Merge remote-tracking branch 'asoc/topic/pcm1681' into asoc-next
[deliverable/linux.git] / drivers / i2c / i2c-core.c
1 /* i2c-core.c - a device driver for the iic-bus interface */
2 /* ------------------------------------------------------------------------- */
3 /* Copyright (C) 1995-99 Simon G. Vogl
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
18 MA 02110-1301 USA. */
19 /* ------------------------------------------------------------------------- */
20
21 /* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>.
22 All SMBus-related things are written by Frodo Looijaard <frodol@dds.nl>
23 SMBus 2.0 support by Mark Studebaker <mdsxyz123@yahoo.com> and
24 Jean Delvare <khali@linux-fr.org>
25 Mux support by Rodolfo Giometti <giometti@enneenne.com> and
26 Michael Lawnick <michael.lawnick.ext@nsn.com>
27 OF support is copyright (c) 2008 Jochen Friedrich <jochen@scram.de>
28 (based on a previous patch from Jon Smirl <jonsmirl@gmail.com>) and
29 (c) 2013 Wolfram Sang <wsa@the-dreams.de>
30 */
31
32 #include <linux/module.h>
33 #include <linux/kernel.h>
34 #include <linux/delay.h>
35 #include <linux/errno.h>
36 #include <linux/gpio.h>
37 #include <linux/slab.h>
38 #include <linux/i2c.h>
39 #include <linux/init.h>
40 #include <linux/idr.h>
41 #include <linux/mutex.h>
42 #include <linux/of.h>
43 #include <linux/of_device.h>
44 #include <linux/of_irq.h>
45 #include <linux/completion.h>
46 #include <linux/hardirq.h>
47 #include <linux/irqflags.h>
48 #include <linux/rwsem.h>
49 #include <linux/pm_runtime.h>
50 #include <linux/acpi.h>
51 #include <asm/uaccess.h>
52
53 #include "i2c-core.h"
54
55
56 /* core_lock protects i2c_adapter_idr, and guarantees
57 that device detection, deletion of detected devices, and attach_adapter
58 calls are serialized */
59 static DEFINE_MUTEX(core_lock);
60 static DEFINE_IDR(i2c_adapter_idr);
61
62 static struct device_type i2c_client_type;
63 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver);
64
65 /* ------------------------------------------------------------------------- */
66
67 static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
68 const struct i2c_client *client)
69 {
70 while (id->name[0]) {
71 if (strcmp(client->name, id->name) == 0)
72 return id;
73 id++;
74 }
75 return NULL;
76 }
77
78 static int i2c_device_match(struct device *dev, struct device_driver *drv)
79 {
80 struct i2c_client *client = i2c_verify_client(dev);
81 struct i2c_driver *driver;
82
83 if (!client)
84 return 0;
85
86 /* Attempt an OF style match */
87 if (of_driver_match_device(dev, drv))
88 return 1;
89
90 /* Then ACPI style match */
91 if (acpi_driver_match_device(dev, drv))
92 return 1;
93
94 driver = to_i2c_driver(drv);
95 /* match on an id table if there is one */
96 if (driver->id_table)
97 return i2c_match_id(driver->id_table, client) != NULL;
98
99 return 0;
100 }
101
102
103 /* uevent helps with hotplug: modprobe -q $(MODALIAS) */
104 static int i2c_device_uevent(struct device *dev, struct kobj_uevent_env *env)
105 {
106 struct i2c_client *client = to_i2c_client(dev);
107
108 if (add_uevent_var(env, "MODALIAS=%s%s",
109 I2C_MODULE_PREFIX, client->name))
110 return -ENOMEM;
111 dev_dbg(dev, "uevent\n");
112 return 0;
113 }
114
115 /* i2c bus recovery routines */
116 static int get_scl_gpio_value(struct i2c_adapter *adap)
117 {
118 return gpio_get_value(adap->bus_recovery_info->scl_gpio);
119 }
120
121 static void set_scl_gpio_value(struct i2c_adapter *adap, int val)
122 {
123 gpio_set_value(adap->bus_recovery_info->scl_gpio, val);
124 }
125
126 static int get_sda_gpio_value(struct i2c_adapter *adap)
127 {
128 return gpio_get_value(adap->bus_recovery_info->sda_gpio);
129 }
130
131 static int i2c_get_gpios_for_recovery(struct i2c_adapter *adap)
132 {
133 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
134 struct device *dev = &adap->dev;
135 int ret = 0;
136
137 ret = gpio_request_one(bri->scl_gpio, GPIOF_OPEN_DRAIN |
138 GPIOF_OUT_INIT_HIGH, "i2c-scl");
139 if (ret) {
140 dev_warn(dev, "Can't get SCL gpio: %d\n", bri->scl_gpio);
141 return ret;
142 }
143
144 if (bri->get_sda) {
145 if (gpio_request_one(bri->sda_gpio, GPIOF_IN, "i2c-sda")) {
146 /* work without SDA polling */
147 dev_warn(dev, "Can't get SDA gpio: %d. Not using SDA polling\n",
148 bri->sda_gpio);
149 bri->get_sda = NULL;
150 }
151 }
152
153 return ret;
154 }
155
156 static void i2c_put_gpios_for_recovery(struct i2c_adapter *adap)
157 {
158 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
159
160 if (bri->get_sda)
161 gpio_free(bri->sda_gpio);
162
163 gpio_free(bri->scl_gpio);
164 }
165
166 /*
167 * We are generating clock pulses. ndelay() determines durating of clk pulses.
168 * We will generate clock with rate 100 KHz and so duration of both clock levels
169 * is: delay in ns = (10^6 / 100) / 2
170 */
171 #define RECOVERY_NDELAY 5000
172 #define RECOVERY_CLK_CNT 9
173
174 static int i2c_generic_recovery(struct i2c_adapter *adap)
175 {
176 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
177 int i = 0, val = 1, ret = 0;
178
179 if (bri->prepare_recovery)
180 bri->prepare_recovery(bri);
181
182 /*
183 * By this time SCL is high, as we need to give 9 falling-rising edges
184 */
185 while (i++ < RECOVERY_CLK_CNT * 2) {
186 if (val) {
187 /* Break if SDA is high */
188 if (bri->get_sda && bri->get_sda(adap))
189 break;
190 /* SCL shouldn't be low here */
191 if (!bri->get_scl(adap)) {
192 dev_err(&adap->dev,
193 "SCL is stuck low, exit recovery\n");
194 ret = -EBUSY;
195 break;
196 }
197 }
198
199 val = !val;
200 bri->set_scl(adap, val);
201 ndelay(RECOVERY_NDELAY);
202 }
203
204 if (bri->unprepare_recovery)
205 bri->unprepare_recovery(bri);
206
207 return ret;
208 }
209
210 int i2c_generic_scl_recovery(struct i2c_adapter *adap)
211 {
212 adap->bus_recovery_info->set_scl(adap, 1);
213 return i2c_generic_recovery(adap);
214 }
215
216 int i2c_generic_gpio_recovery(struct i2c_adapter *adap)
217 {
218 int ret;
219
220 ret = i2c_get_gpios_for_recovery(adap);
221 if (ret)
222 return ret;
223
224 ret = i2c_generic_recovery(adap);
225 i2c_put_gpios_for_recovery(adap);
226
227 return ret;
228 }
229
230 int i2c_recover_bus(struct i2c_adapter *adap)
231 {
232 if (!adap->bus_recovery_info)
233 return -EOPNOTSUPP;
234
235 dev_dbg(&adap->dev, "Trying i2c bus recovery\n");
236 return adap->bus_recovery_info->recover_bus(adap);
237 }
238
239 static int i2c_device_probe(struct device *dev)
240 {
241 struct i2c_client *client = i2c_verify_client(dev);
242 struct i2c_driver *driver;
243 int status;
244
245 if (!client)
246 return 0;
247
248 driver = to_i2c_driver(dev->driver);
249 if (!driver->probe || !driver->id_table)
250 return -ENODEV;
251 client->driver = driver;
252 if (!device_can_wakeup(&client->dev))
253 device_init_wakeup(&client->dev,
254 client->flags & I2C_CLIENT_WAKE);
255 dev_dbg(dev, "probe\n");
256
257 status = driver->probe(client, i2c_match_id(driver->id_table, client));
258 if (status) {
259 client->driver = NULL;
260 i2c_set_clientdata(client, NULL);
261 }
262 return status;
263 }
264
265 static int i2c_device_remove(struct device *dev)
266 {
267 struct i2c_client *client = i2c_verify_client(dev);
268 struct i2c_driver *driver;
269 int status;
270
271 if (!client || !dev->driver)
272 return 0;
273
274 driver = to_i2c_driver(dev->driver);
275 if (driver->remove) {
276 dev_dbg(dev, "remove\n");
277 status = driver->remove(client);
278 } else {
279 dev->driver = NULL;
280 status = 0;
281 }
282 if (status == 0) {
283 client->driver = NULL;
284 i2c_set_clientdata(client, NULL);
285 }
286 return status;
287 }
288
289 static void i2c_device_shutdown(struct device *dev)
290 {
291 struct i2c_client *client = i2c_verify_client(dev);
292 struct i2c_driver *driver;
293
294 if (!client || !dev->driver)
295 return;
296 driver = to_i2c_driver(dev->driver);
297 if (driver->shutdown)
298 driver->shutdown(client);
299 }
300
301 #ifdef CONFIG_PM_SLEEP
302 static int i2c_legacy_suspend(struct device *dev, pm_message_t mesg)
303 {
304 struct i2c_client *client = i2c_verify_client(dev);
305 struct i2c_driver *driver;
306
307 if (!client || !dev->driver)
308 return 0;
309 driver = to_i2c_driver(dev->driver);
310 if (!driver->suspend)
311 return 0;
312 return driver->suspend(client, mesg);
313 }
314
315 static int i2c_legacy_resume(struct device *dev)
316 {
317 struct i2c_client *client = i2c_verify_client(dev);
318 struct i2c_driver *driver;
319
320 if (!client || !dev->driver)
321 return 0;
322 driver = to_i2c_driver(dev->driver);
323 if (!driver->resume)
324 return 0;
325 return driver->resume(client);
326 }
327
328 static int i2c_device_pm_suspend(struct device *dev)
329 {
330 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
331
332 if (pm)
333 return pm_generic_suspend(dev);
334 else
335 return i2c_legacy_suspend(dev, PMSG_SUSPEND);
336 }
337
338 static int i2c_device_pm_resume(struct device *dev)
339 {
340 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
341
342 if (pm)
343 return pm_generic_resume(dev);
344 else
345 return i2c_legacy_resume(dev);
346 }
347
348 static int i2c_device_pm_freeze(struct device *dev)
349 {
350 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
351
352 if (pm)
353 return pm_generic_freeze(dev);
354 else
355 return i2c_legacy_suspend(dev, PMSG_FREEZE);
356 }
357
358 static int i2c_device_pm_thaw(struct device *dev)
359 {
360 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
361
362 if (pm)
363 return pm_generic_thaw(dev);
364 else
365 return i2c_legacy_resume(dev);
366 }
367
368 static int i2c_device_pm_poweroff(struct device *dev)
369 {
370 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
371
372 if (pm)
373 return pm_generic_poweroff(dev);
374 else
375 return i2c_legacy_suspend(dev, PMSG_HIBERNATE);
376 }
377
378 static int i2c_device_pm_restore(struct device *dev)
379 {
380 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
381
382 if (pm)
383 return pm_generic_restore(dev);
384 else
385 return i2c_legacy_resume(dev);
386 }
387 #else /* !CONFIG_PM_SLEEP */
388 #define i2c_device_pm_suspend NULL
389 #define i2c_device_pm_resume NULL
390 #define i2c_device_pm_freeze NULL
391 #define i2c_device_pm_thaw NULL
392 #define i2c_device_pm_poweroff NULL
393 #define i2c_device_pm_restore NULL
394 #endif /* !CONFIG_PM_SLEEP */
395
396 static void i2c_client_dev_release(struct device *dev)
397 {
398 kfree(to_i2c_client(dev));
399 }
400
401 static ssize_t
402 show_name(struct device *dev, struct device_attribute *attr, char *buf)
403 {
404 return sprintf(buf, "%s\n", dev->type == &i2c_client_type ?
