * @value: Byte to be sent
2114 *
2115 * This executes the SMBus "send byte" protocol, returning negative errno
2116 * else zero on success.
2117 */
2118 s32 i2c_smbus_write_byte(const struct i2c_client *client, u8 value)
2119 {
2120 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2121 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
2122 }
2123 EXPORT_SYMBOL(i2c_smbus_write_byte);
2124
2125 /**
2126 * i2c_smbus_read_byte_data - SMBus "read byte" protocol
2127 * @client: Handle to slave device
2128 * @command: Byte interpreted by slave
2129 *
2130 * This executes the SMBus "read byte" protocol, returning negative errno
2131 * else a data byte received from the device.
2132 */
2133 s32 i2c_smbus_read_byte_data(const struct i2c_client *client, u8 command)
2134 {
2135 union i2c_smbus_data data;
2136 int status;
2137
2138 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2139 I2C_SMBUS_READ, command,
2140 I2C_SMBUS_BYTE_DATA, &data);
2141 return (status < 0) ? status : data.byte;
2142 }
2143 EXPORT_SYMBOL(i2c_smbus_read_byte_data);
2144
2145 /**
2146 * i2c_smbus_write_byte_data - SMBus "write byte" protocol
2147 * @client: Handle to slave device
2148 * @command: Byte interpreted by slave
2149 * @value: Byte being written
2150 *
2151 * This executes the SMBus "write byte" protocol, returning negative errno
2152 * else zero on success.
2153 */
2154 s32 i2c_smbus_write_byte_data(const struct i2c_client *client, u8 command,
2155 u8 value)
2156 {
2157 union i2c_smbus_data data;
2158 data.byte = value;
2159 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2160 I2C_SMBUS_WRITE, command,
2161 I2C_SMBUS_BYTE_DATA, &data);
2162 }
2163 EXPORT_SYMBOL(i2c_smbus_write_byte_data);
2164
2165 /**
2166 * i2c_smbus_read_word_data - SMBus "read word" protocol
2167 * @client: Handle to slave device
2168 * @command: Byte interpreted by slave
2169 *
2170 * This executes the SMBus "read word" protocol, returning negative errno
2171 * else a 16-bit unsigned "word" received from the device.
2172 */
2173 s32 i2c_smbus_read_word_data(const struct i2c_client *client, u8 command)
2174 {
2175 union i2c_smbus_data data;
2176 int status;
2177
2178 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2179 I2C_SMBUS_READ, command,
2180 I2C_SMBUS_WORD_DATA, &data);
2181 return (status < 0) ? status : data.word;
2182 }
2183 EXPORT_SYMBOL(i2c_smbus_read_word_data);
2184
2185 /**
2186 * i2c_smbus_write_word_data - SMBus "write word" protocol
2187 * @client: Handle to slave device
2188 * @command: Byte interpreted by slave
2189 * @value: 16-bit "word" being written
2190 *
2191 * This executes the SMBus "write word" protocol, returning negative errno
2192 * else zero on success.
2193 */
2194 s32 i2c_smbus_write_word_data(const struct i2c_client *client, u8 command,
2195 u16 value)
2196 {
2197 union i2c_smbus_data data;
2198 data.word = value;
2199 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2200 I2C_SMBUS_WRITE, command,
2201 I2C_SMBUS_WORD_DATA, &data);
2202 }
2203 EXPORT_SYMBOL(i2c_smbus_write_word_data);
2204
2205 /**
2206 * i2c_smbus_read_block_data - SMBus "block read" protocol
2207 * @client: Handle to slave device
2208 * @command: Byte interpreted by slave
2209 * @values: Byte array into which data will be read; big enough to hold
2210 * the data returned by the slave. SMBus allows at most 32 bytes.
2211 *
2212 * This executes the SMBus "block read" protocol, returning negative errno
2213 * else the number of data bytes in the slave's response.
2214 *
2215 * Note that using this function requires that the client's adapter support
2216 * the I2C_FUNC_SMBUS_READ_BLOCK_DATA functionality. Not all adapter drivers
2217 * support this; its emulation through I2C messaging relies on a specific
2218 * mechanism (I2C_M_RECV_LEN) which may not be implemented.
