iwlwifi: mvm: simplify iwl_mvm_get_wakeup_status() return
[deliverable/linux.git] / drivers / i2c / i2c-core.c
1 /* i2c-core.c - a device driver for the iic-bus interface */
2 /* ------------------------------------------------------------------------- */
3 /* Copyright (C) 1995-99 Simon G. Vogl
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details. */
14 /* ------------------------------------------------------------------------- */
15
16 /* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>.
17 All SMBus-related things are written by Frodo Looijaard <frodol@dds.nl>
18 SMBus 2.0 support by Mark Studebaker <mdsxyz123@yahoo.com> and
19 Jean Delvare <jdelvare@suse.de>
20 Mux support by Rodolfo Giometti <giometti@enneenne.com> and
21 Michael Lawnick <michael.lawnick.ext@nsn.com>
22 OF support is copyright (c) 2008 Jochen Friedrich <jochen@scram.de>
23 (based on a previous patch from Jon Smirl <jonsmirl@gmail.com>) and
24 (c) 2013 Wolfram Sang <wsa@the-dreams.de>
25 I2C ACPI code Copyright (C) 2014 Intel Corp
26 Author: Lan Tianyu <tianyu.lan@intel.com>
27 I2C slave support (c) 2014 by Wolfram Sang <wsa@sang-engineering.com>
28 */
29
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/delay.h>
33 #include <linux/errno.h>
34 #include <linux/gpio.h>
35 #include <linux/slab.h>
36 #include <linux/i2c.h>
37 #include <linux/init.h>
38 #include <linux/idr.h>
39 #include <linux/mutex.h>
40 #include <linux/of.h>
41 #include <linux/of_device.h>
42 #include <linux/of_irq.h>
43 #include <linux/clk/clk-conf.h>
44 #include <linux/completion.h>
45 #include <linux/hardirq.h>
46 #include <linux/irqflags.h>
47 #include <linux/rwsem.h>
48 #include <linux/pm_runtime.h>
49 #include <linux/pm_domain.h>
50 #include <linux/acpi.h>
51 #include <linux/jump_label.h>
52 #include <asm/uaccess.h>
53 #include <linux/err.h>
54
55 #include "i2c-core.h"
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/i2c.h>
59
60 /* core_lock protects i2c_adapter_idr, and guarantees
61 that device detection, deletion of detected devices, and attach_adapter
62 calls are serialized */
63 static DEFINE_MUTEX(core_lock);
64 static DEFINE_IDR(i2c_adapter_idr);
65
66 static struct device_type i2c_client_type;
67 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver);
68
69 static struct static_key i2c_trace_msg = STATIC_KEY_INIT_FALSE;
70
71 void i2c_transfer_trace_reg(void)
72 {
73 static_key_slow_inc(&i2c_trace_msg);
74 }
75
76 void i2c_transfer_trace_unreg(void)
77 {
78 static_key_slow_dec(&i2c_trace_msg);
79 }
80
81 #if defined(CONFIG_ACPI)
82 struct acpi_i2c_handler_data {
83 struct acpi_connection_info info;
84 struct i2c_adapter *adapter;
85 };
86
87 struct gsb_buffer {
88 u8 status;
89 u8 len;
90 union {
91 u16 wdata;
92 u8 bdata;
93 u8 data[0];
94 };
95 } __packed;
96
97 static int acpi_i2c_add_resource(struct acpi_resource *ares, void *data)
98 {
99 struct i2c_board_info *info = data;
100
101 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
102 struct acpi_resource_i2c_serialbus *sb;
103
104 sb = &ares->data.i2c_serial_bus;
105 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_I2C) {
106 info->addr = sb->slave_address;
107 if (sb->access_mode == ACPI_I2C_10BIT_MODE)
108 info->flags |= I2C_CLIENT_TEN;
109 }
110 } else if (info->irq < 0) {
111 struct resource r;
112
113 if (acpi_dev_resource_interrupt(ares, 0, &r))
114 info->irq = r.start;
115 }
116
117 /* Tell the ACPI core to skip this resource */
118 return 1;
119 }
120
121 static acpi_status acpi_i2c_add_device(acpi_handle handle, u32 level,
122 void *data, void **return_value)
123 {
124 struct i2c_adapter *adapter = data;
125 struct list_head resource_list;
126 struct i2c_board_info info;
127 struct acpi_device *adev;
128 int ret;
129
130 if (acpi_bus_get_device(handle, &adev))
131 return AE_OK;
132 if (acpi_bus_get_status(adev) || !adev->status.present)
133 return AE_OK;
134
135 memset(&info, 0, sizeof(info));
136 info.acpi_node.companion = adev;
137 info.irq = -1;
138
139 INIT_LIST_HEAD(&resource_list);
140 ret = acpi_dev_get_resources(adev, &resource_list,
141 acpi_i2c_add_resource, &info);
142 acpi_dev_free_resource_list(&resource_list);
143
144 if (ret < 0 || !info.addr)
145 return AE_OK;
146
147 adev->power.flags.ignore_parent = true;
148 strlcpy(info.type, dev_name(&adev->dev), sizeof(info.type));
149 if (!i2c_new_device(adapter, &info)) {
150 adev->power.flags.ignore_parent = false;
151 dev_err(&adapter->dev,
152 "failed to add I2C device %s from ACPI\n",
153 dev_name(&adev->dev));
154 }
155
156 return AE_OK;
157 }
158
159 /**
160 * acpi_i2c_register_devices - enumerate I2C slave devices behind adapter
161 * @adap: pointer to adapter
162 *
163 * Enumerate all I2C slave devices behind this adapter by walking the ACPI
164 * namespace. When a device is found it will be added to the Linux device
165 * model and bound to the corresponding ACPI handle.
166 */
167 static void acpi_i2c_register_devices(struct i2c_adapter *adap)
168 {
169 acpi_handle handle;
170 acpi_status status;
171
172 if (!adap->dev.parent)
173 return;
174
175 handle = ACPI_HANDLE(adap->dev.parent);
176 if (!handle)
177 return;
178
179 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
180 acpi_i2c_add_device, NULL,
181 adap, NULL);
182 if (ACPI_FAILURE(status))
183 dev_warn(&adap->dev, "failed to enumerate I2C slaves\n");
184 }
185
186 #else /* CONFIG_ACPI */
187 static inline void acpi_i2c_register_devices(struct i2c_adapter *adap) { }
188 #endif /* CONFIG_ACPI */
189
190 #ifdef CONFIG_ACPI_I2C_OPREGION
191 static int acpi_gsb_i2c_read_bytes(struct i2c_client *client,
192 u8 cmd, u8 *data, u8 data_len)
193 {
194
195 struct i2c_msg msgs[2];
196 int ret;
197 u8 *buffer;
198
199 buffer = kzalloc(data_len, GFP_KERNEL);
200 if (!buffer)
201 return AE_NO_MEMORY;
202
203 msgs[0].addr = client->addr;
204 msgs[0].flags = client->flags;
205 msgs[0].len = 1;
206 msgs[0].buf = &cmd;
207
208 msgs[1].addr = client->addr;
209 msgs[1].flags = client->flags | I2C_M_RD;
210 msgs[1].len = data_len;
211 msgs[1].buf = buffer;
212
213 ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
214 if (ret < 0)
215 dev_err(&client->adapter->dev, "i2c read failed\n");
216 else
217 memcpy(data, buffer, data_len);
218
219 kfree(buffer);
220 return ret;
221 }
222
223 static int acpi_gsb_i2c_write_bytes(struct i2c_client *client,
224 u8 cmd, u8 *data, u8 data_len)
225 {
226
227 struct i2c_msg msgs[1];
228 u8 *buffer;
229 int ret = AE_OK;
230
231 buffer = kzalloc(data_len + 1, GFP_KERNEL);
232 if (!buffer)
233 return AE_NO_MEMORY;
234
235 buffer[0] = cmd;
236 memcpy(buffer + 1, data, data_len);
237
238 msgs[0].addr = client->addr;
239 msgs[0].flags = client->flags;
240 msgs[0].len = data_len + 1;
241 msgs[0].buf = buffer;
242
243 ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
244 if (ret < 0)
245 dev_err(&client->adapter->dev, "i2c write failed\n");
246
247 kfree(buffer);
248 return ret;
249 }
250
251 static acpi_status
252 acpi_i2c_space_handler(u32 function, acpi_physical_address command,
253 u32 bits, u64 *value64,
254 void *handler_context, void *region_context)
255 {
256 struct gsb_buffer *gsb = (struct gsb_buffer *)value64;
257 struct acpi_i2c_handler_data *data = handler_context;
258 struct acpi_connection_info *info = &data->info;
259 struct acpi_resource_i2c_serialbus *sb;
260 struct i2c_adapter *adapter = data->adapter;
261 struct i2c_client client;
262 struct acpi_resource *ares;
263 u32 accessor_type = function >> 16;
264 u8 action = function & ACPI_IO_MASK;
265 acpi_status ret;
266 int status;
267
268 ret = acpi_buffer_to_resource(info->connection, info->length, &ares);
269 if (ACPI_FAILURE(ret))
270 return ret;
271
272 if (!value64 || ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) {
273 ret = AE_BAD_PARAMETER;
274 goto err;
275 }
276
277 sb = &ares->data.i2c_serial_bus;
278 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_I2C) {
279 ret = AE_BAD_PARAMETER;
280 goto err;
281 }
282
283 memset(&client, 0, sizeof(client));
284 client.adapter = adapter;
285 client.addr = sb->slave_address;
286 client.flags = 0;
287
288 if (sb->access_mode == ACPI_I2C_10BIT_MODE)
289 client.flags |= I2C_CLIENT_TEN;
290
291 switch (accessor_type) {
292 case ACPI_GSB_ACCESS_ATTRIB_SEND_RCV:
293 if (action == ACPI_READ) {
294 status = i2c_smbus_read_byte(&client);
295 if (status >= 0) {
296 gsb->bdata = status;
297 status = 0;
298 }
299 } else {
300 status = i2c_smbus_write_byte(&client, gsb->bdata);
301 }
302 break;
303
304 case ACPI_GSB_ACCESS_ATTRIB_BYTE:
305 if (action == ACPI_READ) {
306 status = i2c_smbus_read_byte_data(&client, command);
307 if (status >= 0) {
308 gsb->bdata = status;
309 status = 0;
310 }
311 } else {
312 status = i2c_smbus_write_byte_data(&client, command,
313 gsb->bdata);
314 }
315 break;
316
317 case ACPI_GSB_ACCESS_ATTRIB_WORD:
318 if (action == ACPI_READ) {
319 status = i2c_smbus_read_word_data(&client, command);
320 if (status >= 0) {
321 gsb->wdata = status;
322 status = 0;
323 }
324 } else {
325 status = i2c_smbus_write_word_data(&client, command,
326 gsb->wdata);
327 }
328 break;
329
330 case ACPI_GSB_ACCESS_ATTRIB_BLOCK:
331 if (action == ACPI_READ) {
332 status = i2c_smbus_read_block_data(&client, command,
333 gsb->data);
334 if (status >= 0) {
335 gsb->len = status;
336 status = 0;
337 }
338 } else {
339 status = i2c_smbus_write_block_data(&client, command,
340 gsb->len, gsb->data);
341 }
342 break;
343
344 case ACPI_GSB_ACCESS_ATTRIB_MULTIBYTE:
345 if (action == ACPI_READ) {
346 status = acpi_gsb_i2c_read_bytes(&client, command,
347 gsb->data, info->access_length);
348 if (status > 0)
349 status = 0;
350 } else {
351 status = acpi_gsb_i2c_write_bytes(&client, command,
352 gsb->data, info->access_length);
353 }
354 break;
355
356 default:
357 pr_info("protocol(0x%02x) is not supported.\n", accessor_type);
358 ret = AE_BAD_PARAMETER;
359 goto err;
360 }
361
362 gsb->status = status;
363
364 err:
365 ACPI_FREE(ares);
366 return ret;
367 }
368
369
370 static int acpi_i2c_install_space_handler(struct i2c_adapter *adapter)
371 {
372 acpi_handle handle;
373 struct acpi_i2c_handler_data *data;
374 acpi_status status;
375
376 if (!adapter->dev.parent)
377 return -ENODEV;
378
379 handle = ACPI_HANDLE(adapter->dev.parent);
380
381 if (!handle)
382 return -ENODEV;
383
384 data = kzalloc(sizeof(struct acpi_i2c_handler_data),
385 GFP_KERNEL);
386 if (!data)
387 return -ENOMEM;
388
389 data->adapter = adapter;
