Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / i2c / i2c-core.c
1 /* i2c-core.c - a device driver for the iic-bus interface */
2 /* ------------------------------------------------------------------------- */
3 /* Copyright (C) 1995-99 Simon G. Vogl
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
18 MA 02110-1301 USA. */
19 /* ------------------------------------------------------------------------- */
20
21 /* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>.
22 All SMBus-related things are written by Frodo Looijaard <frodol@dds.nl>
23 SMBus 2.0 support by Mark Studebaker <mdsxyz123@yahoo.com> and
24 Jean Delvare <khali@linux-fr.org>
25 Mux support by Rodolfo Giometti <giometti@enneenne.com> and
26 Michael Lawnick <michael.lawnick.ext@nsn.com> */
27
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/i2c.h>
33 #include <linux/init.h>
34 #include <linux/idr.h>
35 #include <linux/mutex.h>
36 #include <linux/of_device.h>
37 #include <linux/completion.h>
38 #include <linux/hardirq.h>
39 #include <linux/irqflags.h>
40 #include <linux/rwsem.h>
41 #include <linux/pm_runtime.h>
42 #include <linux/acpi.h>
43 #include <asm/uaccess.h>
44
45 #include "i2c-core.h"
46
47
48 /* core_lock protects i2c_adapter_idr, and guarantees
49 that device detection, deletion of detected devices, and attach_adapter
50 and detach_adapter calls are serialized */
51 static DEFINE_MUTEX(core_lock);
52 static DEFINE_IDR(i2c_adapter_idr);
53
54 static struct device_type i2c_client_type;
55 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver);
56
57 /* ------------------------------------------------------------------------- */
58
59 static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
60 const struct i2c_client *client)
61 {
62 while (id->name[0]) {
63 if (strcmp(client->name, id->name) == 0)
64 return id;
65 id++;
66 }
67 return NULL;
68 }
69
70 static int i2c_device_match(struct device *dev, struct device_driver *drv)
71 {
72 struct i2c_client *client = i2c_verify_client(dev);
73 struct i2c_driver *driver;
74
75 if (!client)
76 return 0;
77
78 /* Attempt an OF style match */
79 if (of_driver_match_device(dev, drv))
80 return 1;
81
82 /* Then ACPI style match */
83 if (acpi_driver_match_device(dev, drv))
84 return 1;
85
86 driver = to_i2c_driver(drv);
87 /* match on an id table if there is one */
88 if (driver->id_table)
89 return i2c_match_id(driver->id_table, client) != NULL;
90
91 return 0;
92 }
93
94 #ifdef CONFIG_HOTPLUG
95
96 /* uevent helps with hotplug: modprobe -q $(MODALIAS) */
97 static int i2c_device_uevent(struct device *dev, struct kobj_uevent_env *env)
98 {
99 struct i2c_client *client = to_i2c_client(dev);
100
101 if (add_uevent_var(env, "MODALIAS=%s%s",
102 I2C_MODULE_PREFIX, client->name))
103 return -ENOMEM;
104 dev_dbg(dev, "uevent\n");
105 return 0;
106 }
107
108 #else
109 #define i2c_device_uevent NULL
110 #endif /* CONFIG_HOTPLUG */
111
112 static int i2c_device_probe(struct device *dev)
113 {
114 struct i2c_client *client = i2c_verify_client(dev);
115 struct i2c_driver *driver;
116 int status;
117
118 if (!client)
119 return 0;
120
121 driver = to_i2c_driver(dev->driver);
122 if (!driver->probe || !driver->id_table)
123 return -ENODEV;
124 client->driver = driver;
125 if (!device_can_wakeup(&client->dev))
126 device_init_wakeup(&client->dev,
127 client->flags & I2C_CLIENT_WAKE);
128 dev_dbg(dev, "probe\n");
129
130 status = driver->probe(client, i2c_match_id(driver->id_table, client));
131 if (status) {
132 client->driver = NULL;
133 i2c_set_clientdata(client, NULL);
134 }
135 return status;
136 }
137
138 static int i2c_device_remove(struct device *dev)
139 {
140 struct i2c_client *client = i2c_verify_client(dev);
141 struct i2c_driver *driver;
142 int status;
143
144 if (!client || !dev->driver)
145 return 0;
146
147 driver = to_i2c_driver(dev->driver);
148 if (driver->remove) {
149 dev_dbg(dev, "remove\n");
150 status = driver->remove(client);
151 } else {
152 dev->driver = NULL;
153 status = 0;
154 }
155 if (status == 0) {
156 client->driver = NULL;
157 i2c_set_clientdata(client, NULL);
158 }
159 return status;
160 }
161
162 static void i2c_device_shutdown(struct device *dev)
163 {
164 struct i2c_client *client = i2c_verify_client(dev);
165 struct i2c_driver *driver;
166
167 if (!client || !dev->driver)
168 return;
169 driver = to_i2c_driver(dev->driver);
170 if (driver->shutdown)
171 driver->shutdown(client);
172 }
173
174 #ifdef CONFIG_PM_SLEEP
175 static int i2c_legacy_suspend(struct device *dev, pm_message_t mesg)
176 {
177 struct i2c_client *client = i2c_verify_client(dev);
178 struct i2c_driver *driver;
179
180 if (!client || !dev->driver)
181 return 0;
182 driver = to_i2c_driver(dev->driver);
183 if (!driver->suspend)
184 return 0;
185 return driver->suspend(client, mesg);
186 }
187
188 static int i2c_legacy_resume(struct device *dev)
189 {
190 struct i2c_client *client = i2c_verify_client(dev);
191 struct i2c_driver *driver;
192
193 if (!client || !dev->driver)
194 return 0;
195 driver = to_i2c_driver(dev->driver);
196 if (!driver->resume)
197 return 0;
198 return driver->resume(client);
199 }
200
201 static int i2c_device_pm_suspend(struct device *dev)
202 {
203 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
204
205 if (pm)
206 return pm_generic_suspend(dev);
207 else
208 return i2c_legacy_suspend(dev, PMSG_SUSPEND);
209 }
210
211 static int i2c_device_pm_resume(struct device *dev)
212 {
213 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
214
215 if (pm)
216 return pm_generic_resume(dev);
217 else
218 return i2c_legacy_resume(dev);
219 }
220
221 static int i2c_device_pm_freeze(struct device *dev)
222 {
223 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
224
225 if (pm)
226 return pm_generic_freeze(dev);
227 else
228 return i2c_legacy_suspend(dev, PMSG_FREEZE);
229 }
230
231 static int i2c_device_pm_thaw(struct device *dev)
232 {
233 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
234
235 if (pm)
236 return pm_generic_thaw(dev);
237 else
238 return i2c_legacy_resume(dev);
239 }
240
241 static int i2c_device_pm_poweroff(struct device *dev)
242 {
243 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
244
245 if (pm)
246 return pm_generic_poweroff(dev);
247 else
248 return i2c_legacy_suspend(dev, PMSG_HIBERNATE);
249 }
250
251 static int i2c_device_pm_restore(struct device *dev)
252 {
253 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
254
255 if (pm)
256 return pm_generic_restore(dev);
257 else
258 return i2c_legacy_resume(dev);
259 }
260 #else /* !CONFIG_PM_SLEEP */
261 #define i2c_device_pm_suspend NULL
262 #define i2c_device_pm_resume NULL
263 #define i2c_device_pm_freeze NULL
264 #define i2c_device_pm_thaw NULL
265 #define i2c_device_pm_poweroff NULL
266 #define i2c_device_pm_restore NULL
267 #endif /* !CONFIG_PM_SLEEP */
268
269 static void i2c_client_dev_release(struct device *dev)
270 {
271 kfree(to_i2c_client(dev));
272 }
273
274 static ssize_t
275 show_name(struct device *dev, struct device_attribute *attr, char *buf)
276 {
277 return sprintf(buf, "%s\n", dev->type == &i2c_client_type ?
278 to_i2c_client(dev)->name : to_i2c_adapter(dev)->name);
279 }
280
281 static ssize_t
282 show_modalias(struct device *dev, struct device_attribute *attr, char *buf)
283 {
284 struct i2c_client *client = to_i2c_client(dev);
285 return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name);
286 }
287
288 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
289 static DEVICE_ATTR(modalias, S_IRUGO, show_modalias, NULL);
290
291 static struct attribute *i2c_dev_attrs[] = {
292 &dev_attr_name.attr,
293 /* modalias helps coldplug: modprobe $(cat .../modalias) */
294 &dev_attr_modalias.attr,
295 NULL
296 };
297
298 static struct attribute_group i2c_dev_attr_group = {
299 .attrs = i2c_dev_attrs,
300 };
301
302 static const struct attribute_group *i2c_dev_attr_groups[] = {
303 &i2c_dev_attr_group,
304 NULL
305 };
306
307 static const struct dev_pm_ops i2c_device_pm_ops = {
308 .suspend = i2c_device_pm_suspend,
309 .resume = i2c_device_pm_resume,
310 .freeze = i2c_device_pm_freeze,
311 .thaw = i2c_device_pm_thaw,
312 .poweroff = i2c_device_pm_poweroff,
313 .restore = i2c_device_pm_restore,
314 SET_RUNTIME_PM_OPS(
315 pm_generic_runtime_suspend,
316 pm_generic_runtime_resume,
317 pm_generic_runtime_idle
318 )
319 };
320
321 struct bus_type i2c_bus_type = {
322 .name = "i2c",
323 .match = i2c_device_match,
324 .probe = i2c_device_probe,
325 .remove = i2c_device_remove,
326 .shutdown = i2c_device_shutdown,
327 .pm = &i2c_device_pm_ops,
328 };
329 EXPORT_SYMBOL_GPL(i2c_bus_type);
330
331 static struct device_type i2c_client_type = {
332 .groups = i2c_dev_attr_groups,
333 .uevent = i2c_device_uevent,
334 .release = i2c_client_dev_release,
335 };
336
337
338 /**
339 * i2c_verify_client - return parameter as i2c_client, or NULL
340 * @dev: device, probably from some driver model iterator
341 *
342 * When traversing the driver model tree, perhaps using driver model
343 * iterators like @device_for_each_child(), you can't assume very much
344 * about the nodes you find. Use this function to avoid oopses caused
345 * by wrongly treating some non-I2C device as an i2c_client.
