drm/amdgpu: Fix race condition in MMU notifier release
[deliverable/linux.git] / drivers / i2c / i2c-core.c
1 /* i2c-core.c - a device driver for the iic-bus interface */
2 /* ------------------------------------------------------------------------- */
3 /* Copyright (C) 1995-99 Simon G. Vogl
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details. */
14 /* ------------------------------------------------------------------------- */
15
16 /* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>.
17 All SMBus-related things are written by Frodo Looijaard <frodol@dds.nl>
18 SMBus 2.0 support by Mark Studebaker <mdsxyz123@yahoo.com> and
19 Jean Delvare <jdelvare@suse.de>
20 Mux support by Rodolfo Giometti <giometti@enneenne.com> and
21 Michael Lawnick <michael.lawnick.ext@nsn.com>
22 OF support is copyright (c) 2008 Jochen Friedrich <jochen@scram.de>
23 (based on a previous patch from Jon Smirl <jonsmirl@gmail.com>) and
24 (c) 2013 Wolfram Sang <wsa@the-dreams.de>
25 I2C ACPI code Copyright (C) 2014 Intel Corp
26 Author: Lan Tianyu <tianyu.lan@intel.com>
27 I2C slave support (c) 2014 by Wolfram Sang <wsa@sang-engineering.com>
28 */
29
30 #include <dt-bindings/i2c/i2c.h>
31 #include <linux/module.h>
32 #include <linux/kernel.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/gpio.h>
36 #include <linux/slab.h>
37 #include <linux/i2c.h>
38 #include <linux/init.h>
39 #include <linux/idr.h>
40 #include <linux/mutex.h>
41 #include <linux/of.h>
42 #include <linux/of_device.h>
43 #include <linux/of_irq.h>
44 #include <linux/clk/clk-conf.h>
45 #include <linux/completion.h>
46 #include <linux/hardirq.h>
47 #include <linux/irqflags.h>
48 #include <linux/rwsem.h>
49 #include <linux/pm_runtime.h>
50 #include <linux/pm_domain.h>
51 #include <linux/pm_wakeirq.h>
52 #include <linux/acpi.h>
53 #include <linux/jump_label.h>
54 #include <asm/uaccess.h>
55 #include <linux/err.h>
56 #include <linux/property.h>
57
58 #include "i2c-core.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/i2c.h>
62
63 #define I2C_ADDR_OFFSET_TEN_BIT 0xa000
64 #define I2C_ADDR_OFFSET_SLAVE 0x1000
65
66 /* core_lock protects i2c_adapter_idr, and guarantees
67 that device detection, deletion of detected devices, and attach_adapter
68 calls are serialized */
69 static DEFINE_MUTEX(core_lock);
70 static DEFINE_IDR(i2c_adapter_idr);
71
72 static struct device_type i2c_client_type;
73 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver);
74
75 static struct static_key i2c_trace_msg = STATIC_KEY_INIT_FALSE;
76
77 void i2c_transfer_trace_reg(void)
78 {
79 static_key_slow_inc(&i2c_trace_msg);
80 }
81
82 void i2c_transfer_trace_unreg(void)
83 {
84 static_key_slow_dec(&i2c_trace_msg);
85 }
86
87 #if defined(CONFIG_ACPI)
88 struct acpi_i2c_handler_data {
89 struct acpi_connection_info info;
90 struct i2c_adapter *adapter;
91 };
92
93 struct gsb_buffer {
94 u8 status;
95 u8 len;
96 union {
97 u16 wdata;
98 u8 bdata;
99 u8 data[0];
100 };
101 } __packed;
102
103 struct acpi_i2c_lookup {
104 struct i2c_board_info *info;
105 acpi_handle adapter_handle;
106 acpi_handle device_handle;
107 };
108
109 static int acpi_i2c_find_address(struct acpi_resource *ares, void *data)
110 {
111 struct acpi_i2c_lookup *lookup = data;
112 struct i2c_board_info *info = lookup->info;
113 struct acpi_resource_i2c_serialbus *sb;
114 acpi_handle adapter_handle;
115 acpi_status status;
116
117 if (info->addr || ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
118 return 1;
119
120 sb = &ares->data.i2c_serial_bus;
121 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_I2C)
122 return 1;
123
124 /*
125 * Extract the ResourceSource and make sure that the handle matches
126 * with the I2C adapter handle.
127 */
128 status = acpi_get_handle(lookup->device_handle,
129 sb->resource_source.string_ptr,
130 &adapter_handle);
131 if (ACPI_SUCCESS(status) && adapter_handle == lookup->adapter_handle) {
132 info->addr = sb->slave_address;
133 if (sb->access_mode == ACPI_I2C_10BIT_MODE)
134 info->flags |= I2C_CLIENT_TEN;
135 }
136
137 return 1;
138 }
139
140 static acpi_status acpi_i2c_add_device(acpi_handle handle, u32 level,
141 void *data, void **return_value)
142 {
143 struct i2c_adapter *adapter = data;
144 struct list_head resource_list;
145 struct acpi_i2c_lookup lookup;
146 struct resource_entry *entry;
147 struct i2c_board_info info;
148 struct acpi_device *adev;
149 int ret;
150
151 if (acpi_bus_get_device(handle, &adev))
152 return AE_OK;
153 if (acpi_bus_get_status(adev) || !adev->status.present)
154 return AE_OK;
155
156 memset(&info, 0, sizeof(info));
157 info.fwnode = acpi_fwnode_handle(adev);
158
159 memset(&lookup, 0, sizeof(lookup));
160 lookup.adapter_handle = ACPI_HANDLE(&adapter->dev);
161 lookup.device_handle = handle;
162 lookup.info = &info;
163
164 /*
165 * Look up for I2cSerialBus resource with ResourceSource that
166 * matches with this adapter.
167 */
168 INIT_LIST_HEAD(&resource_list);
169 ret = acpi_dev_get_resources(adev, &resource_list,
170 acpi_i2c_find_address, &lookup);
171 acpi_dev_free_resource_list(&resource_list);
172
173 if (ret < 0 || !info.addr)
174 return AE_OK;
175
176 /* Then fill IRQ number if any */
177 ret = acpi_dev_get_resources(adev, &resource_list, NULL, NULL);
178 if (ret < 0)
179 return AE_OK;
180
181 resource_list_for_each_entry(entry, &resource_list) {
182 if (resource_type(entry->res) == IORESOURCE_IRQ) {
183 info.irq = entry->res->start;
184 break;
185 }
186 }
187
188 acpi_dev_free_resource_list(&resource_list);
189
190 adev->power.flags.ignore_parent = true;
191 strlcpy(info.type, dev_name(&adev->dev), sizeof(info.type));
192 if (!i2c_new_device(adapter, &info)) {
193 adev->power.flags.ignore_parent = false;
194 dev_err(&adapter->dev,
195 "failed to add I2C device %s from ACPI\n",
196 dev_name(&adev->dev));
197 }
198
199 return AE_OK;
200 }
201
202 #define ACPI_I2C_MAX_SCAN_DEPTH 32
203
204 /**
205 * acpi_i2c_register_devices - enumerate I2C slave devices behind adapter
206 * @adap: pointer to adapter
207 *
208 * Enumerate all I2C slave devices behind this adapter by walking the ACPI
209 * namespace. When a device is found it will be added to the Linux device
210 * model and bound to the corresponding ACPI handle.
211 */
212 static void acpi_i2c_register_devices(struct i2c_adapter *adap)
213 {
214 acpi_status status;
215
216 if (!has_acpi_companion(&adap->dev))
217 return;
218
219 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
220 ACPI_I2C_MAX_SCAN_DEPTH,
221 acpi_i2c_add_device, NULL,
222 adap, NULL);
223 if (ACPI_FAILURE(status))
224 dev_warn(&adap->dev, "failed to enumerate I2C slaves\n");
225 }
226
227 #else /* CONFIG_ACPI */
228 static inline void acpi_i2c_register_devices(struct i2c_adapter *adap) { }
229 #endif /* CONFIG_ACPI */
230
231 #ifdef CONFIG_ACPI_I2C_OPREGION
232 static int acpi_gsb_i2c_read_bytes(struct i2c_client *client,
233 u8 cmd, u8 *data, u8 data_len)
234 {
235
236 struct i2c_msg msgs[2];
237 int ret;
238 u8 *buffer;
239
240 buffer = kzalloc(data_len, GFP_KERNEL);
241 if (!buffer)
242 return AE_NO_MEMORY;
243
244 msgs[0].addr = client->addr;
245 msgs[0].flags = client->flags;
246 msgs[0].len = 1;
247 msgs[0].buf = &cmd;
248
249 msgs[1].addr = client->addr;
250 msgs[1].flags = client->flags | I2C_M_RD;
251 msgs[1].len = data_len;
252 msgs[1].buf = buffer;
253
254 ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
255 if (ret < 0)
256 dev_err(&client->adapter->dev, "i2c read failed\n");
257 else
258 memcpy(data, buffer, data_len);
259
260 kfree(buffer);
261 return ret;
262 }
263
264 static int acpi_gsb_i2c_write_bytes(struct i2c_client *client,
265 u8 cmd, u8 *data, u8 data_len)
266 {
267
268 struct i2c_msg msgs[1];
269 u8 *buffer;
270 int ret = AE_OK;
271
272 buffer = kzalloc(data_len + 1, GFP_KERNEL);
273 if (!buffer)
274 return AE_NO_MEMORY;
275
276 buffer[0] = cmd;
277 memcpy(buffer + 1, data, data_len);
278
279 msgs[0].addr = client->addr;
280 msgs[0].flags = client->flags;
281 msgs[0].len = data_len + 1;
282 msgs[0].buf = buffer;
283
284 ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
285 if (ret < 0)
286 dev_err(&client->adapter->dev, "i2c write failed\n");
287
288 kfree(buffer);
289 return ret;
290 }
291
292 static acpi_status
293 acpi_i2c_space_handler(u32 function, acpi_physical_address command,
294 u32 bits, u64 *value64,
295 void *handler_context, void *region_context)
296 {
297 struct gsb_buffer *gsb = (struct gsb_buffer *)value64;
298 struct acpi_i2c_handler_data *data = handler_context;
299 struct acpi_connection_info *info = &data->info;
300 struct acpi_resource_i2c_serialbus *sb;
301 struct i2c_adapter *adapter = data->adapter;
302 struct i2c_client *client;
303 struct acpi_resource *ares;
304 u32 accessor_type = function >> 16;
305 u8 action = function & ACPI_IO_MASK;
306 acpi_status ret;
307 int status;
308
309 ret = acpi_buffer_to_resource(info->connection, info->length, &ares);
310 if (ACPI_FAILURE(ret))
311 return ret;
312
313 client = kzalloc(sizeof(*client), GFP_KERNEL);
314 if (!client) {
315 ret = AE_NO_MEMORY;
316 goto err;
317 }
318
319 if (!value64 || ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) {
320 ret = AE_BAD_PARAMETER;
321 goto err;
322 }
323
324 sb = &ares->data.i2c_serial_bus;
325 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_I2C) {
326 ret = AE_BAD_PARAMETER;
327 goto err;
328 }
329
330 client->adapter = adapter;
331 client->addr = sb->slave_address;
332
333 if (sb->access_mode == ACPI_I2C_10BIT_MODE)
334 client->flags |= I2C_CLIENT_TEN;
335
336 switch (accessor_type) {
337 case ACPI_GSB_ACCESS_ATTRIB_SEND_RCV:
338 if (action == ACPI_READ) {
339 status = i2c_smbus_read_byte(client);
340 if (status >= 0) {
341 gsb->bdata = status;
342 status = 0;
343 }
344 } else {
345 status = i2c_smbus_write_byte(client, gsb->bdata);
346 }
347 break;
348
349 case ACPI_GSB_ACCESS_ATTRIB_BYTE:
350 if (action == ACPI_READ) {
351 status = i2c_smbus_read_byte_data(client, command);
352 if (status >= 0) {
353 gsb->bdata = status;
354 status = 0;
355 }
356 } else {
357 status = i2c_smbus_write_byte_data(client, command,
358 gsb->bdata);
359 }
360 break;
361
362 case ACPI_GSB_ACCESS_ATTRIB_WORD:
363 if (action == ACPI_READ) {
364 status = i2c_smbus_read_word_data(client, command);
365 if (status >= 0) {
366 gsb->wdata = status;
367 status = 0;
368 }
369 } else {
370 status = i2c_smbus_write_word_data(client, command,
371 gsb->wdata);
372 }
373 break;
374
375 case ACPI_GSB_ACCESS_ATTRIB_BLOCK:
376 if (action == ACPI_READ) {
377 status = i2c_smbus_read_block_data(client, command,
378 gsb->data);
379 if (status >= 0) {
380 gsb->len = status;
381 status = 0;
382 }
383 } else {
384 status = i2c_smbus_write_block_data(client, command,
385 gsb->len, gsb->data);
386 }
387 break;
388
389 case ACPI_GSB_ACCESS_ATTRIB_MULTIBYTE:
390 if (action == ACPI_READ) {
391 status = acpi_gsb_i2c_read_bytes(client, command,
392 gsb->data, info->access_length);
393 if (status > 0)
394 status = 0;
395 } else {
396 status = acpi_gsb_i2c_write_bytes(client, command,
397 gsb->data, info->access_length);
398 }
399 break;
400
401 default:
402 pr_info("protocol(0x%02x) is not supported.\n", accessor_type);
403 ret = AE_BAD_PARAMETER;
404 goto err;
405 }
406
407 gsb->status = status;
408
