ide: pass error value to ide_complete_rq()
[deliverable/linux.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58 unsigned int nr_bytes)
59 {
60 /*
61 * decide whether to reenable DMA -- 3 is a random magic for now,
62 * if we DMA timeout more than 3 times, just stay in PIO
63 */
64 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65 drive->retry_pio <= 3) {
66 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67 ide_dma_on(drive);
68 }
69
70 return blk_end_request(rq, error, nr_bytes);
71 }
72 EXPORT_SYMBOL_GPL(ide_end_rq);
73
74 /**
75 * ide_end_request - complete an IDE I/O
76 * @drive: IDE device for the I/O
77 * @uptodate:
78 * @nr_sectors: number of sectors completed
79 *
80 * This is our end_request wrapper function. We complete the I/O
81 * update random number input and dequeue the request, which if
82 * it was tagged may be out of order.
83 */
84
85 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
86 {
87 unsigned int nr_bytes = nr_sectors << 9;
88 struct request *rq = drive->hwif->rq;
89 int rc, error = 0;
90
91 if (!nr_bytes) {
92 if (blk_pc_request(rq))
93 nr_bytes = rq->data_len;
94 else
95 nr_bytes = rq->hard_cur_sectors << 9;
96 }
97
98 /*
99 * if failfast is set on a request, override number of sectors
100 * and complete the whole request right now
101 */
102 if (blk_noretry_request(rq) && uptodate <= 0)
103 nr_bytes = rq->hard_nr_sectors << 9;
104
105 if (blk_fs_request(rq) == 0 && uptodate <= 0 && rq->errors == 0)
106 rq->errors = -EIO;
107
108 if (uptodate <= 0)
109 error = uptodate ? uptodate : -EIO;
110
111 rc = ide_end_rq(drive, rq, error, nr_bytes);
112 if (rc == 0)
113 drive->hwif->rq = NULL;
114
115 return rc;
116 }
117 EXPORT_SYMBOL(ide_end_request);
118
119 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
120 {
121 struct ide_taskfile *tf = &cmd->tf;
122 struct request *rq = cmd->rq;
123 u8 tf_cmd = tf->command;
124
125 tf->error = err;
126 tf->status = stat;
127
128 drive->hwif->tp_ops->tf_read(drive, cmd);
129
130 if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
131 tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
132 if (tf->lbal != 0xc4) {
133 printk(KERN_ERR "%s: head unload failed!\n",
134 drive->name);
135 ide_tf_dump(drive->name, tf);
136 } else
137 drive->dev_flags |= IDE_DFLAG_PARKED;
138 }
139
140 if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
141 memcpy(rq->special, cmd, sizeof(*cmd));
142
143 if (cmd->tf_flags & IDE_TFLAG_DYN)
144 kfree(cmd);
145 }
146
147 void ide_complete_rq(ide_drive_t *drive, int error)
148 {
149 ide_hwif_t *hwif = drive->hwif;
150 struct request *rq = hwif->rq;
151
152 hwif->rq = NULL;
153
154 if (unlikely(blk_end_request(rq, error, blk_rq_bytes(rq))))
155 BUG();
156 }
157 EXPORT_SYMBOL(ide_complete_rq);
158
159 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
160 {
161 u8 drv_req = blk_special_request(rq) && rq->rq_disk;
162 u8 media = drive->media;
163
164 drive->failed_pc = NULL;
165
166 if ((media == ide_floppy || media == ide_tape) && drv_req) {
167 rq->errors = 0;
168 ide_complete_rq(drive, 0);
169 } else {
170 if (media == ide_tape)
171 rq->errors = IDE_DRV_ERROR_GENERAL;
172 ide_end_request(drive, 0, 0);
173 }
174 }
175
176 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
177 {
178 tf->nsect = drive->sect;
179 tf->lbal = drive->sect;
180 tf->lbam = drive->cyl;
181 tf->lbah = drive->cyl >> 8;
182 tf->device = (drive->head - 1) | drive->select;
183 tf->command = ATA_CMD_INIT_DEV_PARAMS;
184 }
185
186 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
187 {
188 tf->nsect = drive->sect;
189 tf->command = ATA_CMD_RESTORE;
190 }
191
192 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
193 {
194 tf->nsect = drive->mult_req;
195 tf->command = ATA_CMD_SET_MULTI;
196 }
197
198 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
199 {
200 special_t *s = &drive->special;
201 struct ide_cmd cmd;
202
203 memset(&cmd, 0, sizeof(cmd));
204 cmd.protocol = ATA_PROT_NODATA;
205
206 if (s->b.set_geometry) {
207 s->b.set_geometry = 0;
208 ide_tf_set_specify_cmd(drive, &cmd.tf);
209 } else if (s->b.recalibrate) {
210 s->b.recalibrate = 0;
211 ide_tf_set_restore_cmd(drive, &cmd.tf);
212 } else if (s->b.set_multmode) {
213 s->b.set_multmode = 0;
214 ide_tf_set_setmult_cmd(drive, &cmd.tf);
215 } else if (s->all) {
216 int special = s->all;
217 s->all = 0;
218 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
219 return ide_stopped;
220 }
221
222 cmd.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
223 IDE_TFLAG_CUSTOM_HANDLER;
224
225 do_rw_taskfile(drive, &cmd);
226
227 return ide_started;
228 }
229
230 /**
231 * do_special - issue some special commands
232 * @drive: drive the command is for
233 *
234 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
235 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
236 *
237 * It used to do much more, but has been scaled back.
