x86, pat: Sanity check remap_pfn_range for RAM region
[deliverable/linux.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58 unsigned int nr_bytes)
59 {
60 /*
61 * decide whether to reenable DMA -- 3 is a random magic for now,
62 * if we DMA timeout more than 3 times, just stay in PIO
63 */
64 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65 drive->retry_pio <= 3) {
66 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67 ide_dma_on(drive);
68 }
69
70 return blk_end_request(rq, error, nr_bytes);
71 }
72 EXPORT_SYMBOL_GPL(ide_end_rq);
73
74 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
75 {
76 const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
77 struct ide_taskfile *tf = &cmd->tf;
78 struct request *rq = cmd->rq;
79 u8 tf_cmd = tf->command;
80
81 tf->error = err;
82 tf->status = stat;
83
84 if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
85 u8 data[2];
86
87 tp_ops->input_data(drive, cmd, data, 2);
88
89 cmd->tf.data = data[0];
90 cmd->hob.data = data[1];
91 }
92
93 ide_tf_readback(drive, cmd);
94
95 if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
96 tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
97 if (tf->lbal != 0xc4) {
98 printk(KERN_ERR "%s: head unload failed!\n",
99 drive->name);
100 ide_tf_dump(drive->name, cmd);
101 } else
102 drive->dev_flags |= IDE_DFLAG_PARKED;
103 }
104
105 if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
106 struct ide_cmd *orig_cmd = rq->special;
107
108 if (cmd->tf_flags & IDE_TFLAG_DYN)
109 kfree(orig_cmd);
110 else
111 memcpy(orig_cmd, cmd, sizeof(*cmd));
112 }
113 }
114
115 int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
116 {
117 ide_hwif_t *hwif = drive->hwif;
118 struct request *rq = hwif->rq;
119 int rc;
120
121 /*
122 * if failfast is set on a request, override number of sectors
123 * and complete the whole request right now
124 */
125 if (blk_noretry_request(rq) && error <= 0)
126 nr_bytes = blk_rq_sectors(rq) << 9;
127
128 rc = ide_end_rq(drive, rq, error, nr_bytes);
129 if (rc == 0)
130 hwif->rq = NULL;
131
132 return rc;
133 }
134 EXPORT_SYMBOL(ide_complete_rq);
135
136 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
137 {
138 u8 drv_req = blk_special_request(rq) && rq->rq_disk;
139 u8 media = drive->media;
140
141 drive->failed_pc = NULL;
142
143 if ((media == ide_floppy || media == ide_tape) && drv_req) {
144 rq->errors = 0;
145 } else {
146 if (media == ide_tape)
147 rq->errors = IDE_DRV_ERROR_GENERAL;
148 else if (blk_fs_request(rq) == 0 && rq->errors == 0)
149 rq->errors = -EIO;
150 }
151
152 ide_complete_rq(drive, -EIO, blk_rq_bytes(rq));
153 }
154
155 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
156 {
157 tf->nsect = drive->sect;
158 tf->lbal = drive->sect;
159 tf->lbam = drive->cyl;
160 tf->lbah = drive->cyl >> 8;
161 tf->device = (drive->head - 1) | drive->select;
162 tf->command = ATA_CMD_INIT_DEV_PARAMS;
163 }
164
165 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
166 {
167 tf->nsect = drive->sect;
168 tf->command = ATA_CMD_RESTORE;
169 }
170
171 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
172 {
173 tf->nsect = drive->mult_req;
174 tf->command = ATA_CMD_SET_MULTI;
175 }
176
177 /**
178 * do_special - issue some special commands
179 * @drive: drive the command is for
180 *
181 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
182 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
183 */
184
185 static ide_startstop_t do_special(ide_drive_t *drive)
186 {
187 struct ide_cmd cmd;
188
189 #ifdef DEBUG
190 printk(KERN_DEBUG "%s: %s: 0x%02x\n", drive->name, __func__,
191 drive->special_flags);
192 #endif
193 if (drive->media != ide_disk) {
194 drive->special_flags = 0;
195 drive->mult_req = 0;
196 return ide_stopped;
197 }
198
199 memset(&cmd, 0, sizeof(cmd));
200 cmd.protocol = ATA_PROT_NODATA;
201
202 if (drive->special_flags & IDE_SFLAG_SET_GEOMETRY) {