390 status = acpi_bus_attach_private_data(handle, (void *)data);
391 if (ACPI_FAILURE(status)) {
392 kfree(data);
393 return -ENOMEM;
394 }
395
396 status = acpi_install_address_space_handler(handle,
397 ACPI_ADR_SPACE_GSBUS,
398 &acpi_i2c_space_handler,
399 NULL,
400 data);
401 if (ACPI_FAILURE(status)) {
402 dev_err(&adapter->dev, "Error installing i2c space handler\n");
403 acpi_bus_detach_private_data(handle);
404 kfree(data);
405 return -ENOMEM;
406 }
407
408 acpi_walk_dep_device_list(handle);
409 return 0;
410 }
411
412 static void acpi_i2c_remove_space_handler(struct i2c_adapter *adapter)
413 {
414 acpi_handle handle;
415 struct acpi_i2c_handler_data *data;
416 acpi_status status;
417
418 if (!adapter->dev.parent)
419 return;
420
421 handle = ACPI_HANDLE(adapter->dev.parent);
422
423 if (!handle)
424 return;
425
426 acpi_remove_address_space_handler(handle,
427 ACPI_ADR_SPACE_GSBUS,
428 &acpi_i2c_space_handler);
429
430 status = acpi_bus_get_private_data(handle, (void **)&data);
431 if (ACPI_SUCCESS(status))
432 kfree(data);
433
434 acpi_bus_detach_private_data(handle);
435 }
436 #else /* CONFIG_ACPI_I2C_OPREGION */
437 static inline void acpi_i2c_remove_space_handler(struct i2c_adapter *adapter)
438 { }
439
440 static inline int acpi_i2c_install_space_handler(struct i2c_adapter *adapter)
441 { return 0; }
442 #endif /* CONFIG_ACPI_I2C_OPREGION */
443
444 /* ------------------------------------------------------------------------- */
445
446 static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
447 const struct i2c_client *client)
448 {
449 while (id->name[0]) {
450 if (strcmp(client->name, id->name) == 0)
451 return id;
452 id++;
453 }
454 return NULL;
455 }
456
457 static int i2c_device_match(struct device *dev, struct device_driver *drv)
458 {
459 struct i2c_client *client = i2c_verify_client(dev);
460 struct i2c_driver *driver;
461
462 if (!client)
463 return 0;
464
465 /* Attempt an OF style match */
466 if (of_driver_match_device(dev, drv))
467 return 1;
468
469 /* Then ACPI style match */
470 if (acpi_driver_match_device(dev, drv))
471 return 1;
472
473 driver = to_i2c_driver(drv);
474 /* match on an id table if there is one */
475 if (driver->id_table)
476 return i2c_match_id(driver->id_table, client) != NULL;
477
478 return 0;
479 }
480
481
482 /* uevent helps with hotplug: modprobe -q $(MODALIAS) */
483 static int i2c_device_uevent(struct device *dev, struct kobj_uevent_env *env)
484 {
485 struct i2c_client *client = to_i2c_client(dev);
486 int rc;
487
488 rc = acpi_device_uevent_modalias(dev, env);
489 if (rc != -ENODEV)
490 return rc;
491
492 if (add_uevent_var(env, "MODALIAS=%s%s",
493 I2C_MODULE_PREFIX, client->name))
494 return -ENOMEM;
495 dev_dbg(dev, "uevent\n");
496 return 0;
497 }
498
499 /* i2c bus recovery routines */
500 static int get_scl_gpio_value(struct i2c_adapter *adap)
501 {
502 return gpio_get_value(adap->bus_recovery_info->scl_gpio);
503 }
504
505 static void set_scl_gpio_value(struct i2c_adapter *adap, int val)
506 {
507 gpio_set_value(adap->bus_recovery_info->scl_gpio, val);
508 }
509
510 static int get_sda_gpio_value(struct i2c_adapter *adap)
511 {
512 return gpio_get_value(adap->bus_recovery_info->sda_gpio);
513 }
514
515 static int i2c_get_gpios_for_recovery(struct i2c_adapter *adap)
516 {
517 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
518 struct device *dev = &adap->dev;
519 int ret = 0;
520
521 ret = gpio_request_one(bri->scl_gpio, GPIOF_OPEN_DRAIN |
522 GPIOF_OUT_INIT_HIGH, "i2c-scl");
523 if (ret) {
524 dev_warn(dev, "Can't get SCL gpio: %d\n", bri->scl_gpio);
525 return ret;
526 }
527
528 if (bri->get_sda) {
529 if (gpio_request_one(bri->sda_gpio, GPIOF_IN, "i2c-sda")) {
530 /* work without SDA polling */
531 dev_warn(dev, "Can't get SDA gpio: %d. Not using SDA polling\n",
532 bri->sda_gpio);
533 bri->get_sda = NULL;
534 }
535 }
536
537 return ret;
538 }
539
540 static void i2c_put_gpios_for_recovery(struct i2c_adapter *adap)
541 {
542 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
543
544 if (bri->get_sda)
545 gpio_free(bri->sda_gpio);
546
547 gpio_free(bri->scl_gpio);
548 }
549
550 /*
551 * We are generating clock pulses. ndelay() determines durating of clk pulses.
552 * We will generate clock with rate 100 KHz and so duration of both clock levels
553 * is: delay in ns = (10^6 / 100) / 2
554 */
555 #define RECOVERY_NDELAY 5000
556 #define RECOVERY_CLK_CNT 9
557
558 static int i2c_generic_recovery(struct i2c_adapter *adap)
559 {
560 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
561 int i = 0, val = 1, ret = 0;
562
563 if (bri->prepare_recovery)
564 bri->prepare_recovery(bri);
565
566 /*
567 * By this time SCL is high, as we need to give 9 falling-rising edges
568 */
569 while (i++ < RECOVERY_CLK_CNT * 2) {
570 if (val) {
571 /* Break if SDA is high */
572 if (bri->get_sda && bri->get_sda(adap))
573 break;
574 /* SCL shouldn't be low here */
575 if (!bri->get_scl(adap)) {
576 dev_err(&adap->dev,
577 "SCL is stuck low, exit recovery\n");
578 ret = -EBUSY;
579 break;
580 }
581 }
582
583 val = !val;
584 bri->set_scl(adap, val);
585 ndelay(RECOVERY_NDELAY);
586 }
587
588 if (bri->unprepare_recovery)
589 bri->unprepare_recovery(bri);
590
591 return ret;
592 }
593
594 int i2c_generic_scl_recovery(struct i2c_adapter *adap)
595 {
596 adap->bus_recovery_info->set_scl(adap, 1);
597 return i2c_generic_recovery(adap);
598 }
599
600 int i2c_generic_gpio_recovery(struct i2c_adapter *adap)
601 {
602 int ret;
603
604 ret = i2c_get_gpios_for_recovery(adap);
605 if (ret)
606 return ret;
607
608 ret = i2c_generic_recovery(adap);
609 i2c_put_gpios_for_recovery(adap);
610
611 return ret;
612 }
613
614 int i2c_recover_bus(struct i2c_adapter *adap)
615 {
616 if (!adap->bus_recovery_info)
617 return -EOPNOTSUPP;
618
619 dev_dbg(&adap->dev, "Trying i2c bus recovery\n");
620 return adap->bus_recovery_info->recover_bus(adap);
621 }
622
623 static int i2c_device_probe(struct device *dev)
624 {
625 struct i2c_client *client = i2c_verify_client(dev);
626 struct i2c_driver *driver;
627 int status;
628
629 if (!client)
630 return 0;
631
632 if (!client->irq && dev->of_node) {
633 int irq = of_irq_get(dev->of_node, 0);
634
635 if (irq == -EPROBE_DEFER)
636 return irq;
637 if (irq < 0)
638 irq = 0;
639
640 client->irq = irq;
641 }
642
643 driver = to_i2c_driver(dev->driver);
644 if (!driver->probe || !driver->id_table)
645 return -ENODEV;
646
647 if (!device_can_wakeup(&client->dev))
648 device_init_wakeup(&client->dev,
649 client->flags & I2C_CLIENT_WAKE);
650 dev_dbg(dev, "probe\n");
651
652 status = of_clk_set_defaults(dev->of_node, false);
653 if (status < 0)
654 return status;
655
656 status = dev_pm_domain_attach(&client->dev, true);
657 if (status != -EPROBE_DEFER) {
658 status = driver->probe(client, i2c_match_id(driver->id_table,
659 client));
660 if (status)
661 dev_pm_domain_detach(&client->dev, true);
662 }
663
664 return status;
665 }
666
667 static int i2c_device_remove(struct device *dev)
668 {
669 struct i2c_client *client = i2c_verify_client(dev);
670 struct i2c_driver *driver;
671 int status = 0;
672
673 if (!client || !dev->driver)
674 return 0;
675
676 driver = to_i2c_driver(dev->driver);
677 if (driver->remove) {
678 dev_dbg(dev, "remove\n");
679 status = driver->remove(client);
680 }
681
682 if (dev->of_node)
683 irq_dispose_mapping(client->irq);
684
685 dev_pm_domain_detach(&client->dev, true);
686 return status;
687 }
688
689 static void i2c_device_shutdown(struct device *dev)
690 {
691 struct i2c_client *client = i2c_verify_client(dev);
692 struct i2c_driver *driver;
693
694 if (!client || !dev->driver)
695 return;
696 driver = to_i2c_driver(dev->driver);
697 if (driver->shutdown)
698 driver->shutdown(client);
699 }
700
701 #ifdef CONFIG_PM_SLEEP
702 static int i2c_legacy_suspend(struct device *dev, pm_message_t mesg)
703 {
704 struct i2c_client *client = i2c_verify_client(dev);
705 struct i2c_driver *driver;
706
707 if (!client || !dev->driver)
708 return 0;
709 driver = to_i2c_driver(dev->driver);
710 if (!driver->suspend)
711 return 0;
712 return driver->suspend(client, mesg);
713 }
714
715 static int i2c_legacy_resume(struct device *dev)
716 {
717 struct i2c_client *client = i2c_verify_client(dev);
718 struct i2c_driver *driver;
719
720 if (!client || !dev->driver)
721 return 0;
722 driver = to_i2c_driver(dev->driver);
723 if (!driver->resume)
724 return 0;
725 return driver->resume(client);
726 }
727
728 static int i2c_device_pm_suspend(struct device *dev)
729 {
730 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
731
732 if (pm)
733 return pm_generic_suspend(dev);
734 else
735 return i2c_legacy_suspend(dev, PMSG_SUSPEND);
736 }
737
738 static int i2c_device_pm_resume(struct device *dev)
739 {
740 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
741
742 if (pm)
743 return pm_generic_resume(dev);
744 else
745 return i2c_legacy_resume(dev);
746 }
747
748 static int i2c_device_pm_freeze(struct device *dev)
749 {
750 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
751
752 if (pm)
753 return pm_generic_freeze(dev);
754 else
755 return i2c_legacy_suspend(dev, PMSG_FREEZE);
756 }
757
758 static int i2c_device_pm_thaw(struct device *dev)
759 {
760 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
761
762 if (pm)
763 return pm_generic_thaw(dev);
764 else
765 return i2c_legacy_resume(dev);
766 }
767
768 static int i2c_device_pm_poweroff(struct device *dev)
769 {
770 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
771
772 if (pm)
773 return pm_generic_poweroff(dev);
774 else
775 return i2c_legacy_suspend(dev, PMSG_HIBERNATE);
776 }
777
778 static int i2c_device_pm_restore(struct device *dev)
779 {
780 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
781
782 if (pm)
783 return pm_generic_restore(dev);
784 else
785 return i2c_legacy_resume(dev);
786 }
787 #else /* !CONFIG_PM_SLEEP */
788 #define i2c_device_pm_suspend NULL
789 #define i2c_device_pm_resume NULL
790 #define i2c_device_pm_freeze NULL
791 #define i2c_device_pm_thaw NULL
792 #define i2c_device_pm_poweroff NULL
793 #define i2c_device_pm_restore NULL
794 #endif /* !CONFIG_PM_SLEEP */
795
796 static void i2c_client_dev_release(struct device *dev)
797 {
798 kfree(to_i2c_client(dev));
799 }
800
801 static ssize_t
802 show_name(struct device *dev, struct device_attribute *attr, char *buf)
803 {
804 return sprintf(buf, "%s\n", dev->type == &i2c_client_type ?
