ide: add IDE_DFLAG_NIEN_QUIRK device flag
[deliverable/linux.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58 unsigned int nr_bytes)
59 {
60 /*
61 * decide whether to reenable DMA -- 3 is a random magic for now,
62 * if we DMA timeout more than 3 times, just stay in PIO
63 */
64 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65 drive->retry_pio <= 3) {
66 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67 ide_dma_on(drive);
68 }
69
70 return blk_end_request(rq, error, nr_bytes);
71 }
72 EXPORT_SYMBOL_GPL(ide_end_rq);
73
74 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
75 {
76 const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
77 struct ide_taskfile *tf = &cmd->tf;
78 struct request *rq = cmd->rq;
79 u8 tf_cmd = tf->command;
80
81 tf->error = err;
82 tf->status = stat;
83
84 if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
85 u8 data[2];
86
87 tp_ops->input_data(drive, cmd, data, 2);
88
89 cmd->tf.data = data[0];
90 cmd->hob.data = data[1];
91 }
92
93 ide_tf_readback(drive, cmd);
94
95 if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
96 tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
97 if (tf->lbal != 0xc4) {
98 printk(KERN_ERR "%s: head unload failed!\n",
99 drive->name);
100 ide_tf_dump(drive->name, cmd);
101 } else
102 drive->dev_flags |= IDE_DFLAG_PARKED;
103 }
104
105 if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
106 struct ide_cmd *orig_cmd = rq->special;
107
108 if (cmd->tf_flags & IDE_TFLAG_DYN)
109 kfree(orig_cmd);
110 else
111 memcpy(orig_cmd, cmd, sizeof(*cmd));
112 }
113 }
114
115 /* obsolete, blk_rq_bytes() should be used instead */
116 unsigned int ide_rq_bytes(struct request *rq)
117 {
118 if (blk_pc_request(rq))
119 return rq->data_len;
120 else
121 return rq->hard_cur_sectors << 9;
122 }
123 EXPORT_SYMBOL_GPL(ide_rq_bytes);
124
125 int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
126 {
127 ide_hwif_t *hwif = drive->hwif;
128 struct request *rq = hwif->rq;
129 int rc;
130
131 /*
132 * if failfast is set on a request, override number of sectors
133 * and complete the whole request right now
134 */
135 if (blk_noretry_request(rq) && error <= 0)
136 nr_bytes = rq->hard_nr_sectors << 9;
137
138 rc = ide_end_rq(drive, rq, error, nr_bytes);
139 if (rc == 0)
140 hwif->rq = NULL;
141
142 return rc;
143 }
144 EXPORT_SYMBOL(ide_complete_rq);
145
146 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
147 {
148 u8 drv_req = blk_special_request(rq) && rq->rq_disk;
149 u8 media = drive->media;
150
151 drive->failed_pc = NULL;
152
153 if ((media == ide_floppy || media == ide_tape) && drv_req) {
154 rq->errors = 0;
155 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
156 } else {
157 if (media == ide_tape)
158 rq->errors = IDE_DRV_ERROR_GENERAL;
159 else if (blk_fs_request(rq) == 0 && rq->errors == 0)
160 rq->errors = -EIO;
161 ide_complete_rq(drive, -EIO, ide_rq_bytes(rq));
162 }
163 }
164
165 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
166 {
167 tf->nsect = drive->sect;
168 tf->lbal = drive->sect;
169 tf->lbam = drive->cyl;
170 tf->lbah = drive->cyl >> 8;
171 tf->device = (drive->head - 1) | drive->select;
172 tf->command = ATA_CMD_INIT_DEV_PARAMS;
173 }
174
175 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
176 {
177 tf->nsect = drive->sect;
178 tf->command = ATA_CMD_RESTORE;
179 }
180
181 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
182 {
183 tf->nsect = drive->mult_req;
184 tf->command = ATA_CMD_SET_MULTI;
185 }
186
187 /**
188 * do_special - issue some special commands
189 * @drive: drive the command is for
190 *
191 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
192 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
193 */
194
195 static ide_startstop_t do_special(ide_drive_t *drive)
196 {
197 struct ide_cmd cmd;
198
199 #ifdef DEBUG
200 printk(KERN_DEBUG "%s: %s: 0x%02x\n", drive->name, __func__,
201 drive->special_flags);
202 #endif
203 if (drive->media != ide_disk) {
204 drive->special_flags = 0;
205 drive->mult_req = 0;