346 */
347 struct i2c_client *i2c_verify_client(struct device *dev)
348 {
349 return (dev->type == &i2c_client_type)
350 ? to_i2c_client(dev)
351 : NULL;
352 }
353 EXPORT_SYMBOL(i2c_verify_client);
354
355
356 /* This is a permissive address validity check, I2C address map constraints
357 * are purposely not enforced, except for the general call address. */
358 static int i2c_check_client_addr_validity(const struct i2c_client *client)
359 {
360 if (client->flags & I2C_CLIENT_TEN) {
361 /* 10-bit address, all values are valid */
362 if (client->addr > 0x3ff)
363 return -EINVAL;
364 } else {
365 /* 7-bit address, reject the general call address */
366 if (client->addr == 0x00 || client->addr > 0x7f)
367 return -EINVAL;
368 }
369 return 0;
370 }
371
372 /* And this is a strict address validity check, used when probing. If a
373 * device uses a reserved address, then it shouldn't be probed. 7-bit
374 * addressing is assumed, 10-bit address devices are rare and should be
375 * explicitly enumerated. */
376 static int i2c_check_addr_validity(unsigned short addr)
377 {
378 /*
379 * Reserved addresses per I2C specification:
380 * 0x00 General call address / START byte
381 * 0x01 CBUS address
382 * 0x02 Reserved for different bus format
383 * 0x03 Reserved for future purposes
384 * 0x04-0x07 Hs-mode master code
385 * 0x78-0x7b 10-bit slave addressing
386 * 0x7c-0x7f Reserved for future purposes
387 */
388 if (addr < 0x08 || addr > 0x77)
389 return -EINVAL;
390 return 0;
391 }
392
393 static int __i2c_check_addr_busy(struct device *dev, void *addrp)
394 {
395 struct i2c_client *client = i2c_verify_client(dev);
396 int addr = *(int *)addrp;
397
398 if (client && client->addr == addr)
399 return -EBUSY;
400 return 0;
401 }
402
403 /* walk up mux tree */
404 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr)
405 {
406 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
407 int result;
408
409 result = device_for_each_child(&adapter->dev, &addr,
410 __i2c_check_addr_busy);
411
412 if (!result && parent)
413 result = i2c_check_mux_parents(parent, addr);
414
415 return result;
416 }
417
418 /* recurse down mux tree */
419 static int i2c_check_mux_children(struct device *dev, void *addrp)
420 {
421 int result;
422
423 if (dev->type == &i2c_adapter_type)
424 result = device_for_each_child(dev, addrp,
425 i2c_check_mux_children);
426 else
427 result = __i2c_check_addr_busy(dev, addrp);
428
429 return result;
430 }
431
432 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr)
433 {
434 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
435 int result = 0;
436
437 if (parent)
438 result = i2c_check_mux_parents(parent, addr);
439
440 if (!result)
441 result = device_for_each_child(&adapter->dev, &addr,
442 i2c_check_mux_children);
443
444 return result;
445 }
446
447 /**
448 * i2c_lock_adapter - Get exclusive access to an I2C bus segment
449 * @adapter: Target I2C bus segment
450 */
451 void i2c_lock_adapter(struct i2c_adapter *adapter)
452 {
453 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
454
455 if (parent)
456 i2c_lock_adapter(parent);
457 else
458 rt_mutex_lock(&adapter->bus_lock);
459 }
460 EXPORT_SYMBOL_GPL(i2c_lock_adapter);
461
462 /**
463 * i2c_trylock_adapter - Try to get exclusive access to an I2C bus segment
464 * @adapter: Target I2C bus segment
465 */
466 static int i2c_trylock_adapter(struct i2c_adapter *adapter)
467 {
468 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
469
470 if (parent)
471 return i2c_trylock_adapter(parent);
472 else
473 return rt_mutex_trylock(&adapter->bus_lock);
474 }
475
476 /**
477 * i2c_unlock_adapter - Release exclusive access to an I2C bus segment
478 * @adapter: Target I2C bus segment
479 */
480 void i2c_unlock_adapter(struct i2c_adapter *adapter)
481 {
482 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
483
484 if (parent)
485 i2c_unlock_adapter(parent);
486 else
487 rt_mutex_unlock(&adapter->bus_lock);
488 }
489 EXPORT_SYMBOL_GPL(i2c_unlock_adapter);
490
491 /**
492 * i2c_new_device - instantiate an i2c device
493 * @adap: the adapter managing the device
494 * @info: describes one I2C device; bus_num is ignored
495 * Context: can sleep
496 *
497 * Create an i2c device. Binding is handled through driver model
498 * probe()/remove() methods. A driver may be bound to this device when we
499 * return from this function, or any later moment (e.g. maybe hotplugging will
500 * load the driver module). This call is not appropriate for use by mainboard
501 * initialization logic, which usually runs during an arch_initcall() long
502 * before any i2c_adapter could exist.
503 *
504 * This returns the new i2c client, which may be saved for later use with
505 * i2c_unregister_device(); or NULL to indicate an error.
506 */
507 struct i2c_client *
508 i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
509 {
510 struct i2c_client *client;
511 int status;
512
513 client = kzalloc(sizeof *client, GFP_KERNEL);
514 if (!client)
515 return NULL;
516
517 client->adapter = adap;
518
519 client->dev.platform_data = info->platform_data;
520
521 if (info->archdata)
522 client->dev.archdata = *info->archdata;
523
524 client->flags = info->flags;
525 client->addr = info->addr;
526 client->irq = info->irq;
527
528 strlcpy(client->name, info->type, sizeof(client->name));
529
530 /* Check for address validity */
531 status = i2c_check_client_addr_validity(client);
532 if (status) {
533 dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
534 client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
535 goto out_err_silent;
536 }
537
538 /* Check for address business */
539 status = i2c_check_addr_busy(adap, client->addr);
540 if (status)
541 goto out_err;
542
543 client->dev.parent = &client->adapter->dev;
544 client->dev.bus = &i2c_bus_type;
545 client->dev.type = &i2c_client_type;
546 client->dev.of_node = info->of_node;
547 ACPI_HANDLE_SET(&client->dev, info->acpi_node.handle);
548
549 /* For 10-bit clients, add an arbitrary offset to avoid collisions */
550 dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
551 client->addr | ((client->flags & I2C_CLIENT_TEN)
552 ? 0xa000 : 0));
553 status = device_register(&client->dev);
554 if (status)
555 goto out_err;
556
557 dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
558 client->name, dev_name(&client->dev));
559
560 return client;
561
562 out_err:
563 dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "
564 "(%d)\n", client->name, client->addr, status);
565 out_err_silent:
566 kfree(client);
567 return NULL;
568 }
569 EXPORT_SYMBOL_GPL(i2c_new_device);
570
571
572 /**
573 * i2c_unregister_device - reverse effect of i2c_new_device()
574 * @client: value returned from i2c_new_device()
575 * Context: can sleep
576 */
577 void i2c_unregister_device(struct i2c_client *client)
578 {
579 device_unregister(&client->dev);
580 }
581 EXPORT_SYMBOL_GPL(i2c_unregister_device);
582
583
584 static const struct i2c_device_id dummy_id[] = {
585 { "dummy", 0 },
586 { },
587 };
588
589 static int dummy_probe(struct i2c_client *client,
590 const struct i2c_device_id *id)
591 {
592 return 0;
593 }
594
595 static int dummy_remove(struct i2c_client *client)
596 {
597 return 0;
598 }
599
600 static struct i2c_driver dummy_driver = {
601 .driver.name = "dummy",
602 .probe = dummy_probe,
603 .remove = dummy_remove,
604 .id_table = dummy_id,
605 };
606
607 /**
608 * i2c_new_dummy - return a new i2c device bound to a dummy driver
609 * @adapter: the adapter managing the device
610 * @address: seven bit address to be used
611 * Context: can sleep
612 *
613 * This returns an I2C client bound to the "dummy" driver, intended for use
614 * with devices that consume multiple addresses. Examples of such chips
615 * include various EEPROMS (like 24c04 and 24c08 models).
616 *
617 * These dummy devices have two main uses. First, most I2C and SMBus calls
618 * except i2c_transfer() need a client handle; the dummy will be that handle.
619 * And second, this prevents the specified address from being bound to a
620 * different driver.