405 to_i2c_client(dev)->name : to_i2c_adapter(dev)->name);
406 }
407
408 static ssize_t
409 show_modalias(struct device *dev, struct device_attribute *attr, char *buf)
410 {
411 struct i2c_client *client = to_i2c_client(dev);
412 return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name);
413 }
414
415 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
416 static DEVICE_ATTR(modalias, S_IRUGO, show_modalias, NULL);
417
418 static struct attribute *i2c_dev_attrs[] = {
419 &dev_attr_name.attr,
420 /* modalias helps coldplug: modprobe $(cat .../modalias) */
421 &dev_attr_modalias.attr,
422 NULL
423 };
424
425 static struct attribute_group i2c_dev_attr_group = {
426 .attrs = i2c_dev_attrs,
427 };
428
429 static const struct attribute_group *i2c_dev_attr_groups[] = {
430 &i2c_dev_attr_group,
431 NULL
432 };
433
434 static const struct dev_pm_ops i2c_device_pm_ops = {
435 .suspend = i2c_device_pm_suspend,
436 .resume = i2c_device_pm_resume,
437 .freeze = i2c_device_pm_freeze,
438 .thaw = i2c_device_pm_thaw,
439 .poweroff = i2c_device_pm_poweroff,
440 .restore = i2c_device_pm_restore,
441 SET_RUNTIME_PM_OPS(
442 pm_generic_runtime_suspend,
443 pm_generic_runtime_resume,
444 NULL
445 )
446 };
447
448 struct bus_type i2c_bus_type = {
449 .name = "i2c",
450 .match = i2c_device_match,
451 .probe = i2c_device_probe,
452 .remove = i2c_device_remove,
453 .shutdown = i2c_device_shutdown,
454 .pm = &i2c_device_pm_ops,
455 };
456 EXPORT_SYMBOL_GPL(i2c_bus_type);
457
458 static struct device_type i2c_client_type = {
459 .groups = i2c_dev_attr_groups,
460 .uevent = i2c_device_uevent,
461 .release = i2c_client_dev_release,
462 };
463
464
465 /**
466 * i2c_verify_client - return parameter as i2c_client, or NULL
467 * @dev: device, probably from some driver model iterator
468 *
469 * When traversing the driver model tree, perhaps using driver model
470 * iterators like @device_for_each_child(), you can't assume very much
471 * about the nodes you find. Use this function to avoid oopses caused
472 * by wrongly treating some non-I2C device as an i2c_client.
473 */
474 struct i2c_client *i2c_verify_client(struct device *dev)
475 {
476 return (dev->type == &i2c_client_type)
477 ? to_i2c_client(dev)
478 : NULL;
479 }
480 EXPORT_SYMBOL(i2c_verify_client);
481
482
483 /* This is a permissive address validity check, I2C address map constraints
484 * are purposely not enforced, except for the general call address. */
485 static int i2c_check_client_addr_validity(const struct i2c_client *client)
486 {
487 if (client->flags & I2C_CLIENT_TEN) {
488 /* 10-bit address, all values are valid */
489 if (client->addr > 0x3ff)
490 return -EINVAL;
491 } else {
492 /* 7-bit address, reject the general call address */
493 if (client->addr == 0x00 || client->addr > 0x7f)
494 return -EINVAL;
495 }
496 return 0;
497 }
498
499 /* And this is a strict address validity check, used when probing. If a
500 * device uses a reserved address, then it shouldn't be probed. 7-bit
501 * addressing is assumed, 10-bit address devices are rare and should be
502 * explicitly enumerated. */
503 static int i2c_check_addr_validity(unsigned short addr)
504 {
505 /*
506 * Reserved addresses per I2C specification:
507 * 0x00 General call address / START byte
508 * 0x01 CBUS address
509 * 0x02 Reserved for different bus format
510 * 0x03 Reserved for future purposes
511 * 0x04-0x07 Hs-mode master code
512 * 0x78-0x7b 10-bit slave addressing
513 * 0x7c-0x7f Reserved for future purposes
514 */
515 if (addr < 0x08 || addr > 0x77)
516 return -EINVAL;
517 return 0;
518 }
519
520 static int __i2c_check_addr_busy(struct device *dev, void *addrp)
521 {
522 struct i2c_client *client = i2c_verify_client(dev);
523 int addr = *(int *)addrp;
524
525 if (client && client->addr == addr)
526 return -EBUSY;
527 return 0;
528 }
529
530 /* walk up mux tree */
531 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr)
532 {
533 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
534 int result;
535
536 result = device_for_each_child(&adapter->dev, &addr,
537 __i2c_check_addr_busy);
538
539 if (!result && parent)
540 result = i2c_check_mux_parents(parent, addr);
541
542 return result;
543 }
544
545 /* recurse down mux tree */
546 static int i2c_check_mux_children(struct device *dev, void *addrp)
547 {
548 int result;
549
550 if (dev->type == &i2c_adapter_type)
551 result = device_for_each_child(dev, addrp,
552 i2c_check_mux_children);
553 else
554 result = __i2c_check_addr_busy(dev, addrp);
555
556 return result;
557 }
558
559 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr)
560 {
561 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
562 int result = 0;
563
564 if (parent)
565 result = i2c_check_mux_parents(parent, addr);
566
567 if (!result)
568 result = device_for_each_child(&adapter->dev, &addr,
569 i2c_check_mux_children);
570
571 return result;
572 }
573
574 /**
575 * i2c_lock_adapter - Get exclusive access to an I2C bus segment
576 * @adapter: Target I2C bus segment
577 */
578 void i2c_lock_adapter(struct i2c_adapter *adapter)
579 {
580 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
581
582 if (parent)
583 i2c_lock_adapter(parent);
584 else
585 rt_mutex_lock(&adapter->bus_lock);
586 }
587 EXPORT_SYMBOL_GPL(i2c_lock_adapter);
588
589 /**
590 * i2c_trylock_adapter - Try to get exclusive access to an I2C bus segment
591 * @adapter: Target I2C bus segment
592 */
593 static int i2c_trylock_adapter(struct i2c_adapter *adapter)
594 {
595 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
596
597 if (parent)
598 return i2c_trylock_adapter(parent);
599 else
600 return rt_mutex_trylock(&adapter->bus_lock);
601 }
602
603 /**
604 * i2c_unlock_adapter - Release exclusive access to an I2C bus segment
605 * @adapter: Target I2C bus segment
606 */
607 void i2c_unlock_adapter(struct i2c_adapter *adapter)
608 {
609 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
610
611 if (parent)
612 i2c_unlock_adapter(parent);
613 else
614 rt_mutex_unlock(&adapter->bus_lock);
615 }
616 EXPORT_SYMBOL_GPL(i2c_unlock_adapter);
617
618 /**
619 * i2c_new_device - instantiate an i2c device
620 * @adap: the adapter managing the device
621 * @info: describes one I2C device; bus_num is ignored
622 * Context: can sleep
623 *
624 * Create an i2c device. Binding is handled through driver model
625 * probe()/remove() methods. A driver may be bound to this device when we
626 * return from this function, or any later moment (e.g. maybe hotplugging will
627 * load the driver module). This call is not appropriate for use by mainboard
628 * initialization logic, which usually runs during an arch_initcall() long
629 * before any i2c_adapter could exist.
630 *
631 * This returns the new i2c client, which may be saved for later use with
632 * i2c_unregister_device(); or NULL to indicate an error.
633 */
634 struct i2c_client *
635 i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
636 {
637 struct i2c_client *client;
638 int status;
639
640 client = kzalloc(sizeof *client, GFP_KERNEL);
641 if (!client)
642 return NULL;
643
644 client->adapter = adap;
645
646 client->dev.platform_data = info->platform_data;
647
648 if (info->archdata)
649 client->dev.archdata = *info->archdata;
650
651 client->flags = info->flags;
652 client->addr = info->addr;
653 client->irq = info->irq;
654
655 strlcpy(client->name, info->type, sizeof(client->name));
656
657 /* Check for address validity */
658 status = i2c_check_client_addr_validity(client);
659 if (status) {
660 dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
661 client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
662 goto out_err_silent;
663 }
664
665 /* Check for address business */
666 status = i2c_check_addr_busy(adap, client->addr);
667 if (status)
668 goto out_err;
669
670 client->dev.parent = &client->adapter->dev;
671 client->dev.bus = &i2c_bus_type;
672 client->dev.type = &i2c_client_type;
673 client->dev.of_node = info->of_node;
674 ACPI_HANDLE_SET(&client->dev, info->acpi_node.handle);
675
676 /* For 10-bit clients, add an arbitrary offset to avoid collisions */
677 dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
678 client->addr | ((client->flags & I2C_CLIENT_TEN)
679 ? 0xa000 : 0));
680 status = device_register(&client->dev);
681 if (status)
682 goto out_err;
683
684 dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
685 client->name, dev_name(&client->dev));
686
687 return client;
688
689 out_err:
690 dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "
691 "(%d)\n", client->name, client->addr, status);
692 out_err_silent:
693 kfree(client);
694 return NULL;
695 }
696 EXPORT_SYMBOL_GPL(i2c_new_device);
697
698
699 /**
700 * i2c_unregister_device - reverse effect of i2c_new_device()
701 * @client: value returned from i2c_new_device()
702 * Context: can sleep
703 */
704 void i2c_unregister_device(struct i2c_client *client)
705 {
706 device_unregister(&client->dev);
707 }
708 EXPORT_SYMBOL_GPL(i2c_unregister_device);
709
710
711 static const struct i2c_device_id dummy_id[] = {
712 { "dummy", 0 },
713 { },
714 };
715
716 static int dummy_probe(struct i2c_client *client,
717 const struct i2c_device_id *id)
718 {
719 return 0;
720 }
721
722 static int dummy_remove(struct i2c_client *client)
723 {
724 return 0;
725 }
726
727 static struct i2c_driver dummy_driver = {
728 .driver.name = "dummy",
729 .probe = dummy_probe,
730 .remove = dummy_remove,
731 .id_table = dummy_id,
732 };
733
734 /**
735 * i2c_new_dummy - return a new i2c device bound to a dummy driver
736 * @adapter: the adapter managing the device
737 * @address: seven bit address to be used
738 * Context: can sleep
739 *
740 * This returns an I2C client bound to the "dummy" driver, intended for use
741 * with devices that consume multiple addresses. Examples of such chips
742 * include various EEPROMS (like 24c04 and 24c08 models).