805 to_i2c_client(dev)->name : to_i2c_adapter(dev)->name);
806 }
807
808 static ssize_t
809 show_modalias(struct device *dev, struct device_attribute *attr, char *buf)
810 {
811 struct i2c_client *client = to_i2c_client(dev);
812 int len;
813
814 len = acpi_device_modalias(dev, buf, PAGE_SIZE -1);
815 if (len != -ENODEV)
816 return len;
817
818 return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name);
819 }
820
821 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
822 static DEVICE_ATTR(modalias, S_IRUGO, show_modalias, NULL);
823
824 static struct attribute *i2c_dev_attrs[] = {
825 &dev_attr_name.attr,
826 /* modalias helps coldplug: modprobe $(cat .../modalias) */
827 &dev_attr_modalias.attr,
828 NULL
829 };
830
831 static struct attribute_group i2c_dev_attr_group = {
832 .attrs = i2c_dev_attrs,
833 };
834
835 static const struct attribute_group *i2c_dev_attr_groups[] = {
836 &i2c_dev_attr_group,
837 NULL
838 };
839
840 static const struct dev_pm_ops i2c_device_pm_ops = {
841 .suspend = i2c_device_pm_suspend,
842 .resume = i2c_device_pm_resume,
843 .freeze = i2c_device_pm_freeze,
844 .thaw = i2c_device_pm_thaw,
845 .poweroff = i2c_device_pm_poweroff,
846 .restore = i2c_device_pm_restore,
847 SET_RUNTIME_PM_OPS(
848 pm_generic_runtime_suspend,
849 pm_generic_runtime_resume,
850 NULL
851 )
852 };
853
854 struct bus_type i2c_bus_type = {
855 .name = "i2c",
856 .match = i2c_device_match,
857 .probe = i2c_device_probe,
858 .remove = i2c_device_remove,
859 .shutdown = i2c_device_shutdown,
860 .pm = &i2c_device_pm_ops,
861 };
862 EXPORT_SYMBOL_GPL(i2c_bus_type);
863
864 static struct device_type i2c_client_type = {
865 .groups = i2c_dev_attr_groups,
866 .uevent = i2c_device_uevent,
867 .release = i2c_client_dev_release,
868 };
869
870
871 /**
872 * i2c_verify_client - return parameter as i2c_client, or NULL
873 * @dev: device, probably from some driver model iterator
874 *
875 * When traversing the driver model tree, perhaps using driver model
876 * iterators like @device_for_each_child(), you can't assume very much
877 * about the nodes you find. Use this function to avoid oopses caused
878 * by wrongly treating some non-I2C device as an i2c_client.
879 */
880 struct i2c_client *i2c_verify_client(struct device *dev)
881 {
882 return (dev->type == &i2c_client_type)
883 ? to_i2c_client(dev)
884 : NULL;
885 }
886 EXPORT_SYMBOL(i2c_verify_client);
887
888
889 /* This is a permissive address validity check, I2C address map constraints
890 * are purposely not enforced, except for the general call address. */
891 static int i2c_check_client_addr_validity(const struct i2c_client *client)
892 {
893 if (client->flags & I2C_CLIENT_TEN) {
894 /* 10-bit address, all values are valid */
895 if (client->addr > 0x3ff)
896 return -EINVAL;
897 } else {
898 /* 7-bit address, reject the general call address */
899 if (client->addr == 0x00 || client->addr > 0x7f)
900 return -EINVAL;
901 }
902 return 0;
903 }
904
905 /* And this is a strict address validity check, used when probing. If a
906 * device uses a reserved address, then it shouldn't be probed. 7-bit
907 * addressing is assumed, 10-bit address devices are rare and should be
908 * explicitly enumerated. */
909 static int i2c_check_addr_validity(unsigned short addr)
910 {
911 /*
912 * Reserved addresses per I2C specification:
913 * 0x00 General call address / START byte
914 * 0x01 CBUS address
915 * 0x02 Reserved for different bus format
916 * 0x03 Reserved for future purposes
917 * 0x04-0x07 Hs-mode master code
918 * 0x78-0x7b 10-bit slave addressing
919 * 0x7c-0x7f Reserved for future purposes
920 */
921 if (addr < 0x08 || addr > 0x77)
922 return -EINVAL;
923 return 0;
924 }
925
926 static int __i2c_check_addr_busy(struct device *dev, void *addrp)
927 {
928 struct i2c_client *client = i2c_verify_client(dev);
929 int addr = *(int *)addrp;
930
931 if (client && client->addr == addr)
932 return -EBUSY;
933 return 0;
934 }
935
936 /* walk up mux tree */
937 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr)
938 {
939 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
940 int result;
941
942 result = device_for_each_child(&adapter->dev, &addr,
943 __i2c_check_addr_busy);
944
945 if (!result && parent)
946 result = i2c_check_mux_parents(parent, addr);
947
948 return result;
949 }
950
951 /* recurse down mux tree */
952 static int i2c_check_mux_children(struct device *dev, void *addrp)
953 {
954 int result;
955
956 if (dev->type == &i2c_adapter_type)
957 result = device_for_each_child(dev, addrp,
958 i2c_check_mux_children);
959 else
960 result = __i2c_check_addr_busy(dev, addrp);
961
962 return result;
963 }
964
965 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr)
966 {
967 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
968 int result = 0;
969
970 if (parent)
971 result = i2c_check_mux_parents(parent, addr);
972
973 if (!result)
974 result = device_for_each_child(&adapter->dev, &addr,
975 i2c_check_mux_children);
976
977 return result;
978 }
979
980 /**
981 * i2c_lock_adapter - Get exclusive access to an I2C bus segment
982 * @adapter: Target I2C bus segment
983 */
984 void i2c_lock_adapter(struct i2c_adapter *adapter)
985 {
986 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
987
988 if (parent)
989 i2c_lock_adapter(parent);
990 else
991 rt_mutex_lock(&adapter->bus_lock);
992 }
993 EXPORT_SYMBOL_GPL(i2c_lock_adapter);
994
995 /**
996 * i2c_trylock_adapter - Try to get exclusive access to an I2C bus segment
997 * @adapter: Target I2C bus segment
998 */
999 static int i2c_trylock_adapter(struct i2c_adapter *adapter)
1000 {
1001 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
1002
1003 if (parent)
1004 return i2c_trylock_adapter(parent);
1005 else
1006 return rt_mutex_trylock(&adapter->bus_lock);
1007 }
1008
1009 /**
1010 * i2c_unlock_adapter - Release exclusive access to an I2C bus segment
1011 * @adapter: Target I2C bus segment
1012 */
1013 void i2c_unlock_adapter(struct i2c_adapter *adapter)
1014 {
1015 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
1016
1017 if (parent)
1018 i2c_unlock_adapter(parent);
1019 else
1020 rt_mutex_unlock(&adapter->bus_lock);
1021 }
1022 EXPORT_SYMBOL_GPL(i2c_unlock_adapter);
1023
1024 static void i2c_dev_set_name(struct i2c_adapter *adap,
1025 struct i2c_client *client)
1026 {
1027 struct acpi_device *adev = ACPI_COMPANION(&client->dev);
1028
1029 if (adev) {
1030 dev_set_name(&client->dev, "i2c-%s", acpi_dev_name(adev));
1031 return;
1032 }
1033
1034 /* For 10-bit clients, add an arbitrary offset to avoid collisions */
1035 dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
1036 client->addr | ((client->flags & I2C_CLIENT_TEN)
1037 ? 0xa000 : 0));
1038 }
1039
1040 /**
1041 * i2c_new_device - instantiate an i2c device
1042 * @adap: the adapter managing the device
1043 * @info: describes one I2C device; bus_num is ignored
1044 * Context: can sleep
1045 *
1046 * Create an i2c device. Binding is handled through driver model
1047 * probe()/remove() methods. A driver may be bound to this device when we
1048 * return from this function, or any later moment (e.g. maybe hotplugging will
1049 * load the driver module). This call is not appropriate for use by mainboard
1050 * initialization logic, which usually runs during an arch_initcall() long
1051 * before any i2c_adapter could exist.
1052 *
1053 * This returns the new i2c client, which may be saved for later use with
1054 * i2c_unregister_device(); or NULL to indicate an error.
1055 */
1056 struct i2c_client *
1057 i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
1058 {
1059 struct i2c_client *client;
1060 int status;
1061
1062 client = kzalloc(sizeof *client, GFP_KERNEL);
1063 if (!client)
1064 return NULL;
1065
1066 client->adapter = adap;
1067
1068 client->dev.platform_data = info->platform_data;
1069
1070 if (info->archdata)
1071 client->dev.archdata = *info->archdata;
1072
1073 client->flags = info->flags;
1074 client->addr = info->addr;
1075 client->irq = info->irq;
1076
1077 strlcpy(client->name, info->type, sizeof(client->name));
1078
1079 /* Check for address validity */
1080 status = i2c_check_client_addr_validity(client);
1081 if (status) {
1082 dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
1083 client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
1084 goto out_err_silent;
1085 }
1086
1087 /* Check for address business */
1088 status = i2c_check_addr_busy(adap, client->addr);
1089 if (status)
1090 goto out_err;
1091
1092 client->dev.parent = &client->adapter->dev;
1093 client->dev.bus = &i2c_bus_type;
1094 client->dev.type = &i2c_client_type;
1095 client->dev.of_node = info->of_node;
1096 ACPI_COMPANION_SET(&client->dev, info->acpi_node.companion);
1097
1098 i2c_dev_set_name(adap, client);
1099 status = device_register(&client->dev);
1100 if (status)
1101 goto out_err;
1102
1103 dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
1104 client->name, dev_name(&client->dev));
1105
1106 return client;
1107
1108 out_err:
1109 dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "
1110 "(%d)\n", client->name, client->addr, status);
1111 out_err_silent:
1112 kfree(client);
1113 return NULL;
1114 }
1115 EXPORT_SYMBOL_GPL(i2c_new_device);
1116
1117
1118 /**
1119 * i2c_unregister_device - reverse effect of i2c_new_device()
1120 * @client: value returned from i2c_new_device()
1121 * Context: can sleep
1122 */
1123 void i2c_unregister_device(struct i2c_client *client)
1124 {
1125 device_unregister(&client->dev);
1126 }
1127 EXPORT_SYMBOL_GPL(i2c_unregister_device);
1128
1129
1130 static const struct i2c_device_id dummy_id[] = {
1131 { "dummy", 0 },
1132 { },
1133 };
1134
1135 static int dummy_probe(struct i2c_client *client,
1136 const struct i2c_device_id *id)
1137 {
1138 return 0;
1139 }
1140
1141 static int dummy_remove(struct i2c_client *client)
1142 {
1143 return 0;
1144 }
1145
1146 static struct i2c_driver dummy_driver = {
1147 .driver.name = "dummy",
1148 .probe = dummy_probe,
1149 .remove = dummy_remove,
1150 .id_table = dummy_id,
1151 };
1152
1153 /**
1154 * i2c_new_dummy - return a new i2c device bound to a dummy driver
1155 * @adapter: the adapter managing the device
1156 * @address: seven bit address to be used
1157 * Context: can sleep
1158 *
1159 * This returns an I2C client bound to the "dummy" driver, intended for use
1160 * with devices that consume multiple addresses. Examples of such chips
1161 * include various EEPROMS (like 24c04 and 24c08 models).
1162 *
1163 * These dummy devices have two main uses. First, most I2C and SMBus calls
1164 * except i2c_transfer() need a client handle; the dummy will be that handle.
1165 * And second, this prevents the specified address from being bound to a
1166 * different driver.
1167 *
1168 * This returns the new i2c client, which should be saved for later use with
1169 * i2c_unregister_device(); or NULL to indicate an error.
1170 */
1171 struct i2c_client *i2c_new_dummy(struct i2c_adapter *adapter, u16 address)
1172 {
1173 struct i2c_board_info info = {
1174 I2C_BOARD_INFO("dummy", address),
1175 };
1176
1177 return i2c_new_device(adapter, &info);
1178 }
1179 EXPORT_SYMBOL_GPL(i2c_new_dummy);
1180
1181 /* ------------------------------------------------------------------------- */
1182
1183 /* I2C bus adapters -- one roots each I2C or SMBUS segment */
1184
1185 static void i2c_adapter_dev_release(struct device *dev)
1186 {
1187 struct i2c_adapter *adap = to_i2c_adapter(dev);
1188 complete(&adap->dev_released);
1189 }
1190
1191 /*
1192 * This function is only needed for mutex_lock_nested, so it is never
1193 * called unless locking correctness checking is enabled. Thus we
1194 * make it inline to avoid a compiler warning. That's what gcc ends up
1195 * doing anyway.
1196 */
1197 static inline unsigned int i2c_adapter_depth(struct i2c_adapter *adapter)
1198 {
1199 unsigned int depth = 0;
1200
1201 while ((adapter = i2c_parent_is_i2c_adapter(adapter)))
1202 depth++;
1203
1204 return depth;
1205 }
1206
1207 /*
1208 * Let users instantiate I2C devices through sysfs. This can be used when
1209 * platform initialization code doesn't contain the proper data for
1210 * whatever reason. Also useful for drivers that do device detection and
1211 * detection fails, either because the device uses an unexpected address,
1212 * or this is a compatible device with different ID register values.
1213 *
1214 * Parameter checking may look overzealous, but we really don't want
1215 * the user to provide incorrect parameters.
