mpc52xx_psc_spi: fix block transfer
[deliverable/linux.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60 int ret = 1;
61 int error = 0;
62
63 if (uptodate <= 0)
64 error = uptodate ? uptodate : -EIO;
65
66 /*
67 * if failfast is set on a request, override number of sectors and
68 * complete the whole request right now
69 */
70 if (blk_noretry_request(rq) && error)
71 nr_bytes = rq->hard_nr_sectors << 9;
72
73 if (!blk_fs_request(rq) && error && !rq->errors)
74 rq->errors = -EIO;
75
76 /*
77 * decide whether to reenable DMA -- 3 is a random magic for now,
78 * if we DMA timeout more than 3 times, just stay in PIO
79 */
80 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
81 drive->state = 0;
82 ide_dma_on(drive);
83 }
84
85 if (!__blk_end_request(rq, error, nr_bytes)) {
86 if (dequeue)
87 HWGROUP(drive)->rq = NULL;
88 ret = 0;
89 }
90
91 return ret;
92 }
93
94 /**
95 * ide_end_request - complete an IDE I/O
96 * @drive: IDE device for the I/O
97 * @uptodate:
98 * @nr_sectors: number of sectors completed
99 *
100 * This is our end_request wrapper function. We complete the I/O
101 * update random number input and dequeue the request, which if
102 * it was tagged may be out of order.
103 */
104
105 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
106 {
107 unsigned int nr_bytes = nr_sectors << 9;
108 struct request *rq;
109 unsigned long flags;
110 int ret = 1;
111
112 /*
113 * room for locking improvements here, the calls below don't
114 * need the queue lock held at all
115 */
116 spin_lock_irqsave(&ide_lock, flags);
117 rq = HWGROUP(drive)->rq;
118
119 if (!nr_bytes) {
120 if (blk_pc_request(rq))
121 nr_bytes = rq->data_len;
122 else
123 nr_bytes = rq->hard_cur_sectors << 9;
124 }
125
126 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
127
128 spin_unlock_irqrestore(&ide_lock, flags);
129 return ret;
130 }
131 EXPORT_SYMBOL(ide_end_request);
132
133 /*
134 * Power Management state machine. This one is rather trivial for now,
135 * we should probably add more, like switching back to PIO on suspend
136 * to help some BIOSes, re-do the door locking on resume, etc...
137 */
138
139 enum {
140 ide_pm_flush_cache = ide_pm_state_start_suspend,
141 idedisk_pm_standby,
142
143 idedisk_pm_restore_pio = ide_pm_state_start_resume,
144 idedisk_pm_idle,
145 ide_pm_restore_dma,
146 };
147
148 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
149 {
150 struct request_pm_state *pm = rq->data;
151
152 if (drive->media != ide_disk)
153 return;
154
155 switch (pm->pm_step) {
156 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
157 if (pm->pm_state == PM_EVENT_FREEZE)
158 pm->pm_step = ide_pm_state_completed;
159 else
160 pm->pm_step = idedisk_pm_standby;
161 break;
162 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
163 pm->pm_step = ide_pm_state_completed;
164 break;
165 case idedisk_pm_restore_pio: /* Resume step 1 complete */
166 pm->pm_step = idedisk_pm_idle;
167 break;
168 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
169 pm->pm_step = ide_pm_restore_dma;
170 break;
171 }
172 }
173
174 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
175 {
176 struct request_pm_state *pm = rq->data;
177 ide_task_t *args = rq->special;
178
179 memset(args, 0, sizeof(*args));
180
181 switch (pm->pm_step) {
182 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
183 if (drive->media != ide_disk)
184 break;
185 /* Not supported? Switch to next step now. */
186 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187 ide_complete_power_step(drive, rq, 0, 0);
188 return ide_stopped;
189 }
190 if (ide_id_has_flush_cache_ext(drive->id))
191 args->tf.command = WIN_FLUSH_CACHE_EXT;
192 else
193 args->tf.command = WIN_FLUSH_CACHE;
194 goto out_do_tf;
195
196 case idedisk_pm_standby: /* Suspend step 2 (standby) */
197 args->tf.command = WIN_STANDBYNOW1;
198 goto out_do_tf;
199
200 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
201 ide_set_max_pio(drive);
202 /*
203 * skip idedisk_pm_idle for ATAPI devices
204 */
205 if (drive->media != ide_disk)
206 pm->pm_step = ide_pm_restore_dma;
207 else
208 ide_complete_power_step(drive, rq, 0, 0);
209 return ide_stopped;
210
211 case idedisk_pm_idle: /* Resume step 2 (idle) */
212 args->tf.command = WIN_IDLEIMMEDIATE;
213 goto out_do_tf;
214
215 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
216 /*
217 * Right now, all we do is call ide_set_dma(drive),
218 * we could be smarter and check for current xfer_speed
219 * in struct drive etc...
220 */
221 if (drive->hwif->dma_ops == NULL)
222 break;
223 /*
224 * TODO: respect ->using_dma setting
225 */
226 ide_set_dma(drive);
227 break;
228 }
229 pm->pm_step = ide_pm_state_completed;
230 return ide_stopped;
231
232 out_do_tf:
233 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234 args->data_phase = TASKFILE_NO_DATA;
235 return do_rw_taskfile(drive, args);
236 }
237
238 /**
239 * ide_end_dequeued_request - complete an IDE I/O
240 * @drive: IDE device for the I/O
241 * @uptodate:
242 * @nr_sectors: number of sectors completed
243 *
244 * Complete an I/O that is no longer on the request queue. This
245 * typically occurs when we pull the request and issue a REQUEST_SENSE.
246 * We must still finish the old request but we must not tamper with the
247 * queue in the meantime.
248 *
249 * NOTE: This path does not handle barrier, but barrier is not supported
250 * on ide-cd anyway.