621 *
622 * This returns the new i2c client, which should be saved for later use with
623 * i2c_unregister_device(); or NULL to indicate an error.
624 */
625 struct i2c_client *i2c_new_dummy(struct i2c_adapter *adapter, u16 address)
626 {
627 struct i2c_board_info info = {
628 I2C_BOARD_INFO("dummy", address),
629 };
630
631 return i2c_new_device(adapter, &info);
632 }
633 EXPORT_SYMBOL_GPL(i2c_new_dummy);
634
635 /* ------------------------------------------------------------------------- */
636
637 /* I2C bus adapters -- one roots each I2C or SMBUS segment */
638
639 static void i2c_adapter_dev_release(struct device *dev)
640 {
641 struct i2c_adapter *adap = to_i2c_adapter(dev);
642 complete(&adap->dev_released);
643 }
644
645 /*
646 * This function is only needed for mutex_lock_nested, so it is never
647 * called unless locking correctness checking is enabled. Thus we
648 * make it inline to avoid a compiler warning. That's what gcc ends up
649 * doing anyway.
650 */
651 static inline unsigned int i2c_adapter_depth(struct i2c_adapter *adapter)
652 {
653 unsigned int depth = 0;
654
655 while ((adapter = i2c_parent_is_i2c_adapter(adapter)))
656 depth++;
657
658 return depth;
659 }
660
661 /*
662 * Let users instantiate I2C devices through sysfs. This can be used when
663 * platform initialization code doesn't contain the proper data for
664 * whatever reason. Also useful for drivers that do device detection and
665 * detection fails, either because the device uses an unexpected address,
666 * or this is a compatible device with different ID register values.
667 *
668 * Parameter checking may look overzealous, but we really don't want
669 * the user to provide incorrect parameters.
670 */
671 static ssize_t
672 i2c_sysfs_new_device(struct device *dev, struct device_attribute *attr,
673 const char *buf, size_t count)
674 {
675 struct i2c_adapter *adap = to_i2c_adapter(dev);
676 struct i2c_board_info info;
677 struct i2c_client *client;
678 char *blank, end;
679 int res;
680
681 memset(&info, 0, sizeof(struct i2c_board_info));
682
683 blank = strchr(buf, ' ');
684 if (!blank) {
685 dev_err(dev, "%s: Missing parameters\n", "new_device");
686 return -EINVAL;
687 }
688 if (blank - buf > I2C_NAME_SIZE - 1) {
689 dev_err(dev, "%s: Invalid device name\n", "new_device");
690 return -EINVAL;
691 }
692 memcpy(info.type, buf, blank - buf);
693
694 /* Parse remaining parameters, reject extra parameters */
695 res = sscanf(++blank, "%hi%c", &info.addr, &end);
696 if (res < 1) {
697 dev_err(dev, "%s: Can't parse I2C address\n", "new_device");
698 return -EINVAL;
699 }
700 if (res > 1 && end != '\n') {
701 dev_err(dev, "%s: Extra parameters\n", "new_device");
702 return -EINVAL;
703 }
704
705 client = i2c_new_device(adap, &info);
706 if (!client)
707 return -EINVAL;
708
709 /* Keep track of the added device */
710 mutex_lock(&adap->userspace_clients_lock);
711 list_add_tail(&client->detected, &adap->userspace_clients);
712 mutex_unlock(&adap->userspace_clients_lock);
713 dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device",
714 info.type, info.addr);
715
716 return count;
717 }
718
719 /*
720 * And of course let the users delete the devices they instantiated, if
721 * they got it wrong. This interface can only be used to delete devices
722 * instantiated by i2c_sysfs_new_device above. This guarantees that we
723 * don't delete devices to which some kernel code still has references.
724 *
725 * Parameter checking may look overzealous, but we really don't want
726 * the user to delete the wrong device.
727 */
728 static ssize_t
729 i2c_sysfs_delete_device(struct device *dev, struct device_attribute *attr,
730 const char *buf, size_t count)
731 {
732 struct i2c_adapter *adap = to_i2c_adapter(dev);
733 struct i2c_client *client, *next;
734 unsigned short addr;
735 char end;
736 int res;
737
738 /* Parse parameters, reject extra parameters */
739 res = sscanf(buf, "%hi%c", &addr, &end);
740 if (res < 1) {
741 dev_err(dev, "%s: Can't parse I2C address\n", "delete_device");
742 return -EINVAL;
743 }
744 if (res > 1 && end != '\n') {
745 dev_err(dev, "%s: Extra parameters\n", "delete_device");
746 return -EINVAL;
747 }
748
749 /* Make sure the device was added through sysfs */
750 res = -ENOENT;
751 mutex_lock_nested(&adap->userspace_clients_lock,
752 i2c_adapter_depth(adap));
753 list_for_each_entry_safe(client, next, &adap->userspace_clients,
754 detected) {
755 if (client->addr == addr) {
756 dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
757 "delete_device", client->name, client->addr);
758
759 list_del(&client->detected);
760 i2c_unregister_device(client);
761 res = count;
762 break;
763 }
764 }
765 mutex_unlock(&adap->userspace_clients_lock);
766
767 if (res < 0)
768 dev_err(dev, "%s: Can't find device in list\n",
769 "delete_device");
770 return res;
771 }
772
773 static DEVICE_ATTR(new_device, S_IWUSR, NULL, i2c_sysfs_new_device);
774 static DEVICE_ATTR(delete_device, S_IWUSR, NULL, i2c_sysfs_delete_device);
775
776 static struct attribute *i2c_adapter_attrs[] = {
777 &dev_attr_name.attr,
778 &dev_attr_new_device.attr,
779 &dev_attr_delete_device.attr,
780 NULL
781 };
782
783 static struct attribute_group i2c_adapter_attr_group = {
784 .attrs = i2c_adapter_attrs,
785 };
786
787 static const struct attribute_group *i2c_adapter_attr_groups[] = {
788 &i2c_adapter_attr_group,
789 NULL
790 };
791
792 struct device_type i2c_adapter_type = {
793 .groups = i2c_adapter_attr_groups,
794 .release = i2c_adapter_dev_release,
795 };
796 EXPORT_SYMBOL_GPL(i2c_adapter_type);
797
798 /**
799 * i2c_verify_adapter - return parameter as i2c_adapter or NULL
800 * @dev: device, probably from some driver model iterator
801 *
802 * When traversing the driver model tree, perhaps using driver model
803 * iterators like @device_for_each_child(), you can't assume very much
804 * about the nodes you find. Use this function to avoid oopses caused
805 * by wrongly treating some non-I2C device as an i2c_adapter.
806 */
807 struct i2c_adapter *i2c_verify_adapter(struct device *dev)
808 {
809 return (dev->type == &i2c_adapter_type)
810 ? to_i2c_adapter(dev)
811 : NULL;
812 }
813 EXPORT_SYMBOL(i2c_verify_adapter);
814
815 #ifdef CONFIG_I2C_COMPAT
816 static struct class_compat *i2c_adapter_compat_class;
817 #endif
818
819 static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
820 {
821 struct i2c_devinfo *devinfo;
822
823 down_read(&__i2c_board_lock);
824 list_for_each_entry(devinfo, &__i2c_board_list, list) {
825 if (devinfo->busnum == adapter->nr
826 && !i2c_new_device(adapter,
827 &devinfo->board_info))
828 dev_err(&adapter->dev,
829 "Can't create device at 0x%02x\n",
830 devinfo->board_info.addr);
831 }
832 up_read(&__i2c_board_lock);
833 }
834
835 static int i2c_do_add_adapter(struct i2c_driver *driver,
836 struct i2c_adapter *adap)
837 {
838 /* Detect supported devices on that bus, and instantiate them */
839 i2c_detect(adap, driver);
840
841 /* Let legacy drivers scan this bus for matching devices */
842 if (driver->attach_adapter) {
843 dev_warn(&adap->dev, "%s: attach_adapter method is deprecated\n",
844 driver->driver.name);
845 dev_warn(&adap->dev, "Please use another way to instantiate "
846 "your i2c_client\n");
847 /* We ignore the return code; if it fails, too bad */
848 driver->attach_adapter(adap);
849 }
850 return 0;
851 }
852
853 static int __process_new_adapter(struct device_driver *d, void *data)
854 {
855 return i2c_do_add_adapter(to_i2c_driver(d), data);
856 }
857
858 static int i2c_register_adapter(struct i2c_adapter *adap)
859 {
860 int res = 0;
861
862 /* Can't register until after driver model init */
863 if (unlikely(WARN_ON(!i2c_bus_type.p))) {
864 res = -EAGAIN;
865 goto out_list;
866 }
867
868 /* Sanity checks */
869 if (unlikely(adap->name[0] == '\0')) {
870 pr_err("i2c-core: Attempt to register an adapter with "
871 "no name!\n");
872 return -EINVAL;
873 }
874 if (unlikely(!adap->algo)) {
875 pr_err("i2c-core: Attempt to register adapter '%s' with "
876 "no algo!\n", adap->name);
877 return -EINVAL;
878 }
879
880 rt_mutex_init(&adap->bus_lock);
881 mutex_init(&adap->userspace_clients_lock);
882 INIT_LIST_HEAD(&adap->userspace_clients);
883
884 /* Set default timeout to 1 second if not already set */
885 if (adap->timeout == 0)
886 adap->timeout = HZ;
887
888 dev_set_name(&adap->dev, "i2c-%d", adap->nr);
889 adap->dev.bus = &i2c_bus_type;
890 adap->dev.type = &i2c_adapter_type;
891 res = device_register(&adap->dev);
892 if (res)
893 goto out_list;
894
895 dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
896
897 #ifdef CONFIG_I2C_COMPAT
898 res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
899 adap->dev.parent);
900 if (res)
901 dev_warn(&adap->dev,
902 "Failed to create compatibility class link\n");
903 #endif
904
905 /* create pre-declared device nodes */
906 if (adap->nr < __i2c_first_dynamic_bus_num)
907 i2c_scan_static_board_info(adap);
908
909 /* Notify drivers */
910 mutex_lock(&core_lock);
911 bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
912 mutex_unlock(&core_lock);
913
914 return 0;
915
916 out_list:
917 mutex_lock(&core_lock);
918 idr_remove(&i2c_adapter_idr, adap->nr);
919 mutex_unlock(&core_lock);
920 return res;
921 }
922
923 /**
924 * i2c_add_adapter - declare i2c adapter, use dynamic bus number
925 * @adapter: the adapter to add
926 * Context: can sleep
927 *
928 * This routine is used to declare an I2C adapter when its bus number
929 * doesn't matter. Examples: for I2C adapters dynamically added by
930 * USB links or PCI plugin cards.