1216 */
1217 static ssize_t
1218 i2c_sysfs_new_device(struct device *dev, struct device_attribute *attr,
1219 const char *buf, size_t count)
1220 {
1221 struct i2c_adapter *adap = to_i2c_adapter(dev);
1222 struct i2c_board_info info;
1223 struct i2c_client *client;
1224 char *blank, end;
1225 int res;
1226
1227 memset(&info, 0, sizeof(struct i2c_board_info));
1228
1229 blank = strchr(buf, ' ');
1230 if (!blank) {
1231 dev_err(dev, "%s: Missing parameters\n", "new_device");
1232 return -EINVAL;
1233 }
1234 if (blank - buf > I2C_NAME_SIZE - 1) {
1235 dev_err(dev, "%s: Invalid device name\n", "new_device");
1236 return -EINVAL;
1237 }
1238 memcpy(info.type, buf, blank - buf);
1239
1240 /* Parse remaining parameters, reject extra parameters */
1241 res = sscanf(++blank, "%hi%c", &info.addr, &end);
1242 if (res < 1) {
1243 dev_err(dev, "%s: Can't parse I2C address\n", "new_device");
1244 return -EINVAL;
1245 }
1246 if (res > 1 && end != '\n') {
1247 dev_err(dev, "%s: Extra parameters\n", "new_device");
1248 return -EINVAL;
1249 }
1250
1251 client = i2c_new_device(adap, &info);
1252 if (!client)
1253 return -EINVAL;
1254
1255 /* Keep track of the added device */
1256 mutex_lock(&adap->userspace_clients_lock);
1257 list_add_tail(&client->detected, &adap->userspace_clients);
1258 mutex_unlock(&adap->userspace_clients_lock);
1259 dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device",
1260 info.type, info.addr);
1261
1262 return count;
1263 }
1264
1265 /*
1266 * And of course let the users delete the devices they instantiated, if
1267 * they got it wrong. This interface can only be used to delete devices
1268 * instantiated by i2c_sysfs_new_device above. This guarantees that we
1269 * don't delete devices to which some kernel code still has references.
1270 *
1271 * Parameter checking may look overzealous, but we really don't want
1272 * the user to delete the wrong device.
1273 */
1274 static ssize_t
1275 i2c_sysfs_delete_device(struct device *dev, struct device_attribute *attr,
1276 const char *buf, size_t count)
1277 {
1278 struct i2c_adapter *adap = to_i2c_adapter(dev);
1279 struct i2c_client *client, *next;
1280 unsigned short addr;
1281 char end;
1282 int res;
1283
1284 /* Parse parameters, reject extra parameters */
1285 res = sscanf(buf, "%hi%c", &addr, &end);
1286 if (res < 1) {
1287 dev_err(dev, "%s: Can't parse I2C address\n", "delete_device");
1288 return -EINVAL;
1289 }
1290 if (res > 1 && end != '\n') {
1291 dev_err(dev, "%s: Extra parameters\n", "delete_device");
1292 return -EINVAL;
1293 }
1294
1295 /* Make sure the device was added through sysfs */
1296 res = -ENOENT;
1297 mutex_lock_nested(&adap->userspace_clients_lock,
1298 i2c_adapter_depth(adap));
1299 list_for_each_entry_safe(client, next, &adap->userspace_clients,
1300 detected) {
1301 if (client->addr == addr) {
1302 dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
1303 "delete_device", client->name, client->addr);
1304
1305 list_del(&client->detected);
1306 i2c_unregister_device(client);
1307 res = count;
1308 break;
1309 }
1310 }
1311 mutex_unlock(&adap->userspace_clients_lock);
1312
1313 if (res < 0)
1314 dev_err(dev, "%s: Can't find device in list\n",
1315 "delete_device");
1316 return res;
1317 }
1318
1319 static DEVICE_ATTR(new_device, S_IWUSR, NULL, i2c_sysfs_new_device);
1320 static DEVICE_ATTR_IGNORE_LOCKDEP(delete_device, S_IWUSR, NULL,
1321 i2c_sysfs_delete_device);
1322
1323 static struct attribute *i2c_adapter_attrs[] = {
1324 &dev_attr_name.attr,
1325 &dev_attr_new_device.attr,
1326 &dev_attr_delete_device.attr,
1327 NULL
1328 };
1329
1330 static struct attribute_group i2c_adapter_attr_group = {
1331 .attrs = i2c_adapter_attrs,
1332 };
1333
1334 static const struct attribute_group *i2c_adapter_attr_groups[] = {
1335 &i2c_adapter_attr_group,
1336 NULL
1337 };
1338
1339 struct device_type i2c_adapter_type = {
1340 .groups = i2c_adapter_attr_groups,
1341 .release = i2c_adapter_dev_release,
1342 };
1343 EXPORT_SYMBOL_GPL(i2c_adapter_type);
1344
1345 /**
1346 * i2c_verify_adapter - return parameter as i2c_adapter or NULL
1347 * @dev: device, probably from some driver model iterator
1348 *
1349 * When traversing the driver model tree, perhaps using driver model
1350 * iterators like @device_for_each_child(), you can't assume very much
1351 * about the nodes you find. Use this function to avoid oopses caused
1352 * by wrongly treating some non-I2C device as an i2c_adapter.
1353 */
1354 struct i2c_adapter *i2c_verify_adapter(struct device *dev)
1355 {
1356 return (dev->type == &i2c_adapter_type)
1357 ? to_i2c_adapter(dev)
1358 : NULL;
1359 }
1360 EXPORT_SYMBOL(i2c_verify_adapter);
1361
1362 #ifdef CONFIG_I2C_COMPAT
1363 static struct class_compat *i2c_adapter_compat_class;
1364 #endif
1365
1366 static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
1367 {
1368 struct i2c_devinfo *devinfo;
1369
1370 down_read(&__i2c_board_lock);
1371 list_for_each_entry(devinfo, &__i2c_board_list, list) {
1372 if (devinfo->busnum == adapter->nr
1373 && !i2c_new_device(adapter,
1374 &devinfo->board_info))
1375 dev_err(&adapter->dev,
1376 "Can't create device at 0x%02x\n",
1377 devinfo->board_info.addr);
1378 }
1379 up_read(&__i2c_board_lock);
1380 }
1381
1382 /* OF support code */
1383
1384 #if IS_ENABLED(CONFIG_OF)
1385 static struct i2c_client *of_i2c_register_device(struct i2c_adapter *adap,
1386 struct device_node *node)
1387 {
1388 struct i2c_client *result;
1389 struct i2c_board_info info = {};
1390 struct dev_archdata dev_ad = {};
1391 const __be32 *addr;
1392 int len;
1393
1394 dev_dbg(&adap->dev, "of_i2c: register %s\n", node->full_name);
1395
1396 if (of_modalias_node(node, info.type, sizeof(info.type)) < 0) {
1397 dev_err(&adap->dev, "of_i2c: modalias failure on %s\n",
1398 node->full_name);
1399 return ERR_PTR(-EINVAL);
1400 }
1401
1402 addr = of_get_property(node, "reg", &len);
1403 if (!addr || (len < sizeof(int))) {
1404 dev_err(&adap->dev, "of_i2c: invalid reg on %s\n",
1405 node->full_name);
1406 return ERR_PTR(-EINVAL);
1407 }
1408
1409 info.addr = be32_to_cpup(addr);
1410 if (info.addr > (1 << 10) - 1) {
1411 dev_err(&adap->dev, "of_i2c: invalid addr=%x on %s\n",
1412 info.addr, node->full_name);
1413 return ERR_PTR(-EINVAL);
1414 }
1415
1416 info.of_node = of_node_get(node);
1417 info.archdata = &dev_ad;
1418
1419 if (of_get_property(node, "wakeup-source", NULL))
1420 info.flags |= I2C_CLIENT_WAKE;
1421
1422 request_module("%s%s", I2C_MODULE_PREFIX, info.type);
1423
1424 result = i2c_new_device(adap, &info);
1425 if (result == NULL) {
1426 dev_err(&adap->dev, "of_i2c: Failure registering %s\n",
1427 node->full_name);
1428 of_node_put(node);
1429 return ERR_PTR(-EINVAL);
1430 }
1431 return result;
1432 }
1433
1434 static void of_i2c_register_devices(struct i2c_adapter *adap)
1435 {
1436 struct device_node *node;
1437
1438 /* Only register child devices if the adapter has a node pointer set */
1439 if (!adap->dev.of_node)
1440 return;
1441
1442 dev_dbg(&adap->dev, "of_i2c: walking child nodes\n");
1443
1444 for_each_available_child_of_node(adap->dev.of_node, node)
1445 of_i2c_register_device(adap, node);
1446 }
1447
1448 static int of_dev_node_match(struct device *dev, void *data)
1449 {
1450 return dev->of_node == data;
1451 }
1452
1453 /* must call put_device() when done with returned i2c_client device */
1454 struct i2c_client *of_find_i2c_device_by_node(struct device_node *node)
1455 {
1456 struct device *dev;
1457
1458 dev = bus_find_device(&i2c_bus_type, NULL, node,
1459 of_dev_node_match);
1460 if (!dev)
1461 return NULL;
1462
1463 return i2c_verify_client(dev);
1464 }
1465 EXPORT_SYMBOL(of_find_i2c_device_by_node);
1466
1467 /* must call put_device() when done with returned i2c_adapter device */
1468 struct i2c_adapter *of_find_i2c_adapter_by_node(struct device_node *node)
1469 {
1470 struct device *dev;
1471
1472 dev = bus_find_device(&i2c_bus_type, NULL, node,
1473 of_dev_node_match);
1474 if (!dev)
1475 return NULL;
1476
1477 return i2c_verify_adapter(dev);
1478 }
1479 EXPORT_SYMBOL(of_find_i2c_adapter_by_node);
1480 #else
1481 static void of_i2c_register_devices(struct i2c_adapter *adap) { }
1482 #endif /* CONFIG_OF */
1483
1484 static int i2c_do_add_adapter(struct i2c_driver *driver,
1485 struct i2c_adapter *adap)
1486 {
1487 /* Detect supported devices on that bus, and instantiate them */
1488 i2c_detect(adap, driver);
1489
1490 /* Let legacy drivers scan this bus for matching devices */
1491 if (driver->attach_adapter) {
1492 dev_warn(&adap->dev, "%s: attach_adapter method is deprecated\n",
1493 driver->driver.name);
1494 dev_warn(&adap->dev, "Please use another way to instantiate "
1495 "your i2c_client\n");
1496 /* We ignore the return code; if it fails, too bad */
1497 driver->attach_adapter(adap);
1498 }
1499 return 0;
1500 }
1501
1502 static int __process_new_adapter(struct device_driver *d, void *data)
1503 {
1504 return i2c_do_add_adapter(to_i2c_driver(d), data);
1505 }
1506
1507 static int i2c_register_adapter(struct i2c_adapter *adap)
1508 {
1509 int res = 0;
1510
1511 /* Can't register until after driver model init */
1512 if (unlikely(WARN_ON(!i2c_bus_type.p))) {
1513 res = -EAGAIN;
1514 goto out_list;
1515 }
1516
1517 /* Sanity checks */
1518 if (unlikely(adap->name[0] == '\0')) {
1519 pr_err("i2c-core: Attempt to register an adapter with "
1520 "no name!\n");
1521 return -EINVAL;
1522 }
1523 if (unlikely(!adap->algo)) {
1524 pr_err("i2c-core: Attempt to register adapter '%s' with "
1525 "no algo!\n", adap->name);
1526 return -EINVAL;
1527 }
1528
1529 rt_mutex_init(&adap->bus_lock);
1530 mutex_init(&adap->userspace_clients_lock);
1531 INIT_LIST_HEAD(&adap->userspace_clients);
1532
1533 /* Set default timeout to 1 second if not already set */
1534 if (adap->timeout == 0)
1535 adap->timeout = HZ;
1536
1537 dev_set_name(&adap->dev, "i2c-%d", adap->nr);
1538 adap->dev.bus = &i2c_bus_type;
1539 adap->dev.type = &i2c_adapter_type;
1540 res = device_register(&adap->dev);
1541 if (res)
1542 goto out_list;
1543
1544 dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
1545
1546 #ifdef CONFIG_I2C_COMPAT
1547 res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
1548 adap->dev.parent);
1549 if (res)
1550 dev_warn(&adap->dev,
1551 "Failed to create compatibility class link\n");
1552 #endif
1553
1554 /* bus recovery specific initialization */
1555 if (adap->bus_recovery_info) {
1556 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
1557
1558 if (!bri->recover_bus) {
1559 dev_err(&adap->dev, "No recover_bus() found, not using recovery\n");
1560 adap->bus_recovery_info = NULL;
1561 goto exit_recovery;
1562 }
1563
1564 /* Generic GPIO recovery */
1565 if (bri->recover_bus == i2c_generic_gpio_recovery) {
1566 if (!gpio_is_valid(bri->scl_gpio)) {
1567 dev_err(&adap->dev, "Invalid SCL gpio, not using recovery\n");
1568 adap->bus_recovery_info = NULL;
1569 goto exit_recovery;
1570 }
1571
1572 if (gpio_is_valid(bri->sda_gpio))
1573 bri->get_sda = get_sda_gpio_value;
1574 else
1575 bri->get_sda = NULL;
1576
1577 bri->get_scl = get_scl_gpio_value;
1578 bri->set_scl = set_scl_gpio_value;
1579 } else if (!bri->set_scl || !bri->get_scl) {
1580 /* Generic SCL recovery */
1581 dev_err(&adap->dev, "No {get|set}_gpio() found, not using recovery\n");
1582 adap->bus_recovery_info = NULL;
1583 }
1584 }
1585
1586 exit_recovery:
1587 /* create pre-declared device nodes */
1588 of_i2c_register_devices(adap);
1589 acpi_i2c_register_devices(adap);
1590 acpi_i2c_install_space_handler(adap);
1591
1592 if (adap->nr < __i2c_first_dynamic_bus_num)
1593 i2c_scan_static_board_info(adap);
1594
1595 /* Notify drivers */
1596 mutex_lock(&core_lock);
1597 bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
1598 mutex_unlock(&core_lock);
1599
1600 return 0;
1601
1602 out_list:
1603 mutex_lock(&core_lock);
1604 idr_remove(&i2c_adapter_idr, adap->nr);
1605 mutex_unlock(&core_lock);
1606 return res;
1607 }
1608
1609 /**
1610 * __i2c_add_numbered_adapter - i2c_add_numbered_adapter where nr is never -1
1611 * @adap: the adapter to register (with adap->nr initialized)
1612 * Context: can sleep
1613 *
1614 * See i2c_add_numbered_adapter() for details.