2219 */
2220 s32 i2c_smbus_read_block_data(const struct i2c_client *client, u8 command,
2221 u8 *values)
2222 {
2223 union i2c_smbus_data data;
2224 int status;
2225
2226 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2227 I2C_SMBUS_READ, command,
2228 I2C_SMBUS_BLOCK_DATA, &data);
2229 if (status)
2230 return status;
2231
2232 memcpy(values, &data.block[1], data.block[0]);
2233 return data.block[0];
2234 }
2235 EXPORT_SYMBOL(i2c_smbus_read_block_data);
2236
2237 /**
2238 * i2c_smbus_write_block_data - SMBus "block write" protocol
2239 * @client: Handle to slave device
2240 * @command: Byte interpreted by slave
2241 * @length: Size of data block; SMBus allows at most 32 bytes
2242 * @values: Byte array which will be written.
2243 *
2244 * This executes the SMBus "block write" protocol, returning negative errno
2245 * else zero on success.
2246 */
2247 s32 i2c_smbus_write_block_data(const struct i2c_client *client, u8 command,
2248 u8 length, const u8 *values)
2249 {
2250 union i2c_smbus_data data;
2251
2252 if (length > I2C_SMBUS_BLOCK_MAX)
2253 length = I2C_SMBUS_BLOCK_MAX;
2254 data.block[0] = length;
2255 memcpy(&data.block[1], values, length);
2256 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2257 I2C_SMBUS_WRITE, command,
2258 I2C_SMBUS_BLOCK_DATA, &data);
2259 }
2260 EXPORT_SYMBOL(i2c_smbus_write_block_data);
2261
2262 /* Returns the number of read bytes */
2263 s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client, u8 command,
2264 u8 length, u8 *values)
2265 {
2266 union i2c_smbus_data data;
2267 int status;
2268
2269 if (length > I2C_SMBUS_BLOCK_MAX)
2270 length = I2C_SMBUS_BLOCK_MAX;
2271 data.block[0] = length;
2272 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2273 I2C_SMBUS_READ, command,
2274 I2C_SMBUS_I2C_BLOCK_DATA, &data);
2275 if (status < 0)
2276 return status;
2277
2278 memcpy(values, &data.block[1], data.block[0]);
2279 return data.block[0];
2280 }
2281 EXPORT_SYMBOL(i2c_smbus_read_i2c_block_data);
2282
2283 s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client, u8 command,
2284 u8 length, const u8 *values)
2285 {
2286 union i2c_smbus_data data;
2287
2288 if (length > I2C_SMBUS_BLOCK_MAX)
2289 length = I2C_SMBUS_BLOCK_MAX;
2290 data.block[0] = length;
2291 memcpy(data.block + 1, values, length);
2292 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2293 I2C_SMBUS_WRITE, command,
2294 I2C_SMBUS_I2C_BLOCK_DATA, &data);
2295 }
2296 EXPORT_SYMBOL(i2c_smbus_write_i2c_block_data);
2297
2298 /* Simulate a SMBus command using the i2c protocol
2299 No checking of parameters is done! */
2300 static s32 i2c_smbus_xfer_emulated(struct i2c_adapter *adapter, u16 addr,
2301 unsigned short flags,
2302 char read_write, u8 command, int size,
2303 union i2c_smbus_data *data)
2304 {
2305 /* So we need to generate a series of msgs. In the case of writing, we
2306 need to use only one message; when reading, we need two. We initialize
2307 most things with sane defaults, to keep the code below somewhat
2308 simpler. */
2309 unsigned char msgbuf0[I2C_SMBUS_BLOCK_MAX+3];
2310 unsigned char msgbuf1[I2C_SMBUS_BLOCK_MAX+2];
2311 int num = read_write == I2C_SMBUS_READ ? 2 : 1;
2312 int i;
2313 u8 partial_pec = 0;
2314 int status;
2315 struct i2c_msg msg[2] = {
2316 {
2317 .addr = addr,
2318 .flags = flags,
2319 .len = 1,
2320 .buf = msgbuf0,
2321 }, {
2322 .addr = addr,
2323 .flags = flags | I2C_M_RD,
2324 .len = 0,
2325 .buf = msgbuf1,
2326 },
2327 };
2328
2329 msgbuf0[0] = command;
2330 switch (size) {
2331 case I2C_SMBUS_QUICK:
2332 msg[0].len = 0;
2333 /* Special case: The read/write field is used as data */
2334 msg[0].flags = flags | (read_write == I2C_SMBUS_READ ?