931 *
932 * When this returns zero, a new bus number was allocated and stored
933 * in adap->nr, and the specified adapter became available for clients.
934 * Otherwise, a negative errno value is returned.
935 */
936 int i2c_add_adapter(struct i2c_adapter *adapter)
937 {
938 int id;
939
940 mutex_lock(&core_lock);
941 id = idr_alloc(&i2c_adapter_idr, adapter,
942 __i2c_first_dynamic_bus_num, 0, GFP_KERNEL);
943 mutex_unlock(&core_lock);
944 if (id < 0)
945 return id;
946
947 adapter->nr = id;
948
949 return i2c_register_adapter(adapter);
950 }
951 EXPORT_SYMBOL(i2c_add_adapter);
952
953 /**
954 * i2c_add_numbered_adapter - declare i2c adapter, use static bus number
955 * @adap: the adapter to register (with adap->nr initialized)
956 * Context: can sleep
957 *
958 * This routine is used to declare an I2C adapter when its bus number
959 * matters. For example, use it for I2C adapters from system-on-chip CPUs,
960 * or otherwise built in to the system's mainboard, and where i2c_board_info
961 * is used to properly configure I2C devices.
962 *
963 * If the requested bus number is set to -1, then this function will behave
964 * identically to i2c_add_adapter, and will dynamically assign a bus number.
965 *
966 * If no devices have pre-been declared for this bus, then be sure to
967 * register the adapter before any dynamically allocated ones. Otherwise
968 * the required bus ID may not be available.
969 *
970 * When this returns zero, the specified adapter became available for
971 * clients using the bus number provided in adap->nr. Also, the table
972 * of I2C devices pre-declared using i2c_register_board_info() is scanned,
973 * and the appropriate driver model device nodes are created. Otherwise, a
974 * negative errno value is returned.
975 */
976 int i2c_add_numbered_adapter(struct i2c_adapter *adap)
977 {
978 int id;
979
980 if (adap->nr == -1) /* -1 means dynamically assign bus id */
981 return i2c_add_adapter(adap);
982
983 mutex_lock(&core_lock);
984 id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1,
985 GFP_KERNEL);
986 mutex_unlock(&core_lock);
987 if (id < 0)
988 return id == -ENOSPC ? -EBUSY : id;
989 return i2c_register_adapter(adap);
990 }
991 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
992
993 static int i2c_do_del_adapter(struct i2c_driver *driver,
994 struct i2c_adapter *adapter)
995 {
996 struct i2c_client *client, *_n;
997 int res;
998
999 /* Remove the devices we created ourselves as the result of hardware
1000 * probing (using a driver's detect method) */
1001 list_for_each_entry_safe(client, _n, &driver->clients, detected) {
1002 if (client->adapter == adapter) {
1003 dev_dbg(&adapter->dev, "Removing %s at 0x%x\n",
1004 client->name, client->addr);
1005 list_del(&client->detected);
1006 i2c_unregister_device(client);
1007 }
1008 }
1009
1010 if (!driver->detach_adapter)
1011 return 0;
1012 dev_warn(&adapter->dev, "%s: detach_adapter method is deprecated\n",
1013 driver->driver.name);
1014 res = driver->detach_adapter(adapter);
1015 if (res)
1016 dev_err(&adapter->dev, "detach_adapter failed (%d) "
1017 "for driver [%s]\n", res, driver->driver.name);
1018 return res;
1019 }
1020
1021 static int __unregister_client(struct device *dev, void *dummy)
1022 {
1023 struct i2c_client *client = i2c_verify_client(dev);
1024 if (client && strcmp(client->name, "dummy"))
1025 i2c_unregister_device(client);
1026 return 0;
1027 }
1028
1029 static int __unregister_dummy(struct device *dev, void *dummy)
1030 {
1031 struct i2c_client *client = i2c_verify_client(dev);
1032 if (client)
1033 i2c_unregister_device(client);
1034 return 0;
1035 }
1036
1037 static int __process_removed_adapter(struct device_driver *d, void *data)
1038 {
1039 return i2c_do_del_adapter(to_i2c_driver(d), data);
1040 }
1041
1042 /**
1043 * i2c_del_adapter - unregister I2C adapter
1044 * @adap: the adapter being unregistered
1045 * Context: can sleep
1046 *
1047 * This unregisters an I2C adapter which was previously registered
1048 * by @i2c_add_adapter or @i2c_add_numbered_adapter.
1049 */
1050 int i2c_del_adapter(struct i2c_adapter *adap)
1051 {
1052 int res = 0;
1053 struct i2c_adapter *found;
1054 struct i2c_client *client, *next;
1055
1056 /* First make sure that this adapter was ever added */
1057 mutex_lock(&core_lock);
1058 found = idr_find(&i2c_adapter_idr, adap->nr);
1059 mutex_unlock(&core_lock);
1060 if (found != adap) {
1061 pr_debug("i2c-core: attempting to delete unregistered "
1062 "adapter [%s]\n", adap->name);
1063 return -EINVAL;
1064 }
1065
1066 /* Tell drivers about this removal */
1067 mutex_lock(&core_lock);
1068 res = bus_for_each_drv(&i2c_bus_type, NULL, adap,
1069 __process_removed_adapter);
1070 mutex_unlock(&core_lock);
1071 if (res)
1072 return res;
1073
1074 /* Remove devices instantiated from sysfs */
1075 mutex_lock_nested(&adap->userspace_clients_lock,
1076 i2c_adapter_depth(adap));
1077 list_for_each_entry_safe(client, next, &adap->userspace_clients,
1078 detected) {
1079 dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
1080 client->addr);
1081 list_del(&client->detected);
1082 i2c_unregister_device(client);
1083 }
1084 mutex_unlock(&adap->userspace_clients_lock);
1085
1086 /* Detach any active clients. This can't fail, thus we do not
1087 * check the returned value. This is a two-pass process, because
1088 * we can't remove the dummy devices during the first pass: they
1089 * could have been instantiated by real devices wishing to clean
1090 * them up properly, so we give them a chance to do that first. */
1091 res = device_for_each_child(&adap->dev, NULL, __unregister_client);
1092 res = device_for_each_child(&adap->dev, NULL, __unregister_dummy);
1093
1094 #ifdef CONFIG_I2C_COMPAT
1095 class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,
1096 adap->dev.parent);
1097 #endif
1098
1099 /* device name is gone after device_unregister */
1100 dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);
1101
1102 /* clean up the sysfs representation */
1103 init_completion(&adap->dev_released);
1104 device_unregister(&adap->dev);
1105
1106 /* wait for sysfs to drop all references */
1107 wait_for_completion(&adap->dev_released);
1108
1109 /* free bus id */
1110 mutex_lock(&core_lock);
1111 idr_remove(&i2c_adapter_idr, adap->nr);
1112 mutex_unlock(&core_lock);
1113
1114 /* Clear the device structure in case this adapter is ever going to be
1115 added again */
1116 memset(&adap->dev, 0, sizeof(adap->dev));
1117
1118 return 0;
1119 }
1120 EXPORT_SYMBOL(i2c_del_adapter);
1121
1122
1123 /* ------------------------------------------------------------------------- */
1124
1125 int i2c_for_each_dev(void *data, int (*fn)(struct device *, void *))
1126 {
1127 int res;
1128
1129 mutex_lock(&core_lock);
1130 res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn);
1131 mutex_unlock(&core_lock);
1132
1133 return res;
1134 }
1135 EXPORT_SYMBOL_GPL(i2c_for_each_dev);
1136
1137 static int __process_new_driver(struct device *dev, void *data)
1138 {
1139 if (dev->type != &i2c_adapter_type)
1140 return 0;
1141 return i2c_do_add_adapter(data, to_i2c_adapter(dev));
1142 }
1143
1144 /*
1145 * An i2c_driver is used with one or more i2c_client (device) nodes to access
1146 * i2c slave chips, on a bus instance associated with some i2c_adapter.