409 err:
410 kfree(client);
411 ACPI_FREE(ares);
412 return ret;
413 }
414
415
416 static int acpi_i2c_install_space_handler(struct i2c_adapter *adapter)
417 {
418 acpi_handle handle;
419 struct acpi_i2c_handler_data *data;
420 acpi_status status;
421
422 if (!adapter->dev.parent)
423 return -ENODEV;
424
425 handle = ACPI_HANDLE(adapter->dev.parent);
426
427 if (!handle)
428 return -ENODEV;
429
430 data = kzalloc(sizeof(struct acpi_i2c_handler_data),
431 GFP_KERNEL);
432 if (!data)
433 return -ENOMEM;
434
435 data->adapter = adapter;
436 status = acpi_bus_attach_private_data(handle, (void *)data);
437 if (ACPI_FAILURE(status)) {
438 kfree(data);
439 return -ENOMEM;
440 }
441
442 status = acpi_install_address_space_handler(handle,
443 ACPI_ADR_SPACE_GSBUS,
444 &acpi_i2c_space_handler,
445 NULL,
446 data);
447 if (ACPI_FAILURE(status)) {
448 dev_err(&adapter->dev, "Error installing i2c space handler\n");
449 acpi_bus_detach_private_data(handle);
450 kfree(data);
451 return -ENOMEM;
452 }
453
454 acpi_walk_dep_device_list(handle);
455 return 0;
456 }
457
458 static void acpi_i2c_remove_space_handler(struct i2c_adapter *adapter)
459 {
460 acpi_handle handle;
461 struct acpi_i2c_handler_data *data;
462 acpi_status status;
463
464 if (!adapter->dev.parent)
465 return;
466
467 handle = ACPI_HANDLE(adapter->dev.parent);
468
469 if (!handle)
470 return;
471
472 acpi_remove_address_space_handler(handle,
473 ACPI_ADR_SPACE_GSBUS,
474 &acpi_i2c_space_handler);
475
476 status = acpi_bus_get_private_data(handle, (void **)&data);
477 if (ACPI_SUCCESS(status))
478 kfree(data);
479
480 acpi_bus_detach_private_data(handle);
481 }
482 #else /* CONFIG_ACPI_I2C_OPREGION */
483 static inline void acpi_i2c_remove_space_handler(struct i2c_adapter *adapter)
484 { }
485
486 static inline int acpi_i2c_install_space_handler(struct i2c_adapter *adapter)
487 { return 0; }
488 #endif /* CONFIG_ACPI_I2C_OPREGION */
489
490 /* ------------------------------------------------------------------------- */
491
492 static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
493 const struct i2c_client *client)
494 {
495 while (id->name[0]) {
496 if (strcmp(client->name, id->name) == 0)
497 return id;
498 id++;
499 }
500 return NULL;
501 }
502
503 static int i2c_device_match(struct device *dev, struct device_driver *drv)
504 {
505 struct i2c_client *client = i2c_verify_client(dev);
506 struct i2c_driver *driver;
507
508 if (!client)
509 return 0;
510
511 /* Attempt an OF style match */
512 if (of_driver_match_device(dev, drv))
513 return 1;
514
515 /* Then ACPI style match */
516 if (acpi_driver_match_device(dev, drv))
517 return 1;
518
519 driver = to_i2c_driver(drv);
520 /* match on an id table if there is one */
521 if (driver->id_table)
522 return i2c_match_id(driver->id_table, client) != NULL;
523
524 return 0;
525 }
526
527
528 /* uevent helps with hotplug: modprobe -q $(MODALIAS) */
529 static int i2c_device_uevent(struct device *dev, struct kobj_uevent_env *env)
530 {
531 struct i2c_client *client = to_i2c_client(dev);
532 int rc;
533
534 rc = acpi_device_uevent_modalias(dev, env);
535 if (rc != -ENODEV)
536 return rc;
537
538 if (add_uevent_var(env, "MODALIAS=%s%s",
539 I2C_MODULE_PREFIX, client->name))
540 return -ENOMEM;
541 dev_dbg(dev, "uevent\n");
542 return 0;
543 }
544
545 /* i2c bus recovery routines */
546 static int get_scl_gpio_value(struct i2c_adapter *adap)
547 {
548 return gpio_get_value(adap->bus_recovery_info->scl_gpio);
549 }
550
551 static void set_scl_gpio_value(struct i2c_adapter *adap, int val)
552 {
553 gpio_set_value(adap->bus_recovery_info->scl_gpio, val);
554 }
555
556 static int get_sda_gpio_value(struct i2c_adapter *adap)
557 {
558 return gpio_get_value(adap->bus_recovery_info->sda_gpio);
559 }
560
561 static int i2c_get_gpios_for_recovery(struct i2c_adapter *adap)
562 {
563 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
564 struct device *dev = &adap->dev;
565 int ret = 0;
566
567 ret = gpio_request_one(bri->scl_gpio, GPIOF_OPEN_DRAIN |
568 GPIOF_OUT_INIT_HIGH, "i2c-scl");
569 if (ret) {
570 dev_warn(dev, "Can't get SCL gpio: %d\n", bri->scl_gpio);
571 return ret;
572 }
573
574 if (bri->get_sda) {
575 if (gpio_request_one(bri->sda_gpio, GPIOF_IN, "i2c-sda")) {
576 /* work without SDA polling */
577 dev_warn(dev, "Can't get SDA gpio: %d. Not using SDA polling\n",
578 bri->sda_gpio);
579 bri->get_sda = NULL;
580 }
581 }
582
583 return ret;
584 }
585
586 static void i2c_put_gpios_for_recovery(struct i2c_adapter *adap)
587 {
588 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
589
590 if (bri->get_sda)
591 gpio_free(bri->sda_gpio);
592
593 gpio_free(bri->scl_gpio);
594 }
595
596 /*
597 * We are generating clock pulses. ndelay() determines durating of clk pulses.
598 * We will generate clock with rate 100 KHz and so duration of both clock levels
599 * is: delay in ns = (10^6 / 100) / 2
600 */
601 #define RECOVERY_NDELAY 5000
602 #define RECOVERY_CLK_CNT 9
603
604 static int i2c_generic_recovery(struct i2c_adapter *adap)
605 {
606 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
607 int i = 0, val = 1, ret = 0;
608
609 if (bri->prepare_recovery)
610 bri->prepare_recovery(adap);
611
612 bri->set_scl(adap, val);
613 ndelay(RECOVERY_NDELAY);
614
615 /*
616 * By this time SCL is high, as we need to give 9 falling-rising edges
617 */
618 while (i++ < RECOVERY_CLK_CNT * 2) {
619 if (val) {
620 /* Break if SDA is high */
621 if (bri->get_sda && bri->get_sda(adap))
622 break;
623 /* SCL shouldn't be low here */
624 if (!bri->get_scl(adap)) {
625 dev_err(&adap->dev,
626 "SCL is stuck low, exit recovery\n");
627 ret = -EBUSY;
628 break;
629 }
630 }
631
632 val = !val;
633 bri->set_scl(adap, val);
634 ndelay(RECOVERY_NDELAY);
635 }
636
637 if (bri->unprepare_recovery)
638 bri->unprepare_recovery(adap);
639
640 return ret;
641 }
642
643 int i2c_generic_scl_recovery(struct i2c_adapter *adap)
644 {
645 return i2c_generic_recovery(adap);
646 }
647 EXPORT_SYMBOL_GPL(i2c_generic_scl_recovery);
648
649 int i2c_generic_gpio_recovery(struct i2c_adapter *adap)
650 {
651 int ret;
652
653 ret = i2c_get_gpios_for_recovery(adap);
654 if (ret)
655 return ret;
656
657 ret = i2c_generic_recovery(adap);
658 i2c_put_gpios_for_recovery(adap);
659
660 return ret;
661 }
662 EXPORT_SYMBOL_GPL(i2c_generic_gpio_recovery);
663
664 int i2c_recover_bus(struct i2c_adapter *adap)
665 {
666 if (!adap->bus_recovery_info)
667 return -EOPNOTSUPP;
668
669 dev_dbg(&adap->dev, "Trying i2c bus recovery\n");
670 return adap->bus_recovery_info->recover_bus(adap);
671 }
672 EXPORT_SYMBOL_GPL(i2c_recover_bus);
673
674 static int i2c_device_probe(struct device *dev)
675 {
676 struct i2c_client *client = i2c_verify_client(dev);
677 struct i2c_driver *driver;
678 int status;
679
680 if (!client)
681 return 0;
682
683 if (!client->irq) {
684 int irq = -ENOENT;
685
686 if (dev->of_node) {
687 irq = of_irq_get_byname(dev->of_node, "irq");
688 if (irq == -EINVAL || irq == -ENODATA)
689 irq = of_irq_get(dev->of_node, 0);
690 } else if (ACPI_COMPANION(dev)) {
691 irq = acpi_dev_gpio_irq_get(ACPI_COMPANION(dev), 0);
692 }
693 if (irq == -EPROBE_DEFER)
694 return irq;
695 if (irq < 0)
696 irq = 0;
697
698 client->irq = irq;
699 }
700
701 driver = to_i2c_driver(dev->driver);
702 if (!driver->probe || !driver->id_table)
703 return -ENODEV;
704
705 if (client->flags & I2C_CLIENT_WAKE) {
706 int wakeirq = -ENOENT;
707
708 if (dev->of_node) {
709 wakeirq = of_irq_get_byname(dev->of_node, "wakeup");
710 if (wakeirq == -EPROBE_DEFER)
711 return wakeirq;
712 }
713
714 device_init_wakeup(&client->dev, true);
715
716 if (wakeirq > 0 && wakeirq != client->irq)
717 status = dev_pm_set_dedicated_wake_irq(dev, wakeirq);
718 else if (client->irq > 0)
719 status = dev_pm_set_wake_irq(dev, client->irq);
720 else
721 status = 0;
722
723 if (status)
724 dev_warn(&client->dev, "failed to set up wakeup irq");
725 }
726
727 dev_dbg(dev, "probe\n");
728
729 status = of_clk_set_defaults(dev->of_node, false);
730 if (status < 0)
731 goto err_clear_wakeup_irq;
732
733 status = dev_pm_domain_attach(&client->dev, true);
734 if (status == -EPROBE_DEFER)
735 goto err_clear_wakeup_irq;
736
737 status = driver->probe(client, i2c_match_id(driver->id_table, client));
738 if (status)
739 goto err_detach_pm_domain;
740
741 return 0;
742
743 err_detach_pm_domain:
744 dev_pm_domain_detach(&client->dev, true);
745 err_clear_wakeup_irq:
746 dev_pm_clear_wake_irq(&client->dev);
747 device_init_wakeup(&client->dev, false);
748 return status;
749 }
750
751 static int i2c_device_remove(struct device *dev)
752 {
753 struct i2c_client *client = i2c_verify_client(dev);
754 struct i2c_driver *driver;
755 int status = 0;
756
757 if (!client || !dev->driver)
758 return 0;
759
760 driver = to_i2c_driver(dev->driver);
761 if (driver->remove) {
762 dev_dbg(dev, "remove\n");
763 status = driver->remove(client);
764 }
765
766 dev_pm_domain_detach(&client->dev, true);
767
768 dev_pm_clear_wake_irq(&client->dev);
769 device_init_wakeup(&client->dev, false);
770
771 return status;
772 }
773
774 static void i2c_device_shutdown(struct device *dev)
775 {
776 struct i2c_client *client = i2c_verify_client(dev);
777 struct i2c_driver *driver;
778
779 if (!client || !dev->driver)
780 return;
781 driver = to_i2c_driver(dev->driver);
782 if (driver->shutdown)
783 driver->shutdown(client);
784 }
785
786 static void i2c_client_dev_release(struct device *dev)
787 {
788 kfree(to_i2c_client(dev));
789 }
790
791 static ssize_t
792 show_name(struct device *dev, struct device_attribute *attr, char *buf)
793 {
794 return sprintf(buf, "%s\n", dev->type == &i2c_client_type ?
795 to_i2c_client(dev)->name : to_i2c_adapter(dev)->name);
796 }
797 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
798
799 static ssize_t
800 show_modalias(struct device *dev, struct device_attribute *attr, char *buf)
801 {
802 struct i2c_client *client = to_i2c_client(dev);
803 int len;
804
805 len = acpi_device_modalias(dev, buf, PAGE_SIZE -1);
806 if (len != -ENODEV)
807 return len;
808
809 return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name);
810 }
811 static DEVICE_ATTR(modalias, S_IRUGO, show_modalias, NULL);
812
813 static struct attribute *i2c_dev_attrs[] = {
814 &dev_attr_name.attr,
815 /* modalias helps coldplug: modprobe $(cat .../modalias) */
816 &dev_attr_modalias.attr,
817 NULL
818 };
819 ATTRIBUTE_GROUPS(i2c_dev);
820
821 struct bus_type i2c_bus_type = {
822 .name = "i2c",
823 .match = i2c_device_match,
824 .probe = i2c_device_probe,
825 .remove = i2c_device_remove,
826 .shutdown = i2c_device_shutdown,
827 };
828 EXPORT_SYMBOL_GPL(i2c_bus_type);
829
830 static struct device_type i2c_client_type = {
831 .groups = i2c_dev_groups,
832 .uevent = i2c_device_uevent,
833 .release = i2c_client_dev_release,
834 };
835
836
837 /**
838 * i2c_verify_client - return parameter as i2c_client, or NULL
839 * @dev: device, probably from some driver model iterator
840 *
841 * When traversing the driver model tree, perhaps using driver model
842 * iterators like @device_for_each_child(), you can't assume very much
843 * about the nodes you find. Use this function to avoid oopses caused
844 * by wrongly treating some non-I2C device as an i2c_client.