238 */
239
240 static ide_startstop_t do_special (ide_drive_t *drive)
241 {
242 special_t *s = &drive->special;
243
244 #ifdef DEBUG
245 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
246 #endif
247 if (drive->media == ide_disk)
248 return ide_disk_special(drive);
249
250 s->all = 0;
251 drive->mult_req = 0;
252 return ide_stopped;
253 }
254
255 void ide_map_sg(ide_drive_t *drive, struct request *rq)
256 {
257 ide_hwif_t *hwif = drive->hwif;
258 struct ide_cmd *cmd = &hwif->cmd;
259 struct scatterlist *sg = hwif->sg_table;
260
261 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
262 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
263 cmd->sg_nents = 1;
264 } else if (!rq->bio) {
265 sg_init_one(sg, rq->data, rq->data_len);
266 cmd->sg_nents = 1;
267 } else
268 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
269 }
270 EXPORT_SYMBOL_GPL(ide_map_sg);
271
272 void ide_init_sg_cmd(struct ide_cmd *cmd, int nsect)
273 {
274 cmd->nsect = cmd->nleft = nsect;
275 cmd->cursg_ofs = 0;
276 cmd->cursg = NULL;
277 }
278 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
279
280 /**
281 * execute_drive_command - issue special drive command
282 * @drive: the drive to issue the command on
283 * @rq: the request structure holding the command
284 *
285 * execute_drive_cmd() issues a special drive command, usually
286 * initiated by ioctl() from the external hdparm program. The
287 * command can be a drive command, drive task or taskfile
288 * operation. Weirdly you can call it with NULL to wait for
289 * all commands to finish. Don't do this as that is due to change
290 */
291
292 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
293 struct request *rq)
294 {
295 struct ide_cmd *cmd = rq->special;
296
297 if (cmd) {
298 if (cmd->protocol == ATA_PROT_PIO) {
299 ide_init_sg_cmd(cmd, rq->nr_sectors);
300 ide_map_sg(drive, rq);
301 }
302
303 return do_rw_taskfile(drive, cmd);
304 }
305
306 /*
307 * NULL is actually a valid way of waiting for
308 * all current requests to be flushed from the queue.
309 */
310 #ifdef DEBUG
311 printk("%s: DRIVE_CMD (null)\n", drive->name);
312 #endif
313 rq->errors = 0;
314 ide_complete_rq(drive, 0);
315
316 return ide_stopped;
317 }
318
319 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
320 {
321 u8 cmd = rq->cmd[0];
322
323 switch (cmd) {
324 case REQ_PARK_HEADS:
325 case REQ_UNPARK_HEADS:
326 return ide_do_park_unpark(drive, rq);
327 case REQ_DEVSET_EXEC:
328 return ide_do_devset(drive, rq);
329 case REQ_DRIVE_RESET:
330 return ide_do_reset(drive);
331 default:
332 BUG();
333 }
334 }
335
336 /**
337 * start_request - start of I/O and command issuing for IDE
338 *
339 * start_request() initiates handling of a new I/O request. It
340 * accepts commands and I/O (read/write) requests.