743 *
744 * These dummy devices have two main uses. First, most I2C and SMBus calls
745 * except i2c_transfer() need a client handle; the dummy will be that handle.
746 * And second, this prevents the specified address from being bound to a
747 * different driver.
748 *
749 * This returns the new i2c client, which should be saved for later use with
750 * i2c_unregister_device(); or NULL to indicate an error.
751 */
752 struct i2c_client *i2c_new_dummy(struct i2c_adapter *adapter, u16 address)
753 {
754 struct i2c_board_info info = {
755 I2C_BOARD_INFO("dummy", address),
756 };
757
758 return i2c_new_device(adapter, &info);
759 }
760 EXPORT_SYMBOL_GPL(i2c_new_dummy);
761
762 /* ------------------------------------------------------------------------- */
763
764 /* I2C bus adapters -- one roots each I2C or SMBUS segment */
765
766 static void i2c_adapter_dev_release(struct device *dev)
767 {
768 struct i2c_adapter *adap = to_i2c_adapter(dev);
769 complete(&adap->dev_released);
770 }
771
772 /*
773 * This function is only needed for mutex_lock_nested, so it is never
774 * called unless locking correctness checking is enabled. Thus we
775 * make it inline to avoid a compiler warning. That's what gcc ends up
776 * doing anyway.
777 */
778 static inline unsigned int i2c_adapter_depth(struct i2c_adapter *adapter)
779 {
780 unsigned int depth = 0;
781
782 while ((adapter = i2c_parent_is_i2c_adapter(adapter)))
783 depth++;
784
785 return depth;
786 }
787
788 /*
789 * Let users instantiate I2C devices through sysfs. This can be used when
790 * platform initialization code doesn't contain the proper data for
791 * whatever reason. Also useful for drivers that do device detection and
792 * detection fails, either because the device uses an unexpected address,
793 * or this is a compatible device with different ID register values.
794 *
795 * Parameter checking may look overzealous, but we really don't want
796 * the user to provide incorrect parameters.
797 */
798 static ssize_t
799 i2c_sysfs_new_device(struct device *dev, struct device_attribute *attr,
800 const char *buf, size_t count)
801 {
802 struct i2c_adapter *adap = to_i2c_adapter(dev);
803 struct i2c_board_info info;
804 struct i2c_client *client;
805 char *blank, end;
806 int res;
807
808 memset(&info, 0, sizeof(struct i2c_board_info));
809
810 blank = strchr(buf, ' ');
811 if (!blank) {
812 dev_err(dev, "%s: Missing parameters\n", "new_device");
813 return -EINVAL;
814 }
815 if (blank - buf > I2C_NAME_SIZE - 1) {
816 dev_err(dev, "%s: Invalid device name\n", "new_device");
817 return -EINVAL;
818 }
819 memcpy(info.type, buf, blank - buf);
820
821 /* Parse remaining parameters, reject extra parameters */
822 res = sscanf(++blank, "%hi%c", &info.addr, &end);
823 if (res < 1) {
824 dev_err(dev, "%s: Can't parse I2C address\n", "new_device");
825 return -EINVAL;
826 }
827 if (res > 1 && end != '\n') {
828 dev_err(dev, "%s: Extra parameters\n", "new_device");
829 return -EINVAL;
830 }
831
832 client = i2c_new_device(adap, &info);
833 if (!client)
834 return -EINVAL;
835
836 /* Keep track of the added device */
837 mutex_lock(&adap->userspace_clients_lock);
838 list_add_tail(&client->detected, &adap->userspace_clients);
839 mutex_unlock(&adap->userspace_clients_lock);
840 dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device",
841 info.type, info.addr);
842
843 return count;
844 }
845
846 /*
847 * And of course let the users delete the devices they instantiated, if
848 * they got it wrong. This interface can only be used to delete devices
849 * instantiated by i2c_sysfs_new_device above. This guarantees that we
850 * don't delete devices to which some kernel code still has references.
851 *
852 * Parameter checking may look overzealous, but we really don't want
853 * the user to delete the wrong device.
854 */
855 static ssize_t
856 i2c_sysfs_delete_device(struct device *dev, struct device_attribute *attr,
857 const char *buf, size_t count)
858 {
859 struct i2c_adapter *adap = to_i2c_adapter(dev);
860 struct i2c_client *client, *next;
861 unsigned short addr;
862 char end;
863 int res;
864
865 /* Parse parameters, reject extra parameters */
866 res = sscanf(buf, "%hi%c", &addr, &end);
867 if (res < 1) {
868 dev_err(dev, "%s: Can't parse I2C address\n", "delete_device");
869 return -EINVAL;
870 }
871 if (res > 1 && end != '\n') {
872 dev_err(dev, "%s: Extra parameters\n", "delete_device");
873 return -EINVAL;
874 }
875
876 /* Make sure the device was added through sysfs */
877 res = -ENOENT;
878 mutex_lock_nested(&adap->userspace_clients_lock,
879 i2c_adapter_depth(adap));
880 list_for_each_entry_safe(client, next, &adap->userspace_clients,
881 detected) {
882 if (client->addr == addr) {
883 dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
884 "delete_device", client->name, client->addr);
885
886 list_del(&client->detected);
887 i2c_unregister_device(client);
888 res = count;
889 break;
890 }
891 }
892 mutex_unlock(&adap->userspace_clients_lock);
893
894 if (res < 0)
895 dev_err(dev, "%s: Can't find device in list\n",
896 "delete_device");
897 return res;
898 }
899
900 static DEVICE_ATTR(new_device, S_IWUSR, NULL, i2c_sysfs_new_device);
901 static DEVICE_ATTR_IGNORE_LOCKDEP(delete_device, S_IWUSR, NULL,
902 i2c_sysfs_delete_device);
903
904 static struct attribute *i2c_adapter_attrs[] = {
905 &dev_attr_name.attr,
906 &dev_attr_new_device.attr,
907 &dev_attr_delete_device.attr,
908 NULL
909 };
910
911 static struct attribute_group i2c_adapter_attr_group = {
912 .attrs = i2c_adapter_attrs,
913 };
914
915 static const struct attribute_group *i2c_adapter_attr_groups[] = {
916 &i2c_adapter_attr_group,
917 NULL
918 };
919
920 struct device_type i2c_adapter_type = {
921 .groups = i2c_adapter_attr_groups,
922 .release = i2c_adapter_dev_release,
923 };
924 EXPORT_SYMBOL_GPL(i2c_adapter_type);
925
926 /**
927 * i2c_verify_adapter - return parameter as i2c_adapter or NULL
928 * @dev: device, probably from some driver model iterator
929 *
930 * When traversing the driver model tree, perhaps using driver model
931 * iterators like @device_for_each_child(), you can't assume very much
932 * about the nodes you find. Use this function to avoid oopses caused
933 * by wrongly treating some non-I2C device as an i2c_adapter.