251 */
252
253 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254 int uptodate, int nr_sectors)
255 {
256 unsigned long flags;
257 int ret;
258
259 spin_lock_irqsave(&ide_lock, flags);
260 BUG_ON(!blk_rq_started(rq));
261 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262 spin_unlock_irqrestore(&ide_lock, flags);
263
264 return ret;
265 }
266 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
267
268
269 /**
270 * ide_complete_pm_request - end the current Power Management request
271 * @drive: target drive
272 * @rq: request
273 *
274 * This function cleans up the current PM request and stops the queue
275 * if necessary.
276 */
277 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
278 {
279 unsigned long flags;
280
281 #ifdef DEBUG_PM
282 printk("%s: completing PM request, %s\n", drive->name,
283 blk_pm_suspend_request(rq) ? "suspend" : "resume");
284 #endif
285 spin_lock_irqsave(&ide_lock, flags);
286 if (blk_pm_suspend_request(rq)) {
287 blk_stop_queue(drive->queue);
288 } else {
289 drive->blocked = 0;
290 blk_start_queue(drive->queue);
291 }
292 HWGROUP(drive)->rq = NULL;
293 if (__blk_end_request(rq, 0, 0))
294 BUG();
295 spin_unlock_irqrestore(&ide_lock, flags);
296 }
297
298 /**
299 * ide_end_drive_cmd - end an explicit drive command
300 * @drive: command
301 * @stat: status bits
302 * @err: error bits
303 *
304 * Clean up after success/failure of an explicit drive command.
305 * These get thrown onto the queue so they are synchronized with
306 * real I/O operations on the drive.
307 *
308 * In LBA48 mode we have to read the register set twice to get
309 * all the extra information out.
310 */
311
312 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
313 {
314 unsigned long flags;
315 struct request *rq;
316
317 spin_lock_irqsave(&ide_lock, flags);
318 rq = HWGROUP(drive)->rq;
319 spin_unlock_irqrestore(&ide_lock, flags);
320
321 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
322 ide_task_t *task = (ide_task_t *)rq->special;
323
324 if (rq->errors == 0)
325 rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT);
326
327 if (task) {
328 struct ide_taskfile *tf = &task->tf;
329
330 tf->error = err;
331 tf->status = stat;
332
333 drive->hwif->tp_ops->tf_read(drive, task);
334
335 if (task->tf_flags & IDE_TFLAG_DYN)
336 kfree(task);
337 }
338 } else if (blk_pm_request(rq)) {
339 struct request_pm_state *pm = rq->data;
340 #ifdef DEBUG_PM
341 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
342 drive->name, rq->pm->pm_step, stat, err);
343 #endif
344 ide_complete_power_step(drive, rq, stat, err);
345 if (pm->pm_step == ide_pm_state_completed)
346 ide_complete_pm_request(drive, rq);
347 return;
348 }
349
350 spin_lock_irqsave(&ide_lock, flags);
351 HWGROUP(drive)->rq = NULL;
352 rq->errors = err;
353 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
354 blk_rq_bytes(rq))))
355 BUG();
356 spin_unlock_irqrestore(&ide_lock, flags);
357 }
358
359 EXPORT_SYMBOL(ide_end_drive_cmd);
360
361 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
362 {
363 if (rq->rq_disk) {
364 ide_driver_t *drv;
365
366 drv = *(ide_driver_t **)rq->rq_disk->private_data;
367 drv->end_request(drive, 0, 0);
368 } else
369 ide_end_request(drive, 0, 0);
370 }
371
372 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
373 {
374 ide_hwif_t *hwif = drive->hwif;
375
376 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
377 /* other bits are useless when BUSY */
378 rq->errors |= ERROR_RESET;
379 } else if (stat & ERR_STAT) {
380 /* err has different meaning on cdrom and tape */
381 if (err == ABRT_ERR) {
382 if (drive->select.b.lba &&
383 /* some newer drives don't support WIN_SPECIFY */
384 hwif->tp_ops->read_status(hwif) == WIN_SPECIFY)
385 return ide_stopped;
386 } else if ((err & BAD_CRC) == BAD_CRC) {
387 /* UDMA crc error, just retry the operation */
388 drive->crc_count++;
389 } else if (err & (BBD_ERR | ECC_ERR)) {
390 /* retries won't help these */
391 rq->errors = ERROR_MAX;
392 } else if (err & TRK0_ERR) {
393 /* help it find track zero */
394 rq->errors |= ERROR_RECAL;
395 }
396 }
397
398 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
399 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
400 int nsect = drive->mult_count ? drive->mult_count : 1;
401
402 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
403 }
404
405 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
406 ide_kill_rq(drive, rq);
407 return ide_stopped;
408 }
409
410 if (hwif->tp_ops->read_status(hwif) & (BUSY_STAT | DRQ_STAT))
411 rq->errors |= ERROR_RESET;
412
413 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
414 ++rq->errors;
415 return ide_do_reset(drive);
416 }
417
418 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
419 drive->special.b.recalibrate = 1;
420
421 ++rq->errors;
422
423 return ide_stopped;
424 }
425
426 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
427 {
428 ide_hwif_t *hwif = drive->hwif;
429
430 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
431 /* other bits are useless when BUSY */
432 rq->errors |= ERROR_RESET;
433 } else {
434 /* add decoding error stuff */
435 }
436
437 if (hwif->tp_ops->read_status(hwif) & (BUSY_STAT | DRQ_STAT))
438 /* force an abort */
439 hwif->tp_ops->exec_command(hwif, WIN_IDLEIMMEDIATE);
440
441 if (rq->errors >= ERROR_MAX) {
442 ide_kill_rq(drive, rq);
443 } else {
444 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
445 ++rq->errors;
446 return ide_do_reset(drive);
447 }
448 ++rq->errors;
449 }
450
451 return ide_stopped;
452 }
453
454 ide_startstop_t
455 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
456 {
457 if (drive->media == ide_disk)
458 return ide_ata_error(drive, rq, stat, err);
459 return ide_atapi_error(drive, rq, stat, err);
460 }
461
462 EXPORT_SYMBOL_GPL(__ide_error);
463
464 /**
465 * ide_error - handle an error on the IDE
466 * @drive: drive the error occurred on
467 * @msg: message to report
468 * @stat: status bits
469 *
470 * ide_error() takes action based on the error returned by the drive.