341 *
342 * FIXME: this function needs a rename
343 */
344
345 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
346 {
347 ide_startstop_t startstop;
348
349 BUG_ON(!blk_rq_started(rq));
350
351 #ifdef DEBUG
352 printk("%s: start_request: current=0x%08lx\n",
353 drive->hwif->name, (unsigned long) rq);
354 #endif
355
356 /* bail early if we've exceeded max_failures */
357 if (drive->max_failures && (drive->failures > drive->max_failures)) {
358 rq->cmd_flags |= REQ_FAILED;
359 goto kill_rq;
360 }
361
362 if (blk_pm_request(rq))
363 ide_check_pm_state(drive, rq);
364
365 SELECT_DRIVE(drive);
366 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
367 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
368 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
369 return startstop;
370 }
371 if (!drive->special.all) {
372 struct ide_driver *drv;
373
374 /*
375 * We reset the drive so we need to issue a SETFEATURES.
376 * Do it _after_ do_special() restored device parameters.
377 */
378 if (drive->current_speed == 0xff)
379 ide_config_drive_speed(drive, drive->desired_speed);
380
381 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
382 return execute_drive_cmd(drive, rq);
383 else if (blk_pm_request(rq)) {
384 struct request_pm_state *pm = rq->data;
385 #ifdef DEBUG_PM
386 printk("%s: start_power_step(step: %d)\n",
387 drive->name, pm->pm_step);
388 #endif
389 startstop = ide_start_power_step(drive, rq);
390 if (startstop == ide_stopped &&
391 pm->pm_step == IDE_PM_COMPLETED)
392 ide_complete_pm_rq(drive, rq);
393 return startstop;
394 } else if (!rq->rq_disk && blk_special_request(rq))
395 /*
396 * TODO: Once all ULDs have been modified to
397 * check for specific op codes rather than
398 * blindly accepting any special request, the
399 * check for ->rq_disk above may be replaced
400 * by a more suitable mechanism or even
401 * dropped entirely.
402 */
403 return ide_special_rq(drive, rq);
404
405 drv = *(struct ide_driver **)rq->rq_disk->private_data;
406
407 return drv->do_request(drive, rq, rq->sector);
408 }
409 return do_special(drive);
410 kill_rq:
411 ide_kill_rq(drive, rq);
412 return ide_stopped;
413 }
414
415 /**
416 * ide_stall_queue - pause an IDE device
417 * @drive: drive to stall
418 * @timeout: time to stall for (jiffies)
419 *
420 * ide_stall_queue() can be used by a drive to give excess bandwidth back
421 * to the port by sleeping for timeout jiffies.
422 */
423
424 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
425 {
426 if (timeout > WAIT_WORSTCASE)
427 timeout = WAIT_WORSTCASE;
428 drive->sleep = timeout + jiffies;
429 drive->dev_flags |= IDE_DFLAG_SLEEPING;
430 }
431 EXPORT_SYMBOL(ide_stall_queue);
432
433 static inline int ide_lock_port(ide_hwif_t *hwif)
434 {
435 if (hwif->busy)
436 return 1;
437
438 hwif->busy = 1;
439
440 return 0;
441 }
442
443 static inline void ide_unlock_port(ide_hwif_t *hwif)
444 {
445 hwif->busy = 0;
446 }
447
448 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
449 {
450 int rc = 0;
451
452 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
453 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
454 if (rc == 0) {
455 if (host->get_lock)
456 host->get_lock(ide_intr, hwif);
457 }
458 }
459 return rc;
460 }
461
462 static inline void ide_unlock_host(struct ide_host *host)
463 {
464 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
465 if (host->release_lock)
466 host->release_lock();
467 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
468 }
469 }
470
471 /*
472 * Issue a new request to a device.
473 */
474 void do_ide_request(struct request_queue *q)
475 {
476 ide_drive_t *drive = q->queuedata;
477 ide_hwif_t *hwif = drive->hwif;
478 struct ide_host *host = hwif->host;
479 struct request *rq = NULL;
480 ide_startstop_t startstop;
481
482 /*
483 * drive is doing pre-flush, ordered write, post-flush sequence. even
484 * though that is 3 requests, it must be seen as a single transaction.