845 */
846 struct i2c_client *i2c_verify_client(struct device *dev)
847 {
848 return (dev->type == &i2c_client_type)
849 ? to_i2c_client(dev)
850 : NULL;
851 }
852 EXPORT_SYMBOL(i2c_verify_client);
853
854
855 /* Return a unique address which takes the flags of the client into account */
856 static unsigned short i2c_encode_flags_to_addr(struct i2c_client *client)
857 {
858 unsigned short addr = client->addr;
859
860 /* For some client flags, add an arbitrary offset to avoid collisions */
861 if (client->flags & I2C_CLIENT_TEN)
862 addr |= I2C_ADDR_OFFSET_TEN_BIT;
863
864 if (client->flags & I2C_CLIENT_SLAVE)
865 addr |= I2C_ADDR_OFFSET_SLAVE;
866
867 return addr;
868 }
869
870 /* This is a permissive address validity check, I2C address map constraints
871 * are purposely not enforced, except for the general call address. */
872 static int i2c_check_addr_validity(unsigned addr, unsigned short flags)
873 {
874 if (flags & I2C_CLIENT_TEN) {
875 /* 10-bit address, all values are valid */
876 if (addr > 0x3ff)
877 return -EINVAL;
878 } else {
879 /* 7-bit address, reject the general call address */
880 if (addr == 0x00 || addr > 0x7f)
881 return -EINVAL;
882 }
883 return 0;
884 }
885
886 /* And this is a strict address validity check, used when probing. If a
887 * device uses a reserved address, then it shouldn't be probed. 7-bit
888 * addressing is assumed, 10-bit address devices are rare and should be
889 * explicitly enumerated. */
890 static int i2c_check_7bit_addr_validity_strict(unsigned short addr)
891 {
892 /*
893 * Reserved addresses per I2C specification:
894 * 0x00 General call address / START byte
895 * 0x01 CBUS address
896 * 0x02 Reserved for different bus format
897 * 0x03 Reserved for future purposes
898 * 0x04-0x07 Hs-mode master code
899 * 0x78-0x7b 10-bit slave addressing
900 * 0x7c-0x7f Reserved for future purposes
901 */
902 if (addr < 0x08 || addr > 0x77)
903 return -EINVAL;
904 return 0;
905 }
906
907 static int __i2c_check_addr_busy(struct device *dev, void *addrp)
908 {
909 struct i2c_client *client = i2c_verify_client(dev);
910 int addr = *(int *)addrp;
911
912 if (client && i2c_encode_flags_to_addr(client) == addr)
913 return -EBUSY;
914 return 0;
915 }
916
917 /* walk up mux tree */
918 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr)
919 {
920 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
921 int result;
922
923 result = device_for_each_child(&adapter->dev, &addr,
924 __i2c_check_addr_busy);
925
926 if (!result && parent)
927 result = i2c_check_mux_parents(parent, addr);
928
929 return result;
930 }
931
932 /* recurse down mux tree */
933 static int i2c_check_mux_children(struct device *dev, void *addrp)
934 {
935 int result;
936
937 if (dev->type == &i2c_adapter_type)
938 result = device_for_each_child(dev, addrp,
939 i2c_check_mux_children);
940 else
941 result = __i2c_check_addr_busy(dev, addrp);
942
943 return result;
944 }
945
946 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr)
947 {
948 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
949 int result = 0;
950
951 if (parent)
952 result = i2c_check_mux_parents(parent, addr);
953
954 if (!result)
955 result = device_for_each_child(&adapter->dev, &addr,
956 i2c_check_mux_children);
957
958 return result;
959 }
960
961 /**
962 * i2c_lock_adapter - Get exclusive access to an I2C bus segment
963 * @adapter: Target I2C bus segment
964 */
965 void i2c_lock_adapter(struct i2c_adapter *adapter)
966 {
967 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
968
969 if (parent)
970 i2c_lock_adapter(parent);
971 else
972 rt_mutex_lock(&adapter->bus_lock);
973 }
974 EXPORT_SYMBOL_GPL(i2c_lock_adapter);
975
976 /**
977 * i2c_trylock_adapter - Try to get exclusive access to an I2C bus segment
978 * @adapter: Target I2C bus segment
979 */
980 static int i2c_trylock_adapter(struct i2c_adapter *adapter)
981 {
982 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
983
984 if (parent)
985 return i2c_trylock_adapter(parent);
986 else
987 return rt_mutex_trylock(&adapter->bus_lock);
988 }
989
990 /**
991 * i2c_unlock_adapter - Release exclusive access to an I2C bus segment
992 * @adapter: Target I2C bus segment
993 */
994 void i2c_unlock_adapter(struct i2c_adapter *adapter)
995 {
996 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
997
998 if (parent)
999 i2c_unlock_adapter(parent);
1000 else
1001 rt_mutex_unlock(&adapter->bus_lock);
1002 }
1003 EXPORT_SYMBOL_GPL(i2c_unlock_adapter);
1004
1005 static void i2c_dev_set_name(struct i2c_adapter *adap,
1006 struct i2c_client *client)
1007 {
1008 struct acpi_device *adev = ACPI_COMPANION(&client->dev);
1009
1010 if (adev) {
1011 dev_set_name(&client->dev, "i2c-%s", acpi_dev_name(adev));
1012 return;
1013 }
1014
1015 dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
1016 i2c_encode_flags_to_addr(client));
1017 }
1018
1019 /**
1020 * i2c_new_device - instantiate an i2c device
1021 * @adap: the adapter managing the device
1022 * @info: describes one I2C device; bus_num is ignored
1023 * Context: can sleep
1024 *
1025 * Create an i2c device. Binding is handled through driver model
1026 * probe()/remove() methods. A driver may be bound to this device when we
1027 * return from this function, or any later moment (e.g. maybe hotplugging will
1028 * load the driver module). This call is not appropriate for use by mainboard
1029 * initialization logic, which usually runs during an arch_initcall() long
1030 * before any i2c_adapter could exist.
1031 *
1032 * This returns the new i2c client, which may be saved for later use with
1033 * i2c_unregister_device(); or NULL to indicate an error.
1034 */
1035 struct i2c_client *
1036 i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
1037 {
1038 struct i2c_client *client;
1039 int status;
1040
1041 client = kzalloc(sizeof *client, GFP_KERNEL);
1042 if (!client)
1043 return NULL;
1044
1045 client->adapter = adap;
1046
1047 client->dev.platform_data = info->platform_data;
1048
1049 if (info->archdata)
1050 client->dev.archdata = *info->archdata;
1051
1052 client->flags = info->flags;
1053 client->addr = info->addr;
1054 client->irq = info->irq;
1055
1056 strlcpy(client->name, info->type, sizeof(client->name));
1057
1058 status = i2c_check_addr_validity(client->addr, client->flags);
1059 if (status) {
1060 dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
1061 client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
1062 goto out_err_silent;
1063 }
1064
1065 /* Check for address business */
1066 status = i2c_check_addr_busy(adap, i2c_encode_flags_to_addr(client));
1067 if (status)
1068 goto out_err;
1069
1070 client->dev.parent = &client->adapter->dev;
1071 client->dev.bus = &i2c_bus_type;
1072 client->dev.type = &i2c_client_type;
1073 client->dev.of_node = info->of_node;
1074 client->dev.fwnode = info->fwnode;
1075
1076 i2c_dev_set_name(adap, client);
1077 status = device_register(&client->dev);
1078 if (status)
1079 goto out_err;
1080
1081 dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
1082 client->name, dev_name(&client->dev));
1083
1084 return client;
1085
1086 out_err:
1087 dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "
1088 "(%d)\n", client->name, client->addr, status);
1089 out_err_silent:
1090 kfree(client);
1091 return NULL;
1092 }
1093 EXPORT_SYMBOL_GPL(i2c_new_device);
1094
1095
1096 /**
1097 * i2c_unregister_device - reverse effect of i2c_new_device()
1098 * @client: value returned from i2c_new_device()
1099 * Context: can sleep
1100 */
1101 void i2c_unregister_device(struct i2c_client *client)
1102 {
1103 if (client->dev.of_node)
1104 of_node_clear_flag(client->dev.of_node, OF_POPULATED);
1105 device_unregister(&client->dev);
1106 }
1107 EXPORT_SYMBOL_GPL(i2c_unregister_device);
1108
1109
1110 static const struct i2c_device_id dummy_id[] = {
1111 { "dummy", 0 },
1112 { },
1113 };
1114
1115 static int dummy_probe(struct i2c_client *client,
1116 const struct i2c_device_id *id)
1117 {
1118 return 0;
1119 }
1120
1121 static int dummy_remove(struct i2c_client *client)
1122 {
1123 return 0;
1124 }
1125
1126 static struct i2c_driver dummy_driver = {
1127 .driver.name = "dummy",
1128 .probe = dummy_probe,
1129 .remove = dummy_remove,
1130 .id_table = dummy_id,
1131 };
1132
1133 /**
1134 * i2c_new_dummy - return a new i2c device bound to a dummy driver
1135 * @adapter: the adapter managing the device
1136 * @address: seven bit address to be used
1137 * Context: can sleep
1138 *
1139 * This returns an I2C client bound to the "dummy" driver, intended for use
1140 * with devices that consume multiple addresses. Examples of such chips
1141 * include various EEPROMS (like 24c04 and 24c08 models).
1142 *
1143 * These dummy devices have two main uses. First, most I2C and SMBus calls
1144 * except i2c_transfer() need a client handle; the dummy will be that handle.
1145 * And second, this prevents the specified address from being bound to a
1146 * different driver.
1147 *
1148 * This returns the new i2c client, which should be saved for later use with
1149 * i2c_unregister_device(); or NULL to indicate an error.
1150 */
1151 struct i2c_client *i2c_new_dummy(struct i2c_adapter *adapter, u16 address)
1152 {
1153 struct i2c_board_info info = {
1154 I2C_BOARD_INFO("dummy", address),
1155 };
1156
1157 return i2c_new_device(adapter, &info);
1158 }
1159 EXPORT_SYMBOL_GPL(i2c_new_dummy);
1160
1161 /* ------------------------------------------------------------------------- */
1162
1163 /* I2C bus adapters -- one roots each I2C or SMBUS segment */
1164
1165 static void i2c_adapter_dev_release(struct device *dev)
1166 {
1167 struct i2c_adapter *adap = to_i2c_adapter(dev);
1168 complete(&adap->dev_released);
1169 }
1170
1171 /*
1172 * This function is only needed for mutex_lock_nested, so it is never
1173 * called unless locking correctness checking is enabled. Thus we
1174 * make it inline to avoid a compiler warning. That's what gcc ends up
1175 * doing anyway.
1176 */
1177 static inline unsigned int i2c_adapter_depth(struct i2c_adapter *adapter)
1178 {
1179 unsigned int depth = 0;
1180
1181 while ((adapter = i2c_parent_is_i2c_adapter(adapter)))
1182 depth++;
1183
1184 return depth;
1185 }
1186
1187 /*
1188 * Let users instantiate I2C devices through sysfs. This can be used when
1189 * platform initialization code doesn't contain the proper data for
1190 * whatever reason. Also useful for drivers that do device detection and
1191 * detection fails, either because the device uses an unexpected address,
1192 * or this is a compatible device with different ID register values.
1193 *
1194 * Parameter checking may look overzealous, but we really don't want
1195 * the user to provide incorrect parameters.
1196 */
1197 static ssize_t
1198 i2c_sysfs_new_device(struct device *dev, struct device_attribute *attr,
1199 const char *buf, size_t count)
1200 {
1201 struct i2c_adapter *adap = to_i2c_adapter(dev);
1202 struct i2c_board_info info;
1203 struct i2c_client *client;
1204 char *blank, end;
1205 int res;
1206
1207 memset(&info, 0, sizeof(struct i2c_board_info));
1208
1209 blank = strchr(buf, ' ');
1210 if (!blank) {
1211 dev_err(dev, "%s: Missing parameters\n", "new_device");
1212 return -EINVAL;
1213 }
1214 if (blank - buf > I2C_NAME_SIZE - 1) {
1215 dev_err(dev, "%s: Invalid device name\n", "new_device");
1216 return -EINVAL;
1217 }
1218 memcpy(info.type, buf, blank - buf);
1219
1220 /* Parse remaining parameters, reject extra parameters */
1221 res = sscanf(++blank, "%hi%c", &info.addr, &end);
1222 if (res < 1) {
1223 dev_err(dev, "%s: Can't parse I2C address\n", "new_device");
1224 return -EINVAL;
1225 }
1226 if (res > 1 && end != '\n') {
1227 dev_err(dev, "%s: Extra parameters\n", "new_device");
1228 return -EINVAL;
1229 }
1230
1231 if ((info.addr & I2C_ADDR_OFFSET_TEN_BIT) == I2C_ADDR_OFFSET_TEN_BIT) {
1232 info.addr &= ~I2C_ADDR_OFFSET_TEN_BIT;
1233 info.flags |= I2C_CLIENT_TEN;
1234 }
1235
1236 if (info.addr & I2C_ADDR_OFFSET_SLAVE) {
1237 info.addr &= ~I2C_ADDR_OFFSET_SLAVE;
1238 info.flags |= I2C_CLIENT_SLAVE;
1239 }
1240
1241 client = i2c_new_device(adap, &info);
1242 if (!client)
1243 return -EINVAL;
1244
1245 /* Keep track of the added device */
1246 mutex_lock(&adap->userspace_clients_lock);
1247 list_add_tail(&client->detected, &adap->userspace_clients);
1248 mutex_unlock(&adap->userspace_clients_lock);
1249 dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device",
1250 info.type, info.addr);
1251
1252 return count;
1253 }
1254 static DEVICE_ATTR(new_device, S_IWUSR, NULL, i2c_sysfs_new_device);
1255
1256 /*
1257 * And of course let the users delete the devices they instantiated, if
1258 * they got it wrong. This interface can only be used to delete devices
1259 * instantiated by i2c_sysfs_new_device above. This guarantees that we
1260 * don't delete devices to which some kernel code still has references.
1261 *
1262 * Parameter checking may look overzealous, but we really don't want
1263 * the user to delete the wrong device.
1264 */
1265 static ssize_t
1266 i2c_sysfs_delete_device(struct device *dev, struct device_attribute *attr,
1267 const char *buf, size_t count)
1268 {
1269 struct i2c_adapter *adap = to_i2c_adapter(dev);
1270 struct i2c_client *client, *next;
1271 unsigned short addr;
1272 char end;
1273 int res;
1274
1275 /* Parse parameters, reject extra parameters */
1276 res = sscanf(buf, "%hi%c", &addr, &end);
1277 if (res < 1) {
1278 dev_err(dev, "%s: Can't parse I2C address\n", "delete_device");
1279 return -EINVAL;
1280 }
1281 if (res > 1 && end != '\n') {
1282 dev_err(dev, "%s: Extra parameters\n", "delete_device");
1283 return -EINVAL;
1284 }
1285
1286 /* Make sure the device was added through sysfs */
1287 res = -ENOENT;
1288 mutex_lock_nested(&adap->userspace_clients_lock,
1289 i2c_adapter_depth(adap));
1290 list_for_each_entry_safe(client, next, &adap->userspace_clients,
1291 detected) {
1292 if (i2c_encode_flags_to_addr(client) == addr) {
1293 dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
1294 "delete_device", client->name, client->addr);
1295
1296 list_del(&client->detected);
1297 i2c_unregister_device(client);
1298 res = count;
1299 break;
1300 }
1301 }
1302 mutex_unlock(&adap->userspace_clients_lock);
1303
1304 if (res < 0)
1305 dev_err(dev, "%s: Can't find device in list\n",
1306 "delete_device");
1307 return res;
1308 }
1309 static DEVICE_ATTR_IGNORE_LOCKDEP(delete_device, S_IWUSR, NULL,
1310 i2c_sysfs_delete_device);
1311
1312 static struct attribute *i2c_adapter_attrs[] = {
1313 &dev_attr_name.attr,
1314 &dev_attr_new_device.attr,
1315 &dev_attr_delete_device.attr,
1316 NULL
1317 };
1318 ATTRIBUTE_GROUPS(i2c_adapter);
1319
1320 struct device_type i2c_adapter_type = {
1321 .groups = i2c_adapter_groups,
1322 .release = i2c_adapter_dev_release,
1323 };
1324 EXPORT_SYMBOL_GPL(i2c_adapter_type);
1325
1326 /**
1327 * i2c_verify_adapter - return parameter as i2c_adapter or NULL
1328 * @dev: device, probably from some driver model iterator
1329 *
1330 * When traversing the driver model tree, perhaps using driver model
1331 * iterators like @device_for_each_child(), you can't assume very much
1332 * about the nodes you find. Use this function to avoid oopses caused
1333 * by wrongly treating some non-I2C device as an i2c_adapter.