1147 */
1148
1149 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
1150 {
1151 int res;
1152
1153 /* Can't register until after driver model init */
1154 if (unlikely(WARN_ON(!i2c_bus_type.p)))
1155 return -EAGAIN;
1156
1157 /* add the driver to the list of i2c drivers in the driver core */
1158 driver->driver.owner = owner;
1159 driver->driver.bus = &i2c_bus_type;
1160
1161 /* When registration returns, the driver core
1162 * will have called probe() for all matching-but-unbound devices.
1163 */
1164 res = driver_register(&driver->driver);
1165 if (res)
1166 return res;
1167
1168 /* Drivers should switch to dev_pm_ops instead. */
1169 if (driver->suspend)
1170 pr_warn("i2c-core: driver [%s] using legacy suspend method\n",
1171 driver->driver.name);
1172 if (driver->resume)
1173 pr_warn("i2c-core: driver [%s] using legacy resume method\n",
1174 driver->driver.name);
1175
1176 pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name);
1177
1178 INIT_LIST_HEAD(&driver->clients);
1179 /* Walk the adapters that are already present */
1180 i2c_for_each_dev(driver, __process_new_driver);
1181
1182 return 0;
1183 }
1184 EXPORT_SYMBOL(i2c_register_driver);
1185
1186 static int __process_removed_driver(struct device *dev, void *data)
1187 {
1188 if (dev->type != &i2c_adapter_type)
1189 return 0;
1190 return i2c_do_del_adapter(data, to_i2c_adapter(dev));
1191 }
1192
1193 /**
1194 * i2c_del_driver - unregister I2C driver
1195 * @driver: the driver being unregistered
1196 * Context: can sleep
1197 */
1198 void i2c_del_driver(struct i2c_driver *driver)
1199 {
1200 i2c_for_each_dev(driver, __process_removed_driver);
1201
1202 driver_unregister(&driver->driver);
1203 pr_debug("i2c-core: driver [%s] unregistered\n", driver->driver.name);
1204 }
1205 EXPORT_SYMBOL(i2c_del_driver);
1206
1207 /* ------------------------------------------------------------------------- */
1208
1209 /**
1210 * i2c_use_client - increments the reference count of the i2c client structure
1211 * @client: the client being referenced
1212 *
1213 * Each live reference to a client should be refcounted. The driver model does
1214 * that automatically as part of driver binding, so that most drivers don't
1215 * need to do this explicitly: they hold a reference until they're unbound
1216 * from the device.
1217 *
1218 * A pointer to the client with the incremented reference counter is returned.
1219 */
1220 struct i2c_client *i2c_use_client(struct i2c_client *client)
1221 {
1222 if (client && get_device(&client->dev))
1223 return client;
1224 return NULL;
1225 }
1226 EXPORT_SYMBOL(i2c_use_client);
1227
1228 /**
1229 * i2c_release_client - release a use of the i2c client structure
1230 * @client: the client being no longer referenced
1231 *
1232 * Must be called when a user of a client is finished with it.
1233 */
1234 void i2c_release_client(struct i2c_client *client)
1235 {
1236 if (client)
1237 put_device(&client->dev);
1238 }
1239 EXPORT_SYMBOL(i2c_release_client);
1240
1241 struct i2c_cmd_arg {
1242 unsigned cmd;
1243 void *arg;
1244 };
1245
1246 static int i2c_cmd(struct device *dev, void *_arg)
1247 {
1248 struct i2c_client *client = i2c_verify_client(dev);
1249 struct i2c_cmd_arg *arg = _arg;
1250
1251 if (client && client->driver && client->driver->command)
1252 client->driver->command(client, arg->cmd, arg->arg);
1253 return 0;
1254 }
1255
1256 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg)
1257 {
1258 struct i2c_cmd_arg cmd_arg;
1259
1260 cmd_arg.cmd = cmd;
1261 cmd_arg.arg = arg;
1262 device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd);
1263 }
1264 EXPORT_SYMBOL(i2c_clients_command);
1265
1266 static int __init i2c_init(void)
1267 {
1268 int retval;
1269
1270 retval = bus_register(&i2c_bus_type);
1271 if (retval)
1272 return retval;
1273 #ifdef CONFIG_I2C_COMPAT
1274 i2c_adapter_compat_class = class_compat_register("i2c-adapter");
1275 if (!i2c_adapter_compat_class) {
1276 retval = -ENOMEM;
1277 goto bus_err;
1278 }
1279 #endif
1280 retval = i2c_add_driver(&dummy_driver);
1281 if (retval)
1282 goto class_err;
1283 return 0;
1284
1285 class_err:
1286 #ifdef CONFIG_I2C_COMPAT
1287 class_compat_unregister(i2c_adapter_compat_class);
1288 bus_err:
1289 #endif
1290 bus_unregister(&i2c_bus_type);
1291 return retval;
1292 }
1293
1294 static void __exit i2c_exit(void)
1295 {
1296 i2c_del_driver(&dummy_driver);
1297 #ifdef CONFIG_I2C_COMPAT
1298 class_compat_unregister(i2c_adapter_compat_class);
1299 #endif
1300 bus_unregister(&i2c_bus_type);
1301 }
1302
1303 /* We must initialize early, because some subsystems register i2c drivers
1304 * in subsys_initcall() code, but are linked (and initialized) before i2c.
1305 */
1306 postcore_initcall(i2c_init);
1307 module_exit(i2c_exit);
1308
1309 /* ----------------------------------------------------
1310 * the functional interface to the i2c busses.
1311 * ----------------------------------------------------
1312 */
1313
1314 /**
1315 * __i2c_transfer - unlocked flavor of i2c_transfer
1316 * @adap: Handle to I2C bus
1317 * @msgs: One or more messages to execute before STOP is issued to
1318 * terminate the operation; each message begins with a START.
1319 * @num: Number of messages to be executed.
1320 *
1321 * Returns negative errno, else the number of messages executed.
1322 *
1323 * Adapter lock must be held when calling this function. No debug logging
1324 * takes place. adap->algo->master_xfer existence isn't checked.
1325 */
1326 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1327 {
1328 unsigned long orig_jiffies;
1329 int ret, try;
1330
1331 /* Retry automatically on arbitration loss */
1332 orig_jiffies = jiffies;
1333 for (ret = 0, try = 0; try <= adap->retries; try++) {
1334 ret = adap->algo->master_xfer(adap, msgs, num);
1335 if (ret != -EAGAIN)
1336 break;
1337 if (time_after(jiffies, orig_jiffies + adap->timeout))
1338 break;
1339 }
1340
1341 return ret;
1342 }
1343 EXPORT_SYMBOL(__i2c_transfer);
1344
1345 /**
1346 * i2c_transfer - execute a single or combined I2C message
1347 * @adap: Handle to I2C bus
1348 * @msgs: One or more messages to execute before STOP is issued to
1349 * terminate the operation; each message begins with a START.
1350 * @num: Number of messages to be executed.
1351 *
1352 * Returns negative errno, else the number of messages executed.
1353 *
1354 * Note that there is no requirement that each message be sent to
1355 * the same slave address, although that is the most common model.
1356 */
1357 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1358 {
1359 int ret;
1360
1361 /* REVISIT the fault reporting model here is weak:
1362 *
1363 * - When we get an error after receiving N bytes from a slave,
1364 * there is no way to report "N".
1365 *
1366 * - When we get a NAK after transmitting N bytes to a slave,
1367 * there is no way to report "N" ... or to let the master
1368 * continue executing the rest of this combined message, if
1369 * that's the appropriate response.
1370 *
1371 * - When for example "num" is two and we successfully complete
1372 * the first message but get an error part way through the
1373 * second, it's unclear whether that should be reported as
1374 * one (discarding status on the second message) or errno
1375 * (discarding status on the first one).
1376 */
1377
1378 if (adap->algo->master_xfer) {
1379 #ifdef DEBUG
1380 for (ret = 0; ret < num; ret++) {
1381 dev_dbg(&adap->dev, "master_xfer[%d] %c, addr=0x%02x, "
1382 "len=%d%s\n", ret, (msgs[ret].flags & I2C_M_RD)
1383 ? 'R' : 'W', msgs[ret].addr, msgs[ret].len,
1384 (msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : "");
1385 }
1386 #endif
1387
1388 if (in_atomic() || irqs_disabled()) {
1389 ret = i2c_trylock_adapter(adap);
1390 if (!ret)
1391 /* I2C activity is ongoing. */
1392 return -EAGAIN;
1393 } else {
1394 i2c_lock_adapter(adap);
1395 }
1396
1397 ret = __i2c_transfer(adap, msgs, num);
1398 i2c_unlock_adapter(adap);
1399
1400 return ret;
1401 } else {
1402 dev_dbg(&adap->dev, "I2C level transfers not supported\n");
1403 return -EOPNOTSUPP;
1404 }
1405 }
1406 EXPORT_SYMBOL(i2c_transfer);
1407
1408 /**
1409 * i2c_master_send - issue a single I2C message in master transmit mode
1410 * @client: Handle to slave device
1411 * @buf: Data that will be written to the slave
1412 * @count: How many bytes to write, must be less than 64k since msg.len is u16
1413 *
1414 * Returns negative errno, or else the number of bytes written.