1615 */
1616 static int __i2c_add_numbered_adapter(struct i2c_adapter *adap)
1617 {
1618 int id;
1619
1620 mutex_lock(&core_lock);
1621 id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1,
1622 GFP_KERNEL);
1623 mutex_unlock(&core_lock);
1624 if (id < 0)
1625 return id == -ENOSPC ? -EBUSY : id;
1626
1627 return i2c_register_adapter(adap);
1628 }
1629
1630 /**
1631 * i2c_add_adapter - declare i2c adapter, use dynamic bus number
1632 * @adapter: the adapter to add
1633 * Context: can sleep
1634 *
1635 * This routine is used to declare an I2C adapter when its bus number
1636 * doesn't matter or when its bus number is specified by an dt alias.
1637 * Examples of bases when the bus number doesn't matter: I2C adapters
1638 * dynamically added by USB links or PCI plugin cards.
1639 *
1640 * When this returns zero, a new bus number was allocated and stored
1641 * in adap->nr, and the specified adapter became available for clients.
1642 * Otherwise, a negative errno value is returned.
1643 */
1644 int i2c_add_adapter(struct i2c_adapter *adapter)
1645 {
1646 struct device *dev = &adapter->dev;
1647 int id;
1648
1649 if (dev->of_node) {
1650 id = of_alias_get_id(dev->of_node, "i2c");
1651 if (id >= 0) {
1652 adapter->nr = id;
1653 return __i2c_add_numbered_adapter(adapter);
1654 }
1655 }
1656
1657 mutex_lock(&core_lock);
1658 id = idr_alloc(&i2c_adapter_idr, adapter,
1659 __i2c_first_dynamic_bus_num, 0, GFP_KERNEL);
1660 mutex_unlock(&core_lock);
1661 if (id < 0)
1662 return id;
1663
1664 adapter->nr = id;
1665
1666 return i2c_register_adapter(adapter);
1667 }
1668 EXPORT_SYMBOL(i2c_add_adapter);
1669
1670 /**
1671 * i2c_add_numbered_adapter - declare i2c adapter, use static bus number
1672 * @adap: the adapter to register (with adap->nr initialized)
1673 * Context: can sleep
1674 *
1675 * This routine is used to declare an I2C adapter when its bus number
1676 * matters. For example, use it for I2C adapters from system-on-chip CPUs,
1677 * or otherwise built in to the system's mainboard, and where i2c_board_info
1678 * is used to properly configure I2C devices.
1679 *
1680 * If the requested bus number is set to -1, then this function will behave
1681 * identically to i2c_add_adapter, and will dynamically assign a bus number.
1682 *
1683 * If no devices have pre-been declared for this bus, then be sure to
1684 * register the adapter before any dynamically allocated ones. Otherwise
1685 * the required bus ID may not be available.
1686 *
1687 * When this returns zero, the specified adapter became available for
1688 * clients using the bus number provided in adap->nr. Also, the table
1689 * of I2C devices pre-declared using i2c_register_board_info() is scanned,
1690 * and the appropriate driver model device nodes are created. Otherwise, a
1691 * negative errno value is returned.
1692 */
1693 int i2c_add_numbered_adapter(struct i2c_adapter *adap)
1694 {
1695 if (adap->nr == -1) /* -1 means dynamically assign bus id */
1696 return i2c_add_adapter(adap);
1697
1698 return __i2c_add_numbered_adapter(adap);
1699 }
1700 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
1701
1702 static void i2c_do_del_adapter(struct i2c_driver *driver,
1703 struct i2c_adapter *adapter)
1704 {
1705 struct i2c_client *client, *_n;
1706
1707 /* Remove the devices we created ourselves as the result of hardware
1708 * probing (using a driver's detect method) */
1709 list_for_each_entry_safe(client, _n, &driver->clients, detected) {
1710 if (client->adapter == adapter) {
1711 dev_dbg(&adapter->dev, "Removing %s at 0x%x\n",
1712 client->name, client->addr);
1713 list_del(&client->detected);
1714 i2c_unregister_device(client);
1715 }
1716 }
1717 }
1718
1719 static int __unregister_client(struct device *dev, void *dummy)
1720 {
1721 struct i2c_client *client = i2c_verify_client(dev);
1722 if (client && strcmp(client->name, "dummy"))
1723 i2c_unregister_device(client);
1724 return 0;
1725 }
1726
1727 static int __unregister_dummy(struct device *dev, void *dummy)
1728 {
1729 struct i2c_client *client = i2c_verify_client(dev);
1730 if (client)
1731 i2c_unregister_device(client);
1732 return 0;
1733 }
1734
1735 static int __process_removed_adapter(struct device_driver *d, void *data)
1736 {
1737 i2c_do_del_adapter(to_i2c_driver(d), data);
1738 return 0;
1739 }
1740
1741 /**
1742 * i2c_del_adapter - unregister I2C adapter
1743 * @adap: the adapter being unregistered
1744 * Context: can sleep
1745 *
1746 * This unregisters an I2C adapter which was previously registered
1747 * by @i2c_add_adapter or @i2c_add_numbered_adapter.
1748 */
1749 void i2c_del_adapter(struct i2c_adapter *adap)
1750 {
1751 struct i2c_adapter *found;
1752 struct i2c_client *client, *next;
1753
1754 /* First make sure that this adapter was ever added */
1755 mutex_lock(&core_lock);
1756 found = idr_find(&i2c_adapter_idr, adap->nr);
1757 mutex_unlock(&core_lock);
1758 if (found != adap) {
1759 pr_debug("i2c-core: attempting to delete unregistered "
1760 "adapter [%s]\n", adap->name);
1761 return;
1762 }
1763
1764 acpi_i2c_remove_space_handler(adap);
1765 /* Tell drivers about this removal */
1766 mutex_lock(&core_lock);
1767 bus_for_each_drv(&i2c_bus_type, NULL, adap,
1768 __process_removed_adapter);
1769 mutex_unlock(&core_lock);
1770
1771 /* Remove devices instantiated from sysfs */
1772 mutex_lock_nested(&adap->userspace_clients_lock,
1773 i2c_adapter_depth(adap));
1774 list_for_each_entry_safe(client, next, &adap->userspace_clients,
1775 detected) {
1776 dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
1777 client->addr);
1778 list_del(&client->detected);
1779 i2c_unregister_device(client);
1780 }
1781 mutex_unlock(&adap->userspace_clients_lock);
1782
1783 /* Detach any active clients. This can't fail, thus we do not
1784 * check the returned value. This is a two-pass process, because
1785 * we can't remove the dummy devices during the first pass: they
1786 * could have been instantiated by real devices wishing to clean
1787 * them up properly, so we give them a chance to do that first. */
1788 device_for_each_child(&adap->dev, NULL, __unregister_client);
1789 device_for_each_child(&adap->dev, NULL, __unregister_dummy);
1790
1791 #ifdef CONFIG_I2C_COMPAT
1792 class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,
1793 adap->dev.parent);
1794 #endif
1795
1796 /* device name is gone after device_unregister */
1797 dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);
1798
1799 /* clean up the sysfs representation */
1800 init_completion(&adap->dev_released);
1801 device_unregister(&adap->dev);
1802
1803 /* wait for sysfs to drop all references */
1804 wait_for_completion(&adap->dev_released);
1805
1806 /* free bus id */
1807 mutex_lock(&core_lock);
1808 idr_remove(&i2c_adapter_idr, adap->nr);
1809 mutex_unlock(&core_lock);
1810
1811 /* Clear the device structure in case this adapter is ever going to be
1812 added again */
1813 memset(&adap->dev, 0, sizeof(adap->dev));
1814 }
1815 EXPORT_SYMBOL(i2c_del_adapter);
1816
1817 /* ------------------------------------------------------------------------- */
1818
1819 int i2c_for_each_dev(void *data, int (*fn)(struct device *, void *))
1820 {
1821 int res;
1822
1823 mutex_lock(&core_lock);
1824 res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn);
1825 mutex_unlock(&core_lock);
1826
1827 return res;
1828 }
1829 EXPORT_SYMBOL_GPL(i2c_for_each_dev);
1830
1831 static int __process_new_driver(struct device *dev, void *data)
1832 {
1833 if (dev->type != &i2c_adapter_type)
1834 return 0;
1835 return i2c_do_add_adapter(data, to_i2c_adapter(dev));
1836 }
1837
1838 /*
1839 * An i2c_driver is used with one or more i2c_client (device) nodes to access
1840 * i2c slave chips, on a bus instance associated with some i2c_adapter.
1841 */
1842
1843 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
1844 {
1845 int res;
1846
1847 /* Can't register until after driver model init */
1848 if (unlikely(WARN_ON(!i2c_bus_type.p)))
1849 return -EAGAIN;
1850
1851 /* add the driver to the list of i2c drivers in the driver core */
1852 driver->driver.owner = owner;
1853 driver->driver.bus = &i2c_bus_type;
1854
1855 /* When registration returns, the driver core
1856 * will have called probe() for all matching-but-unbound devices.
1857 */
1858 res = driver_register(&driver->driver);
1859 if (res)
1860 return res;
1861
1862 /* Drivers should switch to dev_pm_ops instead. */
1863 if (driver->suspend)
1864 pr_warn("i2c-core: driver [%s] using legacy suspend method\n",
1865 driver->driver.name);
1866 if (driver->resume)
1867 pr_warn("i2c-core: driver [%s] using legacy resume method\n",
1868 driver->driver.name);
1869
1870 pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name);
1871
1872 INIT_LIST_HEAD(&driver->clients);
1873 /* Walk the adapters that are already present */
1874 i2c_for_each_dev(driver, __process_new_driver);
1875
1876 return 0;
1877 }
1878 EXPORT_SYMBOL(i2c_register_driver);
1879
1880 static int __process_removed_driver(struct device *dev, void *data)
1881 {
1882 if (dev->type == &i2c_adapter_type)
1883 i2c_do_del_adapter(data, to_i2c_adapter(dev));
1884 return 0;
1885 }
1886
1887 /**
1888 * i2c_del_driver - unregister I2C driver
1889 * @driver: the driver being unregistered
1890 * Context: can sleep
1891 */
1892 void i2c_del_driver(struct i2c_driver *driver)
1893 {
1894 i2c_for_each_dev(driver, __process_removed_driver);
1895
1896 driver_unregister(&driver->driver);
1897 pr_debug("i2c-core: driver [%s] unregistered\n", driver->driver.name);
1898 }
1899 EXPORT_SYMBOL(i2c_del_driver);
1900
1901 /* ------------------------------------------------------------------------- */
1902
1903 /**
1904 * i2c_use_client - increments the reference count of the i2c client structure
1905 * @client: the client being referenced
1906 *
1907 * Each live reference to a client should be refcounted. The driver model does
1908 * that automatically as part of driver binding, so that most drivers don't
1909 * need to do this explicitly: they hold a reference until they're unbound
1910 * from the device.
1911 *
1912 * A pointer to the client with the incremented reference counter is returned.
1913 */
1914 struct i2c_client *i2c_use_client(struct i2c_client *client)
1915 {
1916 if (client && get_device(&client->dev))
1917 return client;
1918 return NULL;
1919 }
1920 EXPORT_SYMBOL(i2c_use_client);
1921
1922 /**
1923 * i2c_release_client - release a use of the i2c client structure
1924 * @client: the client being no longer referenced
1925 *
1926 * Must be called when a user of a client is finished with it.