1334 */
1335 struct i2c_adapter *i2c_verify_adapter(struct device *dev)
1336 {
1337 return (dev->type == &i2c_adapter_type)
1338 ? to_i2c_adapter(dev)
1339 : NULL;
1340 }
1341 EXPORT_SYMBOL(i2c_verify_adapter);
1342
1343 #ifdef CONFIG_I2C_COMPAT
1344 static struct class_compat *i2c_adapter_compat_class;
1345 #endif
1346
1347 static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
1348 {
1349 struct i2c_devinfo *devinfo;
1350
1351 down_read(&__i2c_board_lock);
1352 list_for_each_entry(devinfo, &__i2c_board_list, list) {
1353 if (devinfo->busnum == adapter->nr
1354 && !i2c_new_device(adapter,
1355 &devinfo->board_info))
1356 dev_err(&adapter->dev,
1357 "Can't create device at 0x%02x\n",
1358 devinfo->board_info.addr);
1359 }
1360 up_read(&__i2c_board_lock);
1361 }
1362
1363 /* OF support code */
1364
1365 #if IS_ENABLED(CONFIG_OF)
1366 static struct i2c_client *of_i2c_register_device(struct i2c_adapter *adap,
1367 struct device_node *node)
1368 {
1369 struct i2c_client *result;
1370 struct i2c_board_info info = {};
1371 struct dev_archdata dev_ad = {};
1372 const __be32 *addr_be;
1373 u32 addr;
1374 int len;
1375
1376 dev_dbg(&adap->dev, "of_i2c: register %s\n", node->full_name);
1377
1378 if (of_modalias_node(node, info.type, sizeof(info.type)) < 0) {
1379 dev_err(&adap->dev, "of_i2c: modalias failure on %s\n",
1380 node->full_name);
1381 return ERR_PTR(-EINVAL);
1382 }
1383
1384 addr_be = of_get_property(node, "reg", &len);
1385 if (!addr_be || (len < sizeof(*addr_be))) {
1386 dev_err(&adap->dev, "of_i2c: invalid reg on %s\n",
1387 node->full_name);
1388 return ERR_PTR(-EINVAL);
1389 }
1390
1391 addr = be32_to_cpup(addr_be);
1392 if (addr & I2C_TEN_BIT_ADDRESS) {
1393 addr &= ~I2C_TEN_BIT_ADDRESS;
1394 info.flags |= I2C_CLIENT_TEN;
1395 }
1396
1397 if (addr & I2C_OWN_SLAVE_ADDRESS) {
1398 addr &= ~I2C_OWN_SLAVE_ADDRESS;
1399 info.flags |= I2C_CLIENT_SLAVE;
1400 }
1401
1402 if (i2c_check_addr_validity(addr, info.flags)) {
1403 dev_err(&adap->dev, "of_i2c: invalid addr=%x on %s\n",
1404 info.addr, node->full_name);
1405 return ERR_PTR(-EINVAL);
1406 }
1407
1408 info.addr = addr;
1409 info.of_node = of_node_get(node);
1410 info.archdata = &dev_ad;
1411
1412 if (of_get_property(node, "wakeup-source", NULL))
1413 info.flags |= I2C_CLIENT_WAKE;
1414
1415 result = i2c_new_device(adap, &info);
1416 if (result == NULL) {
1417 dev_err(&adap->dev, "of_i2c: Failure registering %s\n",
1418 node->full_name);
1419 of_node_put(node);
1420 return ERR_PTR(-EINVAL);
1421 }
1422 return result;
1423 }
1424
1425 static void of_i2c_register_devices(struct i2c_adapter *adap)
1426 {
1427 struct device_node *node;
1428
1429 /* Only register child devices if the adapter has a node pointer set */
1430 if (!adap->dev.of_node)
1431 return;
1432
1433 dev_dbg(&adap->dev, "of_i2c: walking child nodes\n");
1434
1435 for_each_available_child_of_node(adap->dev.of_node, node) {
1436 if (of_node_test_and_set_flag(node, OF_POPULATED))
1437 continue;
1438 of_i2c_register_device(adap, node);
1439 }
1440 }
1441
1442 static int of_dev_node_match(struct device *dev, void *data)
1443 {
1444 return dev->of_node == data;
1445 }
1446
1447 /* must call put_device() when done with returned i2c_client device */
1448 struct i2c_client *of_find_i2c_device_by_node(struct device_node *node)
1449 {
1450 struct device *dev;
1451 struct i2c_client *client;
1452
1453 dev = bus_find_device(&i2c_bus_type, NULL, node, of_dev_node_match);
1454 if (!dev)
1455 return NULL;
1456
1457 client = i2c_verify_client(dev);
1458 if (!client)
1459 put_device(dev);
1460
1461 return client;
1462 }
1463 EXPORT_SYMBOL(of_find_i2c_device_by_node);
1464
1465 /* must call put_device() when done with returned i2c_adapter device */
1466 struct i2c_adapter *of_find_i2c_adapter_by_node(struct device_node *node)
1467 {
1468 struct device *dev;
1469 struct i2c_adapter *adapter;
1470
1471 dev = bus_find_device(&i2c_bus_type, NULL, node, of_dev_node_match);
1472 if (!dev)
1473 return NULL;
1474
1475 adapter = i2c_verify_adapter(dev);
1476 if (!adapter)
1477 put_device(dev);
1478
1479 return adapter;
1480 }
1481 EXPORT_SYMBOL(of_find_i2c_adapter_by_node);
1482
1483 /* must call i2c_put_adapter() when done with returned i2c_adapter device */
1484 struct i2c_adapter *of_get_i2c_adapter_by_node(struct device_node *node)
1485 {
1486 struct i2c_adapter *adapter;
1487
1488 adapter = of_find_i2c_adapter_by_node(node);
1489 if (!adapter)
1490 return NULL;
1491
1492 if (!try_module_get(adapter->owner)) {
1493 put_device(&adapter->dev);
1494 adapter = NULL;
1495 }
1496
1497 return adapter;
1498 }
1499 EXPORT_SYMBOL(of_get_i2c_adapter_by_node);
1500 #else
1501 static void of_i2c_register_devices(struct i2c_adapter *adap) { }
1502 #endif /* CONFIG_OF */
1503
1504 static int i2c_do_add_adapter(struct i2c_driver *driver,
1505 struct i2c_adapter *adap)
1506 {
1507 /* Detect supported devices on that bus, and instantiate them */
1508 i2c_detect(adap, driver);
1509
1510 /* Let legacy drivers scan this bus for matching devices */
1511 if (driver->attach_adapter) {
1512 dev_warn(&adap->dev, "%s: attach_adapter method is deprecated\n",
1513 driver->driver.name);
1514 dev_warn(&adap->dev, "Please use another way to instantiate "
1515 "your i2c_client\n");
1516 /* We ignore the return code; if it fails, too bad */
1517 driver->attach_adapter(adap);
1518 }
1519 return 0;
1520 }
1521
1522 static int __process_new_adapter(struct device_driver *d, void *data)
1523 {
1524 return i2c_do_add_adapter(to_i2c_driver(d), data);
1525 }
1526
1527 static int i2c_register_adapter(struct i2c_adapter *adap)
1528 {
1529 int res = 0;
1530
1531 /* Can't register until after driver model init */
1532 if (unlikely(WARN_ON(!i2c_bus_type.p))) {
1533 res = -EAGAIN;
1534 goto out_list;
1535 }
1536
1537 /* Sanity checks */
1538 if (unlikely(adap->name[0] == '\0')) {
1539 pr_err("i2c-core: Attempt to register an adapter with "
1540 "no name!\n");
1541 return -EINVAL;
1542 }
1543 if (unlikely(!adap->algo)) {
1544 pr_err("i2c-core: Attempt to register adapter '%s' with "
1545 "no algo!\n", adap->name);
1546 return -EINVAL;
1547 }
1548
1549 rt_mutex_init(&adap->bus_lock);
1550 mutex_init(&adap->userspace_clients_lock);
1551 INIT_LIST_HEAD(&adap->userspace_clients);
1552
1553 /* Set default timeout to 1 second if not already set */
1554 if (adap->timeout == 0)
1555 adap->timeout = HZ;
1556
1557 dev_set_name(&adap->dev, "i2c-%d", adap->nr);
1558 adap->dev.bus = &i2c_bus_type;
1559 adap->dev.type = &i2c_adapter_type;
1560 res = device_register(&adap->dev);
1561 if (res)
1562 goto out_list;
1563
1564 dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
1565
1566 pm_runtime_no_callbacks(&adap->dev);
1567 pm_runtime_enable(&adap->dev);
1568
1569 #ifdef CONFIG_I2C_COMPAT
1570 res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
1571 adap->dev.parent);
1572 if (res)
1573 dev_warn(&adap->dev,
1574 "Failed to create compatibility class link\n");
1575 #endif
1576
1577 /* bus recovery specific initialization */
1578 if (adap->bus_recovery_info) {
1579 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
1580
1581 if (!bri->recover_bus) {
1582 dev_err(&adap->dev, "No recover_bus() found, not using recovery\n");
1583 adap->bus_recovery_info = NULL;
1584 goto exit_recovery;
1585 }
1586
1587 /* Generic GPIO recovery */
1588 if (bri->recover_bus == i2c_generic_gpio_recovery) {
1589 if (!gpio_is_valid(bri->scl_gpio)) {
1590 dev_err(&adap->dev, "Invalid SCL gpio, not using recovery\n");
1591 adap->bus_recovery_info = NULL;
1592 goto exit_recovery;
1593 }
1594
1595 if (gpio_is_valid(bri->sda_gpio))
1596 bri->get_sda = get_sda_gpio_value;
1597 else
1598 bri->get_sda = NULL;
1599
1600 bri->get_scl = get_scl_gpio_value;
1601 bri->set_scl = set_scl_gpio_value;
1602 } else if (!bri->set_scl || !bri->get_scl) {
1603 /* Generic SCL recovery */
1604 dev_err(&adap->dev, "No {get|set}_gpio() found, not using recovery\n");
1605 adap->bus_recovery_info = NULL;
1606 }
1607 }
1608
1609 exit_recovery:
1610 /* create pre-declared device nodes */
1611 of_i2c_register_devices(adap);
1612 acpi_i2c_register_devices(adap);
1613 acpi_i2c_install_space_handler(adap);
1614
1615 if (adap->nr < __i2c_first_dynamic_bus_num)
1616 i2c_scan_static_board_info(adap);
1617
1618 /* Notify drivers */
1619 mutex_lock(&core_lock);
1620 bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
1621 mutex_unlock(&core_lock);
1622
1623 return 0;
1624
1625 out_list:
1626 mutex_lock(&core_lock);
1627 idr_remove(&i2c_adapter_idr, adap->nr);
1628 mutex_unlock(&core_lock);
1629 return res;
1630 }
1631
1632 /**
1633 * __i2c_add_numbered_adapter - i2c_add_numbered_adapter where nr is never -1
1634 * @adap: the adapter to register (with adap->nr initialized)
1635 * Context: can sleep
1636 *
1637 * See i2c_add_numbered_adapter() for details.
1638 */
1639 static int __i2c_add_numbered_adapter(struct i2c_adapter *adap)
1640 {
1641 int id;
1642
1643 mutex_lock(&core_lock);
1644 id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1,
1645 GFP_KERNEL);
1646 mutex_unlock(&core_lock);
1647 if (id < 0)
1648 return id == -ENOSPC ? -EBUSY : id;
1649
1650 return i2c_register_adapter(adap);
1651 }
1652
1653 /**
1654 * i2c_add_adapter - declare i2c adapter, use dynamic bus number
1655 * @adapter: the adapter to add
1656 * Context: can sleep
1657 *
1658 * This routine is used to declare an I2C adapter when its bus number
1659 * doesn't matter or when its bus number is specified by an dt alias.
1660 * Examples of bases when the bus number doesn't matter: I2C adapters
1661 * dynamically added by USB links or PCI plugin cards.
1662 *
1663 * When this returns zero, a new bus number was allocated and stored
1664 * in adap->nr, and the specified adapter became available for clients.
1665 * Otherwise, a negative errno value is returned.
1666 */
1667 int i2c_add_adapter(struct i2c_adapter *adapter)
1668 {
1669 struct device *dev = &adapter->dev;
1670 int id;
1671
1672 if (dev->of_node) {
1673 id = of_alias_get_id(dev->of_node, "i2c");
1674 if (id >= 0) {
1675 adapter->nr = id;
1676 return __i2c_add_numbered_adapter(adapter);
1677 }
1678 }
1679
1680 mutex_lock(&core_lock);
1681 id = idr_alloc(&i2c_adapter_idr, adapter,
1682 __i2c_first_dynamic_bus_num, 0, GFP_KERNEL);
1683 mutex_unlock(&core_lock);
1684 if (id < 0)
1685 return id;
1686
1687 adapter->nr = id;
1688
1689 return i2c_register_adapter(adapter);
1690 }
1691 EXPORT_SYMBOL(i2c_add_adapter);
1692
1693 /**
1694 * i2c_add_numbered_adapter - declare i2c adapter, use static bus number
1695 * @adap: the adapter to register (with adap->nr initialized)
1696 * Context: can sleep
1697 *
1698 * This routine is used to declare an I2C adapter when its bus number
1699 * matters. For example, use it for I2C adapters from system-on-chip CPUs,
1700 * or otherwise built in to the system's mainboard, and where i2c_board_info
1701 * is used to properly configure I2C devices.
1702 *
1703 * If the requested bus number is set to -1, then this function will behave
1704 * identically to i2c_add_adapter, and will dynamically assign a bus number.