934 */
935 struct i2c_adapter *i2c_verify_adapter(struct device *dev)
936 {
937 return (dev->type == &i2c_adapter_type)
938 ? to_i2c_adapter(dev)
939 : NULL;
940 }
941 EXPORT_SYMBOL(i2c_verify_adapter);
942
943 #ifdef CONFIG_I2C_COMPAT
944 static struct class_compat *i2c_adapter_compat_class;
945 #endif
946
947 static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
948 {
949 struct i2c_devinfo *devinfo;
950
951 down_read(&__i2c_board_lock);
952 list_for_each_entry(devinfo, &__i2c_board_list, list) {
953 if (devinfo->busnum == adapter->nr
954 && !i2c_new_device(adapter,
955 &devinfo->board_info))
956 dev_err(&adapter->dev,
957 "Can't create device at 0x%02x\n",
958 devinfo->board_info.addr);
959 }
960 up_read(&__i2c_board_lock);
961 }
962
963 /* OF support code */
964
965 #if IS_ENABLED(CONFIG_OF)
966 static void of_i2c_register_devices(struct i2c_adapter *adap)
967 {
968 void *result;
969 struct device_node *node;
970
971 /* Only register child devices if the adapter has a node pointer set */
972 if (!adap->dev.of_node)
973 return;
974
975 dev_dbg(&adap->dev, "of_i2c: walking child nodes\n");
976
977 for_each_available_child_of_node(adap->dev.of_node, node) {
978 struct i2c_board_info info = {};
979 struct dev_archdata dev_ad = {};
980 const __be32 *addr;
981 int len;
982
983 dev_dbg(&adap->dev, "of_i2c: register %s\n", node->full_name);
984
985 if (of_modalias_node(node, info.type, sizeof(info.type)) < 0) {
986 dev_err(&adap->dev, "of_i2c: modalias failure on %s\n",
987 node->full_name);
988 continue;
989 }
990
991 addr = of_get_property(node, "reg", &len);
992 if (!addr || (len < sizeof(int))) {
993 dev_err(&adap->dev, "of_i2c: invalid reg on %s\n",
994 node->full_name);
995 continue;
996 }
997
998 info.addr = be32_to_cpup(addr);
999 if (info.addr > (1 << 10) - 1) {
1000 dev_err(&adap->dev, "of_i2c: invalid addr=%x on %s\n",
1001 info.addr, node->full_name);
1002 continue;
1003 }
1004
1005 info.irq = irq_of_parse_and_map(node, 0);
1006 info.of_node = of_node_get(node);
1007 info.archdata = &dev_ad;
1008
1009 if (of_get_property(node, "wakeup-source", NULL))
1010 info.flags |= I2C_CLIENT_WAKE;
1011
1012 request_module("%s%s", I2C_MODULE_PREFIX, info.type);
1013
1014 result = i2c_new_device(adap, &info);
1015 if (result == NULL) {
1016 dev_err(&adap->dev, "of_i2c: Failure registering %s\n",
1017 node->full_name);
1018 of_node_put(node);
1019 irq_dispose_mapping(info.irq);
1020 continue;
1021 }
1022 }
1023 }
1024
1025 static int of_dev_node_match(struct device *dev, void *data)
1026 {
1027 return dev->of_node == data;
1028 }
1029
1030 /* must call put_device() when done with returned i2c_client device */
1031 struct i2c_client *of_find_i2c_device_by_node(struct device_node *node)
1032 {
1033 struct device *dev;
1034
1035 dev = bus_find_device(&i2c_bus_type, NULL, node,
1036 of_dev_node_match);
1037 if (!dev)
1038 return NULL;
1039
1040 return i2c_verify_client(dev);
1041 }
1042 EXPORT_SYMBOL(of_find_i2c_device_by_node);
1043
1044 /* must call put_device() when done with returned i2c_adapter device */
1045 struct i2c_adapter *of_find_i2c_adapter_by_node(struct device_node *node)
1046 {
1047 struct device *dev;
1048
1049 dev = bus_find_device(&i2c_bus_type, NULL, node,
1050 of_dev_node_match);
1051 if (!dev)
1052 return NULL;
1053
1054 return i2c_verify_adapter(dev);
1055 }
1056 EXPORT_SYMBOL(of_find_i2c_adapter_by_node);
1057 #else
1058 static void of_i2c_register_devices(struct i2c_adapter *adap) { }
1059 #endif /* CONFIG_OF */
1060
1061 /* ACPI support code */
1062
1063 #if IS_ENABLED(CONFIG_ACPI)
1064 static int acpi_i2c_add_resource(struct acpi_resource *ares, void *data)
1065 {
1066 struct i2c_board_info *info = data;
1067
1068 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1069 struct acpi_resource_i2c_serialbus *sb;
1070
1071 sb = &ares->data.i2c_serial_bus;
1072 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_I2C) {
1073 info->addr = sb->slave_address;
1074 if (sb->access_mode == ACPI_I2C_10BIT_MODE)
1075 info->flags |= I2C_CLIENT_TEN;
1076 }
1077 } else if (info->irq < 0) {
1078 struct resource r;
1079
1080 if (acpi_dev_resource_interrupt(ares, 0, &r))
1081 info->irq = r.start;
1082 }
1083
1084 /* Tell the ACPI core to skip this resource */
1085 return 1;
1086 }
1087
1088 static acpi_status acpi_i2c_add_device(acpi_handle handle, u32 level,
1089 void *data, void **return_value)
1090 {
1091 struct i2c_adapter *adapter = data;
1092 struct list_head resource_list;
1093 struct i2c_board_info info;
1094 struct acpi_device *adev;
1095 int ret;
1096
1097 if (acpi_bus_get_device(handle, &adev))
1098 return AE_OK;
1099 if (acpi_bus_get_status(adev) || !adev->status.present)
1100 return AE_OK;
1101
1102 memset(&info, 0, sizeof(info));
1103 info.acpi_node.handle = handle;
1104 info.irq = -1;
1105
1106 INIT_LIST_HEAD(&resource_list);
1107 ret = acpi_dev_get_resources(adev, &resource_list,
1108 acpi_i2c_add_resource, &info);
1109 acpi_dev_free_resource_list(&resource_list);
1110
1111 if (ret < 0 || !info.addr)
1112 return AE_OK;
1113
1114 strlcpy(info.type, dev_name(&adev->dev), sizeof(info.type));
1115 if (!i2c_new_device(adapter, &info)) {
1116 dev_err(&adapter->dev,
1117 "failed to add I2C device %s from ACPI\n",
1118 dev_name(&adev->dev));
1119 }
1120
1121 return AE_OK;
1122 }
1123
1124 /**
1125 * acpi_i2c_register_devices - enumerate I2C slave devices behind adapter
1126 * @adap: pointer to adapter
1127 *
1128 * Enumerate all I2C slave devices behind this adapter by walking the ACPI
1129 * namespace. When a device is found it will be added to the Linux device
1130 * model and bound to the corresponding ACPI handle.
1131 */
1132 static void acpi_i2c_register_devices(struct i2c_adapter *adap)
1133 {
1134 acpi_handle handle;
1135 acpi_status status;
1136
1137 if (!adap->dev.parent)
1138 return;
1139
1140 handle = ACPI_HANDLE(adap->dev.parent);
1141 if (!handle)
1142 return;
1143
1144 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1145 acpi_i2c_add_device, NULL,
1146 adap, NULL);
1147 if (ACPI_FAILURE(status))
1148 dev_warn(&adap->dev, "failed to enumerate I2C slaves\n");
1149 }
1150 #else
1151 static inline void acpi_i2c_register_devices(struct i2c_adapter *adap) {}
1152 #endif /* CONFIG_ACPI */
1153
1154 static int i2c_do_add_adapter(struct i2c_driver *driver,
1155 struct i2c_adapter *adap)
1156 {
1157 /* Detect supported devices on that bus, and instantiate them */
1158 i2c_detect(adap, driver);
1159
1160 /* Let legacy drivers scan this bus for matching devices */
1161 if (driver->attach_adapter) {
1162 dev_warn(&adap->dev, "%s: attach_adapter method is deprecated\n",
1163 driver->driver.name);
1164 dev_warn(&adap->dev, "Please use another way to instantiate "
1165 "your i2c_client\n");
1166 /* We ignore the return code; if it fails, too bad */
1167 driver->attach_adapter(adap);
1168 }
1169 return 0;
1170 }
1171
1172 static int __process_new_adapter(struct device_driver *d, void *data)
1173 {
1174 return i2c_do_add_adapter(to_i2c_driver(d), data);
1175 }
1176
1177 static int i2c_register_adapter(struct i2c_adapter *adap)
1178 {
1179 int res = 0;
1180
1181 /* Can't register until after driver model init */
1182 if (unlikely(WARN_ON(!i2c_bus_type.p))) {
1183 res = -EAGAIN;
1184 goto out_list;
1185 }
1186
1187 /* Sanity checks */
1188 if (unlikely(adap->name[0] == '\0')) {
1189 pr_err("i2c-core: Attempt to register an adapter with "
1190 "no name!\n");
1191 return -EINVAL;
1192 }
1193 if (unlikely(!adap->algo)) {
1194 pr_err("i2c-core: Attempt to register adapter '%s' with "
1195 "no algo!\n", adap->name);
1196 return -EINVAL;
1197 }
1198
1199 rt_mutex_init(&adap->bus_lock);
1200 mutex_init(&adap->userspace_clients_lock);
1201 INIT_LIST_HEAD(&adap->userspace_clients);
1202
1203 /* Set default timeout to 1 second if not already set */
1204 if (adap->timeout == 0)
1205 adap->timeout = HZ;
1206
1207 dev_set_name(&adap->dev, "i2c-%d", adap->nr);
1208 adap->dev.bus = &i2c_bus_type;
1209 adap->dev.type = &i2c_adapter_type;
1210 res = device_register(&adap->dev);
1211 if (res)
1212 goto out_list;
1213
1214 dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
1215
1216 #ifdef CONFIG_I2C_COMPAT
1217 res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
1218 adap->dev.parent);
1219 if (res)
1220 dev_warn(&adap->dev,
1221 "Failed to create compatibility class link\n");
1222 #endif
1223
1224 /* bus recovery specific initialization */
1225 if (adap->bus_recovery_info) {
1226 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
1227
1228 if (!bri->recover_bus) {
1229 dev_err(&adap->dev, "No recover_bus() found, not using recovery\n");
1230 adap->bus_recovery_info = NULL;
1231 goto exit_recovery;
1232 }
1233
1234 /* Generic GPIO recovery */
1235 if (bri->recover_bus == i2c_generic_gpio_recovery) {
1236 if (!gpio_is_valid(bri->scl_gpio)) {
1237 dev_err(&adap->dev, "Invalid SCL gpio, not using recovery\n");
1238 adap->bus_recovery_info = NULL;
1239 goto exit_recovery;
1240 }
1241
1242 if (gpio_is_valid(bri->sda_gpio))
1243 bri->get_sda = get_sda_gpio_value;
1244 else
1245 bri->get_sda = NULL;
1246
1247 bri->get_scl = get_scl_gpio_value;
1248 bri->set_scl = set_scl_gpio_value;
1249 } else if (!bri->set_scl || !bri->get_scl) {
1250 /* Generic SCL recovery */
1251 dev_err(&adap->dev, "No {get|set}_gpio() found, not using recovery\n");
1252 adap->bus_recovery_info = NULL;
1253 }
1254 }
1255
1256 exit_recovery:
1257 /* create pre-declared device nodes */
1258 of_i2c_register_devices(adap);
1259 acpi_i2c_register_devices(adap);
1260
1261 if (adap->nr < __i2c_first_dynamic_bus_num)
1262 i2c_scan_static_board_info(adap);
1263
1264 /* Notify drivers */
1265 mutex_lock(&core_lock);
1266 bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
1267 mutex_unlock(&core_lock);
1268
1269 return 0;
1270
1271 out_list:
1272 mutex_lock(&core_lock);
1273 idr_remove(&i2c_adapter_idr, adap->nr);
1274 mutex_unlock(&core_lock);
1275 return res;
1276 }
1277
1278 /**
1279 * __i2c_add_numbered_adapter - i2c_add_numbered_adapter where nr is never -1
1280 * @adap: the adapter to register (with adap->nr initialized)
1281 * Context: can sleep
1282 *
1283 * See i2c_add_numbered_adapter() for details.
1284 */
1285 static int __i2c_add_numbered_adapter(struct i2c_adapter *adap)
1286 {
1287 int id;
1288
1289 mutex_lock(&core_lock);
1290 id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1,
1291 GFP_KERNEL);
1292 mutex_unlock(&core_lock);
1293 if (id < 0)
1294 return id == -ENOSPC ? -EBUSY : id;
1295
1296 return i2c_register_adapter(adap);
1297 }
1298
1299 /**
1300 * i2c_add_adapter - declare i2c adapter, use dynamic bus number
1301 * @adapter: the adapter to add
1302 * Context: can sleep
1303 *
1304 * This routine is used to declare an I2C adapter when its bus number
1305 * doesn't matter or when its bus number is specified by an dt alias.
1306 * Examples of bases when the bus number doesn't matter: I2C adapters
1307 * dynamically added by USB links or PCI plugin cards.
1308 *
1309 * When this returns zero, a new bus number was allocated and stored
1310 * in adap->nr, and the specified adapter became available for clients.
1311 * Otherwise, a negative errno value is returned.
