Merge git://git.kernel.org/pub/scm/linux/kernel/git/tglx/linux-2.6-hrt
[deliverable/linux.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60 int ret = 1;
61 int error = 0;
62
63 if (uptodate <= 0)
64 error = uptodate ? uptodate : -EIO;
65
66 /*
67 * if failfast is set on a request, override number of sectors and
68 * complete the whole request right now
69 */
70 if (blk_noretry_request(rq) && error)
71 nr_bytes = rq->hard_nr_sectors << 9;
72
73 if (!blk_fs_request(rq) && error && !rq->errors)
74 rq->errors = -EIO;
75
76 /*
77 * decide whether to reenable DMA -- 3 is a random magic for now,
78 * if we DMA timeout more than 3 times, just stay in PIO
79 */
80 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
81 drive->state = 0;
82 ide_dma_on(drive);
83 }
84
85 if (!__blk_end_request(rq, error, nr_bytes)) {
86 if (dequeue)
87 HWGROUP(drive)->rq = NULL;
88 ret = 0;
89 }
90
91 return ret;
92 }
93
94 /**
95 * ide_end_request - complete an IDE I/O
96 * @drive: IDE device for the I/O
97 * @uptodate:
98 * @nr_sectors: number of sectors completed
99 *
100 * This is our end_request wrapper function. We complete the I/O
101 * update random number input and dequeue the request, which if
102 * it was tagged may be out of order.
103 */
104
105 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
106 {
107 unsigned int nr_bytes = nr_sectors << 9;
108 struct request *rq;
109 unsigned long flags;
110 int ret = 1;
111
112 /*
113 * room for locking improvements here, the calls below don't
114 * need the queue lock held at all
115 */
116 spin_lock_irqsave(&ide_lock, flags);
117 rq = HWGROUP(drive)->rq;
118
119 if (!nr_bytes) {
120 if (blk_pc_request(rq))
121 nr_bytes = rq->data_len;
122 else
123 nr_bytes = rq->hard_cur_sectors << 9;
124 }
125
126 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
127
128 spin_unlock_irqrestore(&ide_lock, flags);
129 return ret;
130 }
131 EXPORT_SYMBOL(ide_end_request);
132
133 /*
134 * Power Management state machine. This one is rather trivial for now,
135 * we should probably add more, like switching back to PIO on suspend
136 * to help some BIOSes, re-do the door locking on resume, etc...
137 */
138
139 enum {
140 ide_pm_flush_cache = ide_pm_state_start_suspend,
141 idedisk_pm_standby,
142
143 idedisk_pm_restore_pio = ide_pm_state_start_resume,
144 idedisk_pm_idle,
145 ide_pm_restore_dma,
146 };
147
148 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
149 {
150 struct request_pm_state *pm = rq->data;
151
152 if (drive->media != ide_disk)
153 return;
154
155 switch (pm->pm_step) {
156 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
157 if (pm->pm_state == PM_EVENT_FREEZE)
158 pm->pm_step = ide_pm_state_completed;
159 else
160 pm->pm_step = idedisk_pm_standby;
161 break;
162 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
163 pm->pm_step = ide_pm_state_completed;
164 break;
165 case idedisk_pm_restore_pio: /* Resume step 1 complete */
166 pm->pm_step = idedisk_pm_idle;
167 break;
168 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
169 pm->pm_step = ide_pm_restore_dma;
170 break;
171 }
172 }
173
174 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
175 {
176 struct request_pm_state *pm = rq->data;
177 ide_task_t *args = rq->special;
178
179 memset(args, 0, sizeof(*args));
180
181 switch (pm->pm_step) {
182 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
183 if (drive->media != ide_disk)
184 break;
185 /* Not supported? Switch to next step now. */
186 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187 ide_complete_power_step(drive, rq, 0, 0);
188 return ide_stopped;
189 }
190 if (ide_id_has_flush_cache_ext(drive->id))
191 args->tf.command = WIN_FLUSH_CACHE_EXT;
192 else
193 args->tf.command = WIN_FLUSH_CACHE;
194 goto out_do_tf;
195
196 case idedisk_pm_standby: /* Suspend step 2 (standby) */
197 args->tf.command = WIN_STANDBYNOW1;
198 goto out_do_tf;
199
200 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
201 ide_set_max_pio(drive);
202 /*
203 * skip idedisk_pm_idle for ATAPI devices
204 */
205 if (drive->media != ide_disk)
206 pm->pm_step = ide_pm_restore_dma;
207 else
208 ide_complete_power_step(drive, rq, 0, 0);
209 return ide_stopped;
210
211 case idedisk_pm_idle: /* Resume step 2 (idle) */
212 args->tf.command = WIN_IDLEIMMEDIATE;
213 goto out_do_tf;
214
215 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
216 /*
217 * Right now, all we do is call ide_set_dma(drive),
218 * we could be smarter and check for current xfer_speed
219 * in struct drive etc...
220 */
221 if (drive->hwif->dma_ops == NULL)
222 break;
223 /*
224 * TODO: respect ->using_dma setting
225 */
226 ide_set_dma(drive);
227 break;
228 }
229 pm->pm_step = ide_pm_state_completed;
230 return ide_stopped;
231
232 out_do_tf:
233 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234 args->data_phase = TASKFILE_NO_DATA;
235 return do_rw_taskfile(drive, args);
236 }
237
238 /**
239 * ide_end_dequeued_request - complete an IDE I/O
240 * @drive: IDE device for the I/O
241 * @uptodate:
242 * @nr_sectors: number of sectors completed
243 *
244 * Complete an I/O that is no longer on the request queue. This
245 * typically occurs when we pull the request and issue a REQUEST_SENSE.
246 * We must still finish the old request but we must not tamper with the
247 * queue in the meantime.
248 *
249 * NOTE: This path does not handle barrier, but barrier is not supported
250 * on ide-cd anyway.
251 */
252
253 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254 int uptodate, int nr_sectors)
255 {
256 unsigned long flags;
257 int ret;
258
259 spin_lock_irqsave(&ide_lock, flags);
260 BUG_ON(!blk_rq_started(rq));
261 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262 spin_unlock_irqrestore(&ide_lock, flags);
263
264 return ret;
265 }
266 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
267
268
269 /**
270 * ide_complete_pm_request - end the current Power Management request
271 * @drive: target drive
272 * @rq: request
273 *
274 * This function cleans up the current PM request and stops the queue
275 * if necessary.