485 * we must not preempt this drive until that is complete
486 */
487 if (blk_queue_flushing(q))
488 /*
489 * small race where queue could get replugged during
490 * the 3-request flush cycle, just yank the plug since
491 * we want it to finish asap
492 */
493 blk_remove_plug(q);
494
495 spin_unlock_irq(q->queue_lock);
496
497 if (ide_lock_host(host, hwif))
498 goto plug_device_2;
499
500 spin_lock_irq(&hwif->lock);
501
502 if (!ide_lock_port(hwif)) {
503 ide_hwif_t *prev_port;
504 repeat:
505 prev_port = hwif->host->cur_port;
506 hwif->rq = NULL;
507
508 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
509 if (time_before(drive->sleep, jiffies)) {
510 ide_unlock_port(hwif);
511 goto plug_device;
512 }
513 }
514
515 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
516 hwif != prev_port) {
517 /*
518 * set nIEN for previous port, drives in the
519 * quirk_list may not like intr setups/cleanups
520 */
521 if (prev_port && prev_port->cur_dev->quirk_list == 0)
522 prev_port->tp_ops->set_irq(prev_port, 0);
523
524 hwif->host->cur_port = hwif;
525 }
526 hwif->cur_dev = drive;
527 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
528
529 spin_unlock_irq(&hwif->lock);
530 spin_lock_irq(q->queue_lock);
531 /*
532 * we know that the queue isn't empty, but this can happen
533 * if the q->prep_rq_fn() decides to kill a request
534 */
535 rq = elv_next_request(drive->queue);
536 spin_unlock_irq(q->queue_lock);
537 spin_lock_irq(&hwif->lock);
538
539 if (!rq) {
540 ide_unlock_port(hwif);
541 goto out;
542 }
543
544 /*
545 * Sanity: don't accept a request that isn't a PM request
546 * if we are currently power managed. This is very important as
547 * blk_stop_queue() doesn't prevent the elv_next_request()
548 * above to return us whatever is in the queue. Since we call
549 * ide_do_request() ourselves, we end up taking requests while
550 * the queue is blocked...
551 *
552 * We let requests forced at head of queue with ide-preempt
553 * though. I hope that doesn't happen too much, hopefully not
554 * unless the subdriver triggers such a thing in its own PM
555 * state machine.
556 */
557 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
558 blk_pm_request(rq) == 0 &&
559 (rq->cmd_flags & REQ_PREEMPT) == 0) {
560 /* there should be no pending command at this point */
561 ide_unlock_port(hwif);
562 goto plug_device;
563 }
564
565 hwif->rq = rq;
566
567 spin_unlock_irq(&hwif->lock);
568 startstop = start_request(drive, rq);
569 spin_lock_irq(&hwif->lock);
570
571 if (startstop == ide_stopped)
572 goto repeat;
573 } else
574 goto plug_device;
575 out:
576 spin_unlock_irq(&hwif->lock);
577 if (rq == NULL)
578 ide_unlock_host(host);
579 spin_lock_irq(q->queue_lock);
580 return;
581
582 plug_device:
583 spin_unlock_irq(&hwif->lock);
584 ide_unlock_host(host);
585 plug_device_2:
586 spin_lock_irq(q->queue_lock);
587
588 if (!elv_queue_empty(q))
589 blk_plug_device(q);
590 }
591
592 static void ide_plug_device(ide_drive_t *drive)
593 {
594 struct request_queue *q = drive->queue;
595 unsigned long flags;
596
597 spin_lock_irqsave(q->queue_lock, flags);
598 if (!elv_queue_empty(q))
599 blk_plug_device(q);
600 spin_unlock_irqrestore(q->queue_lock, flags);
601 }
602
603 static int drive_is_ready(ide_drive_t *drive)
604 {
605 ide_hwif_t *hwif = drive->hwif;
606 u8 stat = 0;
607
608 if (drive->waiting_for_dma)
609 return hwif->dma_ops->dma_test_irq(drive);
610
611 if (hwif->io_ports.ctl_addr &&
612 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
613 stat = hwif->tp_ops->read_altstatus(hwif);
614 else
615 /* Note: this may clear a pending IRQ!! */
616 stat = hwif->tp_ops->read_status(hwif);
617
618 if (stat & ATA_BUSY)
619 /* drive busy: definitely not interrupting */
620 return 0;
621
622 /* drive ready: *might* be interrupting */
623 return 1;
624 }
625
626 /**
627 * ide_timer_expiry - handle lack of an IDE interrupt
628 * @data: timer callback magic (hwif)
629 *
630 * An IDE command has timed out before the expected drive return
631 * occurred. At this point we attempt to clean up the current
632 * mess. If the current handler includes an expiry handler then
633 * we invoke the expiry handler, and providing it is happy the
634 * work is done. If that fails we apply generic recovery rules
635 * invoking the handler and checking the drive DMA status. We
636 * have an excessively incestuous relationship with the DMA
637 * logic that wants cleaning up.