1312 */
1313 int i2c_add_adapter(struct i2c_adapter *adapter)
1314 {
1315 struct device *dev = &adapter->dev;
1316 int id;
1317
1318 if (dev->of_node) {
1319 id = of_alias_get_id(dev->of_node, "i2c");
1320 if (id >= 0) {
1321 adapter->nr = id;
1322 return __i2c_add_numbered_adapter(adapter);
1323 }
1324 }
1325
1326 mutex_lock(&core_lock);
1327 id = idr_alloc(&i2c_adapter_idr, adapter,
1328 __i2c_first_dynamic_bus_num, 0, GFP_KERNEL);
1329 mutex_unlock(&core_lock);
1330 if (id < 0)
1331 return id;
1332
1333 adapter->nr = id;
1334
1335 return i2c_register_adapter(adapter);
1336 }
1337 EXPORT_SYMBOL(i2c_add_adapter);
1338
1339 /**
1340 * i2c_add_numbered_adapter - declare i2c adapter, use static bus number
1341 * @adap: the adapter to register (with adap->nr initialized)
1342 * Context: can sleep
1343 *
1344 * This routine is used to declare an I2C adapter when its bus number
1345 * matters. For example, use it for I2C adapters from system-on-chip CPUs,
1346 * or otherwise built in to the system's mainboard, and where i2c_board_info
1347 * is used to properly configure I2C devices.
1348 *
1349 * If the requested bus number is set to -1, then this function will behave
1350 * identically to i2c_add_adapter, and will dynamically assign a bus number.
1351 *
1352 * If no devices have pre-been declared for this bus, then be sure to
1353 * register the adapter before any dynamically allocated ones. Otherwise
1354 * the required bus ID may not be available.
1355 *
1356 * When this returns zero, the specified adapter became available for
1357 * clients using the bus number provided in adap->nr. Also, the table
1358 * of I2C devices pre-declared using i2c_register_board_info() is scanned,
1359 * and the appropriate driver model device nodes are created. Otherwise, a
1360 * negative errno value is returned.
1361 */
1362 int i2c_add_numbered_adapter(struct i2c_adapter *adap)
1363 {
1364 if (adap->nr == -1) /* -1 means dynamically assign bus id */
1365 return i2c_add_adapter(adap);
1366
1367 return __i2c_add_numbered_adapter(adap);
1368 }
1369 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
1370
1371 static void i2c_do_del_adapter(struct i2c_driver *driver,
1372 struct i2c_adapter *adapter)
1373 {
1374 struct i2c_client *client, *_n;
1375
1376 /* Remove the devices we created ourselves as the result of hardware
1377 * probing (using a driver's detect method) */
1378 list_for_each_entry_safe(client, _n, &driver->clients, detected) {
1379 if (client->adapter == adapter) {
1380 dev_dbg(&adapter->dev, "Removing %s at 0x%x\n",
1381 client->name, client->addr);
1382 list_del(&client->detected);
1383 i2c_unregister_device(client);
1384 }
1385 }
1386 }
1387
1388 static int __unregister_client(struct device *dev, void *dummy)
1389 {
1390 struct i2c_client *client = i2c_verify_client(dev);
1391 if (client && strcmp(client->name, "dummy"))
1392 i2c_unregister_device(client);
1393 return 0;
1394 }
1395
1396 static int __unregister_dummy(struct device *dev, void *dummy)
1397 {
1398 struct i2c_client *client = i2c_verify_client(dev);
1399 if (client)
1400 i2c_unregister_device(client);
1401 return 0;
1402 }
1403
1404 static int __process_removed_adapter(struct device_driver *d, void *data)
1405 {
1406 i2c_do_del_adapter(to_i2c_driver(d), data);
1407 return 0;
1408 }
1409
1410 /**
1411 * i2c_del_adapter - unregister I2C adapter
1412 * @adap: the adapter being unregistered
1413 * Context: can sleep
1414 *
1415 * This unregisters an I2C adapter which was previously registered
1416 * by @i2c_add_adapter or @i2c_add_numbered_adapter.
1417 */
1418 void i2c_del_adapter(struct i2c_adapter *adap)
1419 {
1420 struct i2c_adapter *found;
1421 struct i2c_client *client, *next;
1422
1423 /* First make sure that this adapter was ever added */
1424 mutex_lock(&core_lock);
1425 found = idr_find(&i2c_adapter_idr, adap->nr);
1426 mutex_unlock(&core_lock);
1427 if (found != adap) {
1428 pr_debug("i2c-core: attempting to delete unregistered "
1429 "adapter [%s]\n", adap->name);
1430 return;
1431 }
1432
1433 /* Tell drivers about this removal */
1434 mutex_lock(&core_lock);
1435 bus_for_each_drv(&i2c_bus_type, NULL, adap,
1436 __process_removed_adapter);
1437 mutex_unlock(&core_lock);
1438
1439 /* Remove devices instantiated from sysfs */
1440 mutex_lock_nested(&adap->userspace_clients_lock,
1441 i2c_adapter_depth(adap));
1442 list_for_each_entry_safe(client, next, &adap->userspace_clients,
1443 detected) {
1444 dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
1445 client->addr);
1446 list_del(&client->detected);
1447 i2c_unregister_device(client);
1448 }
1449 mutex_unlock(&adap->userspace_clients_lock);
1450
1451 /* Detach any active clients. This can't fail, thus we do not
1452 * check the returned value. This is a two-pass process, because
1453 * we can't remove the dummy devices during the first pass: they
1454 * could have been instantiated by real devices wishing to clean
1455 * them up properly, so we give them a chance to do that first. */
1456 device_for_each_child(&adap->dev, NULL, __unregister_client);
1457 device_for_each_child(&adap->dev, NULL, __unregister_dummy);
1458
1459 #ifdef CONFIG_I2C_COMPAT
1460 class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,
1461 adap->dev.parent);
1462 #endif
1463
1464 /* device name is gone after device_unregister */
1465 dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);
1466
1467 /* clean up the sysfs representation */
1468 init_completion(&adap->dev_released);
1469 device_unregister(&adap->dev);
1470
1471 /* wait for sysfs to drop all references */
1472 wait_for_completion(&adap->dev_released);
1473
1474 /* free bus id */
1475 mutex_lock(&core_lock);
1476 idr_remove(&i2c_adapter_idr, adap->nr);
1477 mutex_unlock(&core_lock);
1478
1479 /* Clear the device structure in case this adapter is ever going to be
1480 added again */
1481 memset(&adap->dev, 0, sizeof(adap->dev));
1482 }
1483 EXPORT_SYMBOL(i2c_del_adapter);
1484
1485 /* ------------------------------------------------------------------------- */
1486
1487 int i2c_for_each_dev(void *data, int (*fn)(struct device *, void *))
1488 {
1489 int res;
1490
1491 mutex_lock(&core_lock);
1492 res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn);
1493 mutex_unlock(&core_lock);
1494
1495 return res;
1496 }
1497 EXPORT_SYMBOL_GPL(i2c_for_each_dev);
1498
1499 static int __process_new_driver(struct device *dev, void *data)
1500 {
1501 if (dev->type != &i2c_adapter_type)
1502 return 0;
1503 return i2c_do_add_adapter(data, to_i2c_adapter(dev));
1504 }
1505
1506 /*
1507 * An i2c_driver is used with one or more i2c_client (device) nodes to access
1508 * i2c slave chips, on a bus instance associated with some i2c_adapter.
1509 */
1510
1511 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
1512 {
1513 int res;
1514
1515 /* Can't register until after driver model init */
1516 if (unlikely(WARN_ON(!i2c_bus_type.p)))
1517 return -EAGAIN;
1518
1519 /* add the driver to the list of i2c drivers in the driver core */
1520 driver->driver.owner = owner;
1521 driver->driver.bus = &i2c_bus_type;
1522
1523 /* When registration returns, the driver core
1524 * will have called probe() for all matching-but-unbound devices.
1525 */
1526 res = driver_register(&driver->driver);
1527 if (res)
1528 return res;
1529
1530 /* Drivers should switch to dev_pm_ops instead. */
1531 if (driver->suspend)
1532 pr_warn("i2c-core: driver [%s] using legacy suspend method\n",
1533 driver->driver.name);
1534 if (driver->resume)
1535 pr_warn("i2c-core: driver [%s] using legacy resume method\n",
1536 driver->driver.name);
1537
1538 pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name);
1539
1540 INIT_LIST_HEAD(&driver->clients);
1541 /* Walk the adapters that are already present */
1542 i2c_for_each_dev(driver, __process_new_driver);
1543
1544 return 0;
1545 }
1546 EXPORT_SYMBOL(i2c_register_driver);
1547
1548 static int __process_removed_driver(struct device *dev, void *data)
1549 {
1550 if (dev->type == &i2c_adapter_type)
1551 i2c_do_del_adapter(data, to_i2c_adapter(dev));
1552 return 0;
1553 }
1554
1555 /**
1556 * i2c_del_driver - unregister I2C driver
1557 * @driver: the driver being unregistered
1558 * Context: can sleep
1559 */
1560 void i2c_del_driver(struct i2c_driver *driver)
1561 {
1562 i2c_for_each_dev(driver, __process_removed_driver);
1563
1564 driver_unregister(&driver->driver);
1565 pr_debug("i2c-core: driver [%s] unregistered\n", driver->driver.name);
1566 }
1567 EXPORT_SYMBOL(i2c_del_driver);
1568
1569 /* ------------------------------------------------------------------------- */
1570
1571 /**
1572 * i2c_use_client - increments the reference count of the i2c client structure
1573 * @client: the client being referenced
1574 *
1575 * Each live reference to a client should be refcounted. The driver model does
1576 * that automatically as part of driver binding, so that most drivers don't
1577 * need to do this explicitly: they hold a reference until they're unbound
1578 * from the device.
1579 *
1580 * A pointer to the client with the incremented reference counter is returned.
1581 */
1582 struct i2c_client *i2c_use_client(struct i2c_client *client)
1583 {
1584 if (client && get_device(&client->dev))
1585 return client;
1586 return NULL;
1587 }
1588 EXPORT_SYMBOL(i2c_use_client);
1589
1590 /**
1591 * i2c_release_client - release a use of the i2c client structure
1592 * @client: the client being no longer referenced
1593 *
1594 * Must be called when a user of a client is finished with it.
1595 */
1596 void i2c_release_client(struct i2c_client *client)
1597 {
1598 if (client)
1599 put_device(&client->dev);
1600 }
1601 EXPORT_SYMBOL(i2c_release_client);
1602
1603 struct i2c_cmd_arg {
1604 unsigned cmd;
1605 void *arg;
1606 };
1607
1608 static int i2c_cmd(struct device *dev, void *_arg)
1609 {
1610 struct i2c_client *client = i2c_verify_client(dev);
1611 struct i2c_cmd_arg *arg = _arg;
1612
1613 if (client && client->driver && client->driver->command)
1614 client->driver->command(client, arg->cmd, arg->arg);
1615 return 0;
1616 }
1617
1618 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg)
1619 {
1620 struct i2c_cmd_arg cmd_arg;
1621
1622 cmd_arg.cmd = cmd;
1623 cmd_arg.arg = arg;
1624 device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd);
1625 }
1626 EXPORT_SYMBOL(i2c_clients_command);
1627
1628 static int __init i2c_init(void)
1629 {
1630 int retval;
1631
1632 retval = bus_register(&i2c_bus_type);
1633 if (retval)
1634 return retval;
1635 #ifdef CONFIG_I2C_COMPAT
1636 i2c_adapter_compat_class = class_compat_register("i2c-adapter");
1637 if (!i2c_adapter_compat_class) {
1638 retval = -ENOMEM;
1639 goto bus_err;
1640 }
1641 #endif
1642 retval = i2c_add_driver(&dummy_driver);
1643 if (retval)
1644 goto class_err;
1645 return 0;
1646
1647 class_err:
1648 #ifdef CONFIG_I2C_COMPAT
1649 class_compat_unregister(i2c_adapter_compat_class);
1650 bus_err:
1651 #endif
1652 bus_unregister(&i2c_bus_type);
1653 return retval;
1654 }
1655
1656 static void __exit i2c_exit(void)
1657 {
1658 i2c_del_driver(&dummy_driver);
1659 #ifdef CONFIG_I2C_COMPAT
1660 class_compat_unregister(i2c_adapter_compat_class);
1661 #endif
1662 bus_unregister(&i2c_bus_type);
1663 }
1664
1665 /* We must initialize early, because some subsystems register i2c drivers
1666 * in subsys_initcall() code, but are linked (and initialized) before i2c.