1705 *
1706 * If no devices have pre-been declared for this bus, then be sure to
1707 * register the adapter before any dynamically allocated ones. Otherwise
1708 * the required bus ID may not be available.
1709 *
1710 * When this returns zero, the specified adapter became available for
1711 * clients using the bus number provided in adap->nr. Also, the table
1712 * of I2C devices pre-declared using i2c_register_board_info() is scanned,
1713 * and the appropriate driver model device nodes are created. Otherwise, a
1714 * negative errno value is returned.
1715 */
1716 int i2c_add_numbered_adapter(struct i2c_adapter *adap)
1717 {
1718 if (adap->nr == -1) /* -1 means dynamically assign bus id */
1719 return i2c_add_adapter(adap);
1720
1721 return __i2c_add_numbered_adapter(adap);
1722 }
1723 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
1724
1725 static void i2c_do_del_adapter(struct i2c_driver *driver,
1726 struct i2c_adapter *adapter)
1727 {
1728 struct i2c_client *client, *_n;
1729
1730 /* Remove the devices we created ourselves as the result of hardware
1731 * probing (using a driver's detect method) */
1732 list_for_each_entry_safe(client, _n, &driver->clients, detected) {
1733 if (client->adapter == adapter) {
1734 dev_dbg(&adapter->dev, "Removing %s at 0x%x\n",
1735 client->name, client->addr);
1736 list_del(&client->detected);
1737 i2c_unregister_device(client);
1738 }
1739 }
1740 }
1741
1742 static int __unregister_client(struct device *dev, void *dummy)
1743 {
1744 struct i2c_client *client = i2c_verify_client(dev);
1745 if (client && strcmp(client->name, "dummy"))
1746 i2c_unregister_device(client);
1747 return 0;
1748 }
1749
1750 static int __unregister_dummy(struct device *dev, void *dummy)
1751 {
1752 struct i2c_client *client = i2c_verify_client(dev);
1753 if (client)
1754 i2c_unregister_device(client);
1755 return 0;
1756 }
1757
1758 static int __process_removed_adapter(struct device_driver *d, void *data)
1759 {
1760 i2c_do_del_adapter(to_i2c_driver(d), data);
1761 return 0;
1762 }
1763
1764 /**
1765 * i2c_del_adapter - unregister I2C adapter
1766 * @adap: the adapter being unregistered
1767 * Context: can sleep
1768 *
1769 * This unregisters an I2C adapter which was previously registered
1770 * by @i2c_add_adapter or @i2c_add_numbered_adapter.
1771 */
1772 void i2c_del_adapter(struct i2c_adapter *adap)
1773 {
1774 struct i2c_adapter *found;
1775 struct i2c_client *client, *next;
1776
1777 /* First make sure that this adapter was ever added */
1778 mutex_lock(&core_lock);
1779 found = idr_find(&i2c_adapter_idr, adap->nr);
1780 mutex_unlock(&core_lock);
1781 if (found != adap) {
1782 pr_debug("i2c-core: attempting to delete unregistered "
1783 "adapter [%s]\n", adap->name);
1784 return;
1785 }
1786
1787 acpi_i2c_remove_space_handler(adap);
1788 /* Tell drivers about this removal */
1789 mutex_lock(&core_lock);
1790 bus_for_each_drv(&i2c_bus_type, NULL, adap,
1791 __process_removed_adapter);
1792 mutex_unlock(&core_lock);
1793
1794 /* Remove devices instantiated from sysfs */
1795 mutex_lock_nested(&adap->userspace_clients_lock,
1796 i2c_adapter_depth(adap));
1797 list_for_each_entry_safe(client, next, &adap->userspace_clients,
1798 detected) {
1799 dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
1800 client->addr);
1801 list_del(&client->detected);
1802 i2c_unregister_device(client);
1803 }
1804 mutex_unlock(&adap->userspace_clients_lock);
1805
1806 /* Detach any active clients. This can't fail, thus we do not
1807 * check the returned value. This is a two-pass process, because
1808 * we can't remove the dummy devices during the first pass: they
1809 * could have been instantiated by real devices wishing to clean
1810 * them up properly, so we give them a chance to do that first. */
1811 device_for_each_child(&adap->dev, NULL, __unregister_client);
1812 device_for_each_child(&adap->dev, NULL, __unregister_dummy);
1813
1814 #ifdef CONFIG_I2C_COMPAT
1815 class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,
1816 adap->dev.parent);
1817 #endif
1818
1819 /* device name is gone after device_unregister */
1820 dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);
1821
1822 pm_runtime_disable(&adap->dev);
1823
1824 /* wait until all references to the device are gone
1825 *
1826 * FIXME: This is old code and should ideally be replaced by an
1827 * alternative which results in decoupling the lifetime of the struct
1828 * device from the i2c_adapter, like spi or netdev do. Any solution
1829 * should be thoroughly tested with DEBUG_KOBJECT_RELEASE enabled!
1830 */
1831 init_completion(&adap->dev_released);
1832 device_unregister(&adap->dev);
1833 wait_for_completion(&adap->dev_released);
1834
1835 /* free bus id */
1836 mutex_lock(&core_lock);
1837 idr_remove(&i2c_adapter_idr, adap->nr);
1838 mutex_unlock(&core_lock);
1839
1840 /* Clear the device structure in case this adapter is ever going to be
1841 added again */
1842 memset(&adap->dev, 0, sizeof(adap->dev));
1843 }
1844 EXPORT_SYMBOL(i2c_del_adapter);
1845
1846 /**
1847 * i2c_parse_fw_timings - get I2C related timing parameters from firmware
1848 * @dev: The device to scan for I2C timing properties
1849 * @t: the i2c_timings struct to be filled with values
1850 * @use_defaults: bool to use sane defaults derived from the I2C specification
1851 * when properties are not found, otherwise use 0
1852 *
1853 * Scan the device for the generic I2C properties describing timing parameters
1854 * for the signal and fill the given struct with the results. If a property was
1855 * not found and use_defaults was true, then maximum timings are assumed which
1856 * are derived from the I2C specification. If use_defaults is not used, the
1857 * results will be 0, so drivers can apply their own defaults later. The latter
1858 * is mainly intended for avoiding regressions of existing drivers which want
1859 * to switch to this function. New drivers almost always should use the defaults.
1860 */
1861
1862 void i2c_parse_fw_timings(struct device *dev, struct i2c_timings *t, bool use_defaults)
1863 {
1864 int ret;
1865
1866 memset(t, 0, sizeof(*t));
1867
1868 ret = device_property_read_u32(dev, "clock-frequency", &t->bus_freq_hz);
1869 if (ret && use_defaults)
1870 t->bus_freq_hz = 100000;
1871
1872 ret = device_property_read_u32(dev, "i2c-scl-rising-time-ns", &t->scl_rise_ns);
1873 if (ret && use_defaults) {
1874 if (t->bus_freq_hz <= 100000)
1875 t->scl_rise_ns = 1000;
1876 else if (t->bus_freq_hz <= 400000)
1877 t->scl_rise_ns = 300;
1878 else
1879 t->scl_rise_ns = 120;
1880 }
1881
1882 ret = device_property_read_u32(dev, "i2c-scl-falling-time-ns", &t->scl_fall_ns);
1883 if (ret && use_defaults) {
1884 if (t->bus_freq_hz <= 400000)
1885 t->scl_fall_ns = 300;
1886 else
1887 t->scl_fall_ns = 120;
1888 }
1889
1890 device_property_read_u32(dev, "i2c-scl-internal-delay-ns", &t->scl_int_delay_ns);
1891
1892 ret = device_property_read_u32(dev, "i2c-sda-falling-time-ns", &t->sda_fall_ns);
1893 if (ret && use_defaults)
1894 t->sda_fall_ns = t->scl_fall_ns;
1895 }
1896 EXPORT_SYMBOL_GPL(i2c_parse_fw_timings);
1897
1898 /* ------------------------------------------------------------------------- */
1899
1900 int i2c_for_each_dev(void *data, int (*fn)(struct device *, void *))
1901 {
1902 int res;
1903
1904 mutex_lock(&core_lock);
1905 res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn);
1906 mutex_unlock(&core_lock);
1907
1908 return res;
1909 }
1910 EXPORT_SYMBOL_GPL(i2c_for_each_dev);
1911
1912 static int __process_new_driver(struct device *dev, void *data)
1913 {
1914 if (dev->type != &i2c_adapter_type)
1915 return 0;
1916 return i2c_do_add_adapter(data, to_i2c_adapter(dev));
1917 }
1918
1919 /*
1920 * An i2c_driver is used with one or more i2c_client (device) nodes to access
1921 * i2c slave chips, on a bus instance associated with some i2c_adapter.
1922 */
1923
1924 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
1925 {
1926 int res;
1927
1928 /* Can't register until after driver model init */
1929 if (unlikely(WARN_ON(!i2c_bus_type.p)))
1930 return -EAGAIN;
1931
1932 /* add the driver to the list of i2c drivers in the driver core */
1933 driver->driver.owner = owner;
1934 driver->driver.bus = &i2c_bus_type;
1935
1936 /* When registration returns, the driver core
1937 * will have called probe() for all matching-but-unbound devices.
1938 */
1939 res = driver_register(&driver->driver);
1940 if (res)
1941 return res;
1942
1943 pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name);
1944
1945 INIT_LIST_HEAD(&driver->clients);
1946 /* Walk the adapters that are already present */
1947 i2c_for_each_dev(driver, __process_new_driver);
1948
1949 return 0;
1950 }
1951 EXPORT_SYMBOL(i2c_register_driver);
1952
1953 static int __process_removed_driver(struct device *dev, void *data)
1954 {
1955 if (dev->type == &i2c_adapter_type)
1956 i2c_do_del_adapter(data, to_i2c_adapter(dev));
1957 return 0;
1958 }
1959
1960 /**
1961 * i2c_del_driver - unregister I2C driver
1962 * @driver: the driver being unregistered
1963 * Context: can sleep
1964 */
1965 void i2c_del_driver(struct i2c_driver *driver)
1966 {
1967 i2c_for_each_dev(driver, __process_removed_driver);
1968
1969 driver_unregister(&driver->driver);
1970 pr_debug("i2c-core: driver [%s] unregistered\n", driver->driver.name);
1971 }
1972 EXPORT_SYMBOL(i2c_del_driver);
1973
1974 /* ------------------------------------------------------------------------- */
1975
1976 /**
1977 * i2c_use_client - increments the reference count of the i2c client structure
1978 * @client: the client being referenced
1979 *
1980 * Each live reference to a client should be refcounted. The driver model does
1981 * that automatically as part of driver binding, so that most drivers don't
1982 * need to do this explicitly: they hold a reference until they're unbound
1983 * from the device.
1984 *
1985 * A pointer to the client with the incremented reference counter is returned.
1986 */
1987 struct i2c_client *i2c_use_client(struct i2c_client *client)
1988 {
1989 if (client && get_device(&client->dev))
1990 return client;
1991 return NULL;
1992 }
1993 EXPORT_SYMBOL(i2c_use_client);
1994
1995 /**
1996 * i2c_release_client - release a use of the i2c client structure
1997 * @client: the client being no longer referenced
1998 *
1999 * Must be called when a user of a client is finished with it.
2000 */
2001 void i2c_release_client(struct i2c_client *client)
2002 {
2003 if (client)
2004 put_device(&client->dev);
2005 }
2006 EXPORT_SYMBOL(i2c_release_client);
2007
2008 struct i2c_cmd_arg {
2009 unsigned cmd;
2010 void *arg;
2011 };
2012
2013 static int i2c_cmd(struct device *dev, void *_arg)
2014 {
2015 struct i2c_client *client = i2c_verify_client(dev);
2016 struct i2c_cmd_arg *arg = _arg;
2017 struct i2c_driver *driver;
2018
2019 if (!client || !client->dev.driver)
2020 return 0;
2021
2022 driver = to_i2c_driver(client->dev.driver);
2023 if (driver->command)
2024 driver->command(client, arg->cmd, arg->arg);
2025 return 0;
2026 }
2027
2028 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg)
2029 {
2030 struct i2c_cmd_arg cmd_arg;
2031
2032 cmd_arg.cmd = cmd;
2033 cmd_arg.arg = arg;
2034 device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd);
2035 }
2036 EXPORT_SYMBOL(i2c_clients_command);
2037
2038 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2039 static int of_i2c_notify(struct notifier_block *nb, unsigned long action,
2040 void *arg)
2041 {
2042 struct of_reconfig_data *rd = arg;
2043 struct i2c_adapter *adap;
2044 struct i2c_client *client;
2045
2046 switch (of_reconfig_get_state_change(action, rd)) {
2047 case OF_RECONFIG_CHANGE_ADD:
2048 adap = of_find_i2c_adapter_by_node(rd->dn->parent);
2049 if (adap == NULL)
2050 return NOTIFY_OK; /* not for us */
2051
2052 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
2053 put_device(&adap->dev);
2054 return NOTIFY_OK;
2055 }
2056
2057 client = of_i2c_register_device(adap, rd->dn);
2058 put_device(&adap->dev);
2059
2060 if (IS_ERR(client)) {
2061 pr_err("%s: failed to create for '%s'\n",
2062 __func__, rd->dn->full_name);
2063 return notifier_from_errno(PTR_ERR(client));
2064 }
2065 break;
2066 case OF_RECONFIG_CHANGE_REMOVE:
2067 /* already depopulated? */
2068 if (!of_node_check_flag(rd->dn, OF_POPULATED))
2069 return NOTIFY_OK;
2070
2071 /* find our device by node */
2072 client = of_find_i2c_device_by_node(rd->dn);
2073 if (client == NULL)
2074 return NOTIFY_OK; /* no? not meant for us */
2075
2076 /* unregister takes one ref away */
2077 i2c_unregister_device(client);
2078
2079 /* and put the reference of the find */
2080 put_device(&client->dev);
2081 break;
2082 }
2083
2084 return NOTIFY_OK;
2085 }
2086 static struct notifier_block i2c_of_notifier = {
2087 .notifier_call = of_i2c_notify,
2088 };
2089 #else
2090 extern struct notifier_block i2c_of_notifier;
2091 #endif /* CONFIG_OF_DYNAMIC */
2092
2093 static int __init i2c_init(void)
2094 {
2095 int retval;
2096
2097 retval = of_alias_get_highest_id("i2c");
2098
2099 down_write(&__i2c_board_lock);
2100 if (retval >= __i2c_first_dynamic_bus_num)
2101 __i2c_first_dynamic_bus_num = retval + 1;
2102 up_write(&__i2c_board_lock);
2103
2104 retval = bus_register(&i2c_bus_type);
2105 if (retval)
2106 return retval;
2107 #ifdef CONFIG_I2C_COMPAT
2108 i2c_adapter_compat_class = class_compat_register("i2c-adapter");
2109 if (!i2c_adapter_compat_class) {
2110 retval = -ENOMEM;
2111 goto bus_err;
2112 }
2113 #endif
2114 retval = i2c_add_driver(&dummy_driver);
2115 if (retval)
2116 goto class_err;
2117
2118 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2119 WARN_ON(of_reconfig_notifier_register(&i2c_of_notifier));
2120
2121 return 0;
2122
2123 class_err:
2124 #ifdef CONFIG_I2C_COMPAT
2125 class_compat_unregister(i2c_adapter_compat_class);
2126 bus_err:
2127 #endif
2128 bus_unregister(&i2c_bus_type);
2129 return retval;
2130 }
2131
2132 static void __exit i2c_exit(void)
2133 {
2134 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2135 WARN_ON(of_reconfig_notifier_unregister(&i2c_of_notifier));
2136 i2c_del_driver(&dummy_driver);
2137 #ifdef CONFIG_I2C_COMPAT
2138 class_compat_unregister(i2c_adapter_compat_class);
2139 #endif
2140 bus_unregister(&i2c_bus_type);
2141 tracepoint_synchronize_unregister();
2142 }
2143
2144 /* We must initialize early, because some subsystems register i2c drivers
2145 * in subsys_initcall() code, but are linked (and initialized) before i2c.