203 drive->special_flags &= ~IDE_SFLAG_SET_GEOMETRY;
204 ide_tf_set_specify_cmd(drive, &cmd.tf);
205 } else if (drive->special_flags & IDE_SFLAG_RECALIBRATE) {
206 drive->special_flags &= ~IDE_SFLAG_RECALIBRATE;
207 ide_tf_set_restore_cmd(drive, &cmd.tf);
208 } else if (drive->special_flags & IDE_SFLAG_SET_MULTMODE) {
209 drive->special_flags &= ~IDE_SFLAG_SET_MULTMODE;
210 ide_tf_set_setmult_cmd(drive, &cmd.tf);
211 } else
212 BUG();
213
214 cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
215 cmd.valid.in.tf = IDE_VALID_IN_TF | IDE_VALID_DEVICE;
216 cmd.tf_flags = IDE_TFLAG_CUSTOM_HANDLER;
217
218 do_rw_taskfile(drive, &cmd);
219
220 return ide_started;
221 }
222
223 void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
224 {
225 ide_hwif_t *hwif = drive->hwif;
226 struct scatterlist *sg = hwif->sg_table;
227 struct request *rq = cmd->rq;
228
229 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
230 }
231 EXPORT_SYMBOL_GPL(ide_map_sg);
232
233 void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
234 {
235 cmd->nbytes = cmd->nleft = nr_bytes;
236 cmd->cursg_ofs = 0;
237 cmd->cursg = NULL;
238 }
239 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
240
241 /**
242 * execute_drive_command - issue special drive command
243 * @drive: the drive to issue the command on
244 * @rq: the request structure holding the command
245 *
246 * execute_drive_cmd() issues a special drive command, usually
247 * initiated by ioctl() from the external hdparm program. The
248 * command can be a drive command, drive task or taskfile
249 * operation. Weirdly you can call it with NULL to wait for
250 * all commands to finish. Don't do this as that is due to change
251 */
252
253 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
254 struct request *rq)
255 {
256 struct ide_cmd *cmd = rq->special;
257
258 if (cmd) {
259 if (cmd->protocol == ATA_PROT_PIO) {
260 ide_init_sg_cmd(cmd, blk_rq_sectors(rq) << 9);
261 ide_map_sg(drive, cmd);
262 }
263
264 return do_rw_taskfile(drive, cmd);
265 }
266
267 /*
268 * NULL is actually a valid way of waiting for
269 * all current requests to be flushed from the queue.
270 */
271 #ifdef DEBUG
272 printk("%s: DRIVE_CMD (null)\n", drive->name);
273 #endif
274 rq->errors = 0;
275 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
276
277 return ide_stopped;
278 }
279
280 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
281 {
282 u8 cmd = rq->cmd[0];
283
284 switch (cmd) {
285 case REQ_PARK_HEADS:
286 case REQ_UNPARK_HEADS:
287 return ide_do_park_unpark(drive, rq);
288 case REQ_DEVSET_EXEC:
289 return ide_do_devset(drive, rq);
290 case REQ_DRIVE_RESET:
291 return ide_do_reset(drive);
292 default:
293 BUG();
294 }
295 }
296
297 /**
298 * start_request - start of I/O and command issuing for IDE
299 *
300 * start_request() initiates handling of a new I/O request. It
301 * accepts commands and I/O (read/write) requests.
302 *
303 * FIXME: this function needs a rename
304 */
305
306 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
307 {
308 ide_startstop_t startstop;
309
310 BUG_ON(!blk_rq_started(rq));
311
312 #ifdef DEBUG
313 printk("%s: start_request: current=0x%08lx\n",
314 drive->hwif->name, (unsigned long) rq);
315 #endif
316
317 /* bail early if we've exceeded max_failures */
318 if (drive->max_failures && (drive->failures > drive->max_failures)) {
319 rq->cmd_flags |= REQ_FAILED;
320 goto kill_rq;
321 }
322
323 if (blk_pm_request(rq))
324 ide_check_pm_state(drive, rq);
325
326 drive->hwif->tp_ops->dev_select(drive);
327 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
328 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
329 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
330 return startstop;
331 }
332
333 if (drive->special_flags == 0) {
334 struct ide_driver *drv;
335
336 /*
337 * We reset the drive so we need to issue a SETFEATURES.
338 * Do it _after_ do_special() restored device parameters.