1667 */
1668 postcore_initcall(i2c_init);
1669 module_exit(i2c_exit);
1670
1671 /* ----------------------------------------------------
1672 * the functional interface to the i2c busses.
1673 * ----------------------------------------------------
1674 */
1675
1676 /**
1677 * __i2c_transfer - unlocked flavor of i2c_transfer
1678 * @adap: Handle to I2C bus
1679 * @msgs: One or more messages to execute before STOP is issued to
1680 * terminate the operation; each message begins with a START.
1681 * @num: Number of messages to be executed.
1682 *
1683 * Returns negative errno, else the number of messages executed.
1684 *
1685 * Adapter lock must be held when calling this function. No debug logging
1686 * takes place. adap->algo->master_xfer existence isn't checked.
1687 */
1688 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1689 {
1690 unsigned long orig_jiffies;
1691 int ret, try;
1692
1693 /* Retry automatically on arbitration loss */
1694 orig_jiffies = jiffies;
1695 for (ret = 0, try = 0; try <= adap->retries; try++) {
1696 ret = adap->algo->master_xfer(adap, msgs, num);
1697 if (ret != -EAGAIN)
1698 break;
1699 if (time_after(jiffies, orig_jiffies + adap->timeout))
1700 break;
1701 }
1702
1703 return ret;
1704 }
1705 EXPORT_SYMBOL(__i2c_transfer);
1706
1707 /**
1708 * i2c_transfer - execute a single or combined I2C message
1709 * @adap: Handle to I2C bus
1710 * @msgs: One or more messages to execute before STOP is issued to
1711 * terminate the operation; each message begins with a START.
1712 * @num: Number of messages to be executed.
1713 *
1714 * Returns negative errno, else the number of messages executed.
1715 *
1716 * Note that there is no requirement that each message be sent to
1717 * the same slave address, although that is the most common model.
1718 */
1719 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1720 {
1721 int ret;
1722
1723 /* REVISIT the fault reporting model here is weak:
1724 *
1725 * - When we get an error after receiving N bytes from a slave,
1726 * there is no way to report "N".
1727 *
1728 * - When we get a NAK after transmitting N bytes to a slave,
1729 * there is no way to report "N" ... or to let the master
1730 * continue executing the rest of this combined message, if
1731 * that's the appropriate response.
1732 *
1733 * - When for example "num" is two and we successfully complete
1734 * the first message but get an error part way through the
1735 * second, it's unclear whether that should be reported as
1736 * one (discarding status on the second message) or errno
1737 * (discarding status on the first one).
1738 */
1739
1740 if (adap->algo->master_xfer) {
1741 #ifdef DEBUG
1742 for (ret = 0; ret < num; ret++) {
1743 dev_dbg(&adap->dev, "master_xfer[%d] %c, addr=0x%02x, "
1744 "len=%d%s\n", ret, (msgs[ret].flags & I2C_M_RD)
1745 ? 'R' : 'W', msgs[ret].addr, msgs[ret].len,
1746 (msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : "");
1747 }
1748 #endif
1749
1750 if (in_atomic() || irqs_disabled()) {
1751 ret = i2c_trylock_adapter(adap);
1752 if (!ret)
1753 /* I2C activity is ongoing. */
1754 return -EAGAIN;
1755 } else {
1756 i2c_lock_adapter(adap);
1757 }
1758
1759 ret = __i2c_transfer(adap, msgs, num);
1760 i2c_unlock_adapter(adap);
1761
1762 return ret;
1763 } else {
1764 dev_dbg(&adap->dev, "I2C level transfers not supported\n");
1765 return -EOPNOTSUPP;
1766 }
1767 }
1768 EXPORT_SYMBOL(i2c_transfer);
1769
1770 /**
1771 * i2c_master_send - issue a single I2C message in master transmit mode
1772 * @client: Handle to slave device
1773 * @buf: Data that will be written to the slave
1774 * @count: How many bytes to write, must be less than 64k since msg.len is u16
1775 *
1776 * Returns negative errno, or else the number of bytes written.
1777 */
1778 int i2c_master_send(const struct i2c_client *client, const char *buf, int count)
1779 {
1780 int ret;
1781 struct i2c_adapter *adap = client->adapter;
1782 struct i2c_msg msg;
1783
1784 msg.addr = client->addr;
1785 msg.flags = client->flags & I2C_M_TEN;
1786 msg.len = count;
1787 msg.buf = (char *)buf;
1788
1789 ret = i2c_transfer(adap, &msg, 1);
1790
1791 /*
1792 * If everything went ok (i.e. 1 msg transmitted), return #bytes
1793 * transmitted, else error code.
1794 */
1795 return (ret == 1) ? count : ret;
1796 }
1797 EXPORT_SYMBOL(i2c_master_send);
1798
1799 /**
1800 * i2c_master_recv - issue a single I2C message in master receive mode
1801 * @client: Handle to slave device
1802 * @buf: Where to store data read from slave
1803 * @count: How many bytes to read, must be less than 64k since msg.len is u16
1804 *
1805 * Returns negative errno, or else the number of bytes read.
1806 */
1807 int i2c_master_recv(const struct i2c_client *client, char *buf, int count)
1808 {
1809 struct i2c_adapter *adap = client->adapter;
1810 struct i2c_msg msg;
1811 int ret;
1812
1813 msg.addr = client->addr;
1814 msg.flags = client->flags & I2C_M_TEN;
1815 msg.flags |= I2C_M_RD;
1816 msg.len = count;
1817 msg.buf = buf;
1818
1819 ret = i2c_transfer(adap, &msg, 1);
1820
1821 /*
1822 * If everything went ok (i.e. 1 msg received), return #bytes received,
1823 * else error code.
1824 */
1825 return (ret == 1) ? count : ret;
1826 }
1827 EXPORT_SYMBOL(i2c_master_recv);
1828
1829 /* ----------------------------------------------------
1830 * the i2c address scanning function
1831 * Will not work for 10-bit addresses!
1832 * ----------------------------------------------------
1833 */
1834
1835 /*
1836 * Legacy default probe function, mostly relevant for SMBus. The default
1837 * probe method is a quick write, but it is known to corrupt the 24RF08
1838 * EEPROMs due to a state machine bug, and could also irreversibly
1839 * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f,
1840 * we use a short byte read instead. Also, some bus drivers don't implement
1841 * quick write, so we fallback to a byte read in that case too.
1842 * On x86, there is another special case for FSC hardware monitoring chips,
1843 * which want regular byte reads (address 0x73.) Fortunately, these are the
1844 * only known chips using this I2C address on PC hardware.
1845 * Returns 1 if probe succeeded, 0 if not.
1846 */
1847 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr)
1848 {
1849 int err;
1850 union i2c_smbus_data dummy;
1851
1852 #ifdef CONFIG_X86
1853 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON)
1854 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
1855 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1856 I2C_SMBUS_BYTE_DATA, &dummy);
1857 else
1858 #endif
1859 if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50)
1860 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
1861 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
1862 I2C_SMBUS_QUICK, NULL);
1863 else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE))
1864 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1865 I2C_SMBUS_BYTE, &dummy);
1866 else {
1867 dev_warn(&adap->dev, "No suitable probing method supported for address 0x%02X\n",
1868 addr);
1869 err = -EOPNOTSUPP;
1870 }
1871
1872 return err >= 0;
1873 }
1874
1875 static int i2c_detect_address(struct i2c_client *temp_client,
1876 struct i2c_driver *driver)
1877 {
1878 struct i2c_board_info info;
1879 struct i2c_adapter *adapter = temp_client->adapter;
1880 int addr = temp_client->addr;
1881 int err;
1882
1883 /* Make sure the address is valid */
1884 err = i2c_check_addr_validity(addr);
1885 if (err) {
1886 dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
1887 addr);
1888 return err;
1889 }
1890
1891 /* Skip if already in use */
1892 if (i2c_check_addr_busy(adapter, addr))
1893 return 0;
1894
1895 /* Make sure there is something at this address */
1896 if (!i2c_default_probe(adapter, addr))
1897 return 0;
1898
1899 /* Finally call the custom detection function */
1900 memset(&info, 0, sizeof(struct i2c_board_info));
1901 info.addr = addr;
1902 err = driver->detect(temp_client, &info);
1903 if (err) {
1904 /* -ENODEV is returned if the detection fails. We catch it
1905 here as this isn't an error. */
1906 return err == -ENODEV ? 0 : err;
1907 }
1908
1909 /* Consistency check */
1910 if (info.type[0] == '\0') {
1911 dev_err(&adapter->dev, "%s detection function provided "
1912 "no name for 0x%x\n", driver->driver.name,
1913 addr);
1914 } else {
1915 struct i2c_client *client;
1916
1917 /* Detection succeeded, instantiate the device */
1918 dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
1919 info.type, info.addr);
1920 client = i2c_new_device(adapter, &info);
1921 if (client)
1922 list_add_tail(&client->detected, &driver->clients);
1923 else
1924 dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
1925 info.type, info.addr);
1926 }
1927 return 0;
1928 }
1929
1930 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
1931 {
1932 const unsigned short *address_list;
1933 struct i2c_client *temp_client;
1934 int i, err = 0;
1935 int adap_id = i2c_adapter_id(adapter);
1936
1937 address_list = driver->address_list;
1938 if (!driver->detect || !address_list)
1939 return 0;
1940
1941 /* Stop here if the classes do not match */
1942 if (!(adapter->class & driver->class))
1943 return 0;
1944
1945 /* Set up a temporary client to help detect callback */
1946 temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
1947 if (!temp_client)
1948 return -ENOMEM;