206 return ide_stopped;
207 }
208
209 memset(&cmd, 0, sizeof(cmd));
210 cmd.protocol = ATA_PROT_NODATA;
211
212 if (drive->special_flags & IDE_SFLAG_SET_GEOMETRY) {
213 drive->special_flags &= ~IDE_SFLAG_SET_GEOMETRY;
214 ide_tf_set_specify_cmd(drive, &cmd.tf);
215 } else if (drive->special_flags & IDE_SFLAG_RECALIBRATE) {
216 drive->special_flags &= ~IDE_SFLAG_RECALIBRATE;
217 ide_tf_set_restore_cmd(drive, &cmd.tf);
218 } else if (drive->special_flags & IDE_SFLAG_SET_MULTMODE) {
219 drive->special_flags &= ~IDE_SFLAG_SET_MULTMODE;
220 ide_tf_set_setmult_cmd(drive, &cmd.tf);
221 } else
222 BUG();
223
224 cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
225 cmd.valid.in.tf = IDE_VALID_IN_TF | IDE_VALID_DEVICE;
226 cmd.tf_flags = IDE_TFLAG_CUSTOM_HANDLER;
227
228 do_rw_taskfile(drive, &cmd);
229
230 return ide_started;
231 }
232
233 void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
234 {
235 ide_hwif_t *hwif = drive->hwif;
236 struct scatterlist *sg = hwif->sg_table;
237 struct request *rq = cmd->rq;
238
239 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
240 }
241 EXPORT_SYMBOL_GPL(ide_map_sg);
242
243 void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
244 {
245 cmd->nbytes = cmd->nleft = nr_bytes;
246 cmd->cursg_ofs = 0;
247 cmd->cursg = NULL;
248 }
249 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
250
251 /**
252 * execute_drive_command - issue special drive command
253 * @drive: the drive to issue the command on
254 * @rq: the request structure holding the command
255 *
256 * execute_drive_cmd() issues a special drive command, usually
257 * initiated by ioctl() from the external hdparm program. The
258 * command can be a drive command, drive task or taskfile
259 * operation. Weirdly you can call it with NULL to wait for
260 * all commands to finish. Don't do this as that is due to change
261 */
262
263 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
264 struct request *rq)
265 {
266 struct ide_cmd *cmd = rq->special;
267
268 if (cmd) {
269 if (cmd->protocol == ATA_PROT_PIO) {
270 ide_init_sg_cmd(cmd, rq->nr_sectors << 9);
271 ide_map_sg(drive, cmd);
272 }
273
274 return do_rw_taskfile(drive, cmd);
275 }
276
277 /*
278 * NULL is actually a valid way of waiting for
279 * all current requests to be flushed from the queue.
280 */
281 #ifdef DEBUG
282 printk("%s: DRIVE_CMD (null)\n", drive->name);
283 #endif
284 rq->errors = 0;
285 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
286
287 return ide_stopped;
288 }
289
290 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
291 {
292 u8 cmd = rq->cmd[0];
293
294 switch (cmd) {
295 case REQ_PARK_HEADS:
296 case REQ_UNPARK_HEADS:
297 return ide_do_park_unpark(drive, rq);
298 case REQ_DEVSET_EXEC:
299 return ide_do_devset(drive, rq);
300 case REQ_DRIVE_RESET:
301 return ide_do_reset(drive);
302 default:
303 BUG();
304 }
305 }
306
307 /**
308 * start_request - start of I/O and command issuing for IDE
309 *
310 * start_request() initiates handling of a new I/O request. It
311 * accepts commands and I/O (read/write) requests.
312 *
313 * FIXME: this function needs a rename
314 */
315
316 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
317 {
318 ide_startstop_t startstop;
319
320 BUG_ON(!blk_rq_started(rq));
321
322 #ifdef DEBUG
323 printk("%s: start_request: current=0x%08lx\n",
324 drive->hwif->name, (unsigned long) rq);
325 #endif
326
327 /* bail early if we've exceeded max_failures */
328 if (drive->max_failures && (drive->failures > drive->max_failures)) {
329 rq->cmd_flags |= REQ_FAILED;
330 goto kill_rq;
331 }
332
333 if (blk_pm_request(rq))
334 ide_check_pm_state(drive, rq);
335
336 drive->hwif->tp_ops->dev_select(drive);
337 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
338 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
339 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
340 return startstop;
341 }
342
343 if (drive->special_flags == 0) {
344 struct ide_driver *drv;
345
346 /*
347 * We reset the drive so we need to issue a SETFEATURES.