339 */
340 if (drive->current_speed == 0xff)
341 ide_config_drive_speed(drive, drive->desired_speed);
342
343 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
344 return execute_drive_cmd(drive, rq);
345 else if (blk_pm_request(rq)) {
346 struct request_pm_state *pm = rq->special;
347 #ifdef DEBUG_PM
348 printk("%s: start_power_step(step: %d)\n",
349 drive->name, pm->pm_step);
350 #endif
351 startstop = ide_start_power_step(drive, rq);
352 if (startstop == ide_stopped &&
353 pm->pm_step == IDE_PM_COMPLETED)
354 ide_complete_pm_rq(drive, rq);
355 return startstop;
356 } else if (!rq->rq_disk && blk_special_request(rq))
357 /*
358 * TODO: Once all ULDs have been modified to
359 * check for specific op codes rather than
360 * blindly accepting any special request, the
361 * check for ->rq_disk above may be replaced
362 * by a more suitable mechanism or even
363 * dropped entirely.
364 */
365 return ide_special_rq(drive, rq);
366
367 drv = *(struct ide_driver **)rq->rq_disk->private_data;
368
369 return drv->do_request(drive, rq, blk_rq_pos(rq));
370 }
371 return do_special(drive);
372 kill_rq:
373 ide_kill_rq(drive, rq);
374 return ide_stopped;
375 }
376
377 /**
378 * ide_stall_queue - pause an IDE device
379 * @drive: drive to stall
380 * @timeout: time to stall for (jiffies)
381 *
382 * ide_stall_queue() can be used by a drive to give excess bandwidth back
383 * to the port by sleeping for timeout jiffies.
384 */
385
386 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
387 {
388 if (timeout > WAIT_WORSTCASE)
389 timeout = WAIT_WORSTCASE;
390 drive->sleep = timeout + jiffies;
391 drive->dev_flags |= IDE_DFLAG_SLEEPING;
392 }
393 EXPORT_SYMBOL(ide_stall_queue);
394
395 static inline int ide_lock_port(ide_hwif_t *hwif)
396 {
397 if (hwif->busy)
398 return 1;
399
400 hwif->busy = 1;
401
402 return 0;
403 }
404
405 static inline void ide_unlock_port(ide_hwif_t *hwif)
406 {
407 hwif->busy = 0;
408 }
409
410 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
411 {
412 int rc = 0;
413
414 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
415 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
416 if (rc == 0) {
417 if (host->get_lock)
418 host->get_lock(ide_intr, hwif);
419 }
420 }
421 return rc;
422 }
423
424 static inline void ide_unlock_host(struct ide_host *host)
425 {
426 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
427 if (host->release_lock)
428 host->release_lock();
429 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
430 }
431 }
432
433 /*
434 * Issue a new request to a device.
435 */
436 void do_ide_request(struct request_queue *q)
437 {
438 ide_drive_t *drive = q->queuedata;
439 ide_hwif_t *hwif = drive->hwif;
440 struct ide_host *host = hwif->host;
441 struct request *rq = NULL;
442 ide_startstop_t startstop;
443
444 /*
445 * drive is doing pre-flush, ordered write, post-flush sequence. even
446 * though that is 3 requests, it must be seen as a single transaction.
447 * we must not preempt this drive until that is complete
448 */
449 if (blk_queue_flushing(q))
450 /*
451 * small race where queue could get replugged during
452 * the 3-request flush cycle, just yank the plug since
453 * we want it to finish asap
454 */
455 blk_remove_plug(q);
456
457 spin_unlock_irq(q->queue_lock);
458
459 /* HLD do_request() callback might sleep, make sure it's okay */
460 might_sleep();
461
462 if (ide_lock_host(host, hwif))
463 goto plug_device_2;
464
465 spin_lock_irq(&hwif->lock);
466
467 if (!ide_lock_port(hwif)) {
468 ide_hwif_t *prev_port;
469 repeat:
470 prev_port = hwif->host->cur_port;
471
472 if (drive->dev_flags & IDE_DFLAG_BLOCKED)
473 rq = hwif->rq;
474 else
475 WARN_ON_ONCE(hwif->rq);
476
477 if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
478 time_after(drive->sleep, jiffies)) {
479 ide_unlock_port(hwif);
480 goto plug_device;
481 }
482
483 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
484 hwif != prev_port) {
485 ide_drive_t *cur_dev =
486 prev_port ? prev_port->cur_dev : NULL;
487
488 /*
489 * set nIEN for previous port, drives in the
490 * quirk list may not like intr setups/cleanups
491 */
492 if (cur_dev &&
493 (cur_dev->dev_flags & IDE_DFLAG_NIEN_QUIRK) == 0)
494 prev_port->tp_ops->write_devctl(prev_port,
495 ATA_NIEN |
496 ATA_DEVCTL_OBS);
497
498 hwif->host->cur_port = hwif;
499 }
500 hwif->cur_dev = drive;
501 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
502
503 if (rq == NULL) {
504 spin_unlock_irq(&hwif->lock);
505 spin_lock_irq(q->queue_lock);
506 /*
507 * we know that the queue isn't empty, but this can
508 * happen if ->prep_rq_fn() decides to kill a request
509 */
510 rq = blk_fetch_request(drive->queue);
511 spin_unlock_irq(q->queue_lock);
512 spin_lock_irq(&hwif->lock);
513
514 if (rq == NULL) {
515 ide_unlock_port(hwif);
516 goto out;
517 }
518 }
519
520 /*
521 * Sanity: don't accept a request that isn't a PM request
522 * if we are currently power managed.