638 */
639
640 void ide_timer_expiry (unsigned long data)
641 {
642 ide_hwif_t *hwif = (ide_hwif_t *)data;
643 ide_drive_t *uninitialized_var(drive);
644 ide_handler_t *handler;
645 unsigned long flags;
646 int wait = -1;
647 int plug_device = 0;
648
649 spin_lock_irqsave(&hwif->lock, flags);
650
651 handler = hwif->handler;
652
653 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
654 /*
655 * Either a marginal timeout occurred
656 * (got the interrupt just as timer expired),
657 * or we were "sleeping" to give other devices a chance.
658 * Either way, we don't really want to complain about anything.
659 */
660 } else {
661 ide_expiry_t *expiry = hwif->expiry;
662 ide_startstop_t startstop = ide_stopped;
663
664 drive = hwif->cur_dev;
665
666 if (expiry) {
667 wait = expiry(drive);
668 if (wait > 0) { /* continue */
669 /* reset timer */
670 hwif->timer.expires = jiffies + wait;
671 hwif->req_gen_timer = hwif->req_gen;
672 add_timer(&hwif->timer);
673 spin_unlock_irqrestore(&hwif->lock, flags);
674 return;
675 }
676 }
677 hwif->handler = NULL;
678 /*
679 * We need to simulate a real interrupt when invoking
680 * the handler() function, which means we need to
681 * globally mask the specific IRQ:
682 */
683 spin_unlock(&hwif->lock);
684 /* disable_irq_nosync ?? */
685 disable_irq(hwif->irq);
686 /* local CPU only, as if we were handling an interrupt */
687 local_irq_disable();
688 if (hwif->polling) {
689 startstop = handler(drive);
690 } else if (drive_is_ready(drive)) {
691 if (drive->waiting_for_dma)
692 hwif->dma_ops->dma_lost_irq(drive);
693 if (hwif->ack_intr)
694 hwif->ack_intr(hwif);
695 printk(KERN_WARNING "%s: lost interrupt\n",
696 drive->name);
697 startstop = handler(drive);
698 } else {
699 if (drive->waiting_for_dma)
700 startstop = ide_dma_timeout_retry(drive, wait);
701 else
702 startstop = ide_error(drive, "irq timeout",
703 hwif->tp_ops->read_status(hwif));
704 }
705 spin_lock_irq(&hwif->lock);
706 enable_irq(hwif->irq);
707 if (startstop == ide_stopped) {
708 ide_unlock_port(hwif);
709 plug_device = 1;
710 }
711 }
712 spin_unlock_irqrestore(&hwif->lock, flags);
713
714 if (plug_device) {
715 ide_unlock_host(hwif->host);
716 ide_plug_device(drive);
717 }
718 }
719
720 /**
721 * unexpected_intr - handle an unexpected IDE interrupt
722 * @irq: interrupt line
723 * @hwif: port being processed
724 *
725 * There's nothing really useful we can do with an unexpected interrupt,
726 * other than reading the status register (to clear it), and logging it.
727 * There should be no way that an irq can happen before we're ready for it,
728 * so we needn't worry much about losing an "important" interrupt here.
729 *
730 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
731 * the drive enters "idle", "standby", or "sleep" mode, so if the status
732 * looks "good", we just ignore the interrupt completely.
733 *
734 * This routine assumes __cli() is in effect when called.
735 *
736 * If an unexpected interrupt happens on irq15 while we are handling irq14
737 * and if the two interfaces are "serialized" (CMD640), then it looks like
738 * we could screw up by interfering with a new request being set up for
739 * irq15.
740 *
741 * In reality, this is a non-issue. The new command is not sent unless
742 * the drive is ready to accept one, in which case we know the drive is
743 * not trying to interrupt us. And ide_set_handler() is always invoked
744 * before completing the issuance of any new drive command, so we will not
745 * be accidentally invoked as a result of any valid command completion
746 * interrupt.
747 */
748
749 static void unexpected_intr(int irq, ide_hwif_t *hwif)
750 {
751 u8 stat = hwif->tp_ops->read_status(hwif);
752
753 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
754 /* Try to not flood the console with msgs */
755 static unsigned long last_msgtime, count;
756 ++count;
757
758 if (time_after(jiffies, last_msgtime + HZ)) {
759 last_msgtime = jiffies;
760 printk(KERN_ERR "%s: unexpected interrupt, "
761 "status=0x%02x, count=%ld\n",
762 hwif->name, stat, count);
763 }
764 }
765 }
766
767 /**
768 * ide_intr - default IDE interrupt handler
769 * @irq: interrupt number
770 * @dev_id: hwif
771 * @regs: unused weirdness from the kernel irq layer
772 *
773 * This is the default IRQ handler for the IDE layer. You should
774 * not need to override it. If you do be aware it is subtle in
775 * places
776 *
777 * hwif is the interface in the group currently performing
778 * a command. hwif->cur_dev is the drive and hwif->handler is
779 * the IRQ handler to call. As we issue a command the handlers
780 * step through multiple states, reassigning the handler to the
781 * next step in the process. Unlike a smart SCSI controller IDE
782 * expects the main processor to sequence the various transfer
783 * stages. We also manage a poll timer to catch up with most
784 * timeout situations. There are still a few where the handlers
785 * don't ever decide to give up.