348 * Do it _after_ do_special() restored device parameters.
349 */
350 if (drive->current_speed == 0xff)
351 ide_config_drive_speed(drive, drive->desired_speed);
352
353 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
354 return execute_drive_cmd(drive, rq);
355 else if (blk_pm_request(rq)) {
356 struct request_pm_state *pm = rq->special;
357 #ifdef DEBUG_PM
358 printk("%s: start_power_step(step: %d)\n",
359 drive->name, pm->pm_step);
360 #endif
361 startstop = ide_start_power_step(drive, rq);
362 if (startstop == ide_stopped &&
363 pm->pm_step == IDE_PM_COMPLETED)
364 ide_complete_pm_rq(drive, rq);
365 return startstop;
366 } else if (!rq->rq_disk && blk_special_request(rq))
367 /*
368 * TODO: Once all ULDs have been modified to
369 * check for specific op codes rather than
370 * blindly accepting any special request, the
371 * check for ->rq_disk above may be replaced
372 * by a more suitable mechanism or even
373 * dropped entirely.
374 */
375 return ide_special_rq(drive, rq);
376
377 drv = *(struct ide_driver **)rq->rq_disk->private_data;
378
379 return drv->do_request(drive, rq, rq->sector);
380 }
381 return do_special(drive);
382 kill_rq:
383 ide_kill_rq(drive, rq);
384 return ide_stopped;
385 }
386
387 /**
388 * ide_stall_queue - pause an IDE device
389 * @drive: drive to stall
390 * @timeout: time to stall for (jiffies)
391 *
392 * ide_stall_queue() can be used by a drive to give excess bandwidth back
393 * to the port by sleeping for timeout jiffies.
394 */
395
396 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
397 {
398 if (timeout > WAIT_WORSTCASE)
399 timeout = WAIT_WORSTCASE;
400 drive->sleep = timeout + jiffies;
401 drive->dev_flags |= IDE_DFLAG_SLEEPING;
402 }
403 EXPORT_SYMBOL(ide_stall_queue);
404
405 static inline int ide_lock_port(ide_hwif_t *hwif)
406 {
407 if (hwif->busy)
408 return 1;
409
410 hwif->busy = 1;
411
412 return 0;
413 }
414
415 static inline void ide_unlock_port(ide_hwif_t *hwif)
416 {
417 hwif->busy = 0;
418 }
419
420 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
421 {
422 int rc = 0;
423
424 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
425 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
426 if (rc == 0) {
427 if (host->get_lock)
428 host->get_lock(ide_intr, hwif);
429 }
430 }
431 return rc;
432 }
433
434 static inline void ide_unlock_host(struct ide_host *host)
435 {
436 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
437 if (host->release_lock)
438 host->release_lock();
439 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
440 }
441 }
442
443 /*
444 * Issue a new request to a device.
445 */
446 void do_ide_request(struct request_queue *q)
447 {
448 ide_drive_t *drive = q->queuedata;
449 ide_hwif_t *hwif = drive->hwif;
450 struct ide_host *host = hwif->host;
451 struct request *rq = NULL;
452 ide_startstop_t startstop;
453
454 /*
455 * drive is doing pre-flush, ordered write, post-flush sequence. even
456 * though that is 3 requests, it must be seen as a single transaction.
457 * we must not preempt this drive until that is complete
458 */
459 if (blk_queue_flushing(q))
460 /*
461 * small race where queue could get replugged during
462 * the 3-request flush cycle, just yank the plug since
463 * we want it to finish asap
464 */
465 blk_remove_plug(q);
466
467 spin_unlock_irq(q->queue_lock);
468
469 /* HLD do_request() callback might sleep, make sure it's okay */
470 might_sleep();
471
472 if (ide_lock_host(host, hwif))
473 goto plug_device_2;
474
475 spin_lock_irq(&hwif->lock);
476
477 if (!ide_lock_port(hwif)) {
478 ide_hwif_t *prev_port;
479 repeat:
480 prev_port = hwif->host->cur_port;
481 hwif->rq = NULL;
482
483 if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
484 time_after(drive->sleep, jiffies)) {
485 ide_unlock_port(hwif);
486 goto plug_device;
487 }
488
489 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
490 hwif != prev_port) {
491 ide_drive_t *cur_dev =
492 prev_port ? prev_port->cur_dev : NULL;
493
494 /*
495 * set nIEN for previous port, drives in the
496 * quirk list may not like intr setups/cleanups
497 */
498 if (cur_dev &&
499 (cur_dev->dev_flags & IDE_DFLAG_NIEN_QUIRK) == 0)
500 prev_port->tp_ops->write_devctl(prev_port,
501 ATA_NIEN |
502 ATA_DEVCTL_OBS);
503
504 hwif->host->cur_port = hwif;
505 }
506 hwif->cur_dev = drive;
507 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
508
509 spin_unlock_irq(&hwif->lock);
510 spin_lock_irq(q->queue_lock);
511 /*
512 * we know that the queue isn't empty, but this can happen
513 * if the q->prep_rq_fn() decides to kill a request
514 */
515 rq = elv_next_request(drive->queue);
516 spin_unlock_irq(q->queue_lock);
517 spin_lock_irq(&hwif->lock);
518
519 if (!rq) {
520 ide_unlock_port(hwif);
521 goto out;
522 }
523
524 /*
525 * Sanity: don't accept a request that isn't a PM request
526 * if we are currently power managed. This is very important as
527 * blk_stop_queue() doesn't prevent the elv_next_request()
528 * above to return us whatever is in the queue. Since we call
529 * ide_do_request() ourselves, we end up taking requests while
530 * the queue is blocked...
531 *
532 * We let requests forced at head of queue with ide-preempt
533 * though. I hope that doesn't happen too much, hopefully not
534 * unless the subdriver triggers such a thing in its own PM
535 * state machine.
536 */
537 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
538 blk_pm_request(rq) == 0 &&
539 (rq->cmd_flags & REQ_PREEMPT) == 0) {
540 /* there should be no pending command at this point */
541 ide_unlock_port(hwif);
542 goto plug_device;
543 }
544
545 hwif->rq = rq;
546
547 spin_unlock_irq(&hwif->lock);
548 startstop = start_request(drive, rq);
549 spin_lock_irq(&hwif->lock);
550
551 if (startstop == ide_stopped)
552 goto repeat;
553 } else
554 goto plug_device;
555 out:
556 spin_unlock_irq(&hwif->lock);
557 if (rq == NULL)
558 ide_unlock_host(host);
559 spin_lock_irq(q->queue_lock);
560 return;
561
562 plug_device:
563 spin_unlock_irq(&hwif->lock);
564 ide_unlock_host(host);
565 plug_device_2:
566 spin_lock_irq(q->queue_lock);
567
568 if (!elv_queue_empty(q))
569 blk_plug_device(q);
570 }
571
572 static void ide_plug_device(ide_drive_t *drive)
573 {
574 struct request_queue *q = drive->queue;
575 unsigned long flags;
576
577 spin_lock_irqsave(q->queue_lock, flags);
578 if (!elv_queue_empty(q))
579 blk_plug_device(q);
580 spin_unlock_irqrestore(q->queue_lock, flags);
581 }
582
583 static int drive_is_ready(ide_drive_t *drive)
584 {
585 ide_hwif_t *hwif = drive->hwif;
586 u8 stat = 0;
587
588 if (drive->waiting_for_dma)
589 return hwif->dma_ops->dma_test_irq(drive);
590
591 if (hwif->io_ports.ctl_addr &&
592 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
593 stat = hwif->tp_ops->read_altstatus(hwif);
594 else
595 /* Note: this may clear a pending IRQ!! */
596 stat = hwif->tp_ops->read_status(hwif);
597
598 if (stat & ATA_BUSY)
599 /* drive busy: definitely not interrupting */
600 return 0;
601
602 /* drive ready: *might* be interrupting */
603 return 1;
604 }
605
606 /**
607 * ide_timer_expiry - handle lack of an IDE interrupt
608 * @data: timer callback magic (hwif)
609 *
610 * An IDE command has timed out before the expected drive return
611 * occurred. At this point we attempt to clean up the current
612 * mess. If the current handler includes an expiry handler then
613 * we invoke the expiry handler, and providing it is happy the
614 * work is done. If that fails we apply generic recovery rules
615 * invoking the handler and checking the drive DMA status. We
616 * have an excessively incestuous relationship with the DMA
617 * logic that wants cleaning up.
618 */
619
620 void ide_timer_expiry (unsigned long data)
621 {
622 ide_hwif_t *hwif = (ide_hwif_t *)data;
623 ide_drive_t *uninitialized_var(drive);
624 ide_handler_t *handler;
625 unsigned long flags;
626 int wait = -1;
627 int plug_device = 0;
628
629 spin_lock_irqsave(&hwif->lock, flags);
630
631 handler = hwif->handler;
632
633 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
634 /*
635 * Either a marginal timeout occurred
636 * (got the interrupt just as timer expired),
637 * or we were "sleeping" to give other devices a chance.
638 * Either way, we don't really want to complain about anything.
639 */
640 } else {
641 ide_expiry_t *expiry = hwif->expiry;
642 ide_startstop_t startstop = ide_stopped;
643
644 drive = hwif->cur_dev;
645
646 if (expiry) {
647 wait = expiry(drive);
648 if (wait > 0) { /* continue */
649 /* reset timer */
650 hwif->timer.expires = jiffies + wait;
651 hwif->req_gen_timer = hwif->req_gen;
652 add_timer(&hwif->timer);
653 spin_unlock_irqrestore(&hwif->lock, flags);
654 return;
655 }
656 }
657 hwif->handler = NULL;
658 hwif->expiry = NULL;
659 /*
660 * We need to simulate a real interrupt when invoking
661 * the handler() function, which means we need to
662 * globally mask the specific IRQ:
663 */
664 spin_unlock(&hwif->lock);
665 /* disable_irq_nosync ?? */
666 disable_irq(hwif->irq);
667 /* local CPU only, as if we were handling an interrupt */
668 local_irq_disable();
669 if (hwif->polling) {
670 startstop = handler(drive);
671 } else if (drive_is_ready(drive)) {
672 if (drive->waiting_for_dma)
673 hwif->dma_ops->dma_lost_irq(drive);
674 if (hwif->ack_intr)
675 hwif->ack_intr(hwif);
676 printk(KERN_WARNING "%s: lost interrupt\n",
677 drive->name);
678 startstop = handler(drive);
679 } else {
680 if (drive->waiting_for_dma)
681 startstop = ide_dma_timeout_retry(drive, wait);
682 else
683 startstop = ide_error(drive, "irq timeout",
684 hwif->tp_ops->read_status(hwif));
685 }
686 spin_lock_irq(&hwif->lock);
687 enable_irq(hwif->irq);
688 if (startstop == ide_stopped && hwif->polling == 0) {
689 ide_unlock_port(hwif);
690 plug_device = 1;
691 }
692 }
693 spin_unlock_irqrestore(&hwif->lock, flags);
694
695 if (plug_device) {
696 ide_unlock_host(hwif->host);
697 ide_plug_device(drive);
698 }
699 }
700
701 /**
702 * unexpected_intr - handle an unexpected IDE interrupt
703 * @irq: interrupt line
704 * @hwif: port being processed
705 *
706 * There's nothing really useful we can do with an unexpected interrupt,
707 * other than reading the status register (to clear it), and logging it.
708 * There should be no way that an irq can happen before we're ready for it,
709 * so we needn't worry much about losing an "important" interrupt here.
710 *
711 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
712 * the drive enters "idle", "standby", or "sleep" mode, so if the status
713 * looks "good", we just ignore the interrupt completely.
714 *
715 * This routine assumes __cli() is in effect when called.
716 *
717 * If an unexpected interrupt happens on irq15 while we are handling irq14
718 * and if the two interfaces are "serialized" (CMD640), then it looks like
719 * we could screw up by interfering with a new request being set up for
720 * irq15.
721 *
722 * In reality, this is a non-issue. The new command is not sent unless
723 * the drive is ready to accept one, in which case we know the drive is
724 * not trying to interrupt us. And ide_set_handler() is always invoked
725 * before completing the issuance of any new drive command, so we will not
726 * be accidentally invoked as a result of any valid command completion
727 * interrupt.
728 */
729
730 static void unexpected_intr(int irq, ide_hwif_t *hwif)
731 {
732 u8 stat = hwif->tp_ops->read_status(hwif);
733
734 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
735 /* Try to not flood the console with msgs */
736 static unsigned long last_msgtime, count;
737 ++count;
738
739 if (time_after(jiffies, last_msgtime + HZ)) {
740 last_msgtime = jiffies;
741 printk(KERN_ERR "%s: unexpected interrupt, "
742 "status=0x%02x, count=%ld\n",
743 hwif->name, stat, count);
744 }
745 }
746 }
747
748 /**
749 * ide_intr - default IDE interrupt handler
750 * @irq: interrupt number
751 * @dev_id: hwif
752 * @regs: unused weirdness from the kernel irq layer
753 *
754 * This is the default IRQ handler for the IDE layer. You should
755 * not need to override it. If you do be aware it is subtle in
756 * places
757 *
758 * hwif is the interface in the group currently performing
759 * a command. hwif->cur_dev is the drive and hwif->handler is
760 * the IRQ handler to call. As we issue a command the handlers
761 * step through multiple states, reassigning the handler to the
762 * next step in the process. Unlike a smart SCSI controller IDE
763 * expects the main processor to sequence the various transfer
764 * stages. We also manage a poll timer to catch up with most
765 * timeout situations. There are still a few where the handlers
766 * don't ever decide to give up.