2335 I2C_M_RD : 0);
2336 num = 1;
2337 break;
2338 case I2C_SMBUS_BYTE:
2339 if (read_write == I2C_SMBUS_READ) {
2340 /* Special case: only a read! */
2341 msg[0].flags = I2C_M_RD | flags;
2342 num = 1;
2343 }
2344 break;
2345 case I2C_SMBUS_BYTE_DATA:
2346 if (read_write == I2C_SMBUS_READ)
2347 msg[1].len = 1;
2348 else {
2349 msg[0].len = 2;
2350 msgbuf0[1] = data->byte;
2351 }
2352 break;
2353 case I2C_SMBUS_WORD_DATA:
2354 if (read_write == I2C_SMBUS_READ)
2355 msg[1].len = 2;
2356 else {
2357 msg[0].len = 3;
2358 msgbuf0[1] = data->word & 0xff;
2359 msgbuf0[2] = data->word >> 8;
2360 }
2361 break;
2362 case I2C_SMBUS_PROC_CALL:
2363 num = 2; /* Special case */
2364 read_write = I2C_SMBUS_READ;
2365 msg[0].len = 3;
2366 msg[1].len = 2;
2367 msgbuf0[1] = data->word & 0xff;
2368 msgbuf0[2] = data->word >> 8;
2369 break;
2370 case I2C_SMBUS_BLOCK_DATA:
2371 if (read_write == I2C_SMBUS_READ) {
2372 msg[1].flags |= I2C_M_RECV_LEN;
2373 msg[1].len = 1; /* block length will be added by
2374 the underlying bus driver */
2375 } else {
2376 msg[0].len = data->block[0] + 2;
2377 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 2) {
2378 dev_err(&adapter->dev,
2379 "Invalid block write size %d\n",
2380 data->block[0]);
2381 return -EINVAL;
2382 }
2383 for (i = 1; i < msg[0].len; i++)
2384 msgbuf0[i] = data->block[i-1];
2385 }
2386 break;
2387 case I2C_SMBUS_BLOCK_PROC_CALL:
2388 num = 2; /* Another special case */
2389 read_write = I2C_SMBUS_READ;
2390 if (data->block[0] > I2C_SMBUS_BLOCK_MAX) {
2391 dev_err(&adapter->dev,
2392 "Invalid block write size %d\n",
2393 data->block[0]);
2394 return -EINVAL;
2395 }
2396 msg[0].len = data->block[0] + 2;
2397 for (i = 1; i < msg[0].len; i++)
2398 msgbuf0[i] = data->block[i-1];
2399 msg[1].flags |= I2C_M_RECV_LEN;
2400 msg[1].len = 1; /* block length will be added by
2401 the underlying bus driver */
2402 break;
2403 case I2C_SMBUS_I2C_BLOCK_DATA:
2404 if (read_write == I2C_SMBUS_READ) {
2405 msg[1].len = data->block[0];
2406 } else {
2407 msg[0].len = data->block[0] + 1;
2408 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 1) {
2409 dev_err(&adapter->dev,
2410 "Invalid block write size %d\n",
2411 data->block[0]);
2412 return -EINVAL;
2413 }
2414 for (i = 1; i <= data->block[0]; i++)
2415 msgbuf0[i] = data->block[i];
2416 }
2417 break;
2418 default:
2419 dev_err(&adapter->dev, "Unsupported transaction %d\n", size);
2420 return -EOPNOTSUPP;
2421 }
2422
2423 i = ((flags & I2C_CLIENT_PEC) && size != I2C_SMBUS_QUICK
2424 && size != I2C_SMBUS_I2C_BLOCK_DATA);
2425 if (i) {
2426 /* Compute PEC if first message is a write */
2427 if (!(msg[0].flags & I2C_M_RD)) {
2428 if (num == 1) /* Write only */
2429 i2c_smbus_add_pec(&msg[0]);
2430 else /* Write followed by read */
2431 partial_pec = i2c_smbus_msg_pec(0, &msg[0]);
2432 }
2433 /* Ask for PEC if last message is a read */
2434 if (msg[num-1].flags & I2C_M_RD)
2435 msg[num-1].len++;