1415 */
1416 int i2c_master_send(const struct i2c_client *client, const char *buf, int count)
1417 {
1418 int ret;
1419 struct i2c_adapter *adap = client->adapter;
1420 struct i2c_msg msg;
1421
1422 msg.addr = client->addr;
1423 msg.flags = client->flags & I2C_M_TEN;
1424 msg.len = count;
1425 msg.buf = (char *)buf;
1426
1427 ret = i2c_transfer(adap, &msg, 1);
1428
1429 /*
1430 * If everything went ok (i.e. 1 msg transmitted), return #bytes
1431 * transmitted, else error code.
1432 */
1433 return (ret == 1) ? count : ret;
1434 }
1435 EXPORT_SYMBOL(i2c_master_send);
1436
1437 /**
1438 * i2c_master_recv - issue a single I2C message in master receive mode
1439 * @client: Handle to slave device
1440 * @buf: Where to store data read from slave
1441 * @count: How many bytes to read, must be less than 64k since msg.len is u16
1442 *
1443 * Returns negative errno, or else the number of bytes read.
1444 */
1445 int i2c_master_recv(const struct i2c_client *client, char *buf, int count)
1446 {
1447 struct i2c_adapter *adap = client->adapter;
1448 struct i2c_msg msg;
1449 int ret;
1450
1451 msg.addr = client->addr;
1452 msg.flags = client->flags & I2C_M_TEN;
1453 msg.flags |= I2C_M_RD;
1454 msg.len = count;
1455 msg.buf = buf;
1456
1457 ret = i2c_transfer(adap, &msg, 1);
1458
1459 /*
1460 * If everything went ok (i.e. 1 msg received), return #bytes received,
1461 * else error code.
1462 */
1463 return (ret == 1) ? count : ret;
1464 }
1465 EXPORT_SYMBOL(i2c_master_recv);
1466
1467 /* ----------------------------------------------------
1468 * the i2c address scanning function
1469 * Will not work for 10-bit addresses!
1470 * ----------------------------------------------------
1471 */
1472
1473 /*
1474 * Legacy default probe function, mostly relevant for SMBus. The default
1475 * probe method is a quick write, but it is known to corrupt the 24RF08
1476 * EEPROMs due to a state machine bug, and could also irreversibly
1477 * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f,
1478 * we use a short byte read instead. Also, some bus drivers don't implement
1479 * quick write, so we fallback to a byte read in that case too.
1480 * On x86, there is another special case for FSC hardware monitoring chips,
1481 * which want regular byte reads (address 0x73.) Fortunately, these are the
1482 * only known chips using this I2C address on PC hardware.
1483 * Returns 1 if probe succeeded, 0 if not.
1484 */
1485 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr)
1486 {
1487 int err;
1488 union i2c_smbus_data dummy;
1489
1490 #ifdef CONFIG_X86
1491 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON)
1492 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
1493 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1494 I2C_SMBUS_BYTE_DATA, &dummy);
1495 else
1496 #endif
1497 if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50)
1498 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
1499 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
1500 I2C_SMBUS_QUICK, NULL);
1501 else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE))
1502 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1503 I2C_SMBUS_BYTE, &dummy);
1504 else {
1505 dev_warn(&adap->dev, "No suitable probing method supported\n");
1506 err = -EOPNOTSUPP;
1507 }
1508
1509 return err >= 0;
1510 }
1511
1512 static int i2c_detect_address(struct i2c_client *temp_client,
1513 struct i2c_driver *driver)
1514 {
1515 struct i2c_board_info info;
1516 struct i2c_adapter *adapter = temp_client->adapter;
1517 int addr = temp_client->addr;
1518 int err;
1519
1520 /* Make sure the address is valid */
1521 err = i2c_check_addr_validity(addr);
1522 if (err) {
1523 dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
1524 addr);
1525 return err;
1526 }
1527
1528 /* Skip if already in use */
1529 if (i2c_check_addr_busy(adapter, addr))
1530 return 0;
1531
1532 /* Make sure there is something at this address */
1533 if (!i2c_default_probe(adapter, addr))
1534 return 0;
1535
1536 /* Finally call the custom detection function */
1537 memset(&info, 0, sizeof(struct i2c_board_info));
1538 info.addr = addr;
1539 err = driver->detect(temp_client, &info);
1540 if (err) {
1541 /* -ENODEV is returned if the detection fails. We catch it
1542 here as this isn't an error. */
1543 return err == -ENODEV ? 0 : err;
1544 }
1545
1546 /* Consistency check */
1547 if (info.type[0] == '\0') {
1548 dev_err(&adapter->dev, "%s detection function provided "
1549 "no name for 0x%x\n", driver->driver.name,
1550 addr);
1551 } else {
1552 struct i2c_client *client;
1553
1554 /* Detection succeeded, instantiate the device */
1555 dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
1556 info.type, info.addr);
1557 client = i2c_new_device(adapter, &info);
1558 if (client)
1559 list_add_tail(&client->detected, &driver->clients);
1560 else
1561 dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
1562 info.type, info.addr);
1563 }
1564 return 0;
1565 }
1566
1567 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
1568 {
1569 const unsigned short *address_list;
1570 struct i2c_client *temp_client;
1571 int i, err = 0;
1572 int adap_id = i2c_adapter_id(adapter);
1573
1574 address_list = driver->address_list;
1575 if (!driver->detect || !address_list)
1576 return 0;
1577
1578 /* Stop here if the classes do not match */
1579 if (!(adapter->class & driver->class))
1580 return 0;
1581
1582 /* Set up a temporary client to help detect callback */
1583 temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
1584 if (!temp_client)
1585 return -ENOMEM;
1586 temp_client->adapter = adapter;
1587
1588 for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
1589 dev_dbg(&adapter->dev, "found normal entry for adapter %d, "
1590 "addr 0x%02x\n", adap_id, address_list[i]);
1591 temp_client->addr = address_list[i];
1592 err = i2c_detect_address(temp_client, driver);
1593 if (unlikely(err))
1594 break;
1595 }
1596
1597 kfree(temp_client);
1598 return err;
1599 }
1600
1601 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr)
1602 {
1603 return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1604 I2C_SMBUS_QUICK, NULL) >= 0;
1605 }
1606 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read);
1607
1608 struct i2c_client *
1609 i2c_new_probed_device(struct i2c_adapter *adap,
1610 struct i2c_board_info *info,
1611 unsigned short const *addr_list,
1612 int (*probe)(struct i2c_adapter *, unsigned short addr))
1613 {
1614 int i;
1615
1616 if (!probe)
1617 probe = i2c_default_probe;
1618
1619 for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
1620 /* Check address validity */
1621 if (i2c_check_addr_validity(addr_list[i]) < 0) {
1622 dev_warn(&adap->dev, "Invalid 7-bit address "
1623 "0x%02x\n", addr_list[i]);
1624 continue;
1625 }
1626
1627 /* Check address availability */
1628 if (i2c_check_addr_busy(adap, addr_list[i])) {
1629 dev_dbg(&adap->dev, "Address 0x%02x already in "
1630 "use, not probing\n", addr_list[i]);
1631 continue;
1632 }
1633
1634 /* Test address responsiveness */
1635 if (probe(adap, addr_list[i]))
1636 break;
1637 }
1638
1639 if (addr_list[i] == I2C_CLIENT_END) {
1640 dev_dbg(&adap->dev, "Probing failed, no device found\n");
1641 return NULL;
1642 }
1643
1644 info->addr = addr_list[i];
1645 return i2c_new_device(adap, info);
1646 }
1647 EXPORT_SYMBOL_GPL(i2c_new_probed_device);
1648
1649 struct i2c_adapter *i2c_get_adapter(int nr)
1650 {
1651 struct i2c_adapter *adapter;
1652
1653 mutex_lock(&core_lock);
1654 adapter = idr_find(&i2c_adapter_idr, nr);
1655 if (adapter && !try_module_get(adapter->owner))
1656 adapter = NULL;
1657
1658 mutex_unlock(&core_lock);
1659 return adapter;
1660 }
1661 EXPORT_SYMBOL(i2c_get_adapter);
1662
1663 void i2c_put_adapter(struct i2c_adapter *adap)
1664 {
1665 module_put(adap->owner);
1666 }
1667 EXPORT_SYMBOL(i2c_put_adapter);
1668
1669 /* The SMBus parts */
1670
1671 #define POLY (0x1070U << 3)
1672 static u8 crc8(u16 data)
1673 {
1674 int i;
1675
1676 for (i = 0; i < 8; i++) {
1677 if (data & 0x8000)
1678 data = data ^ POLY;
1679 data = data << 1;
1680 }
1681 return (u8)(data >> 8);
1682 }
1683
1684 /* Incremental CRC8 over count bytes in the array pointed to by p */
1685 static u8 i2c_smbus_pec(u8 crc, u8 *p, size_t count)
1686 {
1687 int i;
1688
1689 for (i = 0; i < count; i++)
1690 crc = crc8((crc ^ p[i]) << 8);
1691 return crc;
1692 }
1693
1694 /* Assume a 7-bit address, which is reasonable for SMBus */
1695 static u8 i2c_smbus_msg_pec(u8 pec, struct i2c_msg *msg)
1696 {
1697 /* The address will be sent first */
1698 u8 addr = (msg->addr << 1) | !!(msg->flags & I2C_M_RD);
1699 pec = i2c_smbus_pec(pec, &addr, 1);
1700
1701 /* The data buffer follows */
1702 return i2c_smbus_pec(pec, msg->buf, msg->len);
1703 }
1704
1705 /* Used for write only transactions */
1706 static inline void i2c_smbus_add_pec(struct i2c_msg *msg)
1707 {
1708 msg->buf[msg->len] = i2c_smbus_msg_pec(0, msg);
1709 msg->len++;
1710 }
1711
1712 /* Return <0 on CRC error
1713 If there was a write before this read (most cases) we need to take the
1714 partial CRC from the write part into account.