767 *
768 * The handler eventually returns ide_stopped to indicate the
769 * request completed. At this point we issue the next request
770 * on the port and the process begins again.
771 */
772
773 irqreturn_t ide_intr (int irq, void *dev_id)
774 {
775 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
776 struct ide_host *host = hwif->host;
777 ide_drive_t *uninitialized_var(drive);
778 ide_handler_t *handler;
779 unsigned long flags;
780 ide_startstop_t startstop;
781 irqreturn_t irq_ret = IRQ_NONE;
782 int plug_device = 0;
783
784 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
785 if (hwif != host->cur_port)
786 goto out_early;
787 }
788
789 spin_lock_irqsave(&hwif->lock, flags);
790
791 if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
792 goto out;
793
794 handler = hwif->handler;
795
796 if (handler == NULL || hwif->polling) {
797 /*
798 * Not expecting an interrupt from this drive.
799 * That means this could be:
800 * (1) an interrupt from another PCI device
801 * sharing the same PCI INT# as us.
802 * or (2) a drive just entered sleep or standby mode,
803 * and is interrupting to let us know.
804 * or (3) a spurious interrupt of unknown origin.
805 *
806 * For PCI, we cannot tell the difference,
807 * so in that case we just ignore it and hope it goes away.
808 */
809 if ((host->irq_flags & IRQF_SHARED) == 0) {
810 /*
811 * Probably not a shared PCI interrupt,
812 * so we can safely try to do something about it:
813 */
814 unexpected_intr(irq, hwif);
815 } else {
816 /*
817 * Whack the status register, just in case
818 * we have a leftover pending IRQ.
819 */
820 (void)hwif->tp_ops->read_status(hwif);
821 }
822 goto out;
823 }
824
825 drive = hwif->cur_dev;
826
827 if (!drive_is_ready(drive))
828 /*
829 * This happens regularly when we share a PCI IRQ with
830 * another device. Unfortunately, it can also happen
831 * with some buggy drives that trigger the IRQ before
832 * their status register is up to date. Hopefully we have
833 * enough advance overhead that the latter isn't a problem.
834 */
835 goto out;
836
837 hwif->handler = NULL;
838 hwif->expiry = NULL;
839 hwif->req_gen++;
840 del_timer(&hwif->timer);
841 spin_unlock(&hwif->lock);
842
843 if (hwif->port_ops && hwif->port_ops->clear_irq)
844 hwif->port_ops->clear_irq(drive);
845
846 if (drive->dev_flags & IDE_DFLAG_UNMASK)
847 local_irq_enable_in_hardirq();
848
849 /* service this interrupt, may set handler for next interrupt */
850 startstop = handler(drive);
851
852 spin_lock_irq(&hwif->lock);
853 /*
854 * Note that handler() may have set things up for another
855 * interrupt to occur soon, but it cannot happen until
856 * we exit from this routine, because it will be the
857 * same irq as is currently being serviced here, and Linux
858 * won't allow another of the same (on any CPU) until we return.
859 */
860 if (startstop == ide_stopped && hwif->polling == 0) {
861 BUG_ON(hwif->handler);
862 ide_unlock_port(hwif);
863 plug_device = 1;
864 }
865 irq_ret = IRQ_HANDLED;
866 out:
867 spin_unlock_irqrestore(&hwif->lock, flags);
868 out_early:
869 if (plug_device) {
870 ide_unlock_host(hwif->host);
871 ide_plug_device(drive);
872 }
873
874 return irq_ret;
875 }
876 EXPORT_SYMBOL_GPL(ide_intr);
877
878 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
879 {
880 ide_hwif_t *hwif = drive->hwif;
881 u8 buf[4] = { 0 };
882
883 while (len > 0) {
884 if (write)
885 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
886 else
887 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
888 len -= 4;
889 }
890 }
891 EXPORT_SYMBOL_GPL(ide_pad_transfer);
This page took 0.048644 seconds and 5 git commands to generate.