471 * For normal I/O that may well include retries. We deal with
472 * both new-style (taskfile) and old style command handling here.
473 * In the case of taskfile command handling there is work left to
474 * do
475 */
476
477 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
478 {
479 struct request *rq;
480 u8 err;
481
482 err = ide_dump_status(drive, msg, stat);
483
484 if ((rq = HWGROUP(drive)->rq) == NULL)
485 return ide_stopped;
486
487 /* retry only "normal" I/O: */
488 if (!blk_fs_request(rq)) {
489 rq->errors = 1;
490 ide_end_drive_cmd(drive, stat, err);
491 return ide_stopped;
492 }
493
494 if (rq->rq_disk) {
495 ide_driver_t *drv;
496
497 drv = *(ide_driver_t **)rq->rq_disk->private_data;
498 return drv->error(drive, rq, stat, err);
499 } else
500 return __ide_error(drive, rq, stat, err);
501 }
502
503 EXPORT_SYMBOL_GPL(ide_error);
504
505 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
506 {
507 tf->nsect = drive->sect;
508 tf->lbal = drive->sect;
509 tf->lbam = drive->cyl;
510 tf->lbah = drive->cyl >> 8;
511 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
512 tf->command = WIN_SPECIFY;
513 }
514
515 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
516 {
517 tf->nsect = drive->sect;
518 tf->command = WIN_RESTORE;
519 }
520
521 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
522 {
523 tf->nsect = drive->mult_req;
524 tf->command = WIN_SETMULT;
525 }
526
527 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
528 {
529 special_t *s = &drive->special;
530 ide_task_t args;
531
532 memset(&args, 0, sizeof(ide_task_t));
533 args.data_phase = TASKFILE_NO_DATA;
534
535 if (s->b.set_geometry) {
536 s->b.set_geometry = 0;
537 ide_tf_set_specify_cmd(drive, &args.tf);
538 } else if (s->b.recalibrate) {
539 s->b.recalibrate = 0;
540 ide_tf_set_restore_cmd(drive, &args.tf);
541 } else if (s->b.set_multmode) {
542 s->b.set_multmode = 0;
543 if (drive->mult_req > drive->id->max_multsect)
544 drive->mult_req = drive->id->max_multsect;
545 ide_tf_set_setmult_cmd(drive, &args.tf);
546 } else if (s->all) {
547 int special = s->all;
548 s->all = 0;
549 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
550 return ide_stopped;
551 }
552
553 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
554 IDE_TFLAG_CUSTOM_HANDLER;
555
556 do_rw_taskfile(drive, &args);
557
558 return ide_started;
559 }
560
561 /*
562 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
563 */
564 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
565 {
566 switch (req_pio) {
567 case 202:
568 case 201:
569 case 200:
570 case 102:
571 case 101:
572 case 100:
573 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
574 case 9:
575 case 8:
576 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
577 case 7:
578 case 6:
579 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
580 default:
581 return 0;
582 }
583 }
584
585 /**
586 * do_special - issue some special commands
587 * @drive: drive the command is for
588 *
589 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
590 * commands to a drive. It used to do much more, but has been scaled
591 * back.
592 */
593
594 static ide_startstop_t do_special (ide_drive_t *drive)
595 {
596 special_t *s = &drive->special;
597
598 #ifdef DEBUG
599 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
600 #endif
601 if (s->b.set_tune) {
602 ide_hwif_t *hwif = drive->hwif;
603 const struct ide_port_ops *port_ops = hwif->port_ops;
604 u8 req_pio = drive->tune_req;
605
606 s->b.set_tune = 0;
607
608 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
609 /*
610 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
611 */
612 if (req_pio == 8 || req_pio == 9) {
613 unsigned long flags;
614
615 spin_lock_irqsave(&ide_lock, flags);
616 port_ops->set_pio_mode(drive, req_pio);
617 spin_unlock_irqrestore(&ide_lock, flags);
618 } else
619 port_ops->set_pio_mode(drive, req_pio);
620 } else {
621 int keep_dma = drive->using_dma;
622
623 ide_set_pio(drive, req_pio);
624
625 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
626 if (keep_dma)
627 ide_dma_on(drive);
628 }
629 }
630
631 return ide_stopped;
632 } else {
633 if (drive->media == ide_disk)
634 return ide_disk_special(drive);
635
636 s->all = 0;
637 drive->mult_req = 0;
638 return ide_stopped;
639 }
640 }
641
642 void ide_map_sg(ide_drive_t *drive, struct request *rq)
643 {
644 ide_hwif_t *hwif = drive->hwif;
645 struct scatterlist *sg = hwif->sg_table;
646
647 if (hwif->sg_mapped) /* needed by ide-scsi */
648 return;
649
650 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
651 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
652 } else {
653 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
654 hwif->sg_nents = 1;
655 }
656 }
657
658 EXPORT_SYMBOL_GPL(ide_map_sg);
659
660 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
661 {
662 ide_hwif_t *hwif = drive->hwif;
663
664 hwif->nsect = hwif->nleft = rq->nr_sectors;
665 hwif->cursg_ofs = 0;
666 hwif->cursg = NULL;
667 }
668
669 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
670
671 /**
672 * execute_drive_command - issue special drive command
673 * @drive: the drive to issue the command on
674 * @rq: the request structure holding the command
675 *
676 * execute_drive_cmd() issues a special drive command, usually
677 * initiated by ioctl() from the external hdparm program. The
678 * command can be a drive command, drive task or taskfile
679 * operation. Weirdly you can call it with NULL to wait for
680 * all commands to finish. Don't do this as that is due to change
681 */
682
683 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
684 struct request *rq)
685 {
686 ide_hwif_t *hwif = HWIF(drive);
687 ide_task_t *task = rq->special;
688
689 if (task) {
690 hwif->data_phase = task->data_phase;
691
692 switch (hwif->data_phase) {
693 case TASKFILE_MULTI_OUT:
694 case TASKFILE_OUT:
695 case TASKFILE_MULTI_IN:
696 case TASKFILE_IN:
697 ide_init_sg_cmd(drive, rq);
698 ide_map_sg(drive, rq);
699 default:
700 break;
701 }
702
703 return do_rw_taskfile(drive, task);
704 }
705
706 /*
707 * NULL is actually a valid way of waiting for
708 * all current requests to be flushed from the queue.
709 */
710 #ifdef DEBUG
711 printk("%s: DRIVE_CMD (null)\n", drive->name);
712 #endif
713 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
714 ide_read_error(drive));
715
716 return ide_stopped;
717 }
718
719 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
720 {
721 switch (rq->cmd[0]) {
722 case REQ_DRIVE_RESET:
723 return ide_do_reset(drive);
724 default:
725 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
726 ide_end_request(drive, 0, 0);
727 return ide_stopped;
728 }
729 }
730
731 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
732 {
733 struct request_pm_state *pm = rq->data;
734
735 if (blk_pm_suspend_request(rq) &&
736 pm->pm_step == ide_pm_state_start_suspend)
737 /* Mark drive blocked when starting the suspend sequence. */
738 drive->blocked = 1;
739 else if (blk_pm_resume_request(rq) &&
740 pm->pm_step == ide_pm_state_start_resume) {
741 /*
742 * The first thing we do on wakeup is to wait for BSY bit to
743 * go away (with a looong timeout) as a drive on this hwif may
744 * just be POSTing itself.
745 * We do that before even selecting as the "other" device on
746 * the bus may be broken enough to walk on our toes at this
747 * point.
748 */
749 ide_hwif_t *hwif = drive->hwif;
750 int rc;
751 #ifdef DEBUG_PM
752 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
753 #endif
754 rc = ide_wait_not_busy(hwif, 35000);
755 if (rc)
756 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
757 SELECT_DRIVE(drive);
758 hwif->tp_ops->set_irq(hwif, 1);
759 rc = ide_wait_not_busy(hwif, 100000);
760 if (rc)
761 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
762 }
763 }
764
765 /**
766 * start_request - start of I/O and command issuing for IDE
767 *
768 * start_request() initiates handling of a new I/O request. It
769 * accepts commands and I/O (read/write) requests. It also does
770 * the final remapping for weird stuff like EZDrive. Once
771 * device mapper can work sector level the EZDrive stuff can go away
772 *
773 * FIXME: this function needs a rename
774 */
775
776 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
777 {
778 ide_startstop_t startstop;
779 sector_t block;
780
781 BUG_ON(!blk_rq_started(rq));
782
783 #ifdef DEBUG
784 printk("%s: start_request: current=0x%08lx\n",
785 HWIF(drive)->name, (unsigned long) rq);
786 #endif
787
788 /* bail early if we've exceeded max_failures */
789 if (drive->max_failures && (drive->failures > drive->max_failures)) {
790 rq->cmd_flags |= REQ_FAILED;
791 goto kill_rq;
792 }
793
794 block = rq->sector;
795 if (blk_fs_request(rq) &&
796 (drive->media == ide_disk || drive->media == ide_floppy)) {
797 block += drive->sect0;
798 }
799 /* Yecch - this will shift the entire interval,
800 possibly killing some innocent following sector */
801 if (block == 0 && drive->remap_0_to_1 == 1)
802 block = 1; /* redirect MBR access to EZ-Drive partn table */
803
804 if (blk_pm_request(rq))
805 ide_check_pm_state(drive, rq);
806
807 SELECT_DRIVE(drive);
808 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
809 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
810 return startstop;
811 }
812 if (!drive->special.all) {
813 ide_driver_t *drv;
814
815 /*
816 * We reset the drive so we need to issue a SETFEATURES.
817 * Do it _after_ do_special() restored device parameters.
818 */
819 if (drive->current_speed == 0xff)
820 ide_config_drive_speed(drive, drive->desired_speed);
821
822 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
823 return execute_drive_cmd(drive, rq);
824 else if (blk_pm_request(rq)) {
825 struct request_pm_state *pm = rq->data;
826 #ifdef DEBUG_PM
827 printk("%s: start_power_step(step: %d)\n",
828 drive->name, rq->pm->pm_step);
829 #endif
830 startstop = ide_start_power_step(drive, rq);
831 if (startstop == ide_stopped &&
832 pm->pm_step == ide_pm_state_completed)
833 ide_complete_pm_request(drive, rq);
834 return startstop;
835 } else if (!rq->rq_disk && blk_special_request(rq))
836 /*
837 * TODO: Once all ULDs have been modified to
838 * check for specific op codes rather than
839 * blindly accepting any special request, the
840 * check for ->rq_disk above may be replaced
841 * by a more suitable mechanism or even
842 * dropped entirely.
843 */
844 return ide_special_rq(drive, rq);
845
846 drv = *(ide_driver_t **)rq->rq_disk->private_data;
847 return drv->do_request(drive, rq, block);
848 }
849 return do_special(drive);
850 kill_rq:
851 ide_kill_rq(drive, rq);
852 return ide_stopped;
853 }
854
855 /**
856 * ide_stall_queue - pause an IDE device
857 * @drive: drive to stall
858 * @timeout: time to stall for (jiffies)
859 *
860 * ide_stall_queue() can be used by a drive to give excess bandwidth back
861 * to the hwgroup by sleeping for timeout jiffies.
862 */
863
864 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
865 {
866 if (timeout > WAIT_WORSTCASE)
867 timeout = WAIT_WORSTCASE;
868 drive->sleep = timeout + jiffies;
869 drive->sleeping = 1;
870 }
871
872 EXPORT_SYMBOL(ide_stall_queue);
873
874 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
875
876 /**
877 * choose_drive - select a drive to service
878 * @hwgroup: hardware group to select on
879 *
880 * choose_drive() selects the next drive which will be serviced.