276 */
277 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
278 {
279 unsigned long flags;
280
281 #ifdef DEBUG_PM
282 printk("%s: completing PM request, %s\n", drive->name,
283 blk_pm_suspend_request(rq) ? "suspend" : "resume");
284 #endif
285 spin_lock_irqsave(&ide_lock, flags);
286 if (blk_pm_suspend_request(rq)) {
287 blk_stop_queue(drive->queue);
288 } else {
289 drive->blocked = 0;
290 blk_start_queue(drive->queue);
291 }
292 HWGROUP(drive)->rq = NULL;
293 if (__blk_end_request(rq, 0, 0))
294 BUG();
295 spin_unlock_irqrestore(&ide_lock, flags);
296 }
297
298 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
299 {
300 ide_hwif_t *hwif = drive->hwif;
301 struct ide_io_ports *io_ports = &hwif->io_ports;
302 struct ide_taskfile *tf = &task->tf;
303
304 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
305 u16 data = hwif->INW(io_ports->data_addr);
306
307 tf->data = data & 0xff;
308 tf->hob_data = (data >> 8) & 0xff;
309 }
310
311 /* be sure we're looking at the low order bits */
312 hwif->OUTB(drive->ctl & ~0x80, io_ports->ctl_addr);
313
314 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
315 tf->nsect = hwif->INB(io_ports->nsect_addr);
316 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
317 tf->lbal = hwif->INB(io_ports->lbal_addr);
318 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
319 tf->lbam = hwif->INB(io_ports->lbam_addr);
320 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
321 tf->lbah = hwif->INB(io_ports->lbah_addr);
322 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
323 tf->device = hwif->INB(io_ports->device_addr);
324
325 if (task->tf_flags & IDE_TFLAG_LBA48) {
326 hwif->OUTB(drive->ctl | 0x80, io_ports->ctl_addr);
327
328 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329 tf->hob_feature = hwif->INB(io_ports->feature_addr);
330 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
331 tf->hob_nsect = hwif->INB(io_ports->nsect_addr);
332 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
333 tf->hob_lbal = hwif->INB(io_ports->lbal_addr);
334 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
335 tf->hob_lbam = hwif->INB(io_ports->lbam_addr);
336 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
337 tf->hob_lbah = hwif->INB(io_ports->lbah_addr);
338 }
339 }
340
341 /**
342 * ide_end_drive_cmd - end an explicit drive command
343 * @drive: command
344 * @stat: status bits
345 * @err: error bits
346 *
347 * Clean up after success/failure of an explicit drive command.
348 * These get thrown onto the queue so they are synchronized with
349 * real I/O operations on the drive.
350 *
351 * In LBA48 mode we have to read the register set twice to get
352 * all the extra information out.
353 */
354
355 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
356 {
357 unsigned long flags;
358 struct request *rq;
359
360 spin_lock_irqsave(&ide_lock, flags);
361 rq = HWGROUP(drive)->rq;
362 spin_unlock_irqrestore(&ide_lock, flags);
363
364 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
365 ide_task_t *task = (ide_task_t *)rq->special;
366
367 if (rq->errors == 0)
368 rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT);
369
370 if (task) {
371 struct ide_taskfile *tf = &task->tf;
372
373 tf->error = err;
374 tf->status = stat;
375
376 ide_tf_read(drive, task);
377
378 if (task->tf_flags & IDE_TFLAG_DYN)
379 kfree(task);
380 }
381 } else if (blk_pm_request(rq)) {
382 struct request_pm_state *pm = rq->data;
383 #ifdef DEBUG_PM
384 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
385 drive->name, rq->pm->pm_step, stat, err);
386 #endif
387 ide_complete_power_step(drive, rq, stat, err);
388 if (pm->pm_step == ide_pm_state_completed)
389 ide_complete_pm_request(drive, rq);
390 return;
391 }
392
393 spin_lock_irqsave(&ide_lock, flags);
394 HWGROUP(drive)->rq = NULL;
395 rq->errors = err;
396 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
397 blk_rq_bytes(rq))))
398 BUG();
399 spin_unlock_irqrestore(&ide_lock, flags);
400 }
401
402 EXPORT_SYMBOL(ide_end_drive_cmd);
403
404 /**
405 * try_to_flush_leftover_data - flush junk
406 * @drive: drive to flush
407 *
408 * try_to_flush_leftover_data() is invoked in response to a drive
409 * unexpectedly having its DRQ_STAT bit set. As an alternative to
410 * resetting the drive, this routine tries to clear the condition
411 * by read a sector's worth of data from the drive. Of course,
412 * this may not help if the drive is *waiting* for data from *us*.
413 */
414 static void try_to_flush_leftover_data (ide_drive_t *drive)
415 {
416 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
417
418 if (drive->media != ide_disk)
419 return;
420 while (i > 0) {
421 u32 buffer[16];
422 u32 wcount = (i > 16) ? 16 : i;
423
424 i -= wcount;
425 HWIF(drive)->ata_input_data(drive, buffer, wcount);
426 }
427 }
428
429 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
430 {
431 if (rq->rq_disk) {
432 ide_driver_t *drv;
433
434 drv = *(ide_driver_t **)rq->rq_disk->private_data;
435 drv->end_request(drive, 0, 0);
436 } else
437 ide_end_request(drive, 0, 0);
438 }
439
440 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
441 {
442 ide_hwif_t *hwif = drive->hwif;
443
444 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
445 /* other bits are useless when BUSY */
446 rq->errors |= ERROR_RESET;
447 } else if (stat & ERR_STAT) {
448 /* err has different meaning on cdrom and tape */
449 if (err == ABRT_ERR) {
450 if (drive->select.b.lba &&
451 /* some newer drives don't support WIN_SPECIFY */
452 hwif->INB(hwif->io_ports.command_addr) ==
453 WIN_SPECIFY)
454 return ide_stopped;
455 } else if ((err & BAD_CRC) == BAD_CRC) {
456 /* UDMA crc error, just retry the operation */
457 drive->crc_count++;
458 } else if (err & (BBD_ERR | ECC_ERR)) {
459 /* retries won't help these */
460 rq->errors = ERROR_MAX;
461 } else if (err & TRK0_ERR) {
462 /* help it find track zero */
463 rq->errors |= ERROR_RECAL;
464 }
465 }
466
467 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
468 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
469 try_to_flush_leftover_data(drive);
470
471 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
472 ide_kill_rq(drive, rq);
473 return ide_stopped;
474 }
475
476 if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
477 rq->errors |= ERROR_RESET;
478
479 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
480 ++rq->errors;
481 return ide_do_reset(drive);
482 }
483
484 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
485 drive->special.b.recalibrate = 1;
486
487 ++rq->errors;
488
489 return ide_stopped;
490 }
491
492 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
493 {
494 ide_hwif_t *hwif = drive->hwif;
495
496 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
497 /* other bits are useless when BUSY */
498 rq->errors |= ERROR_RESET;
499 } else {
500 /* add decoding error stuff */
501 }
502
503 if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
504 /* force an abort */
505 hwif->OUTB(WIN_IDLEIMMEDIATE, hwif->io_ports.command_addr);
506
507 if (rq->errors >= ERROR_MAX) {
508 ide_kill_rq(drive, rq);
509 } else {
510 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
511 ++rq->errors;
512 return ide_do_reset(drive);
513 }
514 ++rq->errors;
515 }
516
517 return ide_stopped;
518 }
519
520 ide_startstop_t
521 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
522 {
523 if (drive->media == ide_disk)
524 return ide_ata_error(drive, rq, stat, err);
525 return ide_atapi_error(drive, rq, stat, err);
526 }
527
528 EXPORT_SYMBOL_GPL(__ide_error);
529
530 /**
531 * ide_error - handle an error on the IDE
532 * @drive: drive the error occurred on
533 * @msg: message to report
534 * @stat: status bits
535 *
536 * ide_error() takes action based on the error returned by the drive.