1927 */
1928 void i2c_release_client(struct i2c_client *client)
1929 {
1930 if (client)
1931 put_device(&client->dev);
1932 }
1933 EXPORT_SYMBOL(i2c_release_client);
1934
1935 struct i2c_cmd_arg {
1936 unsigned cmd;
1937 void *arg;
1938 };
1939
1940 static int i2c_cmd(struct device *dev, void *_arg)
1941 {
1942 struct i2c_client *client = i2c_verify_client(dev);
1943 struct i2c_cmd_arg *arg = _arg;
1944 struct i2c_driver *driver;
1945
1946 if (!client || !client->dev.driver)
1947 return 0;
1948
1949 driver = to_i2c_driver(client->dev.driver);
1950 if (driver->command)
1951 driver->command(client, arg->cmd, arg->arg);
1952 return 0;
1953 }
1954
1955 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg)
1956 {
1957 struct i2c_cmd_arg cmd_arg;
1958
1959 cmd_arg.cmd = cmd;
1960 cmd_arg.arg = arg;
1961 device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd);
1962 }
1963 EXPORT_SYMBOL(i2c_clients_command);
1964
1965 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
1966 static int of_i2c_notify(struct notifier_block *nb, unsigned long action,
1967 void *arg)
1968 {
1969 struct of_reconfig_data *rd = arg;
1970 struct i2c_adapter *adap;
1971 struct i2c_client *client;
1972
1973 switch (of_reconfig_get_state_change(action, rd)) {
1974 case OF_RECONFIG_CHANGE_ADD:
1975 adap = of_find_i2c_adapter_by_node(rd->dn->parent);
1976 if (adap == NULL)
1977 return NOTIFY_OK; /* not for us */
1978
1979 client = of_i2c_register_device(adap, rd->dn);
1980 put_device(&adap->dev);
1981
1982 if (IS_ERR(client)) {
1983 pr_err("%s: failed to create for '%s'\n",
1984 __func__, rd->dn->full_name);
1985 return notifier_from_errno(PTR_ERR(client));
1986 }
1987 break;
1988 case OF_RECONFIG_CHANGE_REMOVE:
1989 /* find our device by node */
1990 client = of_find_i2c_device_by_node(rd->dn);
1991 if (client == NULL)
1992 return NOTIFY_OK; /* no? not meant for us */
1993
1994 /* unregister takes one ref away */
1995 i2c_unregister_device(client);
1996
1997 /* and put the reference of the find */
1998 put_device(&client->dev);
1999 break;
2000 }
2001
2002 return NOTIFY_OK;
2003 }
2004 static struct notifier_block i2c_of_notifier = {
2005 .notifier_call = of_i2c_notify,
2006 };
2007 #else
2008 extern struct notifier_block i2c_of_notifier;
2009 #endif /* CONFIG_OF_DYNAMIC */
2010
2011 static int __init i2c_init(void)
2012 {
2013 int retval;
2014
2015 retval = bus_register(&i2c_bus_type);
2016 if (retval)
2017 return retval;
2018 #ifdef CONFIG_I2C_COMPAT
2019 i2c_adapter_compat_class = class_compat_register("i2c-adapter");
2020 if (!i2c_adapter_compat_class) {
2021 retval = -ENOMEM;
2022 goto bus_err;
2023 }
2024 #endif
2025 retval = i2c_add_driver(&dummy_driver);
2026 if (retval)
2027 goto class_err;
2028
2029 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2030 WARN_ON(of_reconfig_notifier_register(&i2c_of_notifier));
2031
2032 return 0;
2033
2034 class_err:
2035 #ifdef CONFIG_I2C_COMPAT
2036 class_compat_unregister(i2c_adapter_compat_class);
2037 bus_err:
2038 #endif
2039 bus_unregister(&i2c_bus_type);
2040 return retval;
2041 }
2042
2043 static void __exit i2c_exit(void)
2044 {
2045 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2046 WARN_ON(of_reconfig_notifier_unregister(&i2c_of_notifier));
2047 i2c_del_driver(&dummy_driver);
2048 #ifdef CONFIG_I2C_COMPAT
2049 class_compat_unregister(i2c_adapter_compat_class);
2050 #endif
2051 bus_unregister(&i2c_bus_type);
2052 tracepoint_synchronize_unregister();
2053 }
2054
2055 /* We must initialize early, because some subsystems register i2c drivers
2056 * in subsys_initcall() code, but are linked (and initialized) before i2c.
2057 */
2058 postcore_initcall(i2c_init);
2059 module_exit(i2c_exit);
2060
2061 /* ----------------------------------------------------
2062 * the functional interface to the i2c busses.
2063 * ----------------------------------------------------
2064 */
2065
2066 /**
2067 * __i2c_transfer - unlocked flavor of i2c_transfer
2068 * @adap: Handle to I2C bus
2069 * @msgs: One or more messages to execute before STOP is issued to
2070 * terminate the operation; each message begins with a START.
2071 * @num: Number of messages to be executed.
2072 *
2073 * Returns negative errno, else the number of messages executed.
2074 *
2075 * Adapter lock must be held when calling this function. No debug logging
2076 * takes place. adap->algo->master_xfer existence isn't checked.
2077 */
2078 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2079 {
2080 unsigned long orig_jiffies;
2081 int ret, try;
2082
2083 /* i2c_trace_msg gets enabled when tracepoint i2c_transfer gets
2084 * enabled. This is an efficient way of keeping the for-loop from
2085 * being executed when not needed.
2086 */
2087 if (static_key_false(&i2c_trace_msg)) {
2088 int i;
2089 for (i = 0; i < num; i++)
2090 if (msgs[i].flags & I2C_M_RD)
2091 trace_i2c_read(adap, &msgs[i], i);
2092 else
2093 trace_i2c_write(adap, &msgs[i], i);
2094 }
2095
2096 /* Retry automatically on arbitration loss */
2097 orig_jiffies = jiffies;
2098 for (ret = 0, try = 0; try <= adap->retries; try++) {
2099 ret = adap->algo->master_xfer(adap, msgs, num);
2100 if (ret != -EAGAIN)
2101 break;
2102 if (time_after(jiffies, orig_jiffies + adap->timeout))
2103 break;
2104 }
2105
2106 if (static_key_false(&i2c_trace_msg)) {
2107 int i;
2108 for (i = 0; i < ret; i++)
2109 if (msgs[i].flags & I2C_M_RD)
2110 trace_i2c_reply(adap, &msgs[i], i);
2111 trace_i2c_result(adap, i, ret);
2112 }
2113
2114 return ret;
2115 }
2116 EXPORT_SYMBOL(__i2c_transfer);
2117
2118 /**
2119 * i2c_transfer - execute a single or combined I2C message
2120 * @adap: Handle to I2C bus
2121 * @msgs: One or more messages to execute before STOP is issued to
2122 * terminate the operation; each message begins with a START.
2123 * @num: Number of messages to be executed.
2124 *
2125 * Returns negative errno, else the number of messages executed.
2126 *
2127 * Note that there is no requirement that each message be sent to
2128 * the same slave address, although that is the most common model.
2129 */
2130 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2131 {
2132 int ret;
2133
2134 /* REVISIT the fault reporting model here is weak:
2135 *
2136 * - When we get an error after receiving N bytes from a slave,
2137 * there is no way to report "N".
2138 *
2139 * - When we get a NAK after transmitting N bytes to a slave,
2140 * there is no way to report "N" ... or to let the master
2141 * continue executing the rest of this combined message, if
2142 * that's the appropriate response.
2143 *
2144 * - When for example "num" is two and we successfully complete
2145 * the first message but get an error part way through the
2146 * second, it's unclear whether that should be reported as
2147 * one (discarding status on the second message) or errno
2148 * (discarding status on the first one).
2149 */
2150
2151 if (adap->algo->master_xfer) {
2152 #ifdef DEBUG
2153 for (ret = 0; ret < num; ret++) {
2154 dev_dbg(&adap->dev, "master_xfer[%d] %c, addr=0x%02x, "
2155 "len=%d%s\n", ret, (msgs[ret].flags & I2C_M_RD)
2156 ? 'R' : 'W', msgs[ret].addr, msgs[ret].len,
2157 (msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : "");
2158 }
2159 #endif
2160
2161 if (in_atomic() || irqs_disabled()) {
2162 ret = i2c_trylock_adapter(adap);
2163 if (!ret)
2164 /* I2C activity is ongoing. */
2165 return -EAGAIN;
2166 } else {
2167 i2c_lock_adapter(adap);
2168 }
2169
2170 ret = __i2c_transfer(adap, msgs, num);
2171 i2c_unlock_adapter(adap);
2172
2173 return ret;
2174 } else {
2175 dev_dbg(&adap->dev, "I2C level transfers not supported\n");
2176 return -EOPNOTSUPP;
2177 }
2178 }
2179 EXPORT_SYMBOL(i2c_transfer);
2180
2181 /**
2182 * i2c_master_send - issue a single I2C message in master transmit mode
2183 * @client: Handle to slave device
2184 * @buf: Data that will be written to the slave
2185 * @count: How many bytes to write, must be less than 64k since msg.len is u16
2186 *
2187 * Returns negative errno, or else the number of bytes written.
2188 */
2189 int i2c_master_send(const struct i2c_client *client, const char *buf, int count)
2190 {
2191 int ret;
2192 struct i2c_adapter *adap = client->adapter;
2193 struct i2c_msg msg;
2194
2195 msg.addr = client->addr;
2196 msg.flags = client->flags & I2C_M_TEN;
2197 msg.len = count;
2198 msg.buf = (char *)buf;
2199
2200 ret = i2c_transfer(adap, &msg, 1);
2201
2202 /*
2203 * If everything went ok (i.e. 1 msg transmitted), return #bytes
2204 * transmitted, else error code.
2205 */
2206 return (ret == 1) ? count : ret;
2207 }
2208 EXPORT_SYMBOL(i2c_master_send);
2209
2210 /**
2211 * i2c_master_recv - issue a single I2C message in master receive mode
2212 * @client: Handle to slave device
2213 * @buf: Where to store data read from slave
2214 * @count: How many bytes to read, must be less than 64k since msg.len is u16
2215 *
2216 * Returns negative errno, or else the number of bytes read.
2217 */
2218 int i2c_master_recv(const struct i2c_client *client, char *buf, int count)
2219 {
2220 struct i2c_adapter *adap = client->adapter;
2221 struct i2c_msg msg;
2222 int ret;
2223
2224 msg.addr = client->addr;
2225 msg.flags = client->flags & I2C_M_TEN;
2226 msg.flags |= I2C_M_RD;
2227 msg.len = count;
2228 msg.buf = buf;
2229
2230 ret = i2c_transfer(adap, &msg, 1);
2231
2232 /*
2233 * If everything went ok (i.e. 1 msg received), return #bytes received,
2234 * else error code.
2235 */
2236 return (ret == 1) ? count : ret;
2237 }
2238 EXPORT_SYMBOL(i2c_master_recv);
2239
2240 /* ----------------------------------------------------
2241 * the i2c address scanning function
2242 * Will not work for 10-bit addresses!
2243 * ----------------------------------------------------
2244 */
2245
2246 /*
2247 * Legacy default probe function, mostly relevant for SMBus. The default
2248 * probe method is a quick write, but it is known to corrupt the 24RF08
2249 * EEPROMs due to a state machine bug, and could also irreversibly
2250 * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f,
2251 * we use a short byte read instead. Also, some bus drivers don't implement
2252 * quick write, so we fallback to a byte read in that case too.
2253 * On x86, there is another special case for FSC hardware monitoring chips,
2254 * which want regular byte reads (address 0x73.) Fortunately, these are the
2255 * only known chips using this I2C address on PC hardware.
2256 * Returns 1 if probe succeeded, 0 if not.