881 * This is necessary because the IDE layer can't issue commands
882 * to both drives on the same cable, unlike SCSI.
883 */
884
885 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
886 {
887 ide_drive_t *drive, *best;
888
889 repeat:
890 best = NULL;
891 drive = hwgroup->drive;
892
893 /*
894 * drive is doing pre-flush, ordered write, post-flush sequence. even
895 * though that is 3 requests, it must be seen as a single transaction.
896 * we must not preempt this drive until that is complete
897 */
898 if (blk_queue_flushing(drive->queue)) {
899 /*
900 * small race where queue could get replugged during
901 * the 3-request flush cycle, just yank the plug since
902 * we want it to finish asap
903 */
904 blk_remove_plug(drive->queue);
905 return drive;
906 }
907
908 do {
909 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
910 && !elv_queue_empty(drive->queue)) {
911 if (!best
912 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
913 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
914 {
915 if (!blk_queue_plugged(drive->queue))
916 best = drive;
917 }
918 }
919 } while ((drive = drive->next) != hwgroup->drive);
920 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
921 long t = (signed long)(WAKEUP(best) - jiffies);
922 if (t >= WAIT_MIN_SLEEP) {
923 /*
924 * We *may* have some time to spare, but first let's see if
925 * someone can potentially benefit from our nice mood today..
926 */
927 drive = best->next;
928 do {
929 if (!drive->sleeping
930 && time_before(jiffies - best->service_time, WAKEUP(drive))
931 && time_before(WAKEUP(drive), jiffies + t))
932 {
933 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
934 goto repeat;
935 }
936 } while ((drive = drive->next) != best);
937 }
938 }
939 return best;
940 }
941
942 /*
943 * Issue a new request to a drive from hwgroup
944 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
945 *
946 * A hwgroup is a serialized group of IDE interfaces. Usually there is
947 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
948 * may have both interfaces in a single hwgroup to "serialize" access.
949 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
950 * together into one hwgroup for serialized access.
951 *
952 * Note also that several hwgroups can end up sharing a single IRQ,
953 * possibly along with many other devices. This is especially common in
954 * PCI-based systems with off-board IDE controller cards.
955 *
956 * The IDE driver uses the single global ide_lock spinlock to protect
957 * access to the request queues, and to protect the hwgroup->busy flag.
958 *
959 * The first thread into the driver for a particular hwgroup sets the
960 * hwgroup->busy flag to indicate that this hwgroup is now active,
961 * and then initiates processing of the top request from the request queue.
962 *
963 * Other threads attempting entry notice the busy setting, and will simply
964 * queue their new requests and exit immediately. Note that hwgroup->busy
965 * remains set even when the driver is merely awaiting the next interrupt.
966 * Thus, the meaning is "this hwgroup is busy processing a request".
967 *
968 * When processing of a request completes, the completing thread or IRQ-handler
969 * will start the next request from the queue. If no more work remains,
970 * the driver will clear the hwgroup->busy flag and exit.
971 *
972 * The ide_lock (spinlock) is used to protect all access to the
973 * hwgroup->busy flag, but is otherwise not needed for most processing in
974 * the driver. This makes the driver much more friendlier to shared IRQs
975 * than previous designs, while remaining 100% (?) SMP safe and capable.
976 */
977 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
978 {
979 ide_drive_t *drive;
980 ide_hwif_t *hwif;
981 struct request *rq;
982 ide_startstop_t startstop;
983 int loops = 0;
984
985 /* for atari only: POSSIBLY BROKEN HERE(?) */
986 ide_get_lock(ide_intr, hwgroup);
987
988 /* caller must own ide_lock */
989 BUG_ON(!irqs_disabled());
990
991 while (!hwgroup->busy) {
992 hwgroup->busy = 1;
993 drive = choose_drive(hwgroup);
994 if (drive == NULL) {
995 int sleeping = 0;
996 unsigned long sleep = 0; /* shut up, gcc */
997 hwgroup->rq = NULL;
998 drive = hwgroup->drive;
999 do {
1000 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1001 sleeping = 1;
1002 sleep = drive->sleep;
1003 }
1004 } while ((drive = drive->next) != hwgroup->drive);
1005 if (sleeping) {
1006 /*
1007 * Take a short snooze, and then wake up this hwgroup again.
1008 * This gives other hwgroups on the same a chance to
1009 * play fairly with us, just in case there are big differences
1010 * in relative throughputs.. don't want to hog the cpu too much.
1011 */
1012 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1013 sleep = jiffies + WAIT_MIN_SLEEP;
1014 #if 1
1015 if (timer_pending(&hwgroup->timer))
1016 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1017 #endif
1018 /* so that ide_timer_expiry knows what to do */
1019 hwgroup->sleeping = 1;
1020 hwgroup->req_gen_timer = hwgroup->req_gen;
1021 mod_timer(&hwgroup->timer, sleep);
1022 /* we purposely leave hwgroup->busy==1
1023 * while sleeping */
1024 } else {
1025 /* Ugly, but how can we sleep for the lock
1026 * otherwise? perhaps from tq_disk?
1027 */
1028
1029 /* for atari only */
1030 ide_release_lock();
1031 hwgroup->busy = 0;
1032 }
1033
1034 /* no more work for this hwgroup (for now) */
1035 return;
1036 }
1037 again:
1038 hwif = HWIF(drive);
1039 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1040 /*
1041 * set nIEN for previous hwif, drives in the
1042 * quirk_list may not like intr setups/cleanups
1043 */
1044 if (drive->quirk_list != 1)
1045 hwif->tp_ops->set_irq(hwif, 0);
1046 }
1047 hwgroup->hwif = hwif;
1048 hwgroup->drive = drive;
1049 drive->sleeping = 0;
1050 drive->service_start = jiffies;
1051
1052 if (blk_queue_plugged(drive->queue)) {
1053 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1054 break;
1055 }
1056
1057 /*
1058 * we know that the queue isn't empty, but this can happen
1059 * if the q->prep_rq_fn() decides to kill a request
1060 */
1061 rq = elv_next_request(drive->queue);
1062 if (!rq) {
1063 hwgroup->busy = 0;
1064 break;
1065 }
1066
1067 /*
1068 * Sanity: don't accept a request that isn't a PM request
1069 * if we are currently power managed. This is very important as
1070 * blk_stop_queue() doesn't prevent the elv_next_request()
1071 * above to return us whatever is in the queue. Since we call
1072 * ide_do_request() ourselves, we end up taking requests while
1073 * the queue is blocked...
