ide: add device flags
[deliverable/linux.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59 int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61 int ret = 1;
62 int error = 0;
63
64 if (uptodate <= 0)
65 error = uptodate ? uptodate : -EIO;
66
67 /*
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
70 */
71 if (blk_noretry_request(rq) && error)
72 nr_bytes = rq->hard_nr_sectors << 9;
73
74 if (!blk_fs_request(rq) && error && !rq->errors)
75 rq->errors = -EIO;
76
77 /*
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
80 */
81 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
82 drive->state = 0;
83 ide_dma_on(drive);
84 }
85
86 if (!__blk_end_request(rq, error, nr_bytes)) {
87 if (dequeue)
88 HWGROUP(drive)->rq = NULL;
89 ret = 0;
90 }
91
92 return ret;
93 }
94
95 /**
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
98 * @uptodate:
99 * @nr_sectors: number of sectors completed
100 *
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
104 */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108 unsigned int nr_bytes = nr_sectors << 9;
109 struct request *rq;
110 unsigned long flags;
111 int ret = 1;
112
113 /*
114 * room for locking improvements here, the calls below don't
115 * need the queue lock held at all
116 */
117 spin_lock_irqsave(&ide_lock, flags);
118 rq = HWGROUP(drive)->rq;
119
120 if (!nr_bytes) {
121 if (blk_pc_request(rq))
122 nr_bytes = rq->data_len;
123 else
124 nr_bytes = rq->hard_cur_sectors << 9;
125 }
126
127 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129 spin_unlock_irqrestore(&ide_lock, flags);
130 return ret;
131 }
132 EXPORT_SYMBOL(ide_end_request);
133
134 /*
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
138 */
139
140 enum {
141 ide_pm_flush_cache = ide_pm_state_start_suspend,
142 idedisk_pm_standby,
143
144 idedisk_pm_restore_pio = ide_pm_state_start_resume,
145 idedisk_pm_idle,
146 ide_pm_restore_dma,
147 };
148
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 {
151 struct request_pm_state *pm = rq->data;
152
153 if (drive->media != ide_disk)
154 return;
155
156 switch (pm->pm_step) {
157 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
158 if (pm->pm_state == PM_EVENT_FREEZE)
159 pm->pm_step = ide_pm_state_completed;
160 else
161 pm->pm_step = idedisk_pm_standby;
162 break;
163 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
164 pm->pm_step = ide_pm_state_completed;
165 break;
166 case idedisk_pm_restore_pio: /* Resume step 1 complete */
167 pm->pm_step = idedisk_pm_idle;
168 break;
169 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
170 pm->pm_step = ide_pm_restore_dma;
171 break;
172 }
173 }
174
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 {
177 struct request_pm_state *pm = rq->data;
178 ide_task_t *args = rq->special;
179
180 memset(args, 0, sizeof(*args));
181
182 switch (pm->pm_step) {
183 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
184 if (drive->media != ide_disk)
185 break;
186 /* Not supported? Switch to next step now. */
187 if (ata_id_flush_enabled(drive->id) == 0 ||
188 (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
189 ide_complete_power_step(drive, rq, 0, 0);
190 return ide_stopped;
191 }
192 if (ata_id_flush_ext_enabled(drive->id))
193 args->tf.command = ATA_CMD_FLUSH_EