powerpc/pseries: Really fix the oprofile CPU type on pseries
[deliverable/linux.git] / drivers / ide / hpt366.c
1 /*
2 * Copyright (C) 1999-2003 Andre Hedrick <andre@linux-ide.org>
3 * Portions Copyright (C) 2001 Sun Microsystems, Inc.
4 * Portions Copyright (C) 2003 Red Hat Inc
5 * Portions Copyright (C) 2007 Bartlomiej Zolnierkiewicz
6 * Portions Copyright (C) 2005-2009 MontaVista Software, Inc.
7 *
8 * Thanks to HighPoint Technologies for their assistance, and hardware.
9 * Special Thanks to Jon Burchmore in SanDiego for the deep pockets, his
10 * donation of an ABit BP6 mainboard, processor, and memory acellerated
11 * development and support.
12 *
13 *
14 * HighPoint has its own drivers (open source except for the RAID part)
15 * available from http://www.highpoint-tech.com/BIOS%20+%20Driver/.
16 * This may be useful to anyone wanting to work on this driver, however do not
17 * trust them too much since the code tends to become less and less meaningful
18 * as the time passes... :-/
19 *
20 * Note that final HPT370 support was done by force extraction of GPL.
21 *
22 * - add function for getting/setting power status of drive
23 * - the HPT370's state machine can get confused. reset it before each dma
24 * xfer to prevent that from happening.
25 * - reset state engine whenever we get an error.
26 * - check for busmaster state at end of dma.
27 * - use new highpoint timings.
28 * - detect bus speed using highpoint register.
29 * - use pll if we don't have a clock table. added a 66MHz table that's
30 * just 2x the 33MHz table.
31 * - removed turnaround. NOTE: we never want to switch between pll and
32 * pci clocks as the chip can glitch in those cases. the highpoint
33 * approved workaround slows everything down too much to be useful. in
34 * addition, we would have to serialize access to each chip.
35 * Adrian Sun <a.sun@sun.com>
36 *
37 * add drive timings for 66MHz PCI bus,
38 * fix ATA Cable signal detection, fix incorrect /proc info
39 * add /proc display for per-drive PIO/DMA/UDMA mode and
40 * per-channel ATA-33/66 Cable detect.
41 * Duncan Laurie <void@sun.com>
42 *
43 * fixup /proc output for multiple controllers
44 * Tim Hockin <thockin@sun.com>
45 *
46 * On hpt366:
47 * Reset the hpt366 on error, reset on dma
48 * Fix disabling Fast Interrupt hpt366.
49 * Mike Waychison <crlf@sun.com>
50 *
51 * Added support for 372N clocking and clock switching. The 372N needs
52 * different clocks on read/write. This requires overloading rw_disk and
53 * other deeply crazy things. Thanks to <http://www.hoerstreich.de> for
54 * keeping me sane.
55 * Alan Cox <alan@lxorguk.ukuu.org.uk>
56 *
57 * - fix the clock turnaround code: it was writing to the wrong ports when
58 * called for the secondary channel, caching the current clock mode per-
59 * channel caused the cached register value to get out of sync with the
60 * actual one, the channels weren't serialized, the turnaround shouldn't
61 * be done on 66 MHz PCI bus
62 * - disable UltraATA/100 for HPT370 by default as the 33 MHz clock being used
63 * does not allow for this speed anyway
64 * - avoid touching disabled channels (e.g. HPT371/N are single channel chips,
65 * their primary channel is kind of virtual, it isn't tied to any pins)
66 * - fix/remove bad/unused timing tables and use one set of tables for the whole
67 * HPT37x chip family; save space by introducing the separate transfer mode
68 * table in which the mode lookup is done
69 * - use f_CNT value saved by the HighPoint BIOS as reading it directly gives
70 * the wrong PCI frequency since DPLL has already been calibrated by BIOS;
71 * read it only from the function 0 of HPT374 chips
72 * - fix the hotswap code: it caused RESET- to glitch when tristating the bus,
73 * and for HPT36x the obsolete HDIO_TRISTATE_HWIF handler was called instead
74 * - pass to init_chipset() handlers a copy of the IDE PCI device structure as
75 * they tamper with its fields
76 * - pass to the init_setup handlers a copy of the ide_pci_device_t structure
77 * since they may tamper with its fields
78 * - prefix the driver startup messages with the real chip name
79 * - claim the extra 240 bytes of I/O space for all chips
80 * - optimize the UltraDMA filtering and the drive list lookup code
81 * - use pci_get_slot() to get to the function 1 of HPT36x/374
82 * - cache offset of the channel's misc. control registers (MCRs) being used
83 * throughout the driver
84 * - only touch the relevant MCR when detecting the cable type on HPT374's
85 * function 1
86 * - rename all the register related variables consistently
87 * - move all the interrupt twiddling code from the speedproc handlers into
88 * init_hwif_hpt366(), also grouping all the DMA related code together there
89 * - merge HPT36x/HPT37x speedproc handlers, fix PIO timing register mask and
90 * separate the UltraDMA and MWDMA masks there to avoid changing PIO timings
91 * when setting an UltraDMA mode
92 * - fix hpt3xx_tune_drive() to set the PIO mode requested, not always select
93 * the best possible one
94 * - clean up DMA timeout handling for HPT370
95 * - switch to using the enumeration type to differ between the numerous chip
96 * variants, matching PCI device/revision ID with the chip type early, at the
97 * init_setup stage
98 * - extend the hpt_info structure to hold the DPLL and PCI clock frequencies,
99 * stop duplicating it for each channel by storing the pointer in the pci_dev
100 * structure: first, at the init_setup stage, point it to a static "template"
101 * with only the chip type and its specific base DPLL frequency, the highest
102 * UltraDMA mode, and the chip settings table pointer filled, then, at the
103 * init_chipset stage, allocate per-chip instance and fill it with the rest
104 * of the necessary information
105 * - get rid of the constant thresholds in the HPT37x PCI clock detection code,
106 * switch to calculating PCI clock frequency based on the chip's base DPLL
107 * frequency
108 * - switch to using the DPLL clock and enable UltraATA/133 mode by default on
109 * anything newer than HPT370/A (except HPT374 that is not capable of this
110 * mode according to the manual)
111 * - fold PCI clock detection and DPLL setup code into init_chipset_hpt366(),
112 * also fixing the interchanged 25/40 MHz PCI clock cases for HPT36x chips;
113 * unify HPT36x/37x timing setup code and the speedproc handlers by joining
114 * the register setting lists into the table indexed by the clock selected
115 * - set the correct hwif->ultra_mask for each individual chip
116 * - add Ultra and MW DMA mode filtering for the HPT37[24] based SATA cards
117 * - stop resetting HPT370's state machine before each DMA transfer as that has
118 * caused more harm than good
119 * Sergei Shtylyov, <sshtylyov@ru.mvista.com> or <source@mvista.com>
120 */
121
122 #include <linux/types.h>
123 #include <linux/module.h>
124 #include <linux/kernel.h>
125 #include <linux/delay.h>
126 #include <linux/blkdev.h>
127 #include <linux/interrupt.h>
128 #include <linux/pci.h>
129 #include <linux/init.h>
130 #include <linux/ide.h>
131
132 #include <asm/uaccess.h>
133 #include <asm/io.h>
134
135 #define DRV_NAME "hpt366"
136
137 /* various tuning parameters */
138 #undef HPT_RESET_STATE_ENGINE
139 #undef HPT_DELAY_INTERRUPT
140
141 static const char *quirk_drives[] = {
142 "QUANTUM FIREBALLlct08 08",
143 "QUANTUM FIREBALLP KA6.4",
144 "QUANTUM FIREBALLP LM20.4",
145 "QUANTUM FIREBALLP LM20.5",
146 NULL
147 };
148
149 static const char *bad_ata100_5[] = {
150 "IBM-DTLA-307075",
151 "IBM-DTLA-307060",
152 "IBM-DTLA-307045",
153 "IBM-DTLA-307030",
154 "IBM-DTLA-307020",
155 "IBM-DTLA-307015",
156 "IBM-DTLA-305040",
157 "IBM-DTLA-305030",
158 "IBM-DTLA-305020",
159 "IC35L010AVER07-0",
160 "IC35L020AVER07-0",
161 "IC35L030AVER07-0",
162 "IC35L040AVER07-0",
163 "IC35L060AVER07-0",
164 "WDC AC310200R",
165 NULL
166 };
167
168 static const char *bad_ata66_4[] = {
169 "IBM-DTLA-307075",
170 "IBM-DTLA-307060",
171 "IBM-DTLA-307045",
172 "IBM-DTLA-307030",
173 "IBM-DTLA-307020",
174 "IBM-DTLA-307015",
175 "IBM-DTLA-305040",
176 "IBM-DTLA-305030",
177 "IBM-DTLA-305020",
178 "IC35L010AVER07-0",
179 "IC35L020AVER07-0",
180 "IC35L030AVER07-0",
181 "IC35L040AVER07-0",
182 "IC35L060AVER07-0",
183 "WDC AC310200R",
184 "MAXTOR STM3320620A",
185 NULL
186 };
187
188 static const char *bad_ata66_3[] = {
189 "WDC AC310200R",
190 NULL
191 };
192
193 static const char *bad_ata33[] = {
194 "Maxtor 92720U8", "Maxtor 92040U6", "Maxtor 91360U4", "Maxtor 91020U3", "Maxtor 90845U3", "Maxtor 90650U2",
195 "Maxtor 91360D8", "Maxtor 91190D7", "Maxtor 91020D6", "Maxtor 90845D5", "Maxtor 90680D4", "Maxtor 90510D3", "Maxtor 90340D2",
196 "Maxtor 91152D8", "Maxtor 91008D7", "Maxtor 90845D6", "Maxtor 90840D6", "Maxtor 90720D5", "Maxtor 90648D5", "Maxtor 90576D4",
197 "Maxtor 90510D4",
198 "Maxtor 90432D3", "Maxtor 90288D2", "Maxtor 90256D2",
199 "Maxtor 91000D8", "Maxtor 90910D8", "Maxtor 90875D7", "Maxtor 90840D7", "Maxtor 90750D6", "Maxtor 90625D5", "Maxtor 90500D4",
200 "Maxtor 91728D8", "Maxtor 91512D7", "Maxtor 91303D6", "Maxtor 91080D5", "Maxtor 90845D4", "Maxtor 90680D4", "Maxtor 90648D3", "Maxtor 90432D2",
201 NULL
202 };
203
204 static u8 xfer_speeds[] = {
205 XFER_UDMA_6,
206 XFER_UDMA_5,
207 XFER_UDMA_4,
208 XFER_UDMA_3,
209 XFER_UDMA_2,
210 XFER_UDMA_1,
211 XFER_UDMA_0,
212
213 XFER_MW_DMA_2,
214 XFER_MW_DMA_1,
215 XFER_MW_DMA_0,
216
217 XFER_PIO_4,
218 XFER_PIO_3,
219 XFER_PIO_2,
220 XFER_PIO_1,
221 XFER_PIO_0
222 };
223
224 /* Key for bus clock timings
225 * 36x 37x
226 * bits bits
227 * 0:3 0:3 data_high_time. Inactive time of DIOW_/DIOR_ for PIO and MW DMA.
228 * cycles = value + 1
229 * 4:7 4:8 data_low_time. Active time of DIOW_/DIOR_ for PIO and MW DMA.
230 * cycles = value + 1
231 * 8:11 9:12 cmd_high_time. Inactive time of DIOW_/DIOR_ during task file
232 * register access.
233 * 12:15 13:17 cmd_low_time. Active time of DIOW_/DIOR_ during task file
234 * register access.
235 * 16:18 18:20 udma_cycle_time. Clock cycles for UDMA xfer.
236 * - 21 CLK frequency: 0=ATA clock, 1=dual ATA clock.
237 * 19:21 22:24 pre_high_time. Time to initialize the 1st cycle for PIO and
238 * MW DMA xfer.
239 * 22:24 25:27 cmd_pre_high_time. Time to initialize the 1st PIO cycle for
240 * task file register access.
241 * 28 28 UDMA enable.
242 * 29 29 DMA enable.
243 * 30 30 PIO MST enable. If set, the chip is in bus master mode during
244 * PIO xfer.
245 * 31 31 FIFO enable.
246 */
247
248 static u32 forty_base_hpt36x[] = {
249 /* XFER_UDMA_6 */ 0x900fd943,
250 /* XFER_UDMA_5 */ 0x900fd943,
251 /* XFER_UDMA_4 */ 0x900fd943,
252 /* XFER_UDMA_3 */ 0x900ad943,
253 /* XFER_UDMA_2 */ 0x900bd943,
254 /* XFER_UDMA_1 */ 0x9008d943,
255 /* XFER_UDMA_0 */ 0x9008d943,
256
257 /* XFER_MW_DMA_2 */ 0xa008d943,
258 /* XFER_MW_DMA_1 */ 0xa010d955,
259 /* XFER_MW_DMA_0 */ 0xa010d9fc,
260
261 /* XFER_PIO_4 */ 0xc008d963,
262 /* XFER_PIO_3 */ 0xc010d974,
263 /* XFER_PIO_2 */ 0xc010d997,
264 /* XFER_PIO_1 */ 0xc010d9c7,
265 /* XFER_PIO_0 */ 0xc018d9d9
266 };
267
268 static u32 thirty_three_base_hpt36x[] = {
269 /* XFER_UDMA_6 */ 0x90c9a731,
270 /* XFER_UDMA_5 */ 0x90c9a731,
271 /* XFER_UDMA_4 */ 0x90c9a731,
272 /* XFER_UDMA_3 */ 0x90cfa731,
273 /* XFER_UDMA_2 */ 0x90caa731,
274 /* XFER_UDMA_1 */ 0x90cba731,
275 /* XFER_UDMA_0 */ 0x90c8a731,
276
277 /* XFER_MW_DMA_2 */ 0xa0c8a731,
278 /* XFER_MW_DMA_1 */ 0xa0c8a732, /* 0xa0c8a733 */
279 /* XFER_MW_DMA_0 */ 0xa0c8a797,
280
281 /* XFER_PIO_4 */ 0xc0c8a731,
282 /* XFER_PIO_3 */ 0xc0c8a742,
283 /* XFER_PIO_2 */ 0xc0d0a753,
284 /* XFER_PIO_1 */ 0xc0d0a7a3, /* 0xc0d0a793 */
285 /* XFER_PIO_0 */ 0xc0d0a7aa /* 0xc0d0a7a7 */
286 };
287
288 static u32 twenty_five_base_hpt36x[] = {
289 /* XFER_UDMA_6 */ 0x90c98521,
290 /* XFER_UDMA_5 */ 0x90c98521,
291 /* XFER_UDMA_4 */ 0x90c98521,
292 /* XFER_UDMA_3 */ 0x90cf8521,
293 /* XFER_UDMA_2 */ 0x90cf8521,
294 /* XFER_UDMA_1 */ 0x90cb8521,
295 /* XFER_UDMA_0 */ 0x90cb8521,
296
297 /* XFER_MW_DMA_2 */ 0xa0ca8521,
298 /* XFER_MW_DMA_1 */ 0xa0ca8532,
299 /* XFER_MW_DMA_0 */ 0xa0ca8575,
300
301 /* XFER_PIO_4 */ 0xc0ca8521,
302 /* XFER_PIO_3 */ 0xc0ca8532,
303 /* XFER_PIO_2 */ 0xc0ca8542,
304 /* XFER_PIO_1 */ 0xc0d08572,
305 /* XFER_PIO_0 */ 0xc0d08585
306 };
307
308 #if 0
309 /* These are the timing tables from the HighPoint open source drivers... */
310 static u32 thirty_three_base_hpt37x[] = {
311 /* XFER_UDMA_6 */ 0x12446231, /* 0x12646231 ?? */
312 /* XFER_UDMA_5 */ 0x12446231,
313 /* XFER_UDMA_4 */ 0x12446231,
314 /* XFER_UDMA_3 */ 0x126c6231,
315 /* XFER_UDMA_2 */ 0x12486231,
316 /* XFER_UDMA_1 */ 0x124c6233,
317 /* XFER_UDMA_0 */ 0x12506297,
318
319 /* XFER_MW_DMA_2 */ 0x22406c31,
320 /* XFER_MW_DMA_1 */ 0x22406c33,
321 /* XFER_MW_DMA_0 */ 0x22406c97,
322
323 /* XFER_PIO_4 */ 0x06414e31,
324 /* XFER_PIO_3 */ 0x06414e42,
325 /* XFER_PIO_2 */ 0x06414e53,
326 /* XFER_PIO_1 */ 0x06814e93,
327 /* XFER_PIO_0 */ 0x06814ea7
328 };
329
330 static u32 fifty_base_hpt37x[] = {
331 /* XFER_UDMA_6 */ 0x12848242,
332 /* XFER_UDMA_5 */ 0x12848242,
333 /* XFER_UDMA_4 */ 0x12ac8242,
334 /* XFER_UDMA_3 */ 0x128c8242,
335 /* XFER_UDMA_2 */ 0x120c8242,
336 /* XFER_UDMA_1 */ 0x12148254,
337 /* XFER_UDMA_0 */ 0x121882ea,
338
339 /* XFER_MW_DMA_2 */ 0x22808242,
340 /* XFER_MW_DMA_1 */ 0x22808254,
341 /* XFER_MW_DMA_0 */ 0x228082ea,
342
343 /* XFER_PIO_4 */ 0x0a81f442,
344 /* XFER_PIO_3 */ 0x0a81f443,
345 /* XFER_PIO_2 */ 0x0a81f454,
346 /* XFER_PIO_1 */ 0x0ac1f465,
347 /* XFER_PIO_0 */ 0x0ac1f48a
348 };
349
350 static u32 sixty_six_base_hpt37x[] = {
351 /* XFER_UDMA_6 */ 0x1c869c62,
352 /* XFER_UDMA_5 */ 0x1cae9c62, /* 0x1c8a9c62 */
353 /* XFER_UDMA_4 */ 0x1c8a9c62,
354 /* XFER_UDMA_3 */ 0x1c8e9c62,
355 /* XFER_UDMA_2 */ 0x1c929c62,
356 /* XFER_UDMA_1 */ 0x1c9a9c62,
357 /* XFER_UDMA_0 */ 0x1c829c62,
358
359 /* XFER_MW_DMA_2 */ 0x2c829c62,
360 /* XFER_MW_DMA_1 */ 0x2c829c66,
361 /* XFER_MW_DMA_0 */ 0x2c829d2e,
362
363 /* XFER_PIO_4 */ 0x0c829c62,
364 /* XFER_PIO_3 */ 0x0c829c84,
365 /* XFER_PIO_2 */ 0x0c829ca6,
366 /* XFER_PIO_1 */ 0x0d029d26,
367 /* XFER_PIO_0 */ 0x0d029d5e
368 };
369 #else
370 /*
371 * The following are the new timing tables with PIO mode data/taskfile transfer
372 * overclocking fixed...
373 */
374
375 /* This table is taken from the HPT370 data manual rev. 1.02 */
376 static u32 thirty_three_base_hpt37x[] = {
377 /* XFER_UDMA_6 */ 0x16455031, /* 0x16655031 ?? */
378 /* XFER_UDMA_5 */ 0x16455031,
379 /* XFER_UDMA_4 */ 0x16455031,
380 /* XFER_UDMA_3 */ 0x166d5031,
381 /* XFER_UDMA_2 */ 0x16495031,
382 /* XFER_UDMA_1 */ 0x164d5033,
383 /* XFER_UDMA_0 */ 0x16515097,
384
385 /* XFER_MW_DMA_2 */ 0x26515031,
386 /* XFER_MW_DMA_1 */ 0x26515033,
387 /* XFER_MW_DMA_0 */ 0x26515097,
388
389 /* XFER_PIO_4 */ 0x06515021,
390 /* XFER_PIO_3 */ 0x06515022,
391 /* XFER_PIO_2 */ 0x06515033,
392 /* XFER_PIO_1 */ 0x06915065,
393 /* XFER_PIO_0 */ 0x06d1508a
394 };
395
396 static u32 fifty_base_hpt37x[] = {
397 /* XFER_UDMA_6 */ 0x1a861842,
398 /* XFER_UDMA_5 */ 0x1a861842,
399 /* XFER_UDMA_4 */ 0x1aae1842,
400 /* XFER_UDMA_3 */ 0x1a8e1842,
401 /* XFER_UDMA_2 */ 0x1a0e1842,
402 /* XFER_UDMA_1 */ 0x1a161854,
403 /* XFER_UDMA_0 */ 0x1a1a18ea,
404
405 /* XFER_MW_DMA_2 */ 0x2a821842,
406 /* XFER_MW_DMA_1 */ 0x2a821854,
407 /* XFER_MW_DMA_0 */ 0x2a8218ea,
408
409 /* XFER_PIO_4 */ 0x0a821842,
410 /* XFER_PIO_3 */ 0x0a821843,
411 /* XFER_PIO_2 */ 0x0a821855,
412 /* XFER_PIO_1 */ 0x0ac218a8,
413 /* XFER_PIO_0 */ 0x0b02190c
414 };
415
416 static u32 sixty_six_base_hpt37x[] = {
417 /* XFER_UDMA_6 */ 0x1c86fe62,
418 /* XFER_UDMA_5 */ 0x1caefe62, /* 0x1c8afe62 */
419 /* XFER_UDMA_4 */ 0x1c8afe62,
420 /* XFER_UDMA_3 */ 0x1c8efe62,
421 /* XFER_UDMA_2 */ 0x1c92fe62,
422 /* XFER_UDMA_1 */ 0x1c9afe62,
423 /* XFER_UDMA_0 */ 0x1c82fe62,
424
425 /* XFER_MW_DMA_2 */ 0x2c82fe62,
426 /* XFER_MW_DMA_1 */ 0x2c82fe66,
427 /* XFER_MW_DMA_0 */ 0x2c82ff2e,
428
429 /* XFER_PIO_4 */ 0x0c82fe62,
430 /* XFER_PIO_3 */ 0x0c82fe84,
431 /* XFER_PIO_2 */ 0x0c82fea6,
432 /* XFER_PIO_1 */ 0x0d02ff26,
433 /* XFER_PIO_0 */ 0x0d42ff7f
434 };
435 #endif
436
437 #define HPT366_DEBUG_DRIVE_INFO 0
438 #define HPT371_ALLOW_ATA133_6 1
439 #define HPT302_ALLOW_ATA133_6 1
440 #define HPT372_ALLOW_ATA133_6 1
441 #define HPT370_ALLOW_ATA100_5 0
442 #define HPT366_ALLOW_ATA66_4 1
443 #define HPT366_ALLOW_ATA66_3 1
444 #define HPT366_MAX_DEVS 8
445
446 /* Supported ATA clock frequencies */
447 enum ata_clock {
448 ATA_CLOCK_25MHZ,
449 ATA_CLOCK_33MHZ,
450 ATA_CLOCK_40MHZ,
451 ATA_CLOCK_50MHZ,
452 ATA_CLOCK_66MHZ,
453 NUM_ATA_CLOCKS
454 };
455
456 struct hpt_timings {
457 u32 pio_mask;
458 u32 dma_mask;
459 u32 ultra_mask;
460 u32 *clock_table[NUM_ATA_CLOCKS];
461 };
462
463 /*
464 * Hold all the HighPoint chip information in one place.
465 */
466
467 struct hpt_info {
468 char *chip_name; /* Chip name */
469 u8 chip_type; /* Chip type */
470 u8 udma_mask; /* Allowed UltraDMA modes mask. */
471 u8 dpll_clk; /* DPLL clock in MHz */
472 u8 pci_clk; /* PCI clock in MHz */
473 struct hpt_timings *timings; /* Chipset timing data */
474 u8 clock; /* ATA clock selected */
475 };
476
477 /* Supported HighPoint chips */
478 enum {
479 HPT36x,
480 HPT370,
481 HPT370A,
482 HPT374,
483 HPT372,
484 HPT372A,
485 HPT302,
486 HPT371,
487 HPT372N,
488 HPT302N,
489 HPT371N
490 };
491
492 static struct hpt_timings hpt36x_timings = {
493 .pio_mask = 0xc1f8ffff,
494 .dma_mask = 0x303800ff,
495 .ultra_mask = 0x30070000,
496 .clock_table = {
497 [ATA_CLOCK_25MHZ] = twenty_five_base_hpt36x,
498 [ATA_CLOCK_33MHZ] = thirty_three_base_hpt36x,
499 [ATA_CLOCK_40MHZ] = forty_base_hpt36x,
500 [ATA_CLOCK_50MHZ] = NULL,
501 [ATA_CLOCK_66MHZ] = NULL
502 }
503 };
504
505 static struct hpt_timings hpt37x_timings = {
506 .pio_mask = 0xcfc3ffff,
507 .dma_mask = 0x31c001ff,
508 .ultra_mask = 0x303c0000,
509 .clock_table = {
510 [ATA_CLOCK_25MHZ] = NULL,
511 [ATA_CLOCK_33MHZ] = thirty_three_base_hpt37x,
512 [ATA_CLOCK_40MHZ] = NULL,
513 [ATA_CLOCK_50MHZ] = fifty_base_hpt37x,
514 [ATA_CLOCK_66MHZ] = sixty_six_base_hpt37x
515 }
516 };
517
518 static const struct hpt_info hpt36x __devinitdata = {
519 .chip_name = "HPT36x",
520 .chip_type = HPT36x,
521 .udma_mask = HPT366_ALLOW_ATA66_3 ? (HPT366_ALLOW_ATA66_4 ? ATA_UDMA4 : ATA_UDMA3) : ATA_UDMA2,
522 .dpll_clk = 0, /* no DPLL */
523 .timings = &hpt36x_timings
524 };
525
526 static const struct hpt_info hpt370 __devinitdata = {
527 .chip_name = "HPT370",
528 .chip_type = HPT370,
529 .udma_mask = HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
530 .dpll_clk = 48,
531 .timings = &hpt37x_timings
532 };
533
534 static const struct hpt_info hpt370a __devinitdata = {
535 .chip_name = "HPT370A",
536 .chip_type = HPT370A,
537 .udma_mask = HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
538 .dpll_clk = 48,
539 .timings = &hpt37x_timings
540 };
541
542 static const struct hpt_info hpt374 __devinitdata = {
543 .chip_name = "HPT374",
544 .chip_type = HPT374,
545 .udma_mask = ATA_UDMA5,
546 .dpll_clk = 48,
547 .timings = &hpt37x_timings
548 };
549
550 static const struct hpt_info hpt372 __devinitdata = {
551 .chip_name = "HPT372",
552 .chip_type = HPT372,
553 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
554 .dpll_clk = 55,
555 .timings = &hpt37x_timings
556 };
557
558 static const struct hpt_info hpt372a __devinitdata = {
559 .chip_name = "HPT372A",
560 .chip_type = HPT372A,
561 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
562 .dpll_clk = 66,
563 .timings = &hpt37x_timings
564 };
565
566 static const struct hpt_info hpt302 __devinitdata = {
567 .chip_name = "HPT302",
568 .chip_type = HPT302,
569 .udma_mask = HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
570 .dpll_clk = 66,
571 .timings = &hpt37x_timings
572 };
573
574 static const struct hpt_info hpt371 __devinitdata = {
575 .chip_name = "HPT371",
576 .chip_type = HPT371,
577 .udma_mask = HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
578 .dpll_clk = 66,
579 .timings = &hpt37x_timings
580 };
581
582 static const struct hpt_info hpt372n __devinitdata = {
583 .chip_name = "HPT372N",
584 .chip_type = HPT372N,
585 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
586 .dpll_clk = 77,
587 .timings = &hpt37x_timings
588 };
589
590 static const struct hpt_info hpt302n __devinitdata = {
591 .chip_name = "HPT302N",
592 .chip_type = HPT302N,
593 .udma_mask = HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
594 .dpll_clk = 77,
595 .timings = &hpt37x_timings
596 };
597
598 static const struct hpt_info hpt371n __devinitdata = {
599 .chip_name = "HPT371N",
600 .chip_type = HPT371N,
601 .udma_mask = HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
602 .dpll_clk = 77,
603 .timings = &hpt37x_timings
604 };
605
606 static int check_in_drive_list(ide_drive_t *drive, const char **list)
607 {
608 char *m = (char *)&drive->id[ATA_ID_PROD];
609
610 while (*list)
611 if (!strcmp(*list++, m))
612 return 1;
613 return 0;
614 }
615
616 static struct hpt_info *hpt3xx_get_info(struct device *dev)
617 {
618 struct ide_host *host = dev_get_drvdata(dev);
619 struct hpt_info *info = (struct hpt_info *)host->host_priv;
620
621 return dev == host->dev[1] ? info + 1 : info;
622 }
623
624 /*
625 * The Marvell bridge chips used on the HighPoint SATA cards do not seem
626 * to support the UltraDMA modes 1, 2, and 3 as well as any MWDMA modes...
627 */
628
629 static u8 hpt3xx_udma_filter(ide_drive_t *drive)
630 {
631 ide_hwif_t *hwif = drive->hwif;
632 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
633 u8 mask = hwif->ultra_mask;
634
635 switch (info->chip_type) {
636 case HPT36x:
637 if (!HPT366_ALLOW_ATA66_4 ||
638 check_in_drive_list(drive, bad_ata66_4))
639 mask = ATA_UDMA3;
640
641 if (!HPT366_ALLOW_ATA66_3 ||
642 check_in_drive_list(drive, bad_ata66_3))
643 mask = ATA_UDMA2;
644 break;
645 case HPT370:
646 if (!HPT370_ALLOW_ATA100_5 ||
647 check_in_drive_list(drive, bad_ata100_5))
648 mask = ATA_UDMA4;
649 break;
650 case HPT370A:
651 if (!HPT370_ALLOW_ATA100_5 ||
652 check_in_drive_list(drive, bad_ata100_5))
653 return ATA_UDMA4;
654 case HPT372 :
655 case HPT372A:
656 case HPT372N:
657 case HPT374 :
658 if (ata_id_is_sata(drive->id))
659 mask &= ~0x0e;
660 /* Fall thru */
661 default:
662 return mask;
663 }
664
665 return check_in_drive_list(drive, bad_ata33) ? 0x00 : mask;
666 }
667
668 static u8 hpt3xx_mdma_filter(ide_drive_t *drive)
669 {
670 ide_hwif_t *hwif = drive->hwif;
671 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
672
673 switch (info->chip_type) {
674 case HPT372 :
675 case HPT372A:
676 case HPT372N:
677 case HPT374 :
678 if (ata_id_is_sata(drive->id))
679 return 0x00;
680 /* Fall thru */
681 default:
682 return 0x07;
683 }
684 }
685
686 static u32 get_speed_setting(u8 speed, struct hpt_info *info)
687 {
688 int i;
689
690 /*
691 * Lookup the transfer mode table to get the index into
692 * the timing table.
693 *
694 * NOTE: For XFER_PIO_SLOW, PIO mode 0 timings will be used.
695 */
696 for (i = 0; i < ARRAY_SIZE(xfer_speeds) - 1; i++)
697 if (xfer_speeds[i] == speed)
698 break;
699
700 return info->timings->clock_table[info->clock][i];
701 }
702
703 static void hpt3xx_set_mode(ide_drive_t *drive, const u8 speed)
704 {
705 ide_hwif_t *hwif = drive->hwif;
706 struct pci_dev *dev = to_pci_dev(hwif->dev);
707 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
708 struct hpt_timings *t = info->timings;
709 u8 itr_addr = 0x40 + (drive->dn * 4);
710 u32 old_itr = 0;
711 u32 new_itr = get_speed_setting(speed, info);
712 u32 itr_mask = speed < XFER_MW_DMA_0 ? t->pio_mask :
713 (speed < XFER_UDMA_0 ? t->dma_mask :
714 t->ultra_mask);
715
716 pci_read_config_dword(dev, itr_addr, &old_itr);
717 new_itr = (old_itr & ~itr_mask) | (new_itr & itr_mask);
718 /*
719 * Disable on-chip PIO FIFO/buffer (and PIO MST mode as well)
720 * to avoid problems handling I/O errors later
721 */
722 new_itr &= ~0xc0000000;
723
724 pci_write_config_dword(dev, itr_addr, new_itr);
725 }
726
727 static void hpt3xx_set_pio_mode(ide_drive_t *drive, const u8 pio)
728 {
729 hpt3xx_set_mode(drive, XFER_PIO_0 + pio);
730 }
731
732 static void hpt3xx_quirkproc(ide_drive_t *drive)
733 {
734 char *m = (char *)&drive->id[ATA_ID_PROD];
735 const char **list = quirk_drives;
736
737 while (*list)
738 if (strstr(m, *list++)) {
739 drive->quirk_list = 1;
740 return;
741 }
742
743 drive->quirk_list = 0;
744 }
745
746 static void hpt3xx_maskproc(ide_drive_t *drive, int mask)
747 {
748 ide_hwif_t *hwif = drive->hwif;
749 struct pci_dev *dev = to_pci_dev(hwif->dev);
750 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
751
752 if (drive->quirk_list == 0)
753 return;
754
755 if (info->chip_type >= HPT370) {
756 u8 scr1 = 0;
757
758 pci_read_config_byte(dev, 0x5a, &scr1);
759 if (((scr1 & 0x10) >> 4) != mask) {
760 if (mask)
761 scr1 |= 0x10;
762 else
763 scr1 &= ~0x10;
764 pci_write_config_byte(dev, 0x5a, scr1);
765 }
766 } else if (mask)
767 disable_irq(hwif->irq);
768 else
769 enable_irq(hwif->irq);
770 }
771
772 /*
773 * This is specific to the HPT366 UDMA chipset
774 * by HighPoint|Triones Technologies, Inc.
775 */
776 static void hpt366_dma_lost_irq(ide_drive_t *drive)
777 {
778 struct pci_dev *dev = to_pci_dev(drive->hwif->dev);
779 u8 mcr1 = 0, mcr3 = 0, scr1 = 0;
780
781 pci_read_config_byte(dev, 0x50, &mcr1);
782 pci_read_config_byte(dev, 0x52, &mcr3);
783 pci_read_config_byte(dev, 0x5a, &scr1);
784 printk("%s: (%s) mcr1=0x%02x, mcr3=0x%02x, scr1=0x%02x\n",
785 drive->name, __func__, mcr1, mcr3, scr1);
786 if (scr1 & 0x10)
787 pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
788 ide_dma_lost_irq(drive);
789 }
790
791 static void hpt370_clear_engine(ide_drive_t *drive)
792 {
793 ide_hwif_t *hwif = drive->hwif;
794 struct pci_dev *dev = to_pci_dev(hwif->dev);
795
796 pci_write_config_byte(dev, hwif->select_data, 0x37);
797 udelay(10);
798 }
799
800 static void hpt370_irq_timeout(ide_drive_t *drive)
801 {
802 ide_hwif_t *hwif = drive->hwif;
803 struct pci_dev *dev = to_pci_dev(hwif->dev);
804 u16 bfifo = 0;
805 u8 dma_cmd;
806
807 pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
808 printk(KERN_DEBUG "%s: %d bytes in FIFO\n", drive->name, bfifo & 0x1ff);
809
810 /* get DMA command mode */
811 dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
812 /* stop DMA */
813 outb(dma_cmd & ~ATA_DMA_START, hwif->dma_base + ATA_DMA_CMD);
814 hpt370_clear_engine(drive);
815 }
816
817 static void hpt370_dma_start(ide_drive_t *drive)
818 {
819 #ifdef HPT_RESET_STATE_ENGINE
820 hpt370_clear_engine(drive);
821 #endif
822 ide_dma_start(drive);
823 }
824
825 static int hpt370_dma_end(ide_drive_t *drive)
826 {
827 ide_hwif_t *hwif = drive->hwif;
828 u8 dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
829
830 if (dma_stat & ATA_DMA_ACTIVE) {
831 /* wait a little */
832 udelay(20);
833 dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
834 if (dma_stat & ATA_DMA_ACTIVE)
835 hpt370_irq_timeout(drive);
836 }
837 return ide_dma_end(drive);
838 }
839
840 /* returns 1 if DMA IRQ issued, 0 otherwise */
841 static int hpt374_dma_test_irq(ide_drive_t *drive)
842 {
843 ide_hwif_t *hwif = drive->hwif;
844 struct pci_dev *dev = to_pci_dev(hwif->dev);
845 u16 bfifo = 0;
846 u8 dma_stat;
847
848 pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
849 if (bfifo & 0x1FF) {
850 // printk("%s: %d bytes in FIFO\n", drive->name, bfifo);
851 return 0;
852 }
853
854 dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
855 /* return 1 if INTR asserted */
856 if (dma_stat & ATA_DMA_INTR)
857 return 1;
858
859 return 0;
860 }
861
862 static int hpt374_dma_end(ide_drive_t *drive)
863 {
864 ide_hwif_t *hwif = drive->hwif;
865 struct pci_dev *dev = to_pci_dev(hwif->dev);
866 u8 mcr = 0, mcr_addr = hwif->select_data;
867 u8 bwsr = 0, mask = hwif->channel ? 0x02 : 0x01;
868
869 pci_read_config_byte(dev, 0x6a, &bwsr);
870 pci_read_config_byte(dev, mcr_addr, &mcr);
871 if (bwsr & mask)
872 pci_write_config_byte(dev, mcr_addr, mcr | 0x30);
873 return ide_dma_end(drive);
874 }
875
876 /**
877 * hpt3xxn_set_clock - perform clock switching dance
878 * @hwif: hwif to switch
879 * @mode: clocking mode (0x21 for write, 0x23 otherwise)
880 *
881 * Switch the DPLL clock on the HPT3xxN devices. This is a right mess.
882 */
883
884 static void hpt3xxn_set_clock(ide_hwif_t *hwif, u8 mode)
885 {
886 unsigned long base = hwif->extra_base;
887 u8 scr2 = inb(base + 0x6b);
888
889 if ((scr2 & 0x7f) == mode)
890 return;
891
892 /* Tristate the bus */
893 outb(0x80, base + 0x63);
894 outb(0x80, base + 0x67);
895
896 /* Switch clock and reset channels */
897 outb(mode, base + 0x6b);
898 outb(0xc0, base + 0x69);
899
900 /*
901 * Reset the state machines.
902 * NOTE: avoid accidentally enabling the disabled channels.
903 */
904 outb(inb(base + 0x60) | 0x32, base + 0x60);
905 outb(inb(base + 0x64) | 0x32, base + 0x64);
906
907 /* Complete reset */
908 outb(0x00, base + 0x69);
909
910 /* Reconnect channels to bus */
911 outb(0x00, base + 0x63);
912 outb(0x00, base + 0x67);
913 }
914
915 /**
916 * hpt3xxn_rw_disk - prepare for I/O
917 * @drive: drive for command
918 * @rq: block request structure
919 *
920 * This is called when a disk I/O is issued to HPT3xxN.
921 * We need it because of the clock switching.
922 */
923
924 static void hpt3xxn_rw_disk(ide_drive_t *drive, struct request *rq)
925 {
926 hpt3xxn_set_clock(drive->hwif, rq_data_dir(rq) ? 0x23 : 0x21);
927 }
928
929 /**
930 * hpt37x_calibrate_dpll - calibrate the DPLL
931 * @dev: PCI device
932 *
933 * Perform a calibration cycle on the DPLL.
934 * Returns 1 if this succeeds
935 */
936 static int hpt37x_calibrate_dpll(struct pci_dev *dev, u16 f_low, u16 f_high)
937 {
938 u32 dpll = (f_high << 16) | f_low | 0x100;
939 u8 scr2;
940 int i;
941
942 pci_write_config_dword(dev, 0x5c, dpll);
943
944 /* Wait for oscillator ready */
945 for(i = 0; i < 0x5000; ++i) {
946 udelay(50);
947 pci_read_config_byte(dev, 0x5b, &scr2);
948 if (scr2 & 0x80)
949 break;
950 }
951 /* See if it stays ready (we'll just bail out if it's not yet) */
952 for(i = 0; i < 0x1000; ++i) {
953 pci_read_config_byte(dev, 0x5b, &scr2);
954 /* DPLL destabilized? */
955 if(!(scr2 & 0x80))
956 return 0;
957 }
958 /* Turn off tuning, we have the DPLL set */
959 pci_read_config_dword (dev, 0x5c, &dpll);
960 pci_write_config_dword(dev, 0x5c, (dpll & ~0x100));
961 return 1;
962 }
963
964 static void hpt3xx_disable_fast_irq(struct pci_dev *dev, u8 mcr_addr)
965 {
966 struct ide_host *host = pci_get_drvdata(dev);
967 struct hpt_info *info = host->host_priv + (&dev->dev == host->dev[1]);
968 u8 chip_type = info->chip_type;
969 u8 new_mcr, old_mcr = 0;
970
971 /*
972 * Disable the "fast interrupt" prediction. Don't hold off
973 * on interrupts. (== 0x01 despite what the docs say)
974 */
975 pci_read_config_byte(dev, mcr_addr + 1, &old_mcr);
976
977 if (chip_type >= HPT374)
978 new_mcr = old_mcr & ~0x07;
979 else if (chip_type >= HPT370) {
980 new_mcr = old_mcr;
981 new_mcr &= ~0x02;
982 #ifdef HPT_DELAY_INTERRUPT
983 new_mcr &= ~0x01;
984 #else
985 new_mcr |= 0x01;
986 #endif
987 } else /* HPT366 and HPT368 */
988 new_mcr = old_mcr & ~0x80;
989
990 if (new_mcr != old_mcr)
991 pci_write_config_byte(dev, mcr_addr + 1, new_mcr);
992 }
993
994 static int init_chipset_hpt366(struct pci_dev *dev)
995 {
996 unsigned long io_base = pci_resource_start(dev, 4);
997 struct hpt_info *info = hpt3xx_get_info(&dev->dev);
998 const char *name = DRV_NAME;
999 u8 pci_clk, dpll_clk = 0; /* PCI and DPLL clock in MHz */
1000 u8 chip_type;
1001 enum ata_clock clock;
1002
1003 chip_type = info->chip_type;
1004
1005 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, (L1_CACHE_BYTES / 4));
1006 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x78);
1007 pci_write_config_byte(dev, PCI_MIN_GNT, 0x08);
1008 pci_write_config_byte(dev, PCI_MAX_LAT, 0x08);
1009
1010 /*
1011 * First, try to estimate the PCI clock frequency...
1012 */
1013 if (chip_type >= HPT370) {
1014 u8 scr1 = 0;
1015 u16 f_cnt = 0;
1016 u32 temp = 0;
1017
1018 /* Interrupt force enable. */
1019 pci_read_config_byte(dev, 0x5a, &scr1);
1020 if (scr1 & 0x10)
1021 pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
1022
1023 /*
1024 * HighPoint does this for HPT372A.
1025 * NOTE: This register is only writeable via I/O space.
1026 */
1027 if (chip_type == HPT372A)
1028 outb(0x0e, io_base + 0x9c);
1029
1030 /*
1031 * Default to PCI clock. Make sure MA15/16 are set to output
1032 * to prevent drives having problems with 40-pin cables.
1033 */
1034 pci_write_config_byte(dev, 0x5b, 0x23);
1035
1036 /*
1037 * We'll have to read f_CNT value in order to determine
1038 * the PCI clock frequency according to the following ratio:
1039 *
1040 * f_CNT = Fpci * 192 / Fdpll
1041 *
1042 * First try reading the register in which the HighPoint BIOS
1043 * saves f_CNT value before reprogramming the DPLL from its
1044 * default setting (which differs for the various chips).
1045 *
1046 * NOTE: This register is only accessible via I/O space;
1047 * HPT374 BIOS only saves it for the function 0, so we have to
1048 * always read it from there -- no need to check the result of
1049 * pci_get_slot() for the function 0 as the whole device has
1050 * been already "pinned" (via function 1) in init_setup_hpt374()
1051 */
1052 if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
1053 struct pci_dev *dev1 = pci_get_slot(dev->bus,
1054 dev->devfn - 1);
1055 unsigned long io_base = pci_resource_start(dev1, 4);
1056
1057 temp = inl(io_base + 0x90);
1058 pci_dev_put(dev1);
1059 } else
1060 temp = inl(io_base + 0x90);
1061
1062 /*
1063 * In case the signature check fails, we'll have to
1064 * resort to reading the f_CNT register itself in hopes
1065 * that nobody has touched the DPLL yet...
1066 */
1067 if ((temp & 0xFFFFF000) != 0xABCDE000) {
1068 int i;
1069
1070 printk(KERN_WARNING "%s %s: no clock data saved by "
1071 "BIOS\n", name, pci_name(dev));
1072
1073 /* Calculate the average value of f_CNT. */
1074 for (temp = i = 0; i < 128; i++) {
1075 pci_read_config_word(dev, 0x78, &f_cnt);
1076 temp += f_cnt & 0x1ff;
1077 mdelay(1);
1078 }
1079 f_cnt = temp / 128;
1080 } else
1081 f_cnt = temp & 0x1ff;
1082
1083 dpll_clk = info->dpll_clk;
1084 pci_clk = (f_cnt * dpll_clk) / 192;
1085
1086 /* Clamp PCI clock to bands. */
1087 if (pci_clk < 40)
1088 pci_clk = 33;
1089 else if(pci_clk < 45)
1090 pci_clk = 40;
1091 else if(pci_clk < 55)
1092 pci_clk = 50;
1093 else
1094 pci_clk = 66;
1095
1096 printk(KERN_INFO "%s %s: DPLL base: %d MHz, f_CNT: %d, "
1097 "assuming %d MHz PCI\n", name, pci_name(dev),
1098 dpll_clk, f_cnt, pci_clk);
1099 } else {
1100 u32 itr1 = 0;
1101
1102 pci_read_config_dword(dev, 0x40, &itr1);
1103
1104 /* Detect PCI clock by looking at cmd_high_time. */
1105 switch((itr1 >> 8) & 0x07) {
1106 case 0x09:
1107 pci_clk = 40;
1108 break;
1109 case 0x05:
1110 pci_clk = 25;
1111 break;
1112 case 0x07:
1113 default:
1114 pci_clk = 33;
1115 break;
1116 }
1117 }
1118
1119 /* Let's assume we'll use PCI clock for the ATA clock... */
1120 switch (pci_clk) {
1121 case 25:
1122 clock = ATA_CLOCK_25MHZ;
1123 break;
1124 case 33:
1125 default:
1126 clock = ATA_CLOCK_33MHZ;
1127 break;
1128 case 40:
1129 clock = ATA_CLOCK_40MHZ;
1130 break;
1131 case 50:
1132 clock = ATA_CLOCK_50MHZ;
1133 break;
1134 case 66:
1135 clock = ATA_CLOCK_66MHZ;
1136 break;
1137 }
1138
1139 /*
1140 * Only try the DPLL if we don't have a table for the PCI clock that
1141 * we are running at for HPT370/A, always use it for anything newer...
1142 *
1143 * NOTE: Using the internal DPLL results in slow reads on 33 MHz PCI.
1144 * We also don't like using the DPLL because this causes glitches
1145 * on PRST-/SRST- when the state engine gets reset...
1146 */
1147 if (chip_type >= HPT374 || info->timings->clock_table[clock] == NULL) {
1148 u16 f_low, delta = pci_clk < 50 ? 2 : 4;
1149 int adjust;
1150
1151 /*
1152 * Select 66 MHz DPLL clock only if UltraATA/133 mode is
1153 * supported/enabled, use 50 MHz DPLL clock otherwise...
1154 */
1155 if (info->udma_mask == ATA_UDMA6) {
1156 dpll_clk = 66;
1157 clock = ATA_CLOCK_66MHZ;
1158 } else if (dpll_clk) { /* HPT36x chips don't have DPLL */
1159 dpll_clk = 50;
1160 clock = ATA_CLOCK_50MHZ;
1161 }
1162
1163 if (info->timings->clock_table[clock] == NULL) {
1164 printk(KERN_ERR "%s %s: unknown bus timing!\n",
1165 name, pci_name(dev));
1166 return -EIO;
1167 }
1168
1169 /* Select the DPLL clock. */
1170 pci_write_config_byte(dev, 0x5b, 0x21);
1171
1172 /*
1173 * Adjust the DPLL based upon PCI clock, enable it,
1174 * and wait for stabilization...
1175 */
1176 f_low = (pci_clk * 48) / dpll_clk;
1177
1178 for (adjust = 0; adjust < 8; adjust++) {
1179 if(hpt37x_calibrate_dpll(dev, f_low, f_low + delta))
1180 break;
1181
1182 /*
1183 * See if it'll settle at a fractionally different clock
1184 */
1185 if (adjust & 1)
1186 f_low -= adjust >> 1;
1187 else
1188 f_low += adjust >> 1;
1189 }
1190 if (adjust == 8) {
1191 printk(KERN_ERR "%s %s: DPLL did not stabilize!\n",
1192 name, pci_name(dev));
1193 return -EIO;
1194 }
1195
1196 printk(KERN_INFO "%s %s: using %d MHz DPLL clock\n",
1197 name, pci_name(dev), dpll_clk);
1198 } else {
1199 /* Mark the fact that we're not using the DPLL. */
1200 dpll_clk = 0;
1201
1202 printk(KERN_INFO "%s %s: using %d MHz PCI clock\n",
1203 name, pci_name(dev), pci_clk);
1204 }
1205
1206 /* Store the clock frequencies. */
1207 info->dpll_clk = dpll_clk;
1208 info->pci_clk = pci_clk;
1209 info->clock = clock;
1210
1211 if (chip_type >= HPT370) {
1212 u8 mcr1, mcr4;
1213
1214 /*
1215 * Reset the state engines.
1216 * NOTE: Avoid accidentally enabling the disabled channels.
1217 */
1218 pci_read_config_byte (dev, 0x50, &mcr1);
1219 pci_read_config_byte (dev, 0x54, &mcr4);
1220 pci_write_config_byte(dev, 0x50, (mcr1 | 0x32));
1221 pci_write_config_byte(dev, 0x54, (mcr4 | 0x32));
1222 udelay(100);
1223 }
1224
1225 /*
1226 * On HPT371N, if ATA clock is 66 MHz we must set bit 2 in
1227 * the MISC. register to stretch the UltraDMA Tss timing.
1228 * NOTE: This register is only writeable via I/O space.
1229 */
1230 if (chip_type == HPT371N && clock == ATA_CLOCK_66MHZ)
1231 outb(inb(io_base + 0x9c) | 0x04, io_base + 0x9c);
1232
1233 hpt3xx_disable_fast_irq(dev, 0x50);
1234 hpt3xx_disable_fast_irq(dev, 0x54);
1235
1236 return 0;
1237 }
1238
1239 static u8 hpt3xx_cable_detect(ide_hwif_t *hwif)
1240 {
1241 struct pci_dev *dev = to_pci_dev(hwif->dev);
1242 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
1243 u8 chip_type = info->chip_type;
1244 u8 scr1 = 0, ata66 = hwif->channel ? 0x01 : 0x02;
1245
1246 /*
1247 * The HPT37x uses the CBLID pins as outputs for MA15/MA16
1248 * address lines to access an external EEPROM. To read valid
1249 * cable detect state the pins must be enabled as inputs.
1250 */
1251 if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
1252 /*
1253 * HPT374 PCI function 1
1254 * - set bit 15 of reg 0x52 to enable TCBLID as input
1255 * - set bit 15 of reg 0x56 to enable FCBLID as input
1256 */
1257 u8 mcr_addr = hwif->select_data + 2;
1258 u16 mcr;
1259
1260 pci_read_config_word(dev, mcr_addr, &mcr);
1261 pci_write_config_word(dev, mcr_addr, (mcr | 0x8000));
1262 /* now read cable id register */
1263 pci_read_config_byte(dev, 0x5a, &scr1);
1264 pci_write_config_word(dev, mcr_addr, mcr);
1265 } else if (chip_type >= HPT370) {
1266 /*
1267 * HPT370/372 and 374 pcifn 0
1268 * - clear bit 0 of reg 0x5b to enable P/SCBLID as inputs
1269 */
1270 u8 scr2 = 0;
1271
1272 pci_read_config_byte(dev, 0x5b, &scr2);
1273 pci_write_config_byte(dev, 0x5b, (scr2 & ~1));
1274 /* now read cable id register */
1275 pci_read_config_byte(dev, 0x5a, &scr1);
1276 pci_write_config_byte(dev, 0x5b, scr2);
1277 } else
1278 pci_read_config_byte(dev, 0x5a, &scr1);
1279
1280 return (scr1 & ata66) ? ATA_CBL_PATA40 : ATA_CBL_PATA80;
1281 }
1282
1283 static void __devinit init_hwif_hpt366(ide_hwif_t *hwif)
1284 {
1285 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
1286 u8 chip_type = info->chip_type;
1287
1288 /* Cache the channel's MISC. control registers' offset */
1289 hwif->select_data = hwif->channel ? 0x54 : 0x50;
1290
1291 /*
1292 * HPT3xxN chips have some complications:
1293 *
1294 * - on 33 MHz PCI we must clock switch
1295 * - on 66 MHz PCI we must NOT use the PCI clock
1296 */
1297 if (chip_type >= HPT372N && info->dpll_clk && info->pci_clk < 66) {
1298 /*
1299 * Clock is shared between the channels,
1300 * so we'll have to serialize them... :-(
1301 */
1302 hwif->host->host_flags |= IDE_HFLAG_SERIALIZE;
1303 hwif->rw_disk = &hpt3xxn_rw_disk;
1304 }
1305 }
1306
1307 static int __devinit init_dma_hpt366(ide_hwif_t *hwif,
1308 const struct ide_port_info *d)
1309 {
1310 struct pci_dev *dev = to_pci_dev(hwif->dev);
1311 unsigned long flags, base = ide_pci_dma_base(hwif, d);
1312 u8 dma_old, dma_new, masterdma = 0, slavedma = 0;
1313
1314 if (base == 0)
1315 return -1;
1316
1317 hwif->dma_base = base;
1318
1319 if (ide_pci_check_simplex(hwif, d) < 0)
1320 return -1;
1321
1322 if (ide_pci_set_master(dev, d->name) < 0)
1323 return -1;
1324
1325 dma_old = inb(base + 2);
1326
1327 local_irq_save(flags);
1328
1329 dma_new = dma_old;
1330 pci_read_config_byte(dev, hwif->channel ? 0x4b : 0x43, &masterdma);
1331 pci_read_config_byte(dev, hwif->channel ? 0x4f : 0x47, &slavedma);
1332
1333 if (masterdma & 0x30) dma_new |= 0x20;
1334 if ( slavedma & 0x30) dma_new |= 0x40;
1335 if (dma_new != dma_old)
1336 outb(dma_new, base + 2);
1337
1338 local_irq_restore(flags);
1339
1340 printk(KERN_INFO " %s: BM-DMA at 0x%04lx-0x%04lx\n",
1341 hwif->name, base, base + 7);
1342
1343 hwif->extra_base = base + (hwif->channel ? 8 : 16);
1344
1345 if (ide_allocate_dma_engine(hwif))
1346 return -1;
1347
1348 return 0;
1349 }
1350
1351 static void __devinit hpt374_init(struct pci_dev *dev, struct pci_dev *dev2)
1352 {
1353 if (dev2->irq != dev->irq) {
1354 /* FIXME: we need a core pci_set_interrupt() */
1355 dev2->irq = dev->irq;
1356 printk(KERN_INFO DRV_NAME " %s: PCI config space interrupt "
1357 "fixed\n", pci_name(dev2));
1358 }
1359 }
1360
1361 static void __devinit hpt371_init(struct pci_dev *dev)
1362 {
1363 u8 mcr1 = 0;
1364
1365 /*
1366 * HPT371 chips physically have only one channel, the secondary one,
1367 * but the primary channel registers do exist! Go figure...
1368 * So, we manually disable the non-existing channel here
1369 * (if the BIOS hasn't done this already).
1370 */
1371 pci_read_config_byte(dev, 0x50, &mcr1);
1372 if (mcr1 & 0x04)
1373 pci_write_config_byte(dev, 0x50, mcr1 & ~0x04);
1374 }
1375
1376 static int __devinit hpt36x_init(struct pci_dev *dev, struct pci_dev *dev2)
1377 {
1378 u8 mcr1 = 0, pin1 = 0, pin2 = 0;
1379
1380 /*
1381 * Now we'll have to force both channels enabled if
1382 * at least one of them has been enabled by BIOS...
1383 */
1384 pci_read_config_byte(dev, 0x50, &mcr1);
1385 if (mcr1 & 0x30)
1386 pci_write_config_byte(dev, 0x50, mcr1 | 0x30);
1387
1388 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin1);
1389 pci_read_config_byte(dev2, PCI_INTERRUPT_PIN, &pin2);
1390
1391 if (pin1 != pin2 && dev->irq == dev2->irq) {
1392 printk(KERN_INFO DRV_NAME " %s: onboard version of chipset, "
1393 "pin1=%d pin2=%d\n", pci_name(dev), pin1, pin2);
1394 return 1;
1395 }
1396
1397 return 0;
1398 }
1399
1400 #define IDE_HFLAGS_HPT3XX \
1401 (IDE_HFLAG_NO_ATAPI_DMA | \
1402 IDE_HFLAG_OFF_BOARD)
1403
1404 static const struct ide_port_ops hpt3xx_port_ops = {
1405 .set_pio_mode = hpt3xx_set_pio_mode,
1406 .set_dma_mode = hpt3xx_set_mode,
1407 .quirkproc = hpt3xx_quirkproc,
1408 .maskproc = hpt3xx_maskproc,
1409 .mdma_filter = hpt3xx_mdma_filter,
1410 .udma_filter = hpt3xx_udma_filter,
1411 .cable_detect = hpt3xx_cable_detect,
1412 };
1413
1414 static const struct ide_dma_ops hpt37x_dma_ops = {
1415 .dma_host_set = ide_dma_host_set,
1416 .dma_setup = ide_dma_setup,
1417 .dma_start = ide_dma_start,
1418 .dma_end = hpt374_dma_end,
1419 .dma_test_irq = hpt374_dma_test_irq,
1420 .dma_lost_irq = ide_dma_lost_irq,
1421 .dma_timer_expiry = ide_dma_sff_timer_expiry,
1422 .dma_sff_read_status = ide_dma_sff_read_status,
1423 };
1424
1425 static const struct ide_dma_ops hpt370_dma_ops = {
1426 .dma_host_set = ide_dma_host_set,
1427 .dma_setup = ide_dma_setup,
1428 .dma_start = hpt370_dma_start,
1429 .dma_end = hpt370_dma_end,
1430 .dma_test_irq = ide_dma_test_irq,
1431 .dma_lost_irq = ide_dma_lost_irq,
1432 .dma_timer_expiry = ide_dma_sff_timer_expiry,
1433 .dma_clear = hpt370_irq_timeout,
1434 .dma_sff_read_status = ide_dma_sff_read_status,
1435 };
1436
1437 static const struct ide_dma_ops hpt36x_dma_ops = {
1438 .dma_host_set = ide_dma_host_set,
1439 .dma_setup = ide_dma_setup,
1440 .dma_start = ide_dma_start,
1441 .dma_end = ide_dma_end,
1442 .dma_test_irq = ide_dma_test_irq,
1443 .dma_lost_irq = hpt366_dma_lost_irq,
1444 .dma_timer_expiry = ide_dma_sff_timer_expiry,
1445 .dma_sff_read_status = ide_dma_sff_read_status,
1446 };
1447
1448 static const struct ide_port_info hpt366_chipsets[] __devinitdata = {
1449 { /* 0: HPT36x */
1450 .name = DRV_NAME,
1451 .init_chipset = init_chipset_hpt366,
1452 .init_hwif = init_hwif_hpt366,
1453 .init_dma = init_dma_hpt366,
1454 /*
1455 * HPT36x chips have one channel per function and have
1456 * both channel enable bits located differently and visible
1457 * to both functions -- really stupid design decision... :-(
1458 * Bit 4 is for the primary channel, bit 5 for the secondary.
1459 */
1460 .enablebits = {{0x50,0x10,0x10}, {0x54,0x04,0x04}},
1461 .port_ops = &hpt3xx_port_ops,
1462 .dma_ops = &hpt36x_dma_ops,
1463 .host_flags = IDE_HFLAGS_HPT3XX | IDE_HFLAG_SINGLE,
1464 .pio_mask = ATA_PIO4,
1465 .mwdma_mask = ATA_MWDMA2,
1466 },
1467 { /* 1: HPT3xx */
1468 .name = DRV_NAME,
1469 .init_chipset = init_chipset_hpt366,
1470 .init_hwif = init_hwif_hpt366,
1471 .init_dma = init_dma_hpt366,
1472 .enablebits = {{0x50,0x04,0x04}, {0x54,0x04,0x04}},
1473 .port_ops = &hpt3xx_port_ops,
1474 .dma_ops = &hpt37x_dma_ops,
1475 .host_flags = IDE_HFLAGS_HPT3XX,
1476 .pio_mask = ATA_PIO4,
1477 .mwdma_mask = ATA_MWDMA2,
1478 }
1479 };
1480
1481 /**
1482 * hpt366_init_one - called when an HPT366 is found
1483 * @dev: the hpt366 device
1484 * @id: the matching pci id
1485 *
1486 * Called when the PCI registration layer (or the IDE initialization)
1487 * finds a device matching our IDE device tables.
1488 */
1489 static int __devinit hpt366_init_one(struct pci_dev *dev, const struct pci_device_id *id)
1490 {
1491 const struct hpt_info *info = NULL;
1492 struct hpt_info *dyn_info;
1493 struct pci_dev *dev2 = NULL;
1494 struct ide_port_info d;
1495 u8 idx = id->driver_data;
1496 u8 rev = dev->revision;
1497 int ret;
1498
1499 if ((idx == 0 || idx == 4) && (PCI_FUNC(dev->devfn) & 1))
1500 return -ENODEV;
1501
1502 switch (idx) {
1503 case 0:
1504 if (rev < 3)
1505 info = &hpt36x;
1506 else {
1507 switch (min_t(u8, rev, 6)) {
1508 case 3: info = &hpt370; break;
1509 case 4: info = &hpt370a; break;
1510 case 5: info = &hpt372; break;
1511 case 6: info = &hpt372n; break;
1512 }
1513 idx++;
1514 }
1515 break;
1516 case 1:
1517 info = (rev > 1) ? &hpt372n : &hpt372a;
1518 break;
1519 case 2:
1520 info = (rev > 1) ? &hpt302n : &hpt302;
1521 break;
1522 case 3:
1523 hpt371_init(dev);
1524 info = (rev > 1) ? &hpt371n : &hpt371;
1525 break;
1526 case 4:
1527 info = &hpt374;
1528 break;
1529 case 5:
1530 info = &hpt372n;
1531 break;
1532 }
1533
1534 printk(KERN_INFO DRV_NAME ": %s chipset detected\n", info->chip_name);
1535
1536 d = hpt366_chipsets[min_t(u8, idx, 1)];
1537
1538 d.udma_mask = info->udma_mask;
1539
1540 /* fixup ->dma_ops for HPT370/HPT370A */
1541 if (info == &hpt370 || info == &hpt370a)
1542 d.dma_ops = &hpt370_dma_ops;
1543
1544 if (info == &hpt36x || info == &hpt374)
1545 dev2 = pci_get_slot(dev->bus, dev->devfn + 1);
1546
1547 dyn_info = kzalloc(sizeof(*dyn_info) * (dev2 ? 2 : 1), GFP_KERNEL);
1548 if (dyn_info == NULL) {
1549 printk(KERN_ERR "%s %s: out of memory!\n",
1550 d.name, pci_name(dev));
1551 pci_dev_put(dev2);
1552 return -ENOMEM;
1553 }
1554
1555 /*
1556 * Copy everything from a static "template" structure
1557 * to just allocated per-chip hpt_info structure.
1558 */
1559 memcpy(dyn_info, info, sizeof(*dyn_info));
1560
1561 if (dev2) {
1562 memcpy(dyn_info + 1, info, sizeof(*dyn_info));
1563
1564 if (info == &hpt374)
1565 hpt374_init(dev, dev2);
1566 else {
1567 if (hpt36x_init(dev, dev2))
1568 d.host_flags &= ~IDE_HFLAG_NON_BOOTABLE;
1569 }
1570
1571 ret = ide_pci_init_two(dev, dev2, &d, dyn_info);
1572 if (ret < 0) {
1573 pci_dev_put(dev2);
1574 kfree(dyn_info);
1575 }
1576 return ret;
1577 }
1578
1579 ret = ide_pci_init_one(dev, &d, dyn_info);
1580 if (ret < 0)
1581 kfree(dyn_info);
1582
1583 return ret;
1584 }
1585
1586 static void __devexit hpt366_remove(struct pci_dev *dev)
1587 {
1588 struct ide_host *host = pci_get_drvdata(dev);
1589 struct ide_info *info = host->host_priv;
1590 struct pci_dev *dev2 = host->dev[1] ? to_pci_dev(host->dev[1]) : NULL;
1591
1592 ide_pci_remove(dev);
1593 pci_dev_put(dev2);
1594 kfree(info);
1595 }
1596
1597 static const struct pci_device_id hpt366_pci_tbl[] __devinitconst = {
1598 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT366), 0 },
1599 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372), 1 },
1600 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT302), 2 },
1601 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT371), 3 },
1602 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT374), 4 },
1603 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372N), 5 },
1604 { 0, },
1605 };
1606 MODULE_DEVICE_TABLE(pci, hpt366_pci_tbl);
1607
1608 static struct pci_driver hpt366_pci_driver = {
1609 .name = "HPT366_IDE",
1610 .id_table = hpt366_pci_tbl,
1611 .probe = hpt366_init_one,
1612 .remove = __devexit_p(hpt366_remove),
1613 .suspend = ide_pci_suspend,
1614 .resume = ide_pci_resume,
1615 };
1616
1617 static int __init hpt366_ide_init(void)
1618 {
1619 return ide_pci_register_driver(&hpt366_pci_driver);
1620 }
1621
1622 static void __exit hpt366_ide_exit(void)
1623 {
1624 pci_unregister_driver(&hpt366_pci_driver);
1625 }
1626
1627 module_init(hpt366_ide_init);
1628 module_exit(hpt366_ide_exit);
1629
1630 MODULE_AUTHOR("Andre Hedrick");
1631 MODULE_DESCRIPTION("PCI driver module for Highpoint HPT366 IDE");
1632 MODULE_LICENSE("GPL");
This page took 0.102782 seconds and 5 git commands to generate.