2436 }
2437
2438 status = i2c_transfer(adapter, msg, num);
2439 if (status < 0)
2440 return status;
2441
2442 /* Check PEC if last message is a read */
2443 if (i && (msg[num-1].flags & I2C_M_RD)) {
2444 status = i2c_smbus_check_pec(partial_pec, &msg[num-1]);
2445 if (status < 0)
2446 return status;
2447 }
2448
2449 if (read_write == I2C_SMBUS_READ)
2450 switch (size) {
2451 case I2C_SMBUS_BYTE:
2452 data->byte = msgbuf0[0];
2453 break;
2454 case I2C_SMBUS_BYTE_DATA:
2455 data->byte = msgbuf1[0];
2456 break;
2457 case I2C_SMBUS_WORD_DATA:
2458 case I2C_SMBUS_PROC_CALL:
2459 data->word = msgbuf1[0] | (msgbuf1[1] << 8);
2460 break;
2461 case I2C_SMBUS_I2C_BLOCK_DATA:
2462 for (i = 0; i < data->block[0]; i++)
2463 data->block[i+1] = msgbuf1[i];
2464 break;
2465 case I2C_SMBUS_BLOCK_DATA:
2466 case I2C_SMBUS_BLOCK_PROC_CALL:
2467 for (i = 0; i < msgbuf1[0] + 1; i++)
2468 data->block[i] = msgbuf1[i];
2469 break;
2470 }
2471 return 0;
2472 }
2473
2474 /**
2475 * i2c_smbus_xfer - execute SMBus protocol operations
2476 * @adapter: Handle to I2C bus
2477 * @addr: Address of SMBus slave on that bus
2478 * @flags: I2C_CLIENT_* flags (usually zero or I2C_CLIENT_PEC)
2479 * @read_write: I2C_SMBUS_READ or I2C_SMBUS_WRITE
2480 * @command: Byte interpreted by slave, for protocols which use such bytes
2481 * @protocol: SMBus protocol operation to execute, such as I2C_SMBUS_PROC_CALL
2482 * @data: Data to be read or written
2483 *
2484 * This executes an SMBus protocol operation, and returns a negative
2485 * errno code else zero on success.
2486 */
2487 s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr, unsigned short flags,
2488 char read_write, u8 command, int protocol,
2489 union i2c_smbus_data *data)
2490 {
2491 unsigned long orig_jiffies;
2492 int try;
2493 s32 res;
2494
2495 flags &= I2C_M_TEN | I2C_CLIENT_PEC | I2C_CLIENT_SCCB;
2496
2497 if (adapter->algo->smbus_xfer) {
2498 i2c_lock_adapter(adapter);
2499
2500 /* Retry automatically on arbitration loss */
2501 orig_jiffies = jiffies;
2502 for (res = 0, try = 0; try <= adapter->retries; try++) {
2503 res = adapter->algo->smbus_xfer(adapter, addr, flags,
2504 read_write, command,
2505 protocol, data);
2506 if (res != -EAGAIN)
2507 break;
2508 if (time_after(jiffies,
2509 orig_jiffies + adapter->timeout))
2510 break;
2511 }
2512 i2c_unlock_adapter(adapter);
2513
2514 if (res != -EOPNOTSUPP || !adapter->algo->master_xfer)
2515 return res;
2516 /*
2517 * Fall back to i2c_smbus_xfer_emulated if the adapter doesn't
2518 * implement native support for the SMBus operation.
2519 */
2520 }
2521
2522 return i2c_smbus_xfer_emulated(adapter, addr, flags, read_write,
2523 command, protocol, data);
2524 }
2525 EXPORT_SYMBOL(i2c_smbus_xfer);
2526
2527 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
2528 MODULE_DESCRIPTION("I2C-Bus main module");
2529 MODULE_LICENSE("GPL");
This page took 0.083154 seconds and 5 git commands to generate.