1074 *
1075 * We let requests forced at head of queue with ide-preempt
1076 * though. I hope that doesn't happen too much, hopefully not
1077 * unless the subdriver triggers such a thing in its own PM
1078 * state machine.
1079 *
1080 * We count how many times we loop here to make sure we service
1081 * all drives in the hwgroup without looping for ever
1082 */
1083 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1084 drive = drive->next ? drive->next : hwgroup->drive;
1085 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1086 goto again;
1087 /* We clear busy, there should be no pending ATA command at this point. */
1088 hwgroup->busy = 0;
1089 break;
1090 }
1091
1092 hwgroup->rq = rq;
1093
1094 /*
1095 * Some systems have trouble with IDE IRQs arriving while
1096 * the driver is still setting things up. So, here we disable
1097 * the IRQ used by this interface while the request is being started.
1098 * This may look bad at first, but pretty much the same thing
1099 * happens anyway when any interrupt comes in, IDE or otherwise
1100 * -- the kernel masks the IRQ while it is being handled.
1101 */
1102 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1103 disable_irq_nosync(hwif->irq);
1104 spin_unlock(&ide_lock);
1105 local_irq_enable_in_hardirq();
1106 /* allow other IRQs while we start this request */
1107 startstop = start_request(drive, rq);
1108 spin_lock_irq(&ide_lock);
1109 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1110 enable_irq(hwif->irq);
1111 if (startstop == ide_stopped)
1112 hwgroup->busy = 0;
1113 }
1114 }
1115
1116 /*
1117 * Passes the stuff to ide_do_request
1118 */
1119 void do_ide_request(struct request_queue *q)
1120 {
1121 ide_drive_t *drive = q->queuedata;
1122
1123 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1124 }
1125
1126 /*
1127 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1128 * retry the current request in pio mode instead of risking tossing it
1129 * all away
1130 */
1131 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1132 {
1133 ide_hwif_t *hwif = HWIF(drive);
1134 struct request *rq;
1135 ide_startstop_t ret = ide_stopped;
1136
1137 /*
1138 * end current dma transaction
1139 */
1140
1141 if (error < 0) {
1142 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1143 (void)hwif->dma_ops->dma_end(drive);
1144 ret = ide_error(drive, "dma timeout error",
1145 hwif->tp_ops->read_status(hwif));
1146 } else {
1147 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1148 hwif->dma_ops->dma_timeout(drive);
1149 }
1150
1151 /*
1152 * disable dma for now, but remember that we did so because of
1153 * a timeout -- we'll reenable after we finish this next request
1154 * (or rather the first chunk of it) in pio.
1155 */
1156 drive->retry_pio++;
1157 drive->state = DMA_PIO_RETRY;
1158 ide_dma_off_quietly(drive);
1159
1160 /*
1161 * un-busy drive etc (hwgroup->busy is cleared on return) and
1162 * make sure request is sane
1163 */
1164 rq = HWGROUP(drive)->rq;
1165
1166 if (!rq)
1167 goto out;
1168
1169 HWGROUP(drive)->rq = NULL;
1170
1171 rq->errors = 0;
1172
1173 if (!rq->bio)
1174 goto out;
1175
1176 rq->sector = rq->bio->bi_sector;
1177 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1178 rq->hard_cur_sectors = rq->current_nr_sectors;
1179 rq->buffer = bio_data(rq->bio);
1180 out:
1181 return ret;
1182 }
1183
1184 /**
1185 * ide_timer_expiry - handle lack of an IDE interrupt
1186 * @data: timer callback magic (hwgroup)
1187 *
1188 * An IDE command has timed out before the expected drive return
1189 * occurred. At this point we attempt to clean up the current
1190 * mess. If the current handler includes an expiry handler then
1191 * we invoke the expiry handler, and providing it is happy the
1192 * work is done. If that fails we apply generic recovery rules
1193 * invoking the handler and checking the drive DMA status. We
1194 * have an excessively incestuous relationship with the DMA
1195 * logic that wants cleaning up.
1196 */
1197
1198 void ide_timer_expiry (unsigned long data)
1199 {
1200 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1201 ide_handler_t *handler;
1202 ide_expiry_t *expiry;
1203 unsigned long flags;
1204 unsigned long wait = -1;
1205
1206 spin_lock_irqsave(&ide_lock, flags);
1207
1208 if (((handler = hwgroup->handler) == NULL) ||
1209 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1210 /*
1211 * Either a marginal timeout occurred
1212 * (got the interrupt just as timer expired),
1213 * or we were "sleeping" to give other devices a chance.
1214 * Either way, we don't really want to complain about anything.