537 * For normal I/O that may well include retries. We deal with
538 * both new-style (taskfile) and old style command handling here.
539 * In the case of taskfile command handling there is work left to
540 * do
541 */
542
543 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
544 {
545 struct request *rq;
546 u8 err;
547
548 err = ide_dump_status(drive, msg, stat);
549
550 if ((rq = HWGROUP(drive)->rq) == NULL)
551 return ide_stopped;
552
553 /* retry only "normal" I/O: */
554 if (!blk_fs_request(rq)) {
555 rq->errors = 1;
556 ide_end_drive_cmd(drive, stat, err);
557 return ide_stopped;
558 }
559
560 if (rq->rq_disk) {
561 ide_driver_t *drv;
562
563 drv = *(ide_driver_t **)rq->rq_disk->private_data;
564 return drv->error(drive, rq, stat, err);
565 } else
566 return __ide_error(drive, rq, stat, err);
567 }
568
569 EXPORT_SYMBOL_GPL(ide_error);
570
571 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
572 {
573 if (drive->media != ide_disk)
574 rq->errors |= ERROR_RESET;
575
576 ide_kill_rq(drive, rq);
577
578 return ide_stopped;
579 }
580
581 EXPORT_SYMBOL_GPL(__ide_abort);
582
583 /**
584 * ide_abort - abort pending IDE operations
585 * @drive: drive the error occurred on
586 * @msg: message to report
587 *
588 * ide_abort kills and cleans up when we are about to do a
589 * host initiated reset on active commands. Longer term we
590 * want handlers to have sensible abort handling themselves
591 *
592 * This differs fundamentally from ide_error because in
593 * this case the command is doing just fine when we
594 * blow it away.
595 */
596
597 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
598 {
599 struct request *rq;
600
601 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
602 return ide_stopped;
603
604 /* retry only "normal" I/O: */
605 if (!blk_fs_request(rq)) {
606 rq->errors = 1;
607 ide_end_drive_cmd(drive, BUSY_STAT, 0);
608 return ide_stopped;
609 }
610
611 if (rq->rq_disk) {
612 ide_driver_t *drv;
613
614 drv = *(ide_driver_t **)rq->rq_disk->private_data;
615 return drv->abort(drive, rq);
616 } else
617 return __ide_abort(drive, rq);
618 }
619
620 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
621 {
622 tf->nsect = drive->sect;
623 tf->lbal = drive->sect;
624 tf->lbam = drive->cyl;
625 tf->lbah = drive->cyl >> 8;
626 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
627 tf->command = WIN_SPECIFY;
628 }
629
630 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
631 {
632 tf->nsect = drive->sect;
633 tf->command = WIN_RESTORE;
634 }
635
636 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
637 {
638 tf->nsect = drive->mult_req;
639 tf->command = WIN_SETMULT;
640 }
641
642 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
643 {
644 special_t *s = &drive->special;
645 ide_task_t args;
646
647 memset(&args, 0, sizeof(ide_task_t));
648 args.data_phase = TASKFILE_NO_DATA;
649
650 if (s->b.set_geometry) {
651 s->b.set_geometry = 0;
652 ide_tf_set_specify_cmd(drive, &args.tf);
653 } else if (s->b.recalibrate) {
654 s->b.recalibrate = 0;
655 ide_tf_set_restore_cmd(drive, &args.tf);
656 } else if (s->b.set_multmode) {
657 s->b.set_multmode = 0;
658 if (drive->mult_req > drive->id->max_multsect)
659 drive->mult_req = drive->id->max_multsect;
660 ide_tf_set_setmult_cmd(drive, &args.tf);
661 } else if (s->all) {
662 int special = s->all;
663 s->all = 0;
664 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
665 return ide_stopped;
666 }
667
668 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
669 IDE_TFLAG_CUSTOM_HANDLER;
670
671 do_rw_taskfile(drive, &args);
672
673 return ide_started;
674 }
675
676 /*
677 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
678 */
679 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
680 {
681 switch (req_pio) {
682 case 202:
683 case 201:
684 case 200:
685 case 102:
686 case 101:
687 case 100:
688 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
689 case 9:
690 case 8:
691 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
692 case 7:
693 case 6:
694 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
695 default:
696 return 0;
697 }
698 }
699
700 /**
701 * do_special - issue some special commands
702 * @drive: drive the command is for
703 *
704 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
705 * commands to a drive. It used to do much more, but has been scaled
706 * back.
707 */
708
709 static ide_startstop_t do_special (ide_drive_t *drive)
710 {
711 special_t *s = &drive->special;
712
713 #ifdef DEBUG
714 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
715 #endif
716 if (s->b.set_tune) {
717 ide_hwif_t *hwif = drive->hwif;
718 const struct ide_port_ops *port_ops = hwif->port_ops;
719 u8 req_pio = drive->tune_req;
720
721 s->b.set_tune = 0;
722
723 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
724 /*
725 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
726 */
727 if (req_pio == 8 || req_pio == 9) {
728 unsigned long flags;
729
730 spin_lock_irqsave(&ide_lock, flags);
731 port_ops->set_pio_mode(drive, req_pio);
732 spin_unlock_irqrestore(&ide_lock, flags);
733 } else
734 port_ops->set_pio_mode(drive, req_pio);
735 } else {
736 int keep_dma = drive->using_dma;
737
738 ide_set_pio(drive, req_pio);
739
740 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
741 if (keep_dma)
742 ide_dma_on(drive);
743 }
744 }
745
746 return ide_stopped;
747 } else {
748 if (drive->media == ide_disk)
749 return ide_disk_special(drive);
750
751 s->all = 0;
752 drive->mult_req = 0;
753 return ide_stopped;
754 }
755 }
756
757 void ide_map_sg(ide_drive_t *drive, struct request *rq)
758 {
759 ide_hwif_t *hwif = drive->hwif;
760 struct scatterlist *sg = hwif->sg_table;
761
762 if (hwif->sg_mapped) /* needed by ide-scsi */
763 return;
764
765 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
766 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
767 } else {
768 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
769 hwif->sg_nents = 1;
770 }
771 }
772
773 EXPORT_SYMBOL_GPL(ide_map_sg);
774
775 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
776 {
777 ide_hwif_t *hwif = drive->hwif;
778
779 hwif->nsect = hwif->nleft = rq->nr_sectors;
780 hwif->cursg_ofs = 0;
781 hwif->cursg = NULL;
782 }
783
784 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
785
786 /**
787 * execute_drive_command - issue special drive command
788 * @drive: the drive to issue the command on
789 * @rq: the request structure holding the command
790 *
791 * execute_drive_cmd() issues a special drive command, usually
792 * initiated by ioctl() from the external hdparm program. The
793 * command can be a drive command, drive task or taskfile
794 * operation. Weirdly you can call it with NULL to wait for
795 * all commands to finish. Don't do this as that is due to change
796 */
797
798 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
799 struct request *rq)
800 {
801 ide_hwif_t *hwif = HWIF(drive);
802 ide_task_t *task = rq->special;
803
804 if (task) {
805 hwif->data_phase = task->data_phase;
806
807 switch (hwif->data_phase) {
808 case TASKFILE_MULTI_OUT:
809 case TASKFILE_OUT:
810 case TASKFILE_MULTI_IN:
811 case TASKFILE_IN:
812 ide_init_sg_cmd(drive, rq);
813 ide_map_sg(drive, rq);
814 default:
815 break;
816 }
817
818 return do_rw_taskfile(drive, task);
819 }
820
821 /*
822 * NULL is actually a valid way of waiting for
823 * all current requests to be flushed from the queue.
824 */
825 #ifdef DEBUG
826 printk("%s: DRIVE_CMD (null)\n", drive->name);
827 #endif
828 ide_end_drive_cmd(drive, ide_read_status(drive), ide_read_error(drive));
829
830 return ide_stopped;
831 }
832
833 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
834 {
835 struct request_pm_state *pm = rq->data;
836
837 if (blk_pm_suspend_request(rq) &&
838 pm->pm_step == ide_pm_state_start_suspend)
839 /* Mark drive blocked when starting the suspend sequence. */
840 drive->blocked = 1;
841 else if (blk_pm_resume_request(rq) &&
842 pm->pm_step == ide_pm_state_start_resume) {
843 /*
844 * The first thing we do on wakeup is to wait for BSY bit to
845 * go away (with a looong timeout) as a drive on this hwif may
846 * just be POSTing itself.
847 * We do that before even selecting as the "other" device on
848 * the bus may be broken enough to walk on our toes at this
849 * point.
850 */
851 int rc;
852 #ifdef DEBUG_PM
853 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
854 #endif
855 rc = ide_wait_not_busy(HWIF(drive), 35000);
856 if (rc)
857 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
858 SELECT_DRIVE(drive);
859 ide_set_irq(drive, 1);
860 rc = ide_wait_not_busy(HWIF(drive), 100000);
861 if (rc)
862 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
863 }
864 }
865
866 /**
867 * start_request - start of I/O and command issuing for IDE
868 *
869 * start_request() initiates handling of a new I/O request. It
870 * accepts commands and I/O (read/write) requests. It also does
871 * the final remapping for weird stuff like EZDrive. Once
872 * device mapper can work sector level the EZDrive stuff can go away
873 *
874 * FIXME: this function needs a rename
875 */
876
877 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
878 {
879 ide_startstop_t startstop;
880 sector_t block;
881
882 BUG_ON(!blk_rq_started(rq));
883
884 #ifdef DEBUG
885 printk("%s: start_request: current=0x%08lx\n",
886 HWIF(drive)->name, (unsigned long) rq);
887 #endif
888
889 /* bail early if we've exceeded max_failures */
890 if (drive->max_failures && (drive->failures > drive->max_failures)) {
891 rq->cmd_flags |= REQ_FAILED;
892 goto kill_rq;
893 }
894
895 block = rq->sector;
896 if (blk_fs_request(rq) &&
897 (drive->media == ide_disk || drive->media == ide_floppy)) {
898 block += drive->sect0;
899 }
900 /* Yecch - this will shift the entire interval,
901 possibly killing some innocent following sector */
902 if (block == 0 && drive->remap_0_to_1 == 1)
903 block = 1; /* redirect MBR access to EZ-Drive partn table */
904
905 if (blk_pm_request(rq))
906 ide_check_pm_state(drive, rq);
907
908 SELECT_DRIVE(drive);
909 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
910 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
911 return startstop;
912 }
913 if (!drive->special.all) {
914 ide_driver_t *drv;
915
916 /*
917 * We reset the drive so we need to issue a SETFEATURES.
918 * Do it _after_ do_special() restored device parameters.
919 */
920 if (drive->current_speed == 0xff)
921 ide_config_drive_speed(drive, drive->desired_speed);
922
923 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
924 return execute_drive_cmd(drive, rq);
925 else if (blk_pm_request(rq)) {
926 struct request_pm_state *pm = rq->data;
927 #ifdef DEBUG_PM
928 printk("%s: start_power_step(step: %d)\n",
929 drive->name, rq->pm->pm_step);
930 #endif
931 startstop = ide_start_power_step(drive, rq);
932 if (startstop == ide_stopped &&
933 pm->pm_step == ide_pm_state_completed)
934 ide_complete_pm_request(drive, rq);
935 return startstop;
936 }
937
938 drv = *(ide_driver_t **)rq->rq_disk->private_data;
939 return drv->do_request(drive, rq, block);
940 }
941 return do_special(drive);
942 kill_rq:
943 ide_kill_rq(drive, rq);
944 return ide_stopped;
945 }
946
947 /**
948 * ide_stall_queue - pause an IDE device
949 * @drive: drive to stall
950 * @timeout: time to stall for (jiffies)
951 *
952 * ide_stall_queue() can be used by a drive to give excess bandwidth back
953 * to the hwgroup by sleeping for timeout jiffies.