2146 */
2147 postcore_initcall(i2c_init);
2148 module_exit(i2c_exit);
2149
2150 /* ----------------------------------------------------
2151 * the functional interface to the i2c busses.
2152 * ----------------------------------------------------
2153 */
2154
2155 /* Check if val is exceeding the quirk IFF quirk is non 0 */
2156 #define i2c_quirk_exceeded(val, quirk) ((quirk) && ((val) > (quirk)))
2157
2158 static int i2c_quirk_error(struct i2c_adapter *adap, struct i2c_msg *msg, char *err_msg)
2159 {
2160 dev_err_ratelimited(&adap->dev, "adapter quirk: %s (addr 0x%04x, size %u, %s)\n",
2161 err_msg, msg->addr, msg->len,
2162 msg->flags & I2C_M_RD ? "read" : "write");
2163 return -EOPNOTSUPP;
2164 }
2165
2166 static int i2c_check_for_quirks(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2167 {
2168 const struct i2c_adapter_quirks *q = adap->quirks;
2169 int max_num = q->max_num_msgs, i;
2170 bool do_len_check = true;
2171
2172 if (q->flags & I2C_AQ_COMB) {
2173 max_num = 2;
2174
2175 /* special checks for combined messages */
2176 if (num == 2) {
2177 if (q->flags & I2C_AQ_COMB_WRITE_FIRST && msgs[0].flags & I2C_M_RD)
2178 return i2c_quirk_error(adap, &msgs[0], "1st comb msg must be write");
2179
2180 if (q->flags & I2C_AQ_COMB_READ_SECOND && !(msgs[1].flags & I2C_M_RD))
2181 return i2c_quirk_error(adap, &msgs[1], "2nd comb msg must be read");
2182
2183 if (q->flags & I2C_AQ_COMB_SAME_ADDR && msgs[0].addr != msgs[1].addr)
2184 return i2c_quirk_error(adap, &msgs[0], "comb msg only to same addr");
2185
2186 if (i2c_quirk_exceeded(msgs[0].len, q->max_comb_1st_msg_len))
2187 return i2c_quirk_error(adap, &msgs[0], "msg too long");
2188
2189 if (i2c_quirk_exceeded(msgs[1].len, q->max_comb_2nd_msg_len))
2190 return i2c_quirk_error(adap, &msgs[1], "msg too long");
2191
2192 do_len_check = false;
2193 }
2194 }
2195
2196 if (i2c_quirk_exceeded(num, max_num))
2197 return i2c_quirk_error(adap, &msgs[0], "too many messages");
2198
2199 for (i = 0; i < num; i++) {
2200 u16 len = msgs[i].len;
2201
2202 if (msgs[i].flags & I2C_M_RD) {
2203 if (do_len_check && i2c_quirk_exceeded(len, q->max_read_len))
2204 return i2c_quirk_error(adap, &msgs[i], "msg too long");
2205 } else {
2206 if (do_len_check && i2c_quirk_exceeded(len, q->max_write_len))
2207 return i2c_quirk_error(adap, &msgs[i], "msg too long");
2208 }
2209 }
2210
2211 return 0;
2212 }
2213
2214 /**
2215 * __i2c_transfer - unlocked flavor of i2c_transfer
2216 * @adap: Handle to I2C bus
2217 * @msgs: One or more messages to execute before STOP is issued to
2218 * terminate the operation; each message begins with a START.
2219 * @num: Number of messages to be executed.
2220 *
2221 * Returns negative errno, else the number of messages executed.
2222 *
2223 * Adapter lock must be held when calling this function. No debug logging
2224 * takes place. adap->algo->master_xfer existence isn't checked.
2225 */
2226 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2227 {
2228 unsigned long orig_jiffies;
2229 int ret, try;
2230
2231 if (adap->quirks && i2c_check_for_quirks(adap, msgs, num))
2232 return -EOPNOTSUPP;
2233
2234 /* i2c_trace_msg gets enabled when tracepoint i2c_transfer gets
2235 * enabled. This is an efficient way of keeping the for-loop from
2236 * being executed when not needed.
2237 */
2238 if (static_key_false(&i2c_trace_msg)) {
2239 int i;
2240 for (i = 0; i < num; i++)
2241 if (msgs[i].flags & I2C_M_RD)
2242 trace_i2c_read(adap, &msgs[i], i);
2243 else
2244 trace_i2c_write(adap, &msgs[i], i);
2245 }
2246
2247 /* Retry automatically on arbitration loss */
2248 orig_jiffies = jiffies;
2249 for (ret = 0, try = 0; try <= adap->retries; try++) {
2250 ret = adap->algo->master_xfer(adap, msgs, num);
2251 if (ret != -EAGAIN)
2252 break;
2253 if (time_after(jiffies, orig_jiffies + adap->timeout))
2254 break;
2255 }
2256
2257 if (static_key_false(&i2c_trace_msg)) {
2258 int i;
2259 for (i = 0; i < ret; i++)
2260 if (msgs[i].flags & I2C_M_RD)
2261 trace_i2c_reply(adap, &msgs[i], i);
2262 trace_i2c_result(adap, i, ret);
2263 }
2264
2265 return ret;
2266 }
2267 EXPORT_SYMBOL(__i2c_transfer);
2268
2269 /**
2270 * i2c_transfer - execute a single or combined I2C message
2271 * @adap: Handle to I2C bus
2272 * @msgs: One or more messages to execute before STOP is issued to
2273 * terminate the operation; each message begins with a START.
2274 * @num: Number of messages to be executed.
2275 *
2276 * Returns negative errno, else the number of messages executed.
2277 *
2278 * Note that there is no requirement that each message be sent to
2279 * the same slave address, although that is the most common model.
2280 */
2281 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2282 {
2283 int ret;
2284
2285 /* REVISIT the fault reporting model here is weak:
2286 *
2287 * - When we get an error after receiving N bytes from a slave,
2288 * there is no way to report "N".
2289 *
2290 * - When we get a NAK after transmitting N bytes to a slave,
2291 * there is no way to report "N" ... or to let the master
2292 * continue executing the rest of this combined message, if
2293 * that's the appropriate response.
2294 *
2295 * - When for example "num" is two and we successfully complete
2296 * the first message but get an error part way through the
2297 * second, it's unclear whether that should be reported as
2298 * one (discarding status on the second message) or errno
2299 * (discarding status on the first one).
2300 */
2301
2302 if (adap->algo->master_xfer) {
2303 #ifdef DEBUG
2304 for (ret = 0; ret < num; ret++) {
2305 dev_dbg(&adap->dev, "master_xfer[%d] %c, addr=0x%02x, "
2306 "len=%d%s\n", ret, (msgs[ret].flags & I2C_M_RD)
2307 ? 'R' : 'W', msgs[ret].addr, msgs[ret].len,
2308 (msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : "");
2309 }
2310 #endif
2311
2312 if (in_atomic() || irqs_disabled()) {
2313 ret = i2c_trylock_adapter(adap);
2314 if (!ret)
2315 /* I2C activity is ongoing. */
2316 return -EAGAIN;
2317 } else {
2318 i2c_lock_adapter(adap);
2319 }
2320
2321 ret = __i2c_transfer(adap, msgs, num);
2322 i2c_unlock_adapter(adap);
2323
2324 return ret;
2325 } else {
2326 dev_dbg(&adap->dev, "I2C level transfers not supported\n");
2327 return -EOPNOTSUPP;
2328 }
2329 }
2330 EXPORT_SYMBOL(i2c_transfer);
2331
2332 /**
2333 * i2c_master_send - issue a single I2C message in master transmit mode
2334 * @client: Handle to slave device
2335 * @buf: Data that will be written to the slave
2336 * @count: How many bytes to write, must be less than 64k since msg.len is u16
2337 *
2338 * Returns negative errno, or else the number of bytes written.
2339 */
2340 int i2c_master_send(const struct i2c_client *client, const char *buf, int count)
2341 {
2342 int ret;
2343 struct i2c_adapter *adap = client->adapter;
2344 struct i2c_msg msg;
2345
2346 msg.addr = client->addr;
2347 msg.flags = client->flags & I2C_M_TEN;
2348 msg.len = count;
2349 msg.buf = (char *)buf;
2350
2351 ret = i2c_transfer(adap, &msg, 1);
2352
2353 /*
2354 * If everything went ok (i.e. 1 msg transmitted), return #bytes
2355 * transmitted, else error code.
2356 */
2357 return (ret == 1) ? count : ret;
2358 }
2359 EXPORT_SYMBOL(i2c_master_send);
2360
2361 /**
2362 * i2c_master_recv - issue a single I2C message in master receive mode
2363 * @client: Handle to slave device
2364 * @buf: Where to store data read from slave
2365 * @count: How many bytes to read, must be less than 64k since msg.len is u16
2366 *
2367 * Returns negative errno, or else the number of bytes read.
2368 */
2369 int i2c_master_recv(const struct i2c_client *client, char *buf, int count)
2370 {
2371 struct i2c_adapter *adap = client->adapter;
2372 struct i2c_msg msg;
2373 int ret;
2374
2375 msg.addr = client->addr;
2376 msg.flags = client->flags & I2C_M_TEN;
2377 msg.flags |= I2C_M_RD;
2378 msg.len = count;
2379 msg.buf = buf;
2380
2381 ret = i2c_transfer(adap, &msg, 1);
2382
2383 /*
2384 * If everything went ok (i.e. 1 msg received), return #bytes received,
2385 * else error code.
2386 */
2387 return (ret == 1) ? count : ret;
2388 }
2389 EXPORT_SYMBOL(i2c_master_recv);
2390
2391 /* ----------------------------------------------------
2392 * the i2c address scanning function
2393 * Will not work for 10-bit addresses!
2394 * ----------------------------------------------------
2395 */
2396
2397 /*
2398 * Legacy default probe function, mostly relevant for SMBus. The default
2399 * probe method is a quick write, but it is known to corrupt the 24RF08
2400 * EEPROMs due to a state machine bug, and could also irreversibly
2401 * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f,
2402 * we use a short byte read instead. Also, some bus drivers don't implement
2403 * quick write, so we fallback to a byte read in that case too.
2404 * On x86, there is another special case for FSC hardware monitoring chips,
2405 * which want regular byte reads (address 0x73.) Fortunately, these are the
2406 * only known chips using this I2C address on PC hardware.
2407 * Returns 1 if probe succeeded, 0 if not.
2408 */
2409 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr)
2410 {
2411 int err;
2412 union i2c_smbus_data dummy;
2413
2414 #ifdef CONFIG_X86
2415 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON)
2416 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
2417 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2418 I2C_SMBUS_BYTE_DATA, &dummy);
2419 else
2420 #endif
2421 if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50)
2422 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
2423 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
2424 I2C_SMBUS_QUICK, NULL);
2425 else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE))
2426 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2427 I2C_SMBUS_BYTE, &dummy);
2428 else {
2429 dev_warn(&adap->dev, "No suitable probing method supported for address 0x%02X\n",
2430 addr);
2431 err = -EOPNOTSUPP;
2432 }
2433
2434 return err >= 0;
2435 }
2436
2437 static int i2c_detect_address(struct i2c_client *temp_client,
2438 struct i2c_driver *driver)
2439 {
2440 struct i2c_board_info info;
2441 struct i2c_adapter *adapter = temp_client->adapter;
2442 int addr = temp_client->addr;
2443 int err;
2444
2445 /* Make sure the address is valid */
2446 err = i2c_check_7bit_addr_validity_strict(addr);
2447 if (err) {
2448 dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
2449 addr);
2450 return err;
2451 }
2452
2453 /* Skip if already in use (7 bit, no need to encode flags) */
2454 if (i2c_check_addr_busy(adapter, addr))
2455 return 0;
2456
2457 /* Make sure there is something at this address */
2458 if (!i2c_default_probe(adapter, addr))
2459 return 0;
2460
2461 /* Finally call the custom detection function */
2462 memset(&info, 0, sizeof(struct i2c_board_info));
2463 info.addr = addr;
2464 err = driver->detect(temp_client, &info);
2465 if (err) {
2466 /* -ENODEV is returned if the detection fails. We catch it
2467 here as this isn't an error. */
2468 return err == -ENODEV ? 0 : err;
2469 }
2470
2471 /* Consistency check */
2472 if (info.type[0] == '\0') {
2473 dev_err(&adapter->dev, "%s detection function provided "
2474 "no name for 0x%x\n", driver->driver.name,
2475 addr);
2476 } else {
2477 struct i2c_client *client;
2478
2479 /* Detection succeeded, instantiate the device */
2480 if (adapter->class & I2C_CLASS_DEPRECATED)
2481 dev_warn(&adapter->dev,
2482 "This adapter will soon drop class based instantiation of devices. "
2483 "Please make sure client 0x%02x gets instantiated by other means. "
2484 "Check 'Documentation/i2c/instantiating-devices' for details.\n",
2485 info.addr);
2486
2487 dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
2488 info.type, info.addr);
2489 client = i2c_new_device(adapter, &info);
2490 if (client)
2491 list_add_tail(&client->detected, &driver->clients);
2492 else
2493 dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
2494 info.type, info.addr);
2495 }
2496 return 0;
2497 }
2498
2499 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
2500 {
2501 const unsigned short *address_list;
2502 struct i2c_client *temp_client;
2503 int i, err = 0;
2504 int adap_id = i2c_adapter_id(adapter);
2505
2506 address_list = driver->address_list;
2507 if (!driver->detect || !address_list)
2508 return 0;
2509
2510 /* Warn that the adapter lost class based instantiation */
2511 if (adapter->class == I2C_CLASS_DEPRECATED) {
2512 dev_dbg(&adapter->dev,
2513 "This adapter dropped support for I2C classes and "
2514 "won't auto-detect %s devices anymore. If you need it, check "
2515 "'Documentation/i2c/instantiating-devices' for alternatives.\n",
2516 driver->driver.name);
2517 return 0;
2518 }
2519
2520 /* Stop here if the classes do not match */
2521 if (!(adapter->class & driver->class))
2522 return 0;
2523
2524 /* Set up a temporary client to help detect callback */
2525 temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
2526 if (!temp_client)
2527 return -ENOMEM;
2528 temp_client->adapter = adapter;
2529
2530 for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
2531 dev_dbg(&adapter->dev, "found normal entry for adapter %d, "
2532 "addr 0x%02x\n", adap_id, address_list[i]);
2533 temp_client->addr = address_list[i];
2534 err = i2c_detect_address(temp_client, driver);
2535 if (unlikely(err))
2536 break;
2537 }
2538
2539 kfree(temp_client);
2540 return err;
2541 }
2542
2543 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr)
2544 {
2545 return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2546 I2C_SMBUS_QUICK, NULL) >= 0;
2547 }
2548 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read);
2549
2550 struct i2c_client *
2551 i2c_new_probed_device(struct i2c_adapter *adap,
2552 struct i2c_board_info *info,
2553 unsigned short const *addr_list,
2554 int (*probe)(struct i2c_adapter *, unsigned short addr))
2555 {
2556 int i;
2557
2558 if (!probe)
2559 probe = i2c_default_probe;
2560
2561 for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
2562 /* Check address validity */
2563 if (i2c_check_7bit_addr_validity_strict(addr_list[i]) < 0) {
2564 dev_warn(&adap->dev, "Invalid 7-bit address "
2565 "0x%02x\n", addr_list[i]);
2566 continue;
2567 }
2568
2569 /* Check address availability (7 bit, no need to encode flags) */
2570 if (i2c_check_addr_busy(adap, addr_list[i])) {
2571 dev_dbg(&adap->dev, "Address 0x%02x already in "
2572 "use, not probing\n", addr_list[i]);
2573 continue;
2574 }
2575
2576 /* Test address responsiveness */
2577 if (probe(adap, addr_list[i]))
2578 break;
2579 }
2580
2581 if (addr_list[i] == I2C_CLIENT_END) {
2582 dev_dbg(&adap->dev, "Probing failed, no device found\n");
2583 return NULL;
2584 }
2585
2586 info->addr = addr_list[i];
2587 return i2c_new_device(adap, info);
2588 }
2589 EXPORT_SYMBOL_GPL(i2c_new_probed_device);
2590
2591 struct i2c_adapter *i2c_get_adapter(int nr)
2592 {
2593 struct i2c_adapter *adapter;
2594
2595 mutex_lock(&core_lock);
2596 adapter = idr_find(&i2c_adapter_idr, nr);
2597 if (!adapter)
2598 goto exit;
2599
2600 if (try_module_get(adapter->owner))
2601 get_device(&adapter->dev);
2602 else
2603 adapter = NULL;
2604
2605 exit:
2606 mutex_unlock(&core_lock);
2607 return adapter;
2608 }
2609 EXPORT_SYMBOL(i2c_get_adapter);
2610
2611 void i2c_put_adapter(struct i2c_adapter *adap)
2612 {
2613 if (!adap)
2614 return;
2615
2616 put_device(&adap->dev);
2617 module_put(adap->owner);
2618 }
2619 EXPORT_SYMBOL(i2c_put_adapter);
2620
2621 /* The SMBus parts */
2622
2623 #define POLY (0x1070U << 3)
2624 static u8 crc8(u16 data)
2625 {
2626 int i;
2627
2628 for (i = 0; i < 8; i++) {
2629 if (data & 0x8000)
2630 data = data ^ POLY;
2631 data = data << 1;
2632 }
2633 return (u8)(data >> 8);
2634 }
2635
2636 /* Incremental CRC8 over count bytes in the array pointed to by p */
2637 static u8 i2c_smbus_pec(u8 crc, u8 *p, size_t count)
2638 {
2639 int i;
2640
2641 for (i = 0; i < count; i++)
2642 crc = crc8((crc ^ p[i]) << 8);
2643 return crc;
2644 }
2645
2646 /* Assume a 7-bit address, which is reasonable for SMBus */
2647 static u8 i2c_smbus_msg_pec(u8 pec, struct i2c_msg *msg)
2648 {
2649 /* The address will be sent first */
2650 u8 addr = (msg->addr << 1) | !!(msg->flags & I2C_M_RD);
2651 pec = i2c_smbus_pec(pec, &addr, 1);
2652
2653 /* The data buffer follows */
2654 return i2c_smbus_pec(pec, msg->buf, msg->len);
2655 }
2656
2657 /* Used for write only transactions */
2658 static inline void i2c_smbus_add_pec(struct i2c_msg *msg)
2659 {
2660 msg->buf[msg->len] = i2c_smbus_msg_pec(0, msg);
2661 msg->len++;
2662 }
2663
2664 /* Return <0 on CRC error
2665 If there was a write before this read (most cases) we need to take the
2666 partial CRC from the write part into account.
2667 Note that this function does modify the message (we need to decrease the
2668 message length to hide the CRC byte from the caller). */
2669 static int i2c_smbus_check_pec(u8 cpec, struct i2c_msg *msg)
2670 {
2671 u8 rpec = msg->buf[--msg->len];
2672 cpec = i2c_smbus_msg_pec(cpec, msg);
2673
2674 if (rpec != cpec) {
2675 pr_debug("i2c-core: Bad PEC 0x%02x vs. 0x%02x\n",
2676 rpec, cpec);
2677 return -EBADMSG;
2678 }
2679 return 0;
2680 }
2681
2682 /**
2683 * i2c_smbus_read_byte - SMBus "receive byte" protocol
2684 * @client: Handle to slave device
2685 *
2686 * This executes the SMBus "receive byte" protocol, returning negative errno
2687 * else the byte received from the device.
2688 */
2689 s32 i2c_smbus_read_byte(const struct i2c_client *client)
2690 {
2691 union i2c_smbus_data data;
2692 int status;
2693
2694 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2695 I2C_SMBUS_READ, 0,
2696 I2C_SMBUS_BYTE, &data);
2697 return (status < 0) ? status : data.byte;
2698 }
2699 EXPORT_SYMBOL(i2c_smbus_read_byte);
2700
2701 /**
2702 * i2c_smbus_write_byte - SMBus "send byte" protocol
2703 * @client: Handle to slave device
2704 * @value: Byte to be sent
2705 *
2706 * This executes the SMBus "send byte" protocol, returning negative errno
2707 * else zero on success.
2708 */
2709 s32 i2c_smbus_write_byte(const struct i2c_client *client, u8 value)
2710 {
2711 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2712 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
2713 }
2714 EXPORT_SYMBOL(i2c_smbus_write_byte);
2715
2716 /**
2717 * i2c_smbus_read_byte_data - SMBus "read byte" protocol
2718 * @client: Handle to slave device
2719 * @command: Byte interpreted by slave
2720 *
2721 * This executes the SMBus "read byte" protocol, returning negative errno
2722 * else a data byte received from the device.
2723 */
2724 s32 i2c_smbus_read_byte_data(const struct i2c_client *client, u8 command)
2725 {
2726 union i2c_smbus_data data;
2727 int status;
2728
2729 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2730 I2C_SMBUS_READ, command,
2731 I2C_SMBUS_BYTE_DATA, &data);
2732 return (status < 0) ? status : data.byte;
2733 }
2734 EXPORT_SYMBOL(i2c_smbus_read_byte_data);
2735
2736 /**
2737 * i2c_smbus_write_byte_data - SMBus "write byte" protocol
2738 * @client: Handle to slave device
2739 * @command: Byte interpreted by slave
2740 * @value: Byte being written
2741 *
2742 * This executes the SMBus "write byte" protocol, returning negative errno
2743 * else zero on success.
2744 */
2745 s32 i2c_smbus_write_byte_data(const struct i2c_client *client, u8 command,
2746 u8 value)
2747 {
2748 union i2c_smbus_data data;
2749 data.byte = value;
2750 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2751 I2C_SMBUS_WRITE, command,
2752 I2C_SMBUS_BYTE_DATA, &data);
2753 }
2754 EXPORT_SYMBOL(i2c_smbus_write_byte_data);
2755
2756 /**
2757 * i2c_smbus_read_word_data - SMBus "read word" protocol
2758 * @client: Handle to slave device
2759 * @command: Byte interpreted by slave
2760 *
2761 * This executes the SMBus "read word" protocol, returning negative errno
2762 * else a 16-bit unsigned "word" received from the device.
2763 */
2764 s32 i2c_smbus_read_word_data(const struct i2c_client *client, u8 command)
2765 {
2766 union i2c_smbus_data data;
2767 int status;
2768
2769 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2770 I2C_SMBUS_READ, command,
2771 I2C_SMBUS_WORD_DATA, &data);
2772 return (status < 0) ? status : data.word;
2773 }
2774 EXPORT_SYMBOL(i2c_smbus_read_word_data);
2775
2776 /**
2777 * i2c_smbus_write_word_data - SMBus "write word" protocol
2778 * @client: Handle to slave device
2779 * @command: Byte interpreted by slave
2780 * @value: 16-bit "word" being written
2781 *
2782 * This executes the SMBus "write word" protocol, returning negative errno
2783 * else zero on success.
2784 */
2785 s32 i2c_smbus_write_word_data(const struct i2c_client *client, u8 command,
2786 u16 value)
2787 {
2788 union i2c_smbus_data data;
2789 data.word = value;
2790 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2791 I2C_SMBUS_WRITE, command,
2792 I2C_SMBUS_WORD_DATA, &data);
2793 }
2794 EXPORT_SYMBOL(i2c_smbus_write_word_data);
2795
2796 /**
2797 * i2c_smbus_read_block_data - SMBus "block read" protocol
2798 * @client: Handle to slave device
2799 * @command: Byte interpreted by slave
2800 * @values: Byte array into which data will be read; big enough to hold
2801 * the data returned by the slave. SMBus allows at most 32 bytes.
2802 *
2803 * This executes the SMBus "block read" protocol, returning negative errno
2804 * else the number of data bytes in the slave's response.
2805 *
2806 * Note that using this function requires that the client's adapter support
2807 * the I2C_FUNC_SMBUS_READ_BLOCK_DATA functionality. Not all adapter drivers
2808 * support this; its emulation through I2C messaging relies on a specific
2809 * mechanism (I2C_M_RECV_LEN) which may not be implemented.
2810 */
2811 s32 i2c_smbus_read_block_data(const struct i2c_client *client, u8 command,
2812 u8 *values)
2813 {
2814 union i2c_smbus_data data;
2815 int status;
2816
2817 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2818 I2C_SMBUS_READ, command,
2819 I2C_SMBUS_BLOCK_DATA, &data);
2820 if (status)
2821 return status;
2822
2823 memcpy(values, &data.block[1], data.block[0]);
2824 return data.block[0];
2825 }
2826 EXPORT_SYMBOL(i2c_smbus_read_block_data);
2827
2828 /**
2829 * i2c_smbus_write_block_data - SMBus "block write" protocol
2830 * @client: Handle to slave device
2831 * @command: Byte interpreted by slave
2832 * @length: Size of data block; SMBus allows at most 32 bytes
2833 * @values: Byte array which will be written.
2834 *
2835 * This executes the SMBus "block write" protocol, returning negative errno
2836 * else zero on success.
2837 */
2838 s32 i2c_smbus_write_block_data(const struct i2c_client *client, u8 command,
2839 u8 length, const u8 *values)
2840 {
2841 union i2c_smbus_data data;
2842
2843 if (length > I2C_SMBUS_BLOCK_MAX)
2844 length = I2C_SMBUS_BLOCK_MAX;
2845 data.block[0] = length;
2846 memcpy(&data.block[1], values, length);
2847 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2848 I2C_SMBUS_WRITE, command,
2849 I2C_SMBUS_BLOCK_DATA, &data);
2850 }
2851 EXPORT_SYMBOL(i2c_smbus_write_block_data);
2852
2853 /* Returns the number of read bytes */
2854 s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client, u8 command,
2855 u8 length, u8 *values)
2856 {
2857 union i2c_smbus_data data;
2858 int status;
2859
2860 if (length > I2C_SMBUS_BLOCK_MAX)
2861 length = I2C_SMBUS_BLOCK_MAX;
2862 data.block[0] = length;
2863 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2864 I2C_SMBUS_READ, command,
2865 I2C_SMBUS_I2C_BLOCK_DATA, &data);
2866 if (status < 0)
2867 return status;
2868
2869 memcpy(values, &data.block[1], data.block[0]);
2870 return data.block[0];
2871 }
2872 EXPORT_SYMBOL(i2c_smbus_read_i2c_block_data);
2873
2874 s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client, u8 command,
2875 u8 length, const u8 *values)
2876 {
2877 union i2c_smbus_data data;
2878
2879 if (length > I2C_SMBUS_BLOCK_MAX)
2880 length = I2C_SMBUS_BLOCK_MAX;
2881 data.block[0] = length;
2882 memcpy(data.block + 1, values, length);
2883 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2884 I2C_SMBUS_WRITE, command,
2885 I2C_SMBUS_I2C_BLOCK_DATA, &data);
2886 }
2887 EXPORT_SYMBOL(i2c_smbus_write_i2c_block_data);
2888
2889 /* Simulate a SMBus command using the i2c protocol
2890 No checking of parameters is done! */
2891 static s32 i2c_smbus_xfer_emulated(struct i2c_adapter *adapter, u16 addr,
2892 unsigned short flags,
2893 char read_write, u8 command, int size,
2894 union i2c_smbus_data *data)
2895 {
2896 /* So we need to generate a series of msgs. In the case of writing, we
2897 need to use only one message; when reading, we need two. We initialize
2898 most things with sane defaults, to keep the code below somewhat
2899 simpler. */
2900 unsigned char msgbuf0[I2C_SMBUS_BLOCK_MAX+3];
2901 unsigned char msgbuf1[I2C_SMBUS_BLOCK_MAX+2];
2902 int num = read_write == I2C_SMBUS_READ ? 2 : 1;
2903 int i;
2904 u8 partial_pec = 0;
2905 int status;
2906 struct i2c_msg msg[2] = {
2907 {
2908 .addr = addr,
2909 .flags = flags,
2910 .len = 1,
2911 .buf = msgbuf0,
2912 }, {
2913 .addr = addr,
2914 .flags = flags | I2C_M_RD,
2915 .len = 0,
2916 .buf = msgbuf1,
2917 },
2918 };
2919
2920 msgbuf0[0] = command;
2921 switch (size) {
2922 case I2C_SMBUS_QUICK:
2923 msg[0].len = 0;
2924 /* Special case: The read/write field is used as data */
2925 msg[0].flags = flags | (read_write == I2C_SMBUS_READ ?
2926 I2C_M_RD : 0);
2927 num = 1;
2928 break;
2929 case I2C_SMBUS_BYTE:
2930 if (read_write == I2C_SMBUS_READ) {
2931 /* Special case: only a read! */
2932 msg[0].flags = I2C_M_RD | flags;
2933 num = 1;
2934 }
2935 break;
2936 case I2C_SMBUS_BYTE_DATA:
2937 if (read_write == I2C_SMBUS_READ)
2938 msg[1].len = 1;
2939 else {
2940 msg[0].len = 2;
2941 msgbuf0[1] = data->byte;
2942 }
2943 break;
2944 case I2C_SMBUS_WORD_DATA:
2945 if (read_write == I2C_SMBUS_READ)
2946 msg[1].len = 2;
2947 else {
2948 msg[0].len = 3;
2949 msgbuf0[1] = data->word & 0xff;
2950 msgbuf0[2] = data->word >> 8;
2951 }
2952 break;
2953 case I2C_SMBUS_PROC_CALL:
2954 num = 2; /* Special case */
2955 read_write = I2C_SMBUS_READ;
2956 msg[0].len = 3;
2957 msg[1].len = 2;
2958 msgbuf0[1] = data->word & 0xff;
2959 msgbuf0[2] = data->word >> 8;
2960 break;
2961 case I2C_SMBUS_BLOCK_DATA:
2962 if (read_write == I2C_SMBUS_READ) {
2963 msg[1].flags |= I2C_M_RECV_LEN;
2964 msg[1].len = 1; /* block length will be added by
2965 the underlying bus driver */
2966 } else {
2967 msg[0].len = data->block[0] + 2;
2968 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 2) {
2969 dev_err(&adapter->dev,
2970 "Invalid block write size %d\n",
2971 data->block[0]);
2972 return -EINVAL;
2973 }
2974 for (i = 1; i < msg[0].len; i++)
2975 msgbuf0[i] = data->block[i-1];
2976 }
2977 break;
2978 case I2C_SMBUS_BLOCK_PROC_CALL:
2979 num = 2; /* Another special case */
2980 read_write = I2C_SMBUS_READ;
2981 if (data->block[0] > I2C_SMBUS_BLOCK_MAX) {
2982 dev_err(&adapter->dev,
2983 "Invalid block write size %d\n",
2984 data->block[0]);
2985 return -EINVAL;
2986 }
2987 msg[0].len = data->block[0] + 2;
2988 for (i = 1; i < msg[0].len; i++)
2989 msgbuf0[i] = data->block[i-1];
2990 msg[1].flags |= I2C_M_RECV_LEN;
2991 msg[1].len = 1; /* block length will be added by
2992 the underlying bus driver */
2993 break;
2994 case I2C_SMBUS_I2C_BLOCK_DATA:
2995 if (read_write == I2C_SMBUS_READ) {
2996 msg[1].len = data->block[0];
2997 } else {
2998 msg[0].len = data->block[0] + 1;
2999 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 1) {
3000 dev_err(&adapter->dev,
3001 "Invalid block write size %d\n",
3002 data->block[0]);
3003 return -EINVAL;
3004 }
3005 for (i = 1; i <= data->block[0]; i++)
3006 msgbuf0[i] = data->block[i];
3007 }
3008 break;
3009 default:
3010 dev_err(&adapter->dev, "Unsupported transaction %d\n", size);
3011 return -EOPNOTSUPP;
3012 }
3013
3014 i = ((flags & I2C_CLIENT_PEC) && size != I2C_SMBUS_QUICK
3015 && size != I2C_SMBUS_I2C_BLOCK_DATA);
3016 if (i) {
3017 /* Compute PEC if first message is a write */
3018 if (!(msg[0].flags & I2C_M_RD)) {
3019 if (num == 1) /* Write only */
3020 i2c_smbus_add_pec(&msg[0]);
3021 else /* Write followed by read */
3022 partial_pec = i2c_smbus_msg_pec(0, &msg[0]);
3023 }
3024 /* Ask for PEC if last message is a read */
3025 if (msg[num-1].flags & I2C_M_RD)
3026 msg[num-1].len++;
3027 }
3028
3029 status = i2c_transfer(adapter, msg, num);
3030 if (status < 0)
3031 return status;
3032
3033 /* Check PEC if last message is a read */
3034 if (i && (msg[num-1].flags & I2C_M_RD)) {
3035 status = i2c_smbus_check_pec(partial_pec, &msg[num-1]);
3036 if (status < 0)
3037 return status;
3038 }
3039
3040 if (read_write == I2C_SMBUS_READ)
3041 switch (size) {
3042 case I2C_SMBUS_BYTE:
3043 data->byte = msgbuf0[0];
3044 break;
3045 case I2C_SMBUS_BYTE_DATA:
3046 data->byte = msgbuf1[0];
3047 break;
3048 case I2C_SMBUS_WORD_DATA:
3049 case I2C_SMBUS_PROC_CALL:
3050 data->word = msgbuf1[0] | (msgbuf1[1] << 8);
3051 break;
3052 case I2C_SMBUS_I2C_BLOCK_DATA:
3053 for (i = 0; i < data->block[0]; i++)
3054 data->block[i+1] = msgbuf1[i];
3055 break;
3056 case I2C_SMBUS_BLOCK_DATA:
3057 case I2C_SMBUS_BLOCK_PROC_CALL:
3058 for (i = 0; i < msgbuf1[0] + 1; i++)
3059 data->block[i] = msgbuf1[i];
3060 break;
3061 }
3062 return 0;
3063 }
3064
3065 /**
3066 * i2c_smbus_xfer - execute SMBus protocol operations
3067 * @adapter: Handle to I2C bus
3068 * @addr: Address of SMBus slave on that bus
3069 * @flags: I2C_CLIENT_* flags (usually zero or I2C_CLIENT_PEC)
3070 * @read_write: I2C_SMBUS_READ or I2C_SMBUS_WRITE
3071 * @command: Byte interpreted by slave, for protocols which use such bytes
3072 * @protocol: SMBus protocol operation to execute, such as I2C_SMBUS_PROC_CALL
3073 * @data: Data to be read or written
3074 *
3075 * This executes an SMBus protocol operation, and returns a negative
3076 * errno code else zero on success.
3077 */
3078 s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr, unsigned short flags,
3079 char read_write, u8 command, int protocol,
3080 union i2c_smbus_data *data)
3081 {
3082 unsigned long orig_jiffies;
3083 int try;
3084 s32 res;
3085
3086 /* If enabled, the following two tracepoints are conditional on
3087 * read_write and protocol.
3088 */
3089 trace_smbus_write(adapter, addr, flags, read_write,
3090 command, protocol, data);
3091 trace_smbus_read(adapter, addr, flags, read_write,
3092 command, protocol);
3093
3094 flags &= I2C_M_TEN | I2C_CLIENT_PEC | I2C_CLIENT_SCCB;
3095
3096 if (adapter->algo->smbus_xfer) {
3097 i2c_lock_adapter(adapter);
3098
3099 /* Retry automatically on arbitration loss */
3100 orig_jiffies = jiffies;
3101 for (res = 0, try = 0; try <= adapter->retries; try++) {
3102 res = adapter->algo->smbus_xfer(adapter, addr, flags,
3103 read_write, command,
3104 protocol, data);
3105 if (res != -EAGAIN)
3106 break;
3107 if (time_after(jiffies,
3108 orig_jiffies + adapter->timeout))
3109 break;
3110 }
3111 i2c_unlock_adapter(adapter);
3112
3113 if (res != -EOPNOTSUPP || !adapter->algo->master_xfer)
3114 goto trace;
3115 /*
3116 * Fall back to i2c_smbus_xfer_emulated if the adapter doesn't
3117 * implement native support for the SMBus operation.
3118 */
3119 }
3120
3121 res = i2c_smbus_xfer_emulated(adapter, addr, flags, read_write,
3122 command, protocol, data);
3123
3124 trace:
3125 /* If enabled, the reply tracepoint is conditional on read_write. */
3126 trace_smbus_reply(adapter, addr, flags, read_write,
3127 command, protocol, data);
3128 trace_smbus_result(adapter, addr, flags, read_write,
3129 command, protocol, res);
3130
3131 return res;
3132 }
3133 EXPORT_SYMBOL(i2c_smbus_xfer);
3134
3135 /**
3136 * i2c_smbus_read_i2c_block_data_or_emulated - read block or emulate
3137 * @client: Handle to slave device
3138 * @command: Byte interpreted by slave
3139 * @length: Size of data block; SMBus allows at most I2C_SMBUS_BLOCK_MAX bytes
3140 * @values: Byte array into which data will be read; big enough to hold
3141 * the data returned by the slave. SMBus allows at most
3142 * I2C_SMBUS_BLOCK_MAX bytes.
3143 *
3144 * This executes the SMBus "block read" protocol if supported by the adapter.
3145 * If block read is not supported, it emulates it using either word or byte
3146 * read protocols depending on availability.
3147 *
3148 * The addresses of the I2C slave device that are accessed with this function
3149 * must be mapped to a linear region, so that a block read will have the same
3150 * effect as a byte read. Before using this function you must double-check
3151 * if the I2C slave does support exchanging a block transfer with a byte
3152 * transfer.
3153 */
3154 s32 i2c_smbus_read_i2c_block_data_or_emulated(const struct i2c_client *client,
3155 u8 command, u8 length, u8 *values)
3156 {
3157 u8 i = 0;
3158 int status;
3159
3160 if (length > I2C_SMBUS_BLOCK_MAX)
3161 length = I2C_SMBUS_BLOCK_MAX;
3162
3163 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_I2C_BLOCK))
3164 return i2c_smbus_read_i2c_block_data(client, command, length, values);
3165
3166 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_BYTE_DATA))
3167 return -EOPNOTSUPP;
3168
3169 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_WORD_DATA)) {
3170 while ((i + 2) <= length) {
3171 status = i2c_smbus_read_word_data(client, command + i);
3172 if (status < 0)
3173 return status;
3174 values[i] = status & 0xff;
3175 values[i + 1] = status >> 8;
3176 i += 2;
3177 }
3178 }
3179
3180 while (i < length) {
3181 status = i2c_smbus_read_byte_data(client, command + i);
3182 if (status < 0)
3183 return status;
3184 values[i] = status;
3185 i++;
3186 }
3187
3188 return i;
3189 }
3190 EXPORT_SYMBOL(i2c_smbus_read_i2c_block_data_or_emulated);
3191
3192 #if IS_ENABLED(CONFIG_I2C_SLAVE)
3193 int i2c_slave_register(struct i2c_client *client, i2c_slave_cb_t slave_cb)
3194 {
3195 int ret;
3196
3197 if (!client || !slave_cb) {
3198 WARN(1, "insufficent data\n");
3199 return -EINVAL;
3200 }
3201
3202 if (!(client->flags & I2C_CLIENT_SLAVE))
3203 dev_warn(&client->dev, "%s: client slave flag not set. You might see address collisions\n",
3204 __func__);
3205
3206 if (!(client->flags & I2C_CLIENT_TEN)) {
3207 /* Enforce stricter address checking */
3208 ret = i2c_check_7bit_addr_validity_strict(client->addr);
3209 if (ret) {
3210 dev_err(&client->dev, "%s: invalid address\n", __func__);
3211 return ret;
3212 }
3213 }
3214
3215 if (!client->adapter->algo->reg_slave) {
3216 dev_err(&client->dev, "%s: not supported by adapter\n", __func__);
3217 return -EOPNOTSUPP;
3218 }
3219
3220 client->slave_cb = slave_cb;
3221
3222 i2c_lock_adapter(client->adapter);
3223 ret = client->adapter->algo->reg_slave(client);
3224 i2c_unlock_adapter(client->adapter);
3225
3226 if (ret) {
3227 client->slave_cb = NULL;
3228 dev_err(&client->dev, "%s: adapter returned error %d\n", __func__, ret);
3229 }
3230
3231 return ret;
3232 }
3233 EXPORT_SYMBOL_GPL(i2c_slave_register);
3234
3235 int i2c_slave_unregister(struct i2c_client *client)
3236 {
3237 int ret;
3238
3239 if (!client->adapter->algo->unreg_slave) {
3240 dev_err(&client->dev, "%s: not supported by adapter\n", __func__);
3241 return -EOPNOTSUPP;
3242 }
3243
3244 i2c_lock_adapter(client->adapter);
3245 ret = client->adapter->algo->unreg_slave(client);
3246 i2c_unlock_adapter(client->adapter);
3247
3248 if (ret == 0)
3249 client->slave_cb = NULL;
3250 else
3251 dev_err(&client->dev, "%s: adapter returned error %d\n", __func__, ret);
3252
3253 return ret;
3254 }
3255 EXPORT_SYMBOL_GPL(i2c_slave_unregister);
3256 #endif
3257
3258 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
3259 MODULE_DESCRIPTION("I2C-Bus main module");
3260 MODULE_LICENSE("GPL");
This page took 0.10172 seconds and 5 git commands to generate.