523 */
524 BUG_ON((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
525 blk_pm_request(rq) == 0);
526
527 hwif->rq = rq;
528
529 spin_unlock_irq(&hwif->lock);
530 startstop = start_request(drive, rq);
531 spin_lock_irq(&hwif->lock);
532
533 if (startstop == ide_stopped) {
534 rq = hwif->rq;
535 hwif->rq = NULL;
536 goto repeat;
537 }
538 } else
539 goto plug_device;
540 out:
541 spin_unlock_irq(&hwif->lock);
542 if (rq == NULL)
543 ide_unlock_host(host);
544 spin_lock_irq(q->queue_lock);
545 return;
546
547 plug_device:
548 spin_unlock_irq(&hwif->lock);
549 ide_unlock_host(host);
550 plug_device_2:
551 spin_lock_irq(q->queue_lock);
552
553 if (rq)
554 blk_requeue_request(q, rq);
555 if (!elv_queue_empty(q))
556 blk_plug_device(q);
557 }
558
559 static void ide_requeue_and_plug(ide_drive_t *drive, struct request *rq)
560 {
561 struct request_queue *q = drive->queue;
562 unsigned long flags;
563
564 spin_lock_irqsave(q->queue_lock, flags);
565
566 if (rq)
567 blk_requeue_request(q, rq);
568 if (!elv_queue_empty(q))
569 blk_plug_device(q);
570
571 spin_unlock_irqrestore(q->queue_lock, flags);
572 }
573
574 static int drive_is_ready(ide_drive_t *drive)
575 {
576 ide_hwif_t *hwif = drive->hwif;
577 u8 stat = 0;
578
579 if (drive->waiting_for_dma)
580 return hwif->dma_ops->dma_test_irq(drive);
581
582 if (hwif->io_ports.ctl_addr &&
583 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
584 stat = hwif->tp_ops->read_altstatus(hwif);
585 else
586 /* Note: this may clear a pending IRQ!! */
587 stat = hwif->tp_ops->read_status(hwif);
588
589 if (stat & ATA_BUSY)
590 /* drive busy: definitely not interrupting */
591 return 0;
592
593 /* drive ready: *might* be interrupting */
594 return 1;
595 }
596
597 /**
598 * ide_timer_expiry - handle lack of an IDE interrupt
599 * @data: timer callback magic (hwif)
600 *
601 * An IDE command has timed out before the expected drive return
602 * occurred. At this point we attempt to clean up the current
603 * mess. If the current handler includes an expiry handler then
604 * we invoke the expiry handler, and providing it is happy the
605 * work is done. If that fails we apply generic recovery rules
606 * invoking the handler and checking the drive DMA status. We
607 * have an excessively incestuous relationship with the DMA
608 * logic that wants cleaning up.
609 */
610
611 void ide_timer_expiry (unsigned long data)
612 {
613 ide_hwif_t *hwif = (ide_hwif_t *)data;
614 ide_drive_t *uninitialized_var(drive);
615 ide_handler_t *handler;
616 unsigned long flags;
617 int wait = -1;
618 int plug_device = 0;
619 struct request *uninitialized_var(rq_in_flight);
620
621 spin_lock_irqsave(&hwif->lock, flags);
622
623 handler = hwif->handler;
624
625 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
626 /*
627 * Either a marginal timeout occurred
628 * (got the interrupt just as timer expired),
629 * or we were "sleeping" to give other devices a chance.
630 * Either way, we don't really want to complain about anything.