954 */
955
956 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
957 {
958 if (timeout > WAIT_WORSTCASE)
959 timeout = WAIT_WORSTCASE;
960 drive->sleep = timeout + jiffies;
961 drive->sleeping = 1;
962 }
963
964 EXPORT_SYMBOL(ide_stall_queue);
965
966 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
967
968 /**
969 * choose_drive - select a drive to service
970 * @hwgroup: hardware group to select on
971 *
972 * choose_drive() selects the next drive which will be serviced.
973 * This is necessary because the IDE layer can't issue commands
974 * to both drives on the same cable, unlike SCSI.
975 */
976
977 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
978 {
979 ide_drive_t *drive, *best;
980
981 repeat:
982 best = NULL;
983 drive = hwgroup->drive;
984
985 /*
986 * drive is doing pre-flush, ordered write, post-flush sequence. even
987 * though that is 3 requests, it must be seen as a single transaction.
988 * we must not preempt this drive until that is complete
989 */
990 if (blk_queue_flushing(drive->queue)) {
991 /*
992 * small race where queue could get replugged during
993 * the 3-request flush cycle, just yank the plug since
994 * we want it to finish asap
995 */
996 blk_remove_plug(drive->queue);
997 return drive;
998 }
999
1000 do {
1001 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1002 && !elv_queue_empty(drive->queue)) {
1003 if (!best
1004 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1005 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1006 {
1007 if (!blk_queue_plugged(drive->queue))
1008 best = drive;
1009 }
1010 }
1011 } while ((drive = drive->next) != hwgroup->drive);
1012 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1013 long t = (signed long)(WAKEUP(best) - jiffies);
1014 if (t >= WAIT_MIN_SLEEP) {
1015 /*
1016 * We *may* have some time to spare, but first let's see if
1017 * someone can potentially benefit from our nice mood today..
1018 */
1019 drive = best->next;
1020 do {
1021 if (!drive->sleeping
1022 && time_before(jiffies - best->service_time, WAKEUP(drive))
1023 && time_before(WAKEUP(drive), jiffies + t))
1024 {
1025 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1026 goto repeat;
1027 }
1028 } while ((drive = drive->next) != best);
1029 }
1030 }
1031 return best;
1032 }
1033
1034 /*
1035 * Issue a new request to a drive from hwgroup
1036 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1037 *
1038 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1039 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1040 * may have both interfaces in a single hwgroup to "serialize" access.
1041 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1042 * together into one hwgroup for serialized access.
1043 *
1044 * Note also that several hwgroups can end up sharing a single IRQ,
1045 * possibly along with many other devices. This is especially common in
1046 * PCI-based systems with off-board IDE controller cards.
1047 *
1048 * The IDE driver uses the single global ide_lock spinlock to protect
1049 * access to the request queues, and to protect the hwgroup->busy flag.
1050 *
1051 * The first thread into the driver for a particular hwgroup sets the
1052 * hwgroup->busy flag to indicate that this hwgroup is now active,
1053 * and then initiates processing of the top request from the request queue.
1054 *
1055 * Other threads attempting entry notice the busy setting, and will simply
1056 * queue their new requests and exit immediately. Note that hwgroup->busy
1057 * remains set even when the driver is merely awaiting the next interrupt.
1058 * Thus, the meaning is "this hwgroup is busy processing a request".
1059 *
1060 * When processing of a request completes, the completing thread or IRQ-handler
1061 * will start the next request from the queue. If no more work remains,
1062 * the driver will clear the hwgroup->busy flag and exit.
1063 *
1064 * The ide_lock (spinlock) is used to protect all access to the
1065 * hwgroup->busy flag, but is otherwise not needed for most processing in
1066 * the driver. This makes the driver much more friendlier to shared IRQs
1067 * than previous designs, while remaining 100% (?) SMP safe and capable.
1068 */
1069 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1070 {
1071 ide_drive_t *drive;
1072 ide_hwif_t *hwif;
1073 struct request *rq;
1074 ide_startstop_t startstop;
1075 int loops = 0;
1076
1077 /* for atari only: POSSIBLY BROKEN HERE(?) */
1078 ide_get_lock(ide_intr, hwgroup);
1079
1080 /* caller must own ide_lock */
1081 BUG_ON(!irqs_disabled());
1082
1083 while (!hwgroup->busy) {
1084 hwgroup->busy = 1;
1085 drive = choose_drive(hwgroup);
1086 if (drive == NULL) {
1087 int sleeping = 0;
1088 unsigned long sleep = 0; /* shut up, gcc */
1089 hwgroup->rq = NULL;
1090 drive = hwgroup->drive;
1091 do {
1092 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1093 sleeping = 1;
1094 sleep = drive->sleep;
1095 }
1096 } while ((drive = drive->next) != hwgroup->drive);
1097 if (sleeping) {
1098 /*
1099 * Take a short snooze, and then wake up this hwgroup again.
1100 * This gives other hwgroups on the same a chance to
1101 * play fairly with us, just in case there are big differences
1102 * in relative throughputs.. don't want to hog the cpu too much.
1103 */
1104 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1105 sleep = jiffies + WAIT_MIN_SLEEP;
1106 #if 1
1107 if (timer_pending(&hwgroup->timer))
1108 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1109 #endif
1110 /* so that ide_timer_expiry knows what to do */
1111 hwgroup->sleeping = 1;
1112 hwgroup->req_gen_timer = hwgroup->req_gen;
1113 mod_timer(&hwgroup->timer, sleep);
1114 /* we purposely leave hwgroup->busy==1
1115 * while sleeping */
1116 } else {
1117 /* Ugly, but how can we sleep for the lock
1118 * otherwise? perhaps from tq_disk?