1215 */
1216 if (hwgroup->sleeping) {
1217 hwgroup->sleeping = 0;
1218 hwgroup->busy = 0;
1219 }
1220 } else {
1221 ide_drive_t *drive = hwgroup->drive;
1222 if (!drive) {
1223 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1224 hwgroup->handler = NULL;
1225 } else {
1226 ide_hwif_t *hwif;
1227 ide_startstop_t startstop = ide_stopped;
1228 if (!hwgroup->busy) {
1229 hwgroup->busy = 1; /* paranoia */
1230 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1231 }
1232 if ((expiry = hwgroup->expiry) != NULL) {
1233 /* continue */
1234 if ((wait = expiry(drive)) > 0) {
1235 /* reset timer */
1236 hwgroup->timer.expires = jiffies + wait;
1237 hwgroup->req_gen_timer = hwgroup->req_gen;
1238 add_timer(&hwgroup->timer);
1239 spin_unlock_irqrestore(&ide_lock, flags);
1240 return;
1241 }
1242 }
1243 hwgroup->handler = NULL;
1244 /*
1245 * We need to simulate a real interrupt when invoking
1246 * the handler() function, which means we need to
1247 * globally mask the specific IRQ:
1248 */
1249 spin_unlock(&ide_lock);
1250 hwif = HWIF(drive);
1251 /* disable_irq_nosync ?? */
1252 disable_irq(hwif->irq);
1253 /* local CPU only,
1254 * as if we were handling an interrupt */
1255 local_irq_disable();
1256 if (hwgroup->polling) {
1257 startstop = handler(drive);
1258 } else if (drive_is_ready(drive)) {
1259 if (drive->waiting_for_dma)
1260 hwif->dma_ops->dma_lost_irq(drive);
1261 (void)ide_ack_intr(hwif);
1262 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1263 startstop = handler(drive);
1264 } else {
1265 if (drive->waiting_for_dma) {
1266 startstop = ide_dma_timeout_retry(drive, wait);
1267 } else
1268 startstop =
1269 ide_error(drive, "irq timeout",
1270 hwif->tp_ops->read_status(hwif));
1271 }
1272 drive->service_time = jiffies - drive->service_start;
1273 spin_lock_irq(&ide_lock);
1274 enable_irq(hwif->irq);
1275 if (startstop == ide_stopped)
1276 hwgroup->busy = 0;
1277 }
1278 }
1279 ide_do_request(hwgroup, IDE_NO_IRQ);
1280 spin_unlock_irqrestore(&ide_lock, flags);
1281 }
1282
1283 /**
1284 * unexpected_intr - handle an unexpected IDE interrupt
1285 * @irq: interrupt line
1286 * @hwgroup: hwgroup being processed
1287 *
1288 * There's nothing really useful we can do with an unexpected interrupt,
1289 * other than reading the status register (to clear it), and logging it.
1290 * There should be no way that an irq can happen before we're ready for it,
1291 * so we needn't worry much about losing an "important" interrupt here.
1292 *
1293 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1294 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1295 * looks "good", we just ignore the interrupt completely.
1296 *
1297 * This routine assumes __cli() is in effect when called.
1298 *
1299 * If an unexpected interrupt happens on irq15 while we are handling irq14
1300 * and if the two interfaces are "serialized" (CMD640), then it looks like
1301 * we could screw up by interfering with a new request being set up for
1302 * irq15.
1303 *
1304 * In reality, this is a non-issue. The new command is not sent unless
1305 * the drive is ready to accept one, in which case we know the drive is
1306 * not trying to interrupt us. And ide_set_handler() is always invoked
1307 * before completing the issuance of any new drive command, so we will not
1308 * be accidentally invoked as a result of any valid command completion
1309 * interrupt.
1310 *
1311 * Note that we must walk the entire hwgroup here. We know which hwif
1312 * is doing the current command, but we don't know which hwif burped
1313 * mysteriously.
1314 */
1315
1316 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1317 {
1318 u8 stat;
1319 ide_hwif_t *hwif = hwgroup->hwif;
1320
1321 /*
1322 * handle the unexpected interrupt
1323 */
1324 do {
1325 if (hwif->irq == irq) {
1326 stat = hwif->tp_ops->read_status(hwif);
1327
1328 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1329 /* Try to not flood the console with msgs */
1330 static unsigned long last_msgtime, count;
1331 ++count;
1332 if (time_after(jiffies, last_msgtime + HZ)) {
1333 last_msgtime = jiffies;
1334 printk(KERN_ERR "%s%s: unexpected interrupt, "
1335 "status=0x%02x, count=%ld\n",
1336 hwif->name,
1337 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1338 }
1339 }
1340 }
1341 } while ((hwif = hwif->next) != hwgroup->hwif);
1342 }
1343
1344 /**
1345 * ide_intr - default IDE interrupt handler
1346 * @irq: interrupt number
1347 * @dev_id: hwif group
1348 * @regs: unused weirdness from the kernel irq layer
1349 *
1350 * This is the default IRQ handler for the IDE layer. You should
1351 * not need to override it. If you do be aware it is subtle in
1352 * places
1353 *
1354 * hwgroup->hwif is the interface in the group currently performing
1355 * a command. hwgroup->drive is the drive and hwgroup->handler is
1356 * the IRQ handler to call. As we issue a command the handlers
1357 * step through multiple states, reassigning the handler to the
1358 * next step in the process. Unlike a smart SCSI controller IDE
1359 * expects the main processor to sequence the various transfer
1360 * stages. We also manage a poll timer to catch up with most
1361 * timeout situations. There are still a few where the handlers
1362 * don't ever decide to give up.
1363 *
1364 * The handler eventually returns ide_stopped to indicate the
1365 * request completed. At this point we issue the next request
1366 * on the hwgroup and the process begins again.
1367 */
1368
1369 irqreturn_t ide_intr (int irq, void *dev_id)
1370 {
1371 unsigned long flags;
1372 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1373 ide_hwif_t *hwif;
1374 ide_drive_t *drive;
1375 ide_handler_t *handler;
1376 ide_startstop_t startstop;
1377
1378 spin_lock_irqsave(&ide_lock, flags);
1379 hwif = hwgroup->hwif;
1380
1381 if (!ide_ack_intr(hwif)) {
1382 spin_unlock_irqrestore(&ide_lock, flags);
1383 return IRQ_NONE;
1384 }
1385
1386 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1387 /*
1388 * Not expecting an interrupt from this drive.
1389 * That means this could be:
1390 * (1) an interrupt from another PCI device
1391 * sharing the same PCI INT# as us.