1949 temp_client->adapter = adapter;
1950
1951 for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
1952 dev_dbg(&adapter->dev, "found normal entry for adapter %d, "
1953 "addr 0x%02x\n", adap_id, address_list[i]);
1954 temp_client->addr = address_list[i];
1955 err = i2c_detect_address(temp_client, driver);
1956 if (unlikely(err))
1957 break;
1958 }
1959
1960 kfree(temp_client);
1961 return err;
1962 }
1963
1964 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr)
1965 {
1966 return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1967 I2C_SMBUS_QUICK, NULL) >= 0;
1968 }
1969 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read);
1970
1971 struct i2c_client *
1972 i2c_new_probed_device(struct i2c_adapter *adap,
1973 struct i2c_board_info *info,
1974 unsigned short const *addr_list,
1975 int (*probe)(struct i2c_adapter *, unsigned short addr))
1976 {
1977 int i;
1978
1979 if (!probe)
1980 probe = i2c_default_probe;
1981
1982 for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
1983 /* Check address validity */
1984 if (i2c_check_addr_validity(addr_list[i]) < 0) {
1985 dev_warn(&adap->dev, "Invalid 7-bit address "
1986 "0x%02x\n", addr_list[i]);
1987 continue;
1988 }
1989
1990 /* Check address availability */
1991 if (i2c_check_addr_busy(adap, addr_list[i])) {
1992 dev_dbg(&adap->dev, "Address 0x%02x already in "
1993 "use, not probing\n", addr_list[i]);
1994 continue;
1995 }
1996
1997 /* Test address responsiveness */
1998 if (probe(adap, addr_list[i]))
1999 break;
2000 }
2001
2002 if (addr_list[i] == I2C_CLIENT_END) {
2003 dev_dbg(&adap->dev, "Probing failed, no device found\n");
2004 return NULL;
2005 }
2006
2007 info->addr = addr_list[i];
2008 return i2c_new_device(adap, info);
2009 }
2010 EXPORT_SYMBOL_GPL(i2c_new_probed_device);
2011
2012 struct i2c_adapter *i2c_get_adapter(int nr)
2013 {
2014 struct i2c_adapter *adapter;
2015
2016 mutex_lock(&core_lock);
2017 adapter = idr_find(&i2c_adapter_idr, nr);
2018 if (adapter && !try_module_get(adapter->owner))
2019 adapter = NULL;
2020
2021 mutex_unlock(&core_lock);
2022 return adapter;
2023 }
2024 EXPORT_SYMBOL(i2c_get_adapter);
2025
2026 void i2c_put_adapter(struct i2c_adapter *adap)
2027 {
2028 if (adap)
2029 module_put(adap->owner);
2030 }
2031 EXPORT_SYMBOL(i2c_put_adapter);
2032
2033 /* The SMBus parts */
2034
2035 #define POLY (0x1070U << 3)
2036 static u8 crc8(u16 data)
2037 {
2038 int i;
2039
2040 for (i = 0; i < 8; i++) {
2041 if (data & 0x8000)
2042 data = data ^ POLY;
2043 data = data << 1;
2044 }
2045 return (u8)(data >> 8);
2046 }
2047
2048 /* Incremental CRC8 over count bytes in the array pointed to by p */
2049 static u8 i2c_smbus_pec(u8 crc, u8 *p, size_t count)
2050 {
2051 int i;
2052
2053 for (i = 0; i < count; i++)
2054 crc = crc8((crc ^ p[i]) << 8);
2055 return crc;
2056 }
2057
2058 /* Assume a 7-bit address, which is reasonable for SMBus */
2059 static u8 i2c_smbus_msg_pec(u8 pec, struct i2c_msg *msg)
2060 {
2061 /* The address will be sent first */
2062 u8 addr = (msg->addr << 1) | !!(msg->flags & I2C_M_RD);
2063 pec = i2c_smbus_pec(pec, &addr, 1);
2064
2065 /* The data buffer follows */
2066 return i2c_smbus_pec(pec, msg->buf, msg->len);
2067 }
2068
2069 /* Used for write only transactions */
2070 static inline void i2c_smbus_add_pec(struct i2c_msg *msg)
2071 {
2072 msg->buf[msg->len] = i2c_smbus_msg_pec(0, msg);
2073 msg->len++;
2074 }
2075
2076 /* Return <0 on CRC error
2077 If there was a write before this read (most cases) we need to take the
2078 partial CRC from the write part into account.
2079 Note that this function does modify the message (we need to decrease the
2080 message length to hide the CRC byte from the caller). */
2081 static int i2c_smbus_check_pec(u8 cpec, struct i2c_msg *msg)
2082 {
2083 u8 rpec = msg->buf[--msg->len];
2084 cpec = i2c_smbus_msg_pec(cpec, msg);
2085
2086 if (rpec != cpec) {
2087 pr_debug("i2c-core: Bad PEC 0x%02x vs. 0x%02x\n",
2088 rpec, cpec);
2089 return -EBADMSG;
2090 }
2091 return 0;
2092 }
2093
2094 /**
2095 * i2c_smbus_read_byte - SMBus "receive byte" protocol
2096 * @client: Handle to slave device
2097 *
2098 * This executes the SMBus "receive byte" protocol, returning negative errno
2099 * else the byte received from the device.
2100 */
2101 s32 i2c_smbus_read_byte(const struct i2c_client *client)
2102 {
2103 union i2c_smbus_data data;
2104 int status;
2105
2106 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2107 I2C_SMBUS_READ, 0,
2108 I2C_SMBUS_BYTE, &data);
2109 return (status < 0) ? status : data.byte;
2110 }
2111 EXPORT_SYMBOL(i2c_smbus_read_byte);
2112
2113 /**
2114 * i2c_smbus_write_byte - SMBus "send byte" protocol
2115 * @client: Handle to slave device
2116 * @value: Byte to be sent
2117 *
2118 * This executes the SMBus "send byte" protocol, returning negative errno
2119 * else zero on success.
2120 */
2121 s32 i2c_smbus_write_byte(const struct i2c_client *client, u8 value)
2122 {
2123 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2124 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
2125 }
2126 EXPORT_SYMBOL(i2c_smbus_write_byte);
2127
2128 /**
2129 * i2c_smbus_read_byte_data - SMBus "read byte" protocol
2130 * @client: Handle to slave device
2131 * @command: Byte interpreted by slave
2132 *
2133 * This executes the SMBus "read byte" protocol, returning negative errno
2134 * else a data byte received from the device.
2135 */
2136 s32 i2c_smbus_read_byte_data(const struct i2c_client *client, u8 command)
2137 {
2138 union i2c_smbus_data data;
2139 int status;
2140
2141 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2142 I2C_SMBUS_READ, command,
2143 I2C_SMBUS_BYTE_DATA, &data);
2144 return (status < 0) ? status : data.byte;
2145 }
2146 EXPORT_SYMBOL(i2c_smbus_read_byte_data);
2147
2148 /**
2149 * i2c_smbus_write_byte_data - SMBus "write byte" protocol
2150 * @client: Handle to slave device
2151 * @command: Byte interpreted by slave
2152 * @value: Byte being written
2153 *
2154 * This executes the SMBus "write byte" protocol, returning negative errno
2155 * else zero on success.
2156 */
2157 s32 i2c_smbus_write_byte_data(const struct i2c_client *client, u8 command,
2158 u8 value)
2159 {
2160 union i2c_smbus_data data;
2161 data.byte = value;
2162 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2163 I2C_SMBUS_WRITE, command,
2164 I2C_SMBUS_BYTE_DATA, &data);
2165 }
2166 EXPORT_SYMBOL(i2c_smbus_write_byte_data);
2167
2168 /**
2169 * i2c_smbus_read_word_data - SMBus "read word" protocol
2170 * @client: Handle to slave device
2171 * @command: Byte interpreted by slave
2172 *
2173 * This executes the SMBus "read word" protocol, returning negative errno
2174 * else a 16-bit unsigned "word" received from the device.
2175 */
2176 s32 i2c_smbus_read_word_data(const struct i2c_client *client, u8 command)
2177 {
2178 union i2c_smbus_data data;
2179 int status;
2180
2181 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2182 I2C_SMBUS_READ, command,
2183 I2C_SMBUS_WORD_DATA, &data);
2184 return (status < 0) ? status : data.word;
2185 }
2186 EXPORT_SYMBOL(i2c_smbus_read_word_data);
2187
2188 /**
2189 * i2c_smbus_write_word_data - SMBus "write word" protocol
2190 * @client: Handle to slave device
2191 * @command: Byte interpreted by slave
2192 * @value: 16-bit "word" being written
2193 *
2194 * This executes the SMBus "write word" protocol, returning negative errno
2195 * else zero on success.
2196 */
2197 s32 i2c_smbus_write_word_data(const struct i2c_client *client, u8 command,
2198 u16 value)
2199 {
2200 union i2c_smbus_data data;
2201 data.word = value;
2202 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2203 I2C_SMBUS_WRITE, command,
2204 I2C_SMBUS_WORD_DATA, &data);
2205 }
2206 EXPORT_SYMBOL(i2c_smbus_write_word_data);
2207
2208 /**
2209 * i2c_smbus_read_block_data - SMBus "block read" protocol
2210 * @client: Handle to slave device
2211 * @command: Byte interpreted by slave
2212 * @values: Byte array into which data will be read; big enough to hold
2213 * the data returned by the slave. SMBus allows at most 32 bytes.
2214 *
2215 * This executes the SMBus "block read" protocol, returning negative errno
2216 * else the number of data bytes in the slave's response.
2217 *
2218 * Note that using this function requires that the client's adapter support
2219 * the I2C_FUNC_SMBUS_READ_BLOCK_DATA functionality. Not all adapter drivers
2220 * support this; its emulation through I2C messaging relies on a specific
2221 * mechanism (I2C_M_RECV_LEN) which may not be implemented.
2222 */
2223 s32 i2c_smbus_read_block_data(const struct i2c_client *client, u8 command,
2224 u8 *values)
2225 {
2226 union i2c_smbus_data data;
2227 int status;
2228
2229 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2230 I2C_SMBUS_READ, command,
2231 I2C_SMBUS_BLOCK_DATA, &data);
2232 if (status)
2233 return status;
2234
2235 memcpy(values, &data.block[1], data.block[0]);
2236 return data.block[0];
2237 }
2238 EXPORT_SYMBOL(i2c_smbus_read_block_data);
2239
2240 /**
2241 * i2c_smbus_write_block_data - SMBus "block write" protocol
2242 * @client: Handle to slave device
2243 * @command: Byte interpreted by slave
2244 * @length: Size of data block; SMBus allows at most 32 bytes
2245 * @values: Byte array which will be written.
2246 *
2247 * This executes the SMBus "block write" protocol, returning negative errno
2248 * else zero on success.