1119 */
1120
1121 /* for atari only */
1122 ide_release_lock();
1123 hwgroup->busy = 0;
1124 }
1125
1126 /* no more work for this hwgroup (for now) */
1127 return;
1128 }
1129 again:
1130 hwif = HWIF(drive);
1131 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1132 /*
1133 * set nIEN for previous hwif, drives in the
1134 * quirk_list may not like intr setups/cleanups
1135 */
1136 if (drive->quirk_list != 1)
1137 ide_set_irq(drive, 0);
1138 }
1139 hwgroup->hwif = hwif;
1140 hwgroup->drive = drive;
1141 drive->sleeping = 0;
1142 drive->service_start = jiffies;
1143
1144 if (blk_queue_plugged(drive->queue)) {
1145 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1146 break;
1147 }
1148
1149 /*
1150 * we know that the queue isn't empty, but this can happen
1151 * if the q->prep_rq_fn() decides to kill a request
1152 */
1153 rq = elv_next_request(drive->queue);
1154 if (!rq) {
1155 hwgroup->busy = 0;
1156 break;
1157 }
1158
1159 /*
1160 * Sanity: don't accept a request that isn't a PM request
1161 * if we are currently power managed. This is very important as
1162 * blk_stop_queue() doesn't prevent the elv_next_request()
1163 * above to return us whatever is in the queue. Since we call
1164 * ide_do_request() ourselves, we end up taking requests while
1165 * the queue is blocked...
1166 *
1167 * We let requests forced at head of queue with ide-preempt
1168 * though. I hope that doesn't happen too much, hopefully not
1169 * unless the subdriver triggers such a thing in its own PM
1170 * state machine.
1171 *
1172 * We count how many times we loop here to make sure we service
1173 * all drives in the hwgroup without looping for ever
1174 */
1175 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1176 drive = drive->next ? drive->next : hwgroup->drive;
1177 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1178 goto again;
1179 /* We clear busy, there should be no pending ATA command at this point. */
1180 hwgroup->busy = 0;
1181 break;
1182 }
1183
1184 hwgroup->rq = rq;
1185
1186 /*
1187 * Some systems have trouble with IDE IRQs arriving while
1188 * the driver is still setting things up. So, here we disable
1189 * the IRQ used by this interface while the request is being started.
1190 * This may look bad at first, but pretty much the same thing
1191 * happens anyway when any interrupt comes in, IDE or otherwise
1192 * -- the kernel masks the IRQ while it is being handled.
1193 */
1194 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1195 disable_irq_nosync(hwif->irq);
1196 spin_unlock(&ide_lock);
1197 local_irq_enable_in_hardirq();
1198 /* allow other IRQs while we start this request */
1199 startstop = start_request(drive, rq);
1200 spin_lock_irq(&ide_lock);
1201 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1202 enable_irq(hwif->irq);
1203 if (startstop == ide_stopped)
1204 hwgroup->busy = 0;
1205 }
1206 }
1207
1208 /*
1209 * Passes the stuff to ide_do_request
1210 */
1211 void do_ide_request(struct request_queue *q)
1212 {
1213 ide_drive_t *drive = q->queuedata;
1214
1215 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1216 }
1217
1218 /*
1219 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1220 * retry the current request in pio mode instead of risking tossing it
1221 * all away
1222 */
1223 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1224 {
1225 ide_hwif_t *hwif = HWIF(drive);
1226 struct request *rq;
1227 ide_startstop_t ret = ide_stopped;
1228
1229 /*
1230 * end current dma transaction
1231 */
1232
1233 if (error < 0) {
1234 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1235 (void)hwif->dma_ops->dma_end(drive);
1236 ret = ide_error(drive, "dma timeout error",
1237 ide_read_status(drive));
1238 } else {
1239 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1240 hwif->dma_ops->dma_timeout(drive);
1241 }
1242
1243 /*
1244 * disable dma for now, but remember that we did so because of
1245 * a timeout -- we'll reenable after we finish this next request
1246 * (or rather the first chunk of it) in pio.
1247 */
1248 drive->retry_pio++;
1249 drive->state = DMA_PIO_RETRY;
1250 ide_dma_off_quietly(drive);
1251
1252 /*
1253 * un-busy drive etc (hwgroup->busy is cleared on return) and
1254 * make sure request is sane
1255 */
1256 rq = HWGROUP(drive)->rq;
1257
1258 if (!rq)
1259 goto out;
1260
1261 HWGROUP(drive)->rq = NULL;
1262
1263 rq->errors = 0;
1264
1265 if (!rq->bio)
1266 goto out;
1267
1268 rq->sector = rq->bio->bi_sector;
1269 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1270 rq->hard_cur_sectors = rq->current_nr_sectors;
1271 rq->buffer = bio_data(rq->bio);
1272 out:
1273 return ret;
1274 }
1275
1276 /**
1277 * ide_timer_expiry - handle lack of an IDE interrupt
1278 * @data: timer callback magic (hwgroup)
1279 *
1280 * An IDE command has timed out before the expected drive return
1281 * occurred. At this point we attempt to clean up the current
1282 * mess. If the current handler includes an expiry handler then
1283 * we invoke the expiry handler, and providing it is happy the
1284 * work is done. If that fails we apply generic recovery rules
1285 * invoking the handler and checking the drive DMA status. We
1286 * have an excessively incestuous relationship with the DMA
1287 * logic that wants cleaning up.
1288 */
1289
1290 void ide_timer_expiry (unsigned long data)
1291 {
1292 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1293 ide_handler_t *handler;
1294 ide_expiry_t *expiry;
1295 unsigned long flags;
1296 unsigned long wait = -1;
1297
1298 spin_lock_irqsave(&ide_lock, flags);
1299
1300 if (((handler = hwgroup->handler) == NULL) ||
1301 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1302 /*
1303 * Either a marginal timeout occurred
1304 * (got the interrupt just as timer expired),
1305 * or we were "sleeping" to give other devices a chance.
1306 * Either way, we don't really want to complain about anything.