631 */
632 } else {
633 ide_expiry_t *expiry = hwif->expiry;
634 ide_startstop_t startstop = ide_stopped;
635
636 drive = hwif->cur_dev;
637
638 if (expiry) {
639 wait = expiry(drive);
640 if (wait > 0) { /* continue */
641 /* reset timer */
642 hwif->timer.expires = jiffies + wait;
643 hwif->req_gen_timer = hwif->req_gen;
644 add_timer(&hwif->timer);
645 spin_unlock_irqrestore(&hwif->lock, flags);
646 return;
647 }
648 }
649 hwif->handler = NULL;
650 hwif->expiry = NULL;
651 /*
652 * We need to simulate a real interrupt when invoking
653 * the handler() function, which means we need to
654 * globally mask the specific IRQ:
655 */
656 spin_unlock(&hwif->lock);
657 /* disable_irq_nosync ?? */
658 disable_irq(hwif->irq);
659 /* local CPU only, as if we were handling an interrupt */
660 local_irq_disable();
661 if (hwif->polling) {
662 startstop = handler(drive);
663 } else if (drive_is_ready(drive)) {
664 if (drive->waiting_for_dma)
665 hwif->dma_ops->dma_lost_irq(drive);
666 if (hwif->port_ops && hwif->port_ops->clear_irq)
667 hwif->port_ops->clear_irq(drive);
668
669 printk(KERN_WARNING "%s: lost interrupt\n",
670 drive->name);
671 startstop = handler(drive);
672 } else {
673 if (drive->waiting_for_dma)
674 startstop = ide_dma_timeout_retry(drive, wait);
675 else
676 startstop = ide_error(drive, "irq timeout",
677 hwif->tp_ops->read_status(hwif));
678 }
679 spin_lock_irq(&hwif->lock);
680 enable_irq(hwif->irq);
681 if (startstop == ide_stopped && hwif->polling == 0) {
682 rq_in_flight = hwif->rq;
683 hwif->rq = NULL;
684 ide_unlock_port(hwif);
685 plug_device = 1;
686 }
687 }
688 spin_unlock_irqrestore(&hwif->lock, flags);
689
690 if (plug_device) {
691 ide_unlock_host(hwif->host);
692 ide_requeue_and_plug(drive, rq_in_flight);
693 }
694 }
695
696 /**
697 * unexpected_intr - handle an unexpected IDE interrupt
698 * @irq: interrupt line
699 * @hwif: port being processed
700 *
701 * There's nothing really useful we can do with an unexpected interrupt,
702 * other than reading the status register (to clear it), and logging it.
703 * There should be no way that an irq can happen before we're ready for it,
704 * so we needn't worry much about losing an "important" interrupt here.
705 *
706 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
707 * the drive enters "idle", "standby", or "sleep" mode, so if the status
708 * looks "good", we just ignore the interrupt completely.
709 *
710 * This routine assumes __cli() is in effect when called.
711 *
712 * If an unexpected interrupt happens on irq15 while we are handling irq14
713 * and if the two interfaces are "serialized" (CMD640), then it looks like
714 * we could screw up by interfering with a new request being set up for
715 * irq15.
716 *
717 * In reality, this is a non-issue. The new command is not sent unless
718 * the drive is ready to accept one, in which case we know the drive is
719 * not trying to interrupt us. And ide_set_handler() is always invoked
720 * before completing the issuance of any new drive command, so we will not
721 * be accidentally invoked as a result of any valid command completion
722 * interrupt.
723 */
724
725 static void unexpected_intr(int irq, ide_hwif_t *hwif)
726 {
727 u8 stat = hwif->tp_ops->read_status(hwif);
728
729 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
730 /* Try to not flood the console with msgs */
731 static unsigned long last_msgtime, count;
732 ++count;
733
734 if (time_after(jiffies, last_msgtime + HZ)) {
735 last_msgtime = jiffies;
736 printk(KERN_ERR "%s: unexpected interrupt, "
737 "status=0x%02x, count=%ld\n",
738 hwif->name, stat, count);
739 }
740 }
741 }
742
743 /**
744 * ide_intr - default IDE interrupt handler
745 * @irq: interrupt number
746 * @dev_id: hwif
747 * @regs: unused weirdness from the kernel irq layer
748 *
749 * This is the default IRQ handler for the IDE layer. You should
750 * not need to override it. If you do be aware it is subtle in
751 * places
752 *
753 * hwif is the interface in the group currently performing
754 * a command. hwif->cur_dev is the drive and hwif->handler is
755 * the IRQ handler to call. As we issue a command the handlers
756 * step through multiple states, reassigning the handler to the
757 * next step in the process. Unlike a smart SCSI controller IDE
758 * expects the main processor to sequence the various transfer
759 * stages. We also manage a poll timer to catch up with most
760 * timeout situations. There are still a few where the handlers
761 * don't ever decide to give up.