2249 */
2250 s32 i2c_smbus_write_block_data(const struct i2c_client *client, u8 command,
2251 u8 length, const u8 *values)
2252 {
2253 union i2c_smbus_data data;
2254
2255 if (length > I2C_SMBUS_BLOCK_MAX)
2256 length = I2C_SMBUS_BLOCK_MAX;
2257 data.block[0] = length;
2258 memcpy(&data.block[1], values, length);
2259 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2260 I2C_SMBUS_WRITE, command,
2261 I2C_SMBUS_BLOCK_DATA, &data);
2262 }
2263 EXPORT_SYMBOL(i2c_smbus_write_block_data);
2264
2265 /* Returns the number of read bytes */
2266 s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client, u8 command,
2267 u8 length, u8 *values)
2268 {
2269 union i2c_smbus_data data;
2270 int status;
2271
2272 if (length > I2C_SMBUS_BLOCK_MAX)
2273 length = I2C_SMBUS_BLOCK_MAX;
2274 data.block[0] = length;
2275 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2276 I2C_SMBUS_READ, command,
2277 I2C_SMBUS_I2C_BLOCK_DATA, &data);
2278 if (status < 0)
2279 return status;
2280
2281 memcpy(values, &data.block[1], data.block[0]);
2282 return data.block[0];
2283 }
2284 EXPORT_SYMBOL(i2c_smbus_read_i2c_block_data);
2285
2286 s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client, u8 command,
2287 u8 length, const u8 *values)
2288 {
2289 union i2c_smbus_data data;
2290
2291 if (length > I2C_SMBUS_BLOCK_MAX)
2292 length = I2C_SMBUS_BLOCK_MAX;
2293 data.block[0] = length;
2294 memcpy(data.block + 1, values, length);
2295 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2296 I2C_SMBUS_WRITE, command,
2297 I2C_SMBUS_I2C_BLOCK_DATA, &data);
2298 }
2299 EXPORT_SYMBOL(i2c_smbus_write_i2c_block_data);
2300
2301 /* Simulate a SMBus command using the i2c protocol
2302 No checking of parameters is done! */
2303 static s32 i2c_smbus_xfer_emulated(struct i2c_adapter *adapter, u16 addr,
2304 unsigned short flags,
2305 char read_write, u8 command, int size,
2306 union i2c_smbus_data *data)
2307 {
2308 /* So we need to generate a series of msgs. In the case of writing, we
2309 need to use only one message; when reading, we need two. We initialize
2310 most things with sane defaults, to keep the code below somewhat
2311 simpler. */
2312 unsigned char msgbuf0[I2C_SMBUS_BLOCK_MAX+3];
2313 unsigned char msgbuf1[I2C_SMBUS_BLOCK_MAX+2];
2314 int num = read_write == I2C_SMBUS_READ ? 2 : 1;
2315 int i;
2316 u8 partial_pec = 0;
2317 int status;
2318 struct i2c_msg msg[2] = {
2319 {
2320 .addr = addr,
2321 .flags = flags,
2322 .len = 1,
2323 .buf = msgbuf0,
2324 }, {
2325 .addr = addr,
2326 .flags = flags | I2C_M_RD,
2327 .len = 0,
2328 .buf = msgbuf1,
2329 },
2330 };
2331
2332 msgbuf0[0] = command;
2333 switch (size) {
2334 case I2C_SMBUS_QUICK:
2335 msg[0].len = 0;
2336 /* Special case: The read/write field is used as data */
2337 msg[0].flags = flags | (read_write == I2C_SMBUS_READ ?
2338 I2C_M_RD : 0);
2339 num = 1;
2340 break;
2341 case I2C_SMBUS_BYTE:
2342 if (read_write == I2C_SMBUS_READ) {
2343 /* Special case: only a read! */
2344 msg[0].flags = I2C_M_RD | flags;
2345 num = 1;
2346 }
2347 break;
2348 case I2C_SMBUS_BYTE_DATA:
2349 if (read_write == I2C_SMBUS_READ)
2350 msg[1].len = 1;
2351 else {
2352 msg[0].len = 2;
2353 msgbuf0[1] = data->byte;
2354 }
2355 break;
2356 case I2C_SMBUS_WORD_DATA:
2357 if (read_write == I2C_SMBUS_READ)
2358 msg[1].len = 2;
2359 else {
2360 msg[0].len = 3;
2361 msgbuf0[1] = data->word & 0xff;
2362 msgbuf0[2] = data->word >> 8;
2363 }
2364 break;
2365 case I2C_SMBUS_PROC_CALL:
2366 num = 2; /* Special case */
2367 read_write = I2C_SMBUS_READ;
2368 msg[0].len = 3;
2369 msg[1].len = 2;
2370 msgbuf0[1] = data->word & 0xff;
2371 msgbuf0[2] = data->word >> 8;
2372 break;
2373 case I2C_SMBUS_BLOCK_DATA:
2374 if (read_write == I2C_SMBUS_READ) {
2375 msg[1].flags |= I2C_M_RECV_LEN;
2376 msg[1].len = 1; /* block length will be added by
2377 the underlying bus driver */
2378 } else {
2379 msg[0].len = data->block[0] + 2;
2380 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 2) {
2381 dev_err(&adapter->dev,
2382 "Invalid block write size %d\n",
2383 data->block[0]);
2384 return -EINVAL;
2385 }
2386 for (i = 1; i < msg[0].len; i++)
2387 msgbuf0[i] = data->block[i-1];
2388 }
2389 break;
2390 case I2C_SMBUS_BLOCK_PROC_CALL:
2391 num = 2; /* Another special case */
2392 read_write = I2C_SMBUS_READ;
2393 if (data->block[0] > I2C_SMBUS_BLOCK_MAX) {
2394 dev_err(&adapter->dev,
2395 "Invalid block write size %d\n",
2396 data->block[0]);
2397 return -EINVAL;
2398 }
2399 msg[0].len = data->block[0] + 2;
2400 for (i = 1; i < msg[0].len; i++)
2401 msgbuf0[i] = data->block[i-1];
2402 msg[1].flags |= I2C_M_RECV_LEN;
2403 msg[1].len = 1; /* block length will be added by
2404 the underlying bus driver */
2405 break;
2406 case I2C_SMBUS_I2C_BLOCK_DATA:
2407 if (read_write == I2C_SMBUS_READ) {
2408 msg[1].len = data->block[0];
2409 } else {
2410 msg[0].len = data->block[0] + 1;
2411 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 1) {
2412 dev_err(&adapter->dev,
2413 "Invalid block write size %d\n",
2414 data->block[0]);
2415 return -EINVAL;
2416 }
2417 for (i = 1; i <= data->block[0]; i++)
2418 msgbuf0[i] = data->block[i];
2419 }
2420 break;
2421 default:
2422 dev_err(&adapter->dev, "Unsupported transaction %d\n", size);
2423 return -EOPNOTSUPP;
2424 }
2425
2426 i = ((flags & I2C_CLIENT_PEC) && size != I2C_SMBUS_QUICK
2427 && size != I2C_SMBUS_I2C_BLOCK_DATA);
2428 if (i) {
2429 /* Compute PEC if first message is a write */
2430 if (!(msg[0].flags & I2C_M_RD)) {
2431 if (num == 1) /* Write only */
2432 i2c_smbus_add_pec(&msg[0]);
2433 else /* Write followed by read */
2434 partial_pec = i2c_smbus_msg_pec(0, &msg[0]);
2435 }
2436 /* Ask for PEC if last message is a read */
2437 if (msg[num-1].flags & I2C_M_RD)
2438 msg[num-1].len++;
2439 }
2440
2441 status = i2c_transfer(adapter, msg, num);
2442 if (status < 0)
2443 return status;
2444
2445 /* Check PEC if last message is a read */
2446 if (i && (msg[num-1].flags & I2C_M_RD)) {
2447 status = i2c_smbus_check_pec(partial_pec, &msg[num-1]);
2448 if (status < 0)
2449 return status;
2450 }
2451
2452 if (read_write == I2C_SMBUS_READ)
2453 switch (size) {
2454 case I2C_SMBUS_BYTE:
2455 data->byte = msgbuf0[0];
2456 break;
2457 case I2C_SMBUS_BYTE_DATA:
2458 data->byte = msgbuf1[0];
2459 break;
2460 case I2C_SMBUS_WORD_DATA:
2461 case I2C_SMBUS_PROC_CALL:
2462 data->word = msgbuf1[0] | (msgbuf1[1] << 8);
2463 break;
2464 case I2C_SMBUS_I2C_BLOCK_DATA:
2465 for (i = 0; i < data->block[0]; i++)
2466 data->block[i+1] = msgbuf1[i];
2467 break;
2468 case I2C_SMBUS_BLOCK_DATA:
2469 case I2C_SMBUS_BLOCK_PROC_CALL:
2470 for (i = 0; i < msgbuf1[0] + 1; i++)
2471 data->block[i] = msgbuf1[i];
2472 break;
2473 }
2474 return 0;
2475 }
2476
2477 /**
2478 * i2c_smbus_xfer - execute SMBus protocol operations
2479 * @adapter: Handle to I2C bus
2480 * @addr: Address of SMBus slave on that bus
2481 * @flags: I2C_CLIENT_* flags (usually zero or I2C_CLIENT_PEC)
2482 * @read_write: I2C_SMBUS_READ or I2C_SMBUS_WRITE
2483 * @command: Byte interpreted by slave, for protocols which use such bytes
2484 * @protocol: SMBus protocol operation to execute, such as I2C_SMBUS_PROC_CALL
2485 * @data: Data to be read or written
2486 *
2487 * This executes an SMBus protocol operation, and returns a negative
2488 * errno code else zero on success.
2489 */
2490 s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr, unsigned short flags,
2491 char read_write, u8 command, int protocol,
2492 union i2c_smbus_data *data)
2493 {
2494 unsigned long orig_jiffies;
2495 int try;
2496 s32 res;
2497
2498 flags &= I2C_M_TEN | I2C_CLIENT_PEC | I2C_CLIENT_SCCB;
2499
2500 if (adapter->algo->smbus_xfer) {
2501 i2c_lock_adapter(adapter);
2502
2503 /* Retry automatically on arbitration loss */
2504 orig_jiffies = jiffies;
2505 for (res = 0, try = 0; try <= adapter->retries; try++) {
2506 res = adapter->algo->smbus_xfer(adapter, addr, flags,
2507 read_write, command,
2508 protocol, data);
2509 if (res != -EAGAIN)
2510 break;
2511 if (time_after(jiffies,
2512 orig_jiffies + adapter->timeout))
2513 break;
2514 }
2515 i2c_unlock_adapter(adapter);
2516
2517 if (res != -EOPNOTSUPP || !adapter->algo->master_xfer)
2518 return res;
2519 /*
2520 * Fall back to i2c_smbus_xfer_emulated if the adapter doesn't
2521 * implement native support for the SMBus operation.
2522 */
2523 }
2524
2525 return i2c_smbus_xfer_emulated(adapter, addr, flags, read_write,
2526 command, protocol, data);
2527 }
2528 EXPORT_SYMBOL(i2c_smbus_xfer);
2529
2530 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
2531 MODULE_DESCRIPTION("I2C-Bus main module");
2532 MODULE_LICENSE("GPL");
This page took 0.085146 seconds and 5 git commands to generate.