786 *
787 * The handler eventually returns ide_stopped to indicate the
788 * request completed. At this point we issue the next request
789 * on the port and the process begins again.
790 */
791
792 irqreturn_t ide_intr (int irq, void *dev_id)
793 {
794 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
795 struct ide_host *host = hwif->host;
796 ide_drive_t *uninitialized_var(drive);
797 ide_handler_t *handler;
798 unsigned long flags;
799 ide_startstop_t startstop;
800 irqreturn_t irq_ret = IRQ_NONE;
801 int plug_device = 0;
802
803 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
804 if (hwif != host->cur_port)
805 goto out_early;
806 }
807
808 spin_lock_irqsave(&hwif->lock, flags);
809
810 if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
811 goto out;
812
813 handler = hwif->handler;
814
815 if (handler == NULL || hwif->polling) {
816 /*
817 * Not expecting an interrupt from this drive.
818 * That means this could be:
819 * (1) an interrupt from another PCI device
820 * sharing the same PCI INT# as us.
821 * or (2) a drive just entered sleep or standby mode,
822 * and is interrupting to let us know.
823 * or (3) a spurious interrupt of unknown origin.
824 *
825 * For PCI, we cannot tell the difference,
826 * so in that case we just ignore it and hope it goes away.
827 */
828 if ((host->irq_flags & IRQF_SHARED) == 0) {
829 /*
830 * Probably not a shared PCI interrupt,
831 * so we can safely try to do something about it:
832 */
833 unexpected_intr(irq, hwif);
834 } else {
835 /*
836 * Whack the status register, just in case
837 * we have a leftover pending IRQ.
838 */
839 (void)hwif->tp_ops->read_status(hwif);
840 }
841 goto out;
842 }
843
844 drive = hwif->cur_dev;
845
846 if (!drive_is_ready(drive))
847 /*
848 * This happens regularly when we share a PCI IRQ with
849 * another device. Unfortunately, it can also happen
850 * with some buggy drives that trigger the IRQ before
851 * their status register is up to date. Hopefully we have
852 * enough advance overhead that the latter isn't a problem.
853 */
854 goto out;
855
856 hwif->handler = NULL;
857 hwif->req_gen++;
858 del_timer(&hwif->timer);
859 spin_unlock(&hwif->lock);
860
861 if (hwif->port_ops && hwif->port_ops->clear_irq)
862 hwif->port_ops->clear_irq(drive);
863
864 if (drive->dev_flags & IDE_DFLAG_UNMASK)
865 local_irq_enable_in_hardirq();
866
867 /* service this interrupt, may set handler for next interrupt */
868 startstop = handler(drive);
869
870 spin_lock_irq(&hwif->lock);
871 /*
872 * Note that handler() may have set things up for another
873 * interrupt to occur soon, but it cannot happen until
874 * we exit from this routine, because it will be the
875 * same irq as is currently being serviced here, and Linux
876 * won't allow another of the same (on any CPU) until we return.
877 */
878 if (startstop == ide_stopped) {
879 BUG_ON(hwif->handler);
880 ide_unlock_port(hwif);
881 plug_device = 1;
882 }
883 irq_ret = IRQ_HANDLED;
884 out:
885 spin_unlock_irqrestore(&hwif->lock, flags);
886 out_early:
887 if (plug_device) {
888 ide_unlock_host(hwif->host);
889 ide_plug_device(drive);
890 }
891
892 return irq_ret;
893 }
894 EXPORT_SYMBOL_GPL(ide_intr);
895
896 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
897 {
898 ide_hwif_t *hwif = drive->hwif;
899 u8 buf[4] = { 0 };
900
901 while (len > 0) {
902 if (write)
903 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
904 else
905 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
906 len -= 4;
907 }
908 }
909 EXPORT_SYMBOL_GPL(ide_pad_transfer);
This page took 0.048141 seconds and 6 git commands to generate.