1715 Note that this function does modify the message (we need to decrease the
1716 message length to hide the CRC byte from the caller). */
1717 static int i2c_smbus_check_pec(u8 cpec, struct i2c_msg *msg)
1718 {
1719 u8 rpec = msg->buf[--msg->len];
1720 cpec = i2c_smbus_msg_pec(cpec, msg);
1721
1722 if (rpec != cpec) {
1723 pr_debug("i2c-core: Bad PEC 0x%02x vs. 0x%02x\n",
1724 rpec, cpec);
1725 return -EBADMSG;
1726 }
1727 return 0;
1728 }
1729
1730 /**
1731 * i2c_smbus_read_byte - SMBus "receive byte" protocol
1732 * @client: Handle to slave device
1733 *
1734 * This executes the SMBus "receive byte" protocol, returning negative errno
1735 * else the byte received from the device.
1736 */
1737 s32 i2c_smbus_read_byte(const struct i2c_client *client)
1738 {
1739 union i2c_smbus_data data;
1740 int status;
1741
1742 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1743 I2C_SMBUS_READ, 0,
1744 I2C_SMBUS_BYTE, &data);
1745 return (status < 0) ? status : data.byte;
1746 }
1747 EXPORT_SYMBOL(i2c_smbus_read_byte);
1748
1749 /**
1750 * i2c_smbus_write_byte - SMBus "send byte" protocol
1751 * @client: Handle to slave device
1752 * @value: Byte to be sent
1753 *
1754 * This executes the SMBus "send byte" protocol, returning negative errno
1755 * else zero on success.
1756 */
1757 s32 i2c_smbus_write_byte(const struct i2c_client *client, u8 value)
1758 {
1759 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1760 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
1761 }
1762 EXPORT_SYMBOL(i2c_smbus_write_byte);
1763
1764 /**
1765 * i2c_smbus_read_byte_data - SMBus "read byte" protocol
1766 * @client: Handle to slave device
1767 * @command: Byte interpreted by slave
1768 *
1769 * This executes the SMBus "read byte" protocol, returning negative errno
1770 * else a data byte received from the device.
1771 */
1772 s32 i2c_smbus_read_byte_data(const struct i2c_client *client, u8 command)
1773 {
1774 union i2c_smbus_data data;
1775 int status;
1776
1777 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1778 I2C_SMBUS_READ, command,
1779 I2C_SMBUS_BYTE_DATA, &data);
1780 return (status < 0) ? status : data.byte;
1781 }
1782 EXPORT_SYMBOL(i2c_smbus_read_byte_data);
1783
1784 /**
1785 * i2c_smbus_write_byte_data - SMBus "write byte" protocol
1786 * @client: Handle to slave device
1787 * @command: Byte interpreted by slave
1788 * @value: Byte being written
1789 *
1790 * This executes the SMBus "write byte" protocol, returning negative errno
1791 * else zero on success.
1792 */
1793 s32 i2c_smbus_write_byte_data(const struct i2c_client *client, u8 command,
1794 u8 value)
1795 {
1796 union i2c_smbus_data data;
1797 data.byte = value;
1798 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1799 I2C_SMBUS_WRITE, command,
1800 I2C_SMBUS_BYTE_DATA, &data);
1801 }
1802 EXPORT_SYMBOL(i2c_smbus_write_byte_data);
1803
1804 /**
1805 * i2c_smbus_read_word_data - SMBus "read word" protocol
1806 * @client: Handle to slave device
1807 * @command: Byte interpreted by slave
1808 *
1809 * This executes the SMBus "read word" protocol, returning negative errno
1810 * else a 16-bit unsigned "word" received from the device.
1811 */
1812 s32 i2c_smbus_read_word_data(const struct i2c_client *client, u8 command)
1813 {
1814 union i2c_smbus_data data;
1815 int status;
1816
1817 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1818 I2C_SMBUS_READ, command,
1819 I2C_SMBUS_WORD_DATA, &data);
1820 return (status < 0) ? status : data.word;
1821 }
1822 EXPORT_SYMBOL(i2c_smbus_read_word_data);
1823
1824 /**
1825 * i2c_smbus_write_word_data - SMBus "write word" protocol
1826 * @client: Handle to slave device
1827 * @command: Byte interpreted by slave
1828 * @value: 16-bit "word" being written
1829 *
1830 * This executes the SMBus "write word" protocol, returning negative errno
1831 * else zero on success.
1832 */
1833 s32 i2c_smbus_write_word_data(const struct i2c_client *client, u8 command,
1834 u16 value)
1835 {
1836 union i2c_smbus_data data;
1837 data.word = value;
1838 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1839 I2C_SMBUS_WRITE, command,
1840 I2C_SMBUS_WORD_DATA, &data);
1841 }
1842 EXPORT_SYMBOL(i2c_smbus_write_word_data);
1843
1844 /**
1845 * i2c_smbus_read_block_data - SMBus "block read" protocol
1846 * @client: Handle to slave device
1847 * @command: Byte interpreted by slave
1848 * @values: Byte array into which data will be read; big enough to hold
1849 * the data returned by the slave. SMBus allows at most 32 bytes.
1850 *
1851 * This executes the SMBus "block read" protocol, returning negative errno
1852 * else the number of data bytes in the slave's response.
1853 *
1854 * Note that using this function requires that the client's adapter support
1855 * the I2C_FUNC_SMBUS_READ_BLOCK_DATA functionality. Not all adapter drivers
1856 * support this; its emulation through I2C messaging relies on a specific
1857 * mechanism (I2C_M_RECV_LEN) which may not be implemented.
1858 */
1859 s32 i2c_smbus_read_block_data(const struct i2c_client *client, u8 command,
1860 u8 *values)
1861 {
1862 union i2c_smbus_data data;
1863 int status;
1864
1865 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1866 I2C_SMBUS_READ, command,
1867 I2C_SMBUS_BLOCK_DATA, &data);
1868 if (status)
1869 return status;
1870
1871 memcpy(values, &data.block[1], data.block[0]);
1872 return data.block[0];
1873 }
1874 EXPORT_SYMBOL(i2c_smbus_read_block_data);
1875
1876 /**
1877 * i2c_smbus_write_block_data - SMBus "block write" protocol
1878 * @client: Handle to slave device
1879 * @command: Byte interpreted by slave
1880 * @length: Size of data block; SMBus allows at most 32 bytes
1881 * @values: Byte array which will be written.
1882 *
1883 * This executes the SMBus "block write" protocol, returning negative errno
1884 * else zero on success.
1885 */
1886 s32 i2c_smbus_write_block_data(const struct i2c_client *client, u8 command,
1887 u8 length, const u8 *values)
1888 {
1889 union i2c_smbus_data data;
1890
1891 if (length > I2C_SMBUS_BLOCK_MAX)
1892 length = I2C_SMBUS_BLOCK_MAX;
1893 data.block[0] = length;
1894 memcpy(&data.block[1], values, length);
1895 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1896 I2C_SMBUS_WRITE, command,
1897 I2C_SMBUS_BLOCK_DATA, &data);
1898 }
1899 EXPORT_SYMBOL(i2c_smbus_write_block_data);
1900
1901 /* Returns the number of read bytes */
1902 s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client, u8 command,
1903 u8 length, u8 *values)
1904 {
1905 union i2c_smbus_data data;
1906 int status;
1907
1908 if (length > I2C_SMBUS_BLOCK_MAX)
1909 length = I2C_SMBUS_BLOCK_MAX;
1910 data.block[0] = length;
1911 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1912 I2C_SMBUS_READ, command,
1913 I2C_SMBUS_I2C_BLOCK_DATA, &data);
1914 if (status < 0)
1915 return status;
1916
1917 memcpy(values, &data.block[1], data.block[0]);
1918 return data.block[0];
1919 }
1920 EXPORT_SYMBOL(i2c_smbus_read_i2c_block_data);
1921
1922 s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client, u8 command,
1923 u8 length, const u8 *values)
1924 {
1925 union i2c_smbus_data data;
1926
1927 if (length > I2C_SMBUS_BLOCK_MAX)
1928 length = I2C_SMBUS_BLOCK_MAX;
1929 data.block[0] = length;
1930 memcpy(data.block + 1, values, length);
1931 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1932 I2C_SMBUS_WRITE, command,
1933 I2C_SMBUS_I2C_BLOCK_DATA, &data);
1934 }
1935 EXPORT_SYMBOL(i2c_smbus_write_i2c_block_data);
1936
1937 /* Simulate a SMBus command using the i2c protocol
1938 No checking of parameters is done! */
1939 static s32 i2c_smbus_xfer_emulated(struct i2c_adapter *adapter, u16 addr,
1940 unsigned short flags,
1941 char read_write, u8 command, int size,
1942 union i2c_smbus_data *data)
1943 {
1944 /* So we need to generate a series of msgs. In the case of writing, we
1945 need to use only one message; when reading, we need two. We initialize
1946 most things with sane defaults, to keep the code below somewhat
1947 simpler. */
1948 unsigned char msgbuf0[I2C_SMBUS_BLOCK_MAX+3];
1949 unsigned char msgbuf1[I2C_SMBUS_BLOCK_MAX+2];
1950 int num = read_write == I2C_SMBUS_READ ? 2 : 1;
1951 int i;
1952 u8 partial_pec = 0;
1953 int status;
1954 struct i2c_msg msg[2] = {
1955 {
1956 .addr = addr,
1957 .flags = flags,
1958 .len = 1,
1959 .buf = msgbuf0,
1960 }, {
1961 .addr = addr,
1962 .flags = flags | I2C_M_RD,
1963 .len = 0,
1964 .buf = msgbuf1,
1965 },
1966 };
1967
1968 msgbuf0[0] = command;
1969 switch (size) {
1970 case I2C_SMBUS_QUICK:
1971 msg[0].len = 0;
1972 /* Special case: The read/write field is used as data */
1973 msg[0].flags = flags | (read_write == I2C_SMBUS_READ ?