1392 * or (2) a drive just entered sleep or standby mode,
1393 * and is interrupting to let us know.
1394 * or (3) a spurious interrupt of unknown origin.
1395 *
1396 * For PCI, we cannot tell the difference,
1397 * so in that case we just ignore it and hope it goes away.
1398 *
1399 * FIXME: unexpected_intr should be hwif-> then we can
1400 * remove all the ifdef PCI crap
1401 */
1402 #ifdef CONFIG_BLK_DEV_IDEPCI
1403 if (hwif->chipset != ide_pci)
1404 #endif /* CONFIG_BLK_DEV_IDEPCI */
1405 {
1406 /*
1407 * Probably not a shared PCI interrupt,
1408 * so we can safely try to do something about it:
1409 */
1410 unexpected_intr(irq, hwgroup);
1411 #ifdef CONFIG_BLK_DEV_IDEPCI
1412 } else {
1413 /*
1414 * Whack the status register, just in case
1415 * we have a leftover pending IRQ.
1416 */
1417 (void)hwif->tp_ops->read_status(hwif);
1418 #endif /* CONFIG_BLK_DEV_IDEPCI */
1419 }
1420 spin_unlock_irqrestore(&ide_lock, flags);
1421 return IRQ_NONE;
1422 }
1423 drive = hwgroup->drive;
1424 if (!drive) {
1425 /*
1426 * This should NEVER happen, and there isn't much
1427 * we could do about it here.
1428 *
1429 * [Note - this can occur if the drive is hot unplugged]
1430 */
1431 spin_unlock_irqrestore(&ide_lock, flags);
1432 return IRQ_HANDLED;
1433 }
1434 if (!drive_is_ready(drive)) {
1435 /*
1436 * This happens regularly when we share a PCI IRQ with
1437 * another device. Unfortunately, it can also happen
1438 * with some buggy drives that trigger the IRQ before
1439 * their status register is up to date. Hopefully we have
1440 * enough advance overhead that the latter isn't a problem.
1441 */
1442 spin_unlock_irqrestore(&ide_lock, flags);
1443 return IRQ_NONE;
1444 }
1445 if (!hwgroup->busy) {
1446 hwgroup->busy = 1; /* paranoia */
1447 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1448 }
1449 hwgroup->handler = NULL;
1450 hwgroup->req_gen++;
1451 del_timer(&hwgroup->timer);
1452 spin_unlock(&ide_lock);
1453
1454 /* Some controllers might set DMA INTR no matter DMA or PIO;
1455 * bmdma status might need to be cleared even for
1456 * PIO interrupts to prevent spurious/lost irq.
1457 */
1458 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1459 /* ide_dma_end() needs bmdma status for error checking.
1460 * So, skip clearing bmdma status here and leave it
1461 * to ide_dma_end() if this is dma interrupt.
1462 */
1463 hwif->ide_dma_clear_irq(drive);
1464
1465 if (drive->unmask)
1466 local_irq_enable_in_hardirq();
1467 /* service this interrupt, may set handler for next interrupt */
1468 startstop = handler(drive);
1469 spin_lock_irq(&ide_lock);
1470
1471 /*
1472 * Note that handler() may have set things up for another
1473 * interrupt to occur soon, but it cannot happen until
1474 * we exit from this routine, because it will be the
1475 * same irq as is currently being serviced here, and Linux
1476 * won't allow another of the same (on any CPU) until we return.
1477 */
1478 drive->service_time = jiffies - drive->service_start;
1479 if (startstop == ide_stopped) {
1480 if (hwgroup->handler == NULL) { /* paranoia */
1481 hwgroup->busy = 0;
1482 ide_do_request(hwgroup, hwif->irq);
1483 } else {
1484 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1485 "on exit\n", drive->name);
1486 }
1487 }
1488 spin_unlock_irqrestore(&ide_lock, flags);
1489 return IRQ_HANDLED;
1490 }
1491
1492 /**
1493 * ide_do_drive_cmd - issue IDE special command
1494 * @drive: device to issue command
1495 * @rq: request to issue
1496 *
1497 * This function issues a special IDE device request
1498 * onto the request queue.
1499 *
1500 * the rq is queued at the head of the request queue, displacing
1501 * the currently-being-processed request and this function
1502 * returns immediately without waiting for the new rq to be
1503 * completed. This is VERY DANGEROUS, and is intended for
1504 * careful use by the ATAPI tape/cdrom driver code.
1505 */
1506
1507 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1508 {
1509 unsigned long flags;
1510 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1511
1512 spin_lock_irqsave(&ide_lock, flags);
1513 hwgroup->rq = NULL;
1514 __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1);
1515 __generic_unplug_device(drive->queue);
1516 spin_unlock_irqrestore(&ide_lock, flags);
1517 }
1518
1519 EXPORT_SYMBOL(ide_do_drive_cmd);
1520
1521 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1522 {
1523 ide_hwif_t *hwif = drive->hwif;
1524 ide_task_t task;
1525
1526 memset(&task, 0, sizeof(task));
1527 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1528 IDE_TFLAG_OUT_FEATURE | tf_flags;
1529 task.tf.feature = dma; /* Use PIO/DMA */
1530 task.tf.lbam = bcount & 0xff;
1531 task.tf.lbah = (bcount >> 8) & 0xff;
1532
1533 ide_tf_dump(drive->name, &task.tf);
1534 hwif->tp_ops->set_irq(hwif, 1);
1535 SELECT_MASK(drive, 0);
1536 hwif->tp_ops->tf_load(drive, &task);
1537 }
1538
1539 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1540
1541 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1542 {
1543 ide_hwif_t *hwif = drive->hwif;
1544 u8 buf[4] = { 0 };
1545
1546 while (len > 0) {
1547 if (write)
1548 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1549 else
1550 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1551 len -= 4;
1552 }
1553 }
1554 EXPORT_SYMBOL_GPL(ide_pad_transfer);
This page took 0.064808 seconds and 5 git commands to generate.