1307 */
1308 if (hwgroup->sleeping) {
1309 hwgroup->sleeping = 0;
1310 hwgroup->busy = 0;
1311 }
1312 } else {
1313 ide_drive_t *drive = hwgroup->drive;
1314 if (!drive) {
1315 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1316 hwgroup->handler = NULL;
1317 } else {
1318 ide_hwif_t *hwif;
1319 ide_startstop_t startstop = ide_stopped;
1320 if (!hwgroup->busy) {
1321 hwgroup->busy = 1; /* paranoia */
1322 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1323 }
1324 if ((expiry = hwgroup->expiry) != NULL) {
1325 /* continue */
1326 if ((wait = expiry(drive)) > 0) {
1327 /* reset timer */
1328 hwgroup->timer.expires = jiffies + wait;
1329 hwgroup->req_gen_timer = hwgroup->req_gen;
1330 add_timer(&hwgroup->timer);
1331 spin_unlock_irqrestore(&ide_lock, flags);
1332 return;
1333 }
1334 }
1335 hwgroup->handler = NULL;
1336 /*
1337 * We need to simulate a real interrupt when invoking
1338 * the handler() function, which means we need to
1339 * globally mask the specific IRQ:
1340 */
1341 spin_unlock(&ide_lock);
1342 hwif = HWIF(drive);
1343 /* disable_irq_nosync ?? */
1344 disable_irq(hwif->irq);
1345 /* local CPU only,
1346 * as if we were handling an interrupt */
1347 local_irq_disable();
1348 if (hwgroup->polling) {
1349 startstop = handler(drive);
1350 } else if (drive_is_ready(drive)) {
1351 if (drive->waiting_for_dma)
1352 hwif->dma_ops->dma_lost_irq(drive);
1353 (void)ide_ack_intr(hwif);
1354 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1355 startstop = handler(drive);
1356 } else {
1357 if (drive->waiting_for_dma) {
1358 startstop = ide_dma_timeout_retry(drive, wait);
1359 } else
1360 startstop =
1361 ide_error(drive, "irq timeout",
1362 ide_read_status(drive));
1363 }
1364 drive->service_time = jiffies - drive->service_start;
1365 spin_lock_irq(&ide_lock);
1366 enable_irq(hwif->irq);
1367 if (startstop == ide_stopped)
1368 hwgroup->busy = 0;
1369 }
1370 }
1371 ide_do_request(hwgroup, IDE_NO_IRQ);
1372 spin_unlock_irqrestore(&ide_lock, flags);
1373 }
1374
1375 /**
1376 * unexpected_intr - handle an unexpected IDE interrupt
1377 * @irq: interrupt line
1378 * @hwgroup: hwgroup being processed
1379 *
1380 * There's nothing really useful we can do with an unexpected interrupt,
1381 * other than reading the status register (to clear it), and logging it.
1382 * There should be no way that an irq can happen before we're ready for it,
1383 * so we needn't worry much about losing an "important" interrupt here.
1384 *
1385 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1386 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1387 * looks "good", we just ignore the interrupt completely.
1388 *
1389 * This routine assumes __cli() is in effect when called.
1390 *
1391 * If an unexpected interrupt happens on irq15 while we are handling irq14
1392 * and if the two interfaces are "serialized" (CMD640), then it looks like
1393 * we could screw up by interfering with a new request being set up for
1394 * irq15.
1395 *
1396 * In reality, this is a non-issue. The new command is not sent unless
1397 * the drive is ready to accept one, in which case we know the drive is
1398 * not trying to interrupt us. And ide_set_handler() is always invoked
1399 * before completing the issuance of any new drive command, so we will not
1400 * be accidentally invoked as a result of any valid command completion
1401 * interrupt.
1402 *
1403 * Note that we must walk the entire hwgroup here. We know which hwif
1404 * is doing the current command, but we don't know which hwif burped
1405 * mysteriously.
1406 */
1407
1408 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1409 {
1410 u8 stat;
1411 ide_hwif_t *hwif = hwgroup->hwif;
1412
1413 /*
1414 * handle the unexpected interrupt
1415 */
1416 do {
1417 if (hwif->irq == irq) {
1418 stat = hwif->INB(hwif->io_ports.status_addr);
1419 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1420 /* Try to not flood the console with msgs */
1421 static unsigned long last_msgtime, count;
1422 ++count;
1423 if (time_after(jiffies, last_msgtime + HZ)) {
1424 last_msgtime = jiffies;
1425 printk(KERN_ERR "%s%s: unexpected interrupt, "
1426 "status=0x%02x, count=%ld\n",
1427 hwif->name,
1428 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1429 }
1430 }
1431 }
1432 } while ((hwif = hwif->next) != hwgroup->hwif);
1433 }
1434
1435 /**
1436 * ide_intr - default IDE interrupt handler
1437 * @irq: interrupt number
1438 * @dev_id: hwif group
1439 * @regs: unused weirdness from the kernel irq layer
1440 *
1441 * This is the default IRQ handler for the IDE layer. You should
1442 * not need to override it. If you do be aware it is subtle in
1443 * places
1444 *
1445 * hwgroup->hwif is the interface in the group currently performing
1446 * a command. hwgroup->drive is the drive and hwgroup->handler is
1447 * the IRQ handler to call. As we issue a command the handlers
1448 * step through multiple states, reassigning the handler to the
1449 * next step in the process. Unlike a smart SCSI controller IDE
1450 * expects the main processor to sequence the various transfer
1451 * stages. We also manage a poll timer to catch up with most
1452 * timeout situations. There are still a few where the handlers
1453 * don't ever decide to give up.
1454 *
1455 * The handler eventually returns ide_stopped to indicate the
1456 * request completed. At this point we issue the next request
1457 * on the hwgroup and the process begins again.
1458 */
1459
1460 irqreturn_t ide_intr (int irq, void *dev_id)
1461 {
1462 unsigned long flags;
1463 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1464 ide_hwif_t *hwif;
1465 ide_drive_t *drive;
1466 ide_handler_t *handler;
1467 ide_startstop_t startstop;
1468
1469 spin_lock_irqsave(&ide_lock, flags);
1470 hwif = hwgroup->hwif;
1471
1472 if (!ide_ack_intr(hwif)) {
1473 spin_unlock_irqrestore(&ide_lock, flags);
1474 return IRQ_NONE;
1475 }
1476
1477 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1478 /*
1479 * Not expecting an interrupt from this drive.
1480 * That means this could be:
1481 * (1) an interrupt from another PCI device
1482 * sharing the same PCI INT# as us.
1483 * or (2) a drive just entered sleep or standby mode,
1484 * and is interrupting to let us know.
1485 * or (3) a spurious interrupt of unknown origin.
1486 *
1487 * For PCI, we cannot tell the difference,
1488 * so in that case we just ignore it and hope it goes away.
1489 *
1490 * FIXME: unexpected_intr should be hwif-> then we can
1491 * remove all the ifdef PCI crap
1492 */
1493 #ifdef CONFIG_BLK_DEV_IDEPCI
1494 if (hwif->chipset != ide_pci)
1495 #endif /* CONFIG_BLK_DEV_IDEPCI */
1496 {
1497 /*
1498 * Probably not a shared PCI interrupt,
1499 * so we can safely try to do something about it:
1500 */
1501 unexpected_intr(irq, hwgroup);
1502 #ifdef CONFIG_BLK_DEV_IDEPCI
1503 } else {
1504 /*
1505 * Whack the status register, just in case
1506 * we have a leftover pending IRQ.