2257 */
2258 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr)
2259 {
2260 int err;
2261 union i2c_smbus_data dummy;
2262
2263 #ifdef CONFIG_X86
2264 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON)
2265 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
2266 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2267 I2C_SMBUS_BYTE_DATA, &dummy);
2268 else
2269 #endif
2270 if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50)
2271 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
2272 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
2273 I2C_SMBUS_QUICK, NULL);
2274 else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE))
2275 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2276 I2C_SMBUS_BYTE, &dummy);
2277 else {
2278 dev_warn(&adap->dev, "No suitable probing method supported for address 0x%02X\n",
2279 addr);
2280 err = -EOPNOTSUPP;
2281 }
2282
2283 return err >= 0;
2284 }
2285
2286 static int i2c_detect_address(struct i2c_client *temp_client,
2287 struct i2c_driver *driver)
2288 {
2289 struct i2c_board_info info;
2290 struct i2c_adapter *adapter = temp_client->adapter;
2291 int addr = temp_client->addr;
2292 int err;
2293
2294 /* Make sure the address is valid */
2295 err = i2c_check_addr_validity(addr);
2296 if (err) {
2297 dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
2298 addr);
2299 return err;
2300 }
2301
2302 /* Skip if already in use */
2303 if (i2c_check_addr_busy(adapter, addr))
2304 return 0;
2305
2306 /* Make sure there is something at this address */
2307 if (!i2c_default_probe(adapter, addr))
2308 return 0;
2309
2310 /* Finally call the custom detection function */
2311 memset(&info, 0, sizeof(struct i2c_board_info));
2312 info.addr = addr;
2313 err = driver->detect(temp_client, &info);
2314 if (err) {
2315 /* -ENODEV is returned if the detection fails. We catch it
2316 here as this isn't an error. */
2317 return err == -ENODEV ? 0 : err;
2318 }
2319
2320 /* Consistency check */
2321 if (info.type[0] == '\0') {
2322 dev_err(&adapter->dev, "%s detection function provided "
2323 "no name for 0x%x\n", driver->driver.name,
2324 addr);
2325 } else {
2326 struct i2c_client *client;
2327
2328 /* Detection succeeded, instantiate the device */
2329 if (adapter->class & I2C_CLASS_DEPRECATED)
2330 dev_warn(&adapter->dev,
2331 "This adapter will soon drop class based instantiation of devices. "
2332 "Please make sure client 0x%02x gets instantiated by other means. "
2333 "Check 'Documentation/i2c/instantiating-devices' for details.\n",
2334 info.addr);
2335
2336 dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
2337 info.type, info.addr);
2338 client = i2c_new_device(adapter, &info);
2339 if (client)
2340 list_add_tail(&client->detected, &driver->clients);
2341 else
2342 dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
2343 info.type, info.addr);
2344 }
2345 return 0;
2346 }
2347
2348 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
2349 {
2350 const unsigned short *address_list;
2351 struct i2c_client *temp_client;
2352 int i, err = 0;
2353 int adap_id = i2c_adapter_id(adapter);
2354
2355 address_list = driver->address_list;
2356 if (!driver->detect || !address_list)
2357 return 0;
2358
2359 /* Warn that the adapter lost class based instantiation */
2360 if (adapter->class == I2C_CLASS_DEPRECATED) {
2361 dev_dbg(&adapter->dev,
2362 "This adapter dropped support for I2C classes and "
2363 "won't auto-detect %s devices anymore. If you need it, check "
2364 "'Documentation/i2c/instantiating-devices' for alternatives.\n",
2365 driver->driver.name);
2366 return 0;
2367 }
2368
2369 /* Stop here if the classes do not match */
2370 if (!(adapter->class & driver->class))
2371 return 0;
2372
2373 /* Set up a temporary client to help detect callback */
2374 temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
2375 if (!temp_client)
2376 return -ENOMEM;
2377 temp_client->adapter = adapter;
2378
2379 for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
2380 dev_dbg(&adapter->dev, "found normal entry for adapter %d, "
2381 "addr 0x%02x\n", adap_id, address_list[i]);
2382 temp_client->addr = address_list[i];
2383 err = i2c_detect_address(temp_client, driver);
2384 if (unlikely(err))
2385 break;
2386 }
2387
2388 kfree(temp_client);
2389 return err;
2390 }
2391
2392 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr)
2393 {
2394 return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2395 I2C_SMBUS_QUICK, NULL) >= 0;
2396 }
2397 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read);
2398
2399 struct i2c_client *
2400 i2c_new_probed_device(struct i2c_adapter *adap,
2401 struct i2c_board_info *info,
2402 unsigned short const *addr_list,
2403 int (*probe)(struct i2c_adapter *, unsigned short addr))
2404 {
2405 int i;
2406
2407 if (!probe)
2408 probe = i2c_default_probe;
2409
2410 for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
2411 /* Check address validity */
2412 if (i2c_check_addr_validity(addr_list[i]) < 0) {
2413 dev_warn(&adap->dev, "Invalid 7-bit address "
2414 "0x%02x\n", addr_list[i]);
2415 continue;
2416 }
2417
2418 /* Check address availability */
2419 if (i2c_check_addr_busy(adap, addr_list[i])) {
2420 dev_dbg(&adap->dev, "Address 0x%02x already in "
2421 "use, not probing\n", addr_list[i]);
2422 continue;
2423 }
2424
2425 /* Test address responsiveness */
2426 if (probe(adap, addr_list[i]))
2427 break;
2428 }
2429
2430 if (addr_list[i] == I2C_CLIENT_END) {
2431 dev_dbg(&adap->dev, "Probing failed, no device found\n");
2432 return NULL;
2433 }
2434
2435 info->addr = addr_list[i];
2436 return i2c_new_device(adap, info);
2437 }
2438 EXPORT_SYMBOL_GPL(i2c_new_probed_device);
2439
2440 struct i2c_adapter *i2c_get_adapter(int nr)
2441 {
2442 struct i2c_adapter *adapter;
2443
2444 mutex_lock(&core_lock);
2445 adapter = idr_find(&i2c_adapter_idr, nr);
2446 if (adapter && !try_module_get(adapter->owner))
2447 adapter = NULL;
2448
2449 mutex_unlock(&core_lock);
2450 return adapter;
2451 }
2452 EXPORT_SYMBOL(i2c_get_adapter);
2453
2454 void i2c_put_adapter(struct i2c_adapter *adap)
2455 {
2456 if (adap)
2457 module_put(adap->owner);
2458 }
2459 EXPORT_SYMBOL(i2c_put_adapter);
2460
2461 /* The SMBus parts */
2462
2463 #define POLY (0x1070U << 3)
2464 static u8 crc8(u16 data)
2465 {
2466 int i;
2467
2468 for (i = 0; i < 8; i++) {
2469 if (data & 0x8000)
2470 data = data ^ POLY;
2471 data = data << 1;
2472 }
2473 return (u8)(data >> 8);
2474 }
2475
2476 /* Incremental CRC8 over count bytes in the array pointed to by p */
2477 static u8 i2c_smbus_pec(u8 crc, u8 *p, size_t count)
2478 {
2479 int i;
2480
2481 for (i = 0; i < count; i++)
2482 crc = crc8((crc ^ p[i]) << 8);
2483 return crc;
2484 }
2485
2486 /* Assume a 7-bit address, which is reasonable for SMBus */
2487 static u8 i2c_smbus_msg_pec(u8 pec, struct i2c_msg *msg)
2488 {
2489 /* The address will be sent first */
2490 u8 addr = (msg->addr << 1) | !!(msg->flags & I2C_M_RD);
2491 pec = i2c_smbus_pec(pec, &addr, 1);
2492
2493 /* The data buffer follows */
2494 return i2c_smbus_pec(pec, msg->buf, msg->len);
2495 }
2496
2497 /* Used for write only transactions */
2498 static inline void i2c_smbus_add_pec(struct i2c_msg *msg)
2499 {
2500 msg->buf[msg->len] = i2c_smbus_msg_pec(0, msg);
2501 msg->len++;
2502 }
2503
2504 /* Return <0 on CRC error
2505 If there was a write before this read (most cases) we need to take the
2506 partial CRC from the write part into account.
2507 Note that this function does modify the message (we need to decrease the
2508 message length to hide the CRC byte from the caller). */
2509 static int i2c_smbus_check_pec(u8 cpec, struct i2c_msg *msg)
2510 {
2511 u8 rpec = msg->buf[--msg->len];
2512 cpec = i2c_smbus_msg_pec(cpec, msg);
2513
2514 if (rpec != cpec) {
2515 pr_debug("i2c-core: Bad PEC 0x%02x vs. 0x%02x\n",
2516 rpec, cpec);
2517 return -EBADMSG;
2518 }
2519 return 0;
2520 }
2521
2522 /**
2523 * i2c_smbus_read_byte - SMBus "receive byte" protocol
2524 * @client: Handle to slave device
2525 *
2526 * This executes the SMBus "receive byte" protocol, returning negative errno
2527 * else the byte received from the device.
2528 */
2529 s32 i2c_smbus_read_byte(const struct i2c_client *client)
2530 {
2531 union i2c_smbus_data data;
2532 int status;
2533
2534 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2535 I2C_SMBUS_READ, 0,
2536 I2C_SMBUS_BYTE, &data);
2537 return (status < 0) ? status : data.byte;
2538 }
2539 EXPORT_SYMBOL(i2c_smbus_read_byte);
2540
2541 /**
2542 * i2c_smbus_write_byte - SMBus "send byte" protocol
2543 * @client: Handle to slave device
2544 * @value: Byte to be sent
2545 *
2546 * This executes the SMBus "send byte" protocol, returning negative errno
2547 * else zero on success.
2548 */
2549 s32 i2c_smbus_write_byte(const struct i2c_client *client, u8 value)
2550 {
2551 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2552 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
2553 }
2554 EXPORT_SYMBOL(i2c_smbus_write_byte);
2555
2556 /**
2557 * i2c_smbus_read_byte_data - SMBus "read byte" protocol
2558 * @client: Handle to slave device
2559 * @command: Byte interpreted by slave
2560 *
2561 * This executes the SMBus "read byte" protocol, returning negative errno
2562 * else a data byte received from the device.
2563 */
2564 s32 i2c_smbus_read_byte_data(const struct i2c_client *client, u8 command)
2565 {
2566 union i2c_smbus_data data;
2567 int status;
2568
2569 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2570 I2C_SMBUS_READ, command,
2571 I2C_SMBUS_BYTE_DATA, &data);
2572 return (status < 0) ? status : data.byte;
2573 }
2574 EXPORT_SYMBOL(i2c_smbus_read_byte_data);
2575
2576 /**
2577 * i2c_smbus_write_byte_data - SMBus "write byte" protocol
2578 * @client: Handle to slave device
2579 * @command: Byte interpreted by slave
2580 * @value: Byte being written
2581 *
2582 * This executes the SMBus "write byte" protocol, returning negative errno
2583 * else zero on success.
2584 */
2585 s32 i2c_smbus_write_byte_data(const struct i2c_client *client, u8 command,
2586 u8 value)
2587 {
2588 union i2c_smbus_data data;
2589 data.byte = value;
2590 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2591 I2C_SMBUS_WRITE, command,
2592 I2C_SMBUS_BYTE_DATA, &data);
2593 }
2594 EXPORT_SYMBOL(i2c_smbus_write_byte_data);
2595
2596 /**
2597 * i2c_smbus_read_word_data - SMBus "read word" protocol
2598 * @client: Handle to slave device
2599 * @command: Byte interpreted by slave
2600 *
2601 * This executes the SMBus "read word" protocol, returning negative errno
2602 * else a 16-bit unsigned "word" received from the device.
2603 */
2604 s32 i2c_smbus_read_word_data(const struct i2c_client *client, u8 command)
2605 {
2606 union i2c_smbus_data data;
2607 int status;
2608
2609 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2610 I2C_SMBUS_READ, command,
2611 I2C_SMBUS_WORD_DATA, &data);
2612 return (status < 0) ? status : data.word;
2613 }
2614 EXPORT_SYMBOL(i2c_smbus_read_word_data);
2615
2616 /**
2617 * i2c_smbus_write_word_data - SMBus "write word" protocol
2618 * @client: Handle to slave device
2619 * @command: Byte interpreted by slave
2620 * @value: 16-bit "word" being written
2621 *
2622 * This executes the SMBus "write word" protocol, returning negative errno
2623 * else zero on success.
2624 */
2625 s32 i2c_smbus_write_word_data(const struct i2c_client *client, u8 command,
2626 u16 value)
2627 {
2628 union i2c_smbus_data data;
2629 data.word = value;
2630 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2631 I2C_SMBUS_WRITE, command,
2632 I2C_SMBUS_WORD_DATA, &data);
2633 }
2634 EXPORT_SYMBOL(i2c_smbus_write_word_data);
2635
2636 /**
2637 * i2c_smbus_read_block_data - SMBus "block read" protocol
2638 * @client: Handle to slave device
2639 * @command: Byte interpreted by slave
2640 * @values: Byte array into which data will be read; big enough to hold
2641 * the data returned by the slave. SMBus allows at most 32 bytes.
2642 *
2643 * This executes the SMBus "block read" protocol, returning negative errno
2644 * else the number of data bytes in the slave's response.
2645 *
2646 * Note that using this function requires that the client's adapter support
2647 * the I2C_FUNC_SMBUS_READ_BLOCK_DATA functionality. Not all adapter drivers
2648 * support this; its emulation through I2C messaging relies on a specific
2649 * mechanism (I2C_M_RECV_LEN) which may not be implemented.
2650 */
2651 s32 i2c_smbus_read_block_data(const struct i2c_client *client, u8 command,
2652 u8 *values)
2653 {
2654 union i2c_smbus_data data;
2655 int status;
2656
2657 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2658 I2C_SMBUS_READ, command,
2659 I2C_SMBUS_BLOCK_DATA, &data);
2660 if (status)
2661 return status;
2662
2663 memcpy(values, &data.block[1], data.block[0]);
2664 return data.block[0];
2665 }
2666 EXPORT_SYMBOL(i2c_smbus_read_block_data);
2667
2668 /**
2669 * i2c_smbus_write_block_data - SMBus "block write" protocol
2670 * @client: Handle to slave device
2671 * @command: Byte interpreted by slave
2672 * @length: Size of data block; SMBus allows at most 32 bytes
2673 * @values: Byte array which will be written.
2674 *
2675 * This executes the SMBus "block write" protocol, returning negative errno
2676 * else zero on success.