762 *
763 * The handler eventually returns ide_stopped to indicate the
764 * request completed. At this point we issue the next request
765 * on the port and the process begins again.
766 */
767
768 irqreturn_t ide_intr (int irq, void *dev_id)
769 {
770 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
771 struct ide_host *host = hwif->host;
772 ide_drive_t *uninitialized_var(drive);
773 ide_handler_t *handler;
774 unsigned long flags;
775 ide_startstop_t startstop;
776 irqreturn_t irq_ret = IRQ_NONE;
777 int plug_device = 0;
778 struct request *uninitialized_var(rq_in_flight);
779
780 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
781 if (hwif != host->cur_port)
782 goto out_early;
783 }
784
785 spin_lock_irqsave(&hwif->lock, flags);
786
787 if (hwif->port_ops && hwif->port_ops->test_irq &&
788 hwif->port_ops->test_irq(hwif) == 0)
789 goto out;
790
791 handler = hwif->handler;
792
793 if (handler == NULL || hwif->polling) {
794 /*
795 * Not expecting an interrupt from this drive.
796 * That means this could be:
797 * (1) an interrupt from another PCI device
798 * sharing the same PCI INT# as us.
799 * or (2) a drive just entered sleep or standby mode,
800 * and is interrupting to let us know.
801 * or (3) a spurious interrupt of unknown origin.
802 *
803 * For PCI, we cannot tell the difference,
804 * so in that case we just ignore it and hope it goes away.
805 */
806 if ((host->irq_flags & IRQF_SHARED) == 0) {
807 /*
808 * Probably not a shared PCI interrupt,
809 * so we can safely try to do something about it:
810 */
811 unexpected_intr(irq, hwif);
812 } else {
813 /*
814 * Whack the status register, just in case
815 * we have a leftover pending IRQ.
816 */
817 (void)hwif->tp_ops->read_status(hwif);
818 }
819 goto out;
820 }
821
822 drive = hwif->cur_dev;
823
824 if (!drive_is_ready(drive))
825 /*
826 * This happens regularly when we share a PCI IRQ with
827 * another device. Unfortunately, it can also happen
828 * with some buggy drives that trigger the IRQ before
829 * their status register is up to date. Hopefully we have
830 * enough advance overhead that the latter isn't a problem.
831 */
832 goto out;
833
834 hwif->handler = NULL;
835 hwif->expiry = NULL;
836 hwif->req_gen++;
837 del_timer(&hwif->timer);
838 spin_unlock(&hwif->lock);
839
840 if (hwif->port_ops && hwif->port_ops->clear_irq)
841 hwif->port_ops->clear_irq(drive);
842
843 if (drive->dev_flags & IDE_DFLAG_UNMASK)
844 local_irq_enable_in_hardirq();
845
846 /* service this interrupt, may set handler for next interrupt */
847 startstop = handler(drive);
848
849 spin_lock_irq(&hwif->lock);
850 /*
851 * Note that handler() may have set things up for another
852 * interrupt to occur soon, but it cannot happen until
853 * we exit from this routine, because it will be the
854 * same irq as is currently being serviced here, and Linux
855 * won't allow another of the same (on any CPU) until we return.
856 */
857 if (startstop == ide_stopped && hwif->polling == 0) {
858 BUG_ON(hwif->handler);
859 rq_in_flight = hwif->rq;
860 hwif->rq = NULL;
861 ide_unlock_port(hwif);
862 plug_device = 1;
863 }
864 irq_ret = IRQ_HANDLED;
865 out:
866 spin_unlock_irqrestore(&hwif->lock, flags);
867 out_early:
868 if (plug_device) {
869 ide_unlock_host(hwif->host);
870 ide_requeue_and_plug(drive, rq_in_flight);
871 }
872
873 return irq_ret;
874 }
875 EXPORT_SYMBOL_GPL(ide_intr);
876
877 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
878 {
879 ide_hwif_t *hwif = drive->hwif;
880 u8 buf[4] = { 0 };
881
882 while (len > 0) {
883 if (write)
884 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
885 else
886 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
887 len -= 4;
888 }
889 }
890 EXPORT_SYMBOL_GPL(ide_pad_transfer);
This page took 0.058484 seconds and 5 git commands to generate.