1507 */
1508 (void) hwif->INB(hwif->io_ports.status_addr);
1509 #endif /* CONFIG_BLK_DEV_IDEPCI */
1510 }
1511 spin_unlock_irqrestore(&ide_lock, flags);
1512 return IRQ_NONE;
1513 }
1514 drive = hwgroup->drive;
1515 if (!drive) {
1516 /*
1517 * This should NEVER happen, and there isn't much
1518 * we could do about it here.
1519 *
1520 * [Note - this can occur if the drive is hot unplugged]
1521 */
1522 spin_unlock_irqrestore(&ide_lock, flags);
1523 return IRQ_HANDLED;
1524 }
1525 if (!drive_is_ready(drive)) {
1526 /*
1527 * This happens regularly when we share a PCI IRQ with
1528 * another device. Unfortunately, it can also happen
1529 * with some buggy drives that trigger the IRQ before
1530 * their status register is up to date. Hopefully we have
1531 * enough advance overhead that the latter isn't a problem.
1532 */
1533 spin_unlock_irqrestore(&ide_lock, flags);
1534 return IRQ_NONE;
1535 }
1536 if (!hwgroup->busy) {
1537 hwgroup->busy = 1; /* paranoia */
1538 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1539 }
1540 hwgroup->handler = NULL;
1541 hwgroup->req_gen++;
1542 del_timer(&hwgroup->timer);
1543 spin_unlock(&ide_lock);
1544
1545 /* Some controllers might set DMA INTR no matter DMA or PIO;
1546 * bmdma status might need to be cleared even for
1547 * PIO interrupts to prevent spurious/lost irq.
1548 */
1549 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1550 /* ide_dma_end() needs bmdma status for error checking.
1551 * So, skip clearing bmdma status here and leave it
1552 * to ide_dma_end() if this is dma interrupt.
1553 */
1554 hwif->ide_dma_clear_irq(drive);
1555
1556 if (drive->unmask)
1557 local_irq_enable_in_hardirq();
1558 /* service this interrupt, may set handler for next interrupt */
1559 startstop = handler(drive);
1560 spin_lock_irq(&ide_lock);
1561
1562 /*
1563 * Note that handler() may have set things up for another
1564 * interrupt to occur soon, but it cannot happen until
1565 * we exit from this routine, because it will be the
1566 * same irq as is currently being serviced here, and Linux
1567 * won't allow another of the same (on any CPU) until we return.
1568 */
1569 drive->service_time = jiffies - drive->service_start;
1570 if (startstop == ide_stopped) {
1571 if (hwgroup->handler == NULL) { /* paranoia */
1572 hwgroup->busy = 0;
1573 ide_do_request(hwgroup, hwif->irq);
1574 } else {
1575 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1576 "on exit\n", drive->name);
1577 }
1578 }
1579 spin_unlock_irqrestore(&ide_lock, flags);
1580 return IRQ_HANDLED;
1581 }
1582
1583 /**
1584 * ide_init_drive_cmd - initialize a drive command request
1585 * @rq: request object
1586 *
1587 * Initialize a request before we fill it in and send it down to
1588 * ide_do_drive_cmd. Commands must be set up by this function. Right
1589 * now it doesn't do a lot, but if that changes abusers will have a
1590 * nasty surprise.
1591 */
1592
1593 void ide_init_drive_cmd (struct request *rq)
1594 {
1595 memset(rq, 0, sizeof(*rq));
1596 rq->ref_count = 1;
1597 }
1598
1599 EXPORT_SYMBOL(ide_init_drive_cmd);
1600
1601 /**
1602 * ide_do_drive_cmd - issue IDE special command
1603 * @drive: device to issue command
1604 * @rq: request to issue
1605 * @action: action for processing
1606 *
1607 * This function issues a special IDE device request
1608 * onto the request queue.
1609 *
1610 * If action is ide_wait, then the rq is queued at the end of the
1611 * request queue, and the function sleeps until it has been processed.
1612 * This is for use when invoked from an ioctl handler.
1613 *
1614 * If action is ide_preempt, then the rq is queued at the head of
1615 * the request queue, displacing the currently-being-processed
1616 * request and this function returns immediately without waiting
1617 * for the new rq to be completed. This is VERY DANGEROUS, and is
1618 * intended for careful use by the ATAPI tape/cdrom driver code.
1619 *
1620 * If action is ide_end, then the rq is queued at the end of the
1621 * request queue, and the function returns immediately without waiting
1622 * for the new rq to be completed. This is again intended for careful
1623 * use by the ATAPI tape/cdrom driver code.
1624 */
1625
1626 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1627 {
1628 unsigned long flags;
1629 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1630 DECLARE_COMPLETION_ONSTACK(wait);
1631 int where = ELEVATOR_INSERT_BACK, err;
1632 int must_wait = (action == ide_wait || action == ide_head_wait);
1633
1634 rq->errors = 0;
1635
1636 /*
1637 * we need to hold an extra reference to request for safe inspection
1638 * after completion
1639 */
1640 if (must_wait) {
1641 rq->ref_count++;
1642 rq->end_io_data = &wait;
1643 rq->end_io = blk_end_sync_rq;
1644 }
1645
1646 spin_lock_irqsave(&ide_lock, flags);
1647 if (action == ide_preempt)
1648 hwgroup->rq = NULL;
1649 if (action == ide_preempt || action == ide_head_wait) {
1650 where = ELEVATOR_INSERT_FRONT;
1651 rq->cmd_flags |= REQ_PREEMPT;
1652 }
1653 __elv_add_request(drive->queue, rq, where, 0);
1654 ide_do_request(hwgroup, IDE_NO_IRQ);
1655 spin_unlock_irqrestore(&ide_lock, flags);
1656
1657 err = 0;
1658 if (must_wait) {
1659 wait_for_completion(&wait);
1660 if (rq->errors)
1661 err = -EIO;
1662
1663 blk_put_request(rq);
1664 }
1665
1666 return err;
1667 }
1668
1669 EXPORT_SYMBOL(ide_do_drive_cmd);
1670
1671 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1672 {
1673 ide_task_t task;
1674
1675 memset(&task, 0, sizeof(task));
1676 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1677 IDE_TFLAG_OUT_FEATURE | tf_flags;
1678 task.tf.feature = dma; /* Use PIO/DMA */
1679 task.tf.lbam = bcount & 0xff;
1680 task.tf.lbah = (bcount >> 8) & 0xff;
1681
1682 ide_tf_load(drive, &task);
1683 }
1684
1685 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
This page took 0.064399 seconds and 6 git commands to generate.