2677 */
2678 s32 i2c_smbus_write_block_data(const struct i2c_client *client, u8 command,
2679 u8 length, const u8 *values)
2680 {
2681 union i2c_smbus_data data;
2682
2683 if (length > I2C_SMBUS_BLOCK_MAX)
2684 length = I2C_SMBUS_BLOCK_MAX;
2685 data.block[0] = length;
2686 memcpy(&data.block[1], values, length);
2687 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2688 I2C_SMBUS_WRITE, command,
2689 I2C_SMBUS_BLOCK_DATA, &data);
2690 }
2691 EXPORT_SYMBOL(i2c_smbus_write_block_data);
2692
2693 /* Returns the number of read bytes */
2694 s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client, u8 command,
2695 u8 length, u8 *values)
2696 {
2697 union i2c_smbus_data data;
2698 int status;
2699
2700 if (length > I2C_SMBUS_BLOCK_MAX)
2701 length = I2C_SMBUS_BLOCK_MAX;
2702 data.block[0] = length;
2703 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2704 I2C_SMBUS_READ, command,
2705 I2C_SMBUS_I2C_BLOCK_DATA, &data);
2706 if (status < 0)
2707 return status;
2708
2709 memcpy(values, &data.block[1], data.block[0]);
2710 return data.block[0];
2711 }
2712 EXPORT_SYMBOL(i2c_smbus_read_i2c_block_data);
2713
2714 s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client, u8 command,
2715 u8 length, const u8 *values)
2716 {
2717 union i2c_smbus_data data;
2718
2719 if (length > I2C_SMBUS_BLOCK_MAX)
2720 length = I2C_SMBUS_BLOCK_MAX;
2721 data.block[0] = length;
2722 memcpy(data.block + 1, values, length);
2723 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2724 I2C_SMBUS_WRITE, command,
2725 I2C_SMBUS_I2C_BLOCK_DATA, &data);
2726 }
2727 EXPORT_SYMBOL(i2c_smbus_write_i2c_block_data);
2728
2729 /* Simulate a SMBus command using the i2c protocol
2730 No checking of parameters is done! */
2731 static s32 i2c_smbus_xfer_emulated(struct i2c_adapter *adapter, u16 addr,
2732 unsigned short flags,
2733 char read_write, u8 command, int size,
2734 union i2c_smbus_data *data)
2735 {
2736 /* So we need to generate a series of msgs. In the case of writing, we
2737 need to use only one message; when reading, we need two. We initialize
2738 most things with sane defaults, to keep the code below somewhat
2739 simpler. */
2740 unsigned char msgbuf0[I2C_SMBUS_BLOCK_MAX+3];
2741 unsigned char msgbuf1[I2C_SMBUS_BLOCK_MAX+2];
2742 int num = read_write == I2C_SMBUS_READ ? 2 : 1;
2743 int i;
2744 u8 partial_pec = 0;
2745 int status;
2746 struct i2c_msg msg[2] = {
2747 {
2748 .addr = addr,
2749 .flags = flags,
2750 .len = 1,
2751 .buf = msgbuf0,
2752 }, {
2753 .addr = addr,
2754 .flags = flags | I2C_M_RD,
2755 .len = 0,
2756 .buf = msgbuf1,
2757 },
2758 };
2759
2760 msgbuf0[0] = command;
2761 switch (size) {
2762 case I2C_SMBUS_QUICK:
2763 msg[0].len = 0;
2764 /* Special case: The read/write field is used as data */
2765 msg[0].flags = flags | (read_write == I2C_SMBUS_READ ?
2766 I2C_M_RD : 0);
2767 num = 1;
2768 break;
2769 case I2C_SMBUS_BYTE:
2770 if (read_write == I2C_SMBUS_READ) {
2771 /* Special case: only a read! */
2772 msg[0].flags = I2C_M_RD | flags;
2773 num = 1;
2774 }
2775 break;
2776 case I2C_SMBUS_BYTE_DATA:
2777 if (read_write == I2C_SMBUS_READ)
2778 msg[1].len = 1;
2779 else {
2780 msg[0].len = 2;
2781 msgbuf0[1] = data->byte;
2782 }
2783 break;
2784 case I2C_SMBUS_WORD_DATA:
2785 if (read_write == I2C_SMBUS_READ)
2786 msg[1].len = 2;
2787 else {
2788 msg[0].len = 3;
2789 msgbuf0[1] = data->word & 0xff;
2790 msgbuf0[2] = data->word >> 8;
2791 }
2792 break;
2793 case I2C_SMBUS_PROC_CALL:
2794 num = 2; /* Special case */
2795 read_write = I2C_SMBUS_READ;
2796 msg[0].len = 3;
2797 msg[1].len = 2;
2798 msgbuf0[1] = data->word & 0xff;
2799 msgbuf0[2] = data->word >> 8;
2800 break;
2801 case I2C_SMBUS_BLOCK_DATA:
2802 if (read_write == I2C_SMBUS_READ) {
2803 msg[1].flags |= I2C_M_RECV_LEN;
2804 msg[1].len = 1; /* block length will be added by
2805 the underlying bus driver */
2806 } else {
2807 msg[0].len = data->block[0] + 2;
2808 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 2) {
2809 dev_err(&adapter->dev,
2810 "Invalid block write size %d\n",
2811 data->block[0]);
2812 return -EINVAL;
2813 }
2814 for (i = 1; i < msg[0].len; i++)
2815 msgbuf0[i] = data->block[i-1];
2816 }
2817 break;
2818 case I2C_SMBUS_BLOCK_PROC_CALL:
2819 num = 2; /* Another special case */
2820 read_write = I2C_SMBUS_READ;
2821 if (data->block[0] > I2C_SMBUS_BLOCK_MAX) {
2822 dev_err(&adapter->dev,
2823 "Invalid block write size %d\n",
2824 data->block[0]);
2825 return -EINVAL;
2826 }
2827 msg[0].len = data->block[0] + 2;
2828 for (i = 1; i < msg[0].len; i++)
2829 msgbuf0[i] = data->block[i-1];
2830 msg[1].flags |= I2C_M_RECV_LEN;
2831 msg[1].len = 1; /* block length will be added by
2832 the underlying bus driver */
2833 break;
2834 case I2C_SMBUS_I2C_BLOCK_DATA:
2835 if (read_write == I2C_SMBUS_READ) {
2836 msg[1].len = data->block[0];
2837 } else {
2838 msg[0].len = data->block[0] + 1;
2839 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 1) {
2840 dev_err(&adapter->dev,
2841 "Invalid block write size %d\n",
2842 data->block[0]);
2843 return -EINVAL;
2844 }
2845 for (i = 1; i <= data->block[0]; i++)
2846 msgbuf0[i] = data->block[i];
2847 }
2848 break;
2849 default:
2850 dev_err(&adapter->dev, "Unsupported transaction %d\n", size);
2851 return -EOPNOTSUPP;
2852 }
2853
2854 i = ((flags & I2C_CLIENT_PEC) && size != I2C_SMBUS_QUICK
2855 && size != I2C_SMBUS_I2C_BLOCK_DATA);
2856 if (i) {
2857 /* Compute PEC if first message is a write */
2858 if (!(msg[0].flags & I2C_M_RD)) {
2859 if (num == 1) /* Write only */
2860 i2c_smbus_add_pec(&msg[0]);
2861 else /* Write followed by read */
2862 partial_pec = i2c_smbus_msg_pec(0, &msg[0]);
2863 }
2864 /* Ask for PEC if last message is a read */
2865 if (msg[num-1].flags & I2C_M_RD)
2866 msg[num-1].len++;
2867 }
2868
2869 status = i2c_transfer(adapter, msg, num);
2870 if (status < 0)
2871 return status;
2872
2873 /* Check PEC if last message is a read */
2874 if (i && (msg[num-1].flags & I2C_M_RD)) {
2875 status = i2c_smbus_check_pec(partial_pec, &msg[num-1]);
2876 if (status < 0)
2877 return status;
2878 }
2879
2880 if (read_write == I2C_SMBUS_READ)
2881 switch (size) {
2882 case I2C_SMBUS_BYTE:
2883 data->byte = msgbuf0[0];
2884 break;
2885 case I2C_SMBUS_BYTE_DATA:
2886 data->byte = msgbuf1[0];
2887 break;
2888 case I2C_SMBUS_WORD_DATA:
2889 case I2C_SMBUS_PROC_CALL:
2890 data->word = msgbuf1[0] | (msgbuf1[1] << 8);
2891 break;
2892 case I2C_SMBUS_I2C_BLOCK_DATA:
2893 for (i = 0; i < data->block[0]; i++)
2894 data->block[i+1] = msgbuf1[i];
2895 break;
2896 case I2C_SMBUS_BLOCK_DATA:
2897 case I2C_SMBUS_BLOCK_PROC_CALL:
2898 for (i = 0; i < msgbuf1[0] + 1; i++)
2899 data->block[i] = msgbuf1[i];
2900 break;
2901 }
2902 return 0;
2903 }
2904
2905 /**
2906 * i2c_smbus_xfer - execute SMBus protocol operations
2907 * @adapter: Handle to I2C bus
2908 * @addr: Address of SMBus slave on that bus
2909 * @flags: I2C_CLIENT_* flags (usually zero or I2C_CLIENT_PEC)
2910 * @read_write: I2C_SMBUS_READ or I2C_SMBUS_WRITE
2911 * @command: Byte interpreted by slave, for protocols which use such bytes
2912 * @protocol: SMBus protocol operation to execute, such as I2C_SMBUS_PROC_CALL
2913 * @data: Data to be read or written
2914 *
2915 * This executes an SMBus protocol operation, and returns a negative
2916 * errno code else zero on success.
2917 */
2918 s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr, unsigned short flags,
2919 char read_write, u8 command, int protocol,
2920 union i2c_smbus_data *data)
2921 {
2922 unsigned long orig_jiffies;
2923 int try;
2924 s32 res;
2925
2926 /* If enabled, the following two tracepoints are conditional on
2927 * read_write and protocol.
2928 */
2929 trace_smbus_write(adapter, addr, flags, read_write,
2930 command, protocol, data);
2931 trace_smbus_read(adapter, addr, flags, read_write,
2932 command, protocol);
2933
2934 flags &= I2C_M_TEN | I2C_CLIENT_PEC | I2C_CLIENT_SCCB;
2935
2936 if (adapter->algo->smbus_xfer) {
2937 i2c_lock_adapter(adapter);
2938
2939 /* Retry automatically on arbitration loss */
2940 orig_jiffies = jiffies;
2941 for (res = 0, try = 0; try <= adapter->retries; try++) {
2942 res = adapter->algo->smbus_xfer(adapter, addr, flags,
2943 read_write, command,
2944 protocol, data);
2945 if (res != -EAGAIN)
2946 break;
2947 if (time_after(jiffies,
2948 orig_jiffies + adapter->timeout))
2949 break;
2950 }
2951 i2c_unlock_adapter(adapter);
2952
2953 if (res != -EOPNOTSUPP || !adapter->algo->master_xfer)
2954 goto trace;
2955 /*
2956 * Fall back to i2c_smbus_xfer_emulated if the adapter doesn't
2957 * implement native support for the SMBus operation.
2958 */
2959 }
2960
2961 res = i2c_smbus_xfer_emulated(adapter, addr, flags, read_write,
2962 command, protocol, data);
2963
2964 trace:
2965 /* If enabled, the reply tracepoint is conditional on read_write. */
2966 trace_smbus_reply(adapter, addr, flags, read_write,
2967 command, protocol, data);
2968 trace_smbus_result(adapter, addr, flags, read_write,
2969 command, protocol, res);
2970
2971 return res;
2972 }
2973 EXPORT_SYMBOL(i2c_smbus_xfer);
2974
2975 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2976 int i2c_slave_register(struct i2c_client *client, i2c_slave_cb_t slave_cb)
2977 {
2978 int ret;
2979
2980 if (!client || !slave_cb)
2981 return -EINVAL;
2982
2983 if (!(client->flags & I2C_CLIENT_TEN)) {
2984 /* Enforce stricter address checking */
2985 ret = i2c_check_addr_validity(client->addr);
2986 if (ret)
2987 return ret;
2988 }
2989
2990 if (!client->adapter->algo->reg_slave)
2991 return -EOPNOTSUPP;
2992
2993 client->slave_cb = slave_cb;
2994
2995 i2c_lock_adapter(client->adapter);
2996 ret = client->adapter->algo->reg_slave(client);
2997 i2c_unlock_adapter(client->adapter);
2998
2999 if (ret)
3000 client->slave_cb = NULL;
3001
3002 return ret;
3003 }
3004 EXPORT_SYMBOL_GPL(i2c_slave_register);
3005
3006 int i2c_slave_unregister(struct i2c_client *client)
3007 {
3008 int ret;
3009
3010 if (!client->adapter->algo->unreg_slave)
3011 return -EOPNOTSUPP;
3012
3013 i2c_lock_adapter(client->adapter);
3014 ret = client->adapter->algo->unreg_slave(client);
3015 i2c_unlock_adapter(client->adapter);
3016
3017 if (ret == 0)
3018 client->slave_cb = NULL;
3019
3020 return ret;
3021 }
3022 EXPORT_SYMBOL_GPL(i2c_slave_unregister);
3023 #endif
3024
3025 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
3026 MODULE_DESCRIPTION("I2C-Bus main module");
3027 MODULE_LICENSE("GPL");
This page took 0.129808 seconds and 5 git commands to generate.