1974 I2C_M_RD : 0);
1975 num = 1;
1976 break;
1977 case I2C_SMBUS_BYTE:
1978 if (read_write == I2C_SMBUS_READ) {
1979 /* Special case: only a read! */
1980 msg[0].flags = I2C_M_RD | flags;
1981 num = 1;
1982 }
1983 break;
1984 case I2C_SMBUS_BYTE_DATA:
1985 if (read_write == I2C_SMBUS_READ)
1986 msg[1].len = 1;
1987 else {
1988 msg[0].len = 2;
1989 msgbuf0[1] = data->byte;
1990 }
1991 break;
1992 case I2C_SMBUS_WORD_DATA:
1993 if (read_write == I2C_SMBUS_READ)
1994 msg[1].len = 2;
1995 else {
1996 msg[0].len = 3;
1997 msgbuf0[1] = data->word & 0xff;
1998 msgbuf0[2] = data->word >> 8;
1999 }
2000 break;
2001 case I2C_SMBUS_PROC_CALL:
2002 num = 2; /* Special case */
2003 read_write = I2C_SMBUS_READ;
2004 msg[0].len = 3;
2005 msg[1].len = 2;
2006 msgbuf0[1] = data->word & 0xff;
2007 msgbuf0[2] = data->word >> 8;
2008 break;
2009 case I2C_SMBUS_BLOCK_DATA:
2010 if (read_write == I2C_SMBUS_READ) {
2011 msg[1].flags |= I2C_M_RECV_LEN;
2012 msg[1].len = 1; /* block length will be added by
2013 the underlying bus driver */
2014 } else {
2015 msg[0].len = data->block[0] + 2;
2016 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 2) {
2017 dev_err(&adapter->dev,
2018 "Invalid block write size %d\n",
2019 data->block[0]);
2020 return -EINVAL;
2021 }
2022 for (i = 1; i < msg[0].len; i++)
2023 msgbuf0[i] = data->block[i-1];
2024 }
2025 break;
2026 case I2C_SMBUS_BLOCK_PROC_CALL:
2027 num = 2; /* Another special case */
2028 read_write = I2C_SMBUS_READ;
2029 if (data->block[0] > I2C_SMBUS_BLOCK_MAX) {
2030 dev_err(&adapter->dev,
2031 "Invalid block write size %d\n",
2032 data->block[0]);
2033 return -EINVAL;
2034 }
2035 msg[0].len = data->block[0] + 2;
2036 for (i = 1; i < msg[0].len; i++)
2037 msgbuf0[i] = data->block[i-1];
2038 msg[1].flags |= I2C_M_RECV_LEN;
2039 msg[1].len = 1; /* block length will be added by
2040 the underlying bus driver */
2041 break;
2042 case I2C_SMBUS_I2C_BLOCK_DATA:
2043 if (read_write == I2C_SMBUS_READ) {
2044 msg[1].len = data->block[0];
2045 } else {
2046 msg[0].len = data->block[0] + 1;
2047 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 1) {
2048 dev_err(&adapter->dev,
2049 "Invalid block write size %d\n",
2050 data->block[0]);
2051 return -EINVAL;
2052 }
2053 for (i = 1; i <= data->block[0]; i++)
2054 msgbuf0[i] = data->block[i];
2055 }
2056 break;
2057 default:
2058 dev_err(&adapter->dev, "Unsupported transaction %d\n", size);
2059 return -EOPNOTSUPP;
2060 }
2061
2062 i = ((flags & I2C_CLIENT_PEC) && size != I2C_SMBUS_QUICK
2063 && size != I2C_SMBUS_I2C_BLOCK_DATA);
2064 if (i) {
2065 /* Compute PEC if first message is a write */
2066 if (!(msg[0].flags & I2C_M_RD)) {
2067 if (num == 1) /* Write only */
2068 i2c_smbus_add_pec(&msg[0]);
2069 else /* Write followed by read */
2070 partial_pec = i2c_smbus_msg_pec(0, &msg[0]);
2071 }
2072 /* Ask for PEC if last message is a read */
2073 if (msg[num-1].flags & I2C_M_RD)
2074 msg[num-1].len++;
2075 }
2076
2077 status = i2c_transfer(adapter, msg, num);
2078 if (status < 0)
2079 return status;
2080
2081 /* Check PEC if last message is a read */
2082 if (i && (msg[num-1].flags & I2C_M_RD)) {
2083 status = i2c_smbus_check_pec(partial_pec, &msg[num-1]);
2084 if (status < 0)
2085 return status;
2086 }
2087
2088 if (read_write == I2C_SMBUS_READ)
2089 switch (size) {
2090 case I2C_SMBUS_BYTE:
2091 data->byte = msgbuf0[0];
2092 break;
2093 case I2C_SMBUS_BYTE_DATA:
2094 data->byte = msgbuf1[0];
2095 break;
2096 case I2C_SMBUS_WORD_DATA:
2097 case I2C_SMBUS_PROC_CALL:
2098 data->word = msgbuf1[0] | (msgbuf1[1] << 8);
2099 break;
2100 case I2C_SMBUS_I2C_BLOCK_DATA:
2101 for (i = 0; i < data->block[0]; i++)
2102 data->block[i+1] = msgbuf1[i];
2103 break;
2104 case I2C_SMBUS_BLOCK_DATA:
2105 case I2C_SMBUS_BLOCK_PROC_CALL:
2106 for (i = 0; i < msgbuf1[0] + 1; i++)
2107 data->block[i] = msgbuf1[i];
2108 break;
2109 }
2110 return 0;
2111 }
2112
2113 /**
2114 * i2c_smbus_xfer - execute SMBus protocol operations
2115 * @adapter: Handle to I2C bus
2116 * @addr: Address of SMBus slave on that bus
2117 * @flags: I2C_CLIENT_* flags (usually zero or I2C_CLIENT_PEC)
2118 * @read_write: I2C_SMBUS_READ or I2C_SMBUS_WRITE
2119 * @command: Byte interpreted by slave, for protocols which use such bytes
2120 * @protocol: SMBus protocol operation to execute, such as I2C_SMBUS_PROC_CALL
2121 * @data: Data to be read or written
2122 *
2123 * This executes an SMBus protocol operation, and returns a negative
2124 * errno code else zero on success.
2125 */
2126 s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr, unsigned short flags,
2127 char read_write, u8 command, int protocol,
2128 union i2c_smbus_data *data)
2129 {
2130 unsigned long orig_jiffies;
2131 int try;
2132 s32 res;
2133
2134 flags &= I2C_M_TEN | I2C_CLIENT_PEC | I2C_CLIENT_SCCB;
2135
2136 if (adapter->algo->smbus_xfer) {
2137 i2c_lock_adapter(adapter);
2138
2139 /* Retry automatically on arbitration loss */
2140 orig_jiffies = jiffies;
2141 for (res = 0, try = 0; try <= adapter->retries; try++) {
2142 res = adapter->algo->smbus_xfer(adapter, addr, flags,
2143 read_write, command,
2144 protocol, data);
2145 if (res != -EAGAIN)
2146 break;
2147 if (time_after(jiffies,
2148 orig_jiffies + adapter->timeout))
2149 break;
2150 }
2151 i2c_unlock_adapter(adapter);
2152
2153 if (res != -EOPNOTSUPP || !adapter->algo->master_xfer)
2154 return res;
2155 /*
2156 * Fall back to i2c_smbus_xfer_emulated if the adapter doesn't
2157 * implement native support for the SMBus operation.
2158 */
2159 }
2160
2161 return i2c_smbus_xfer_emulated(adapter, addr, flags, read_write,
2162 command, protocol, data);
2163 }
2164 EXPORT_SYMBOL(i2c_smbus_xfer);
2165
2166 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
2167 MODULE_DESCRIPTION("I2C-Bus main module");
2168 MODULE_LICENSE("GPL");
This page took 0.142254 seconds and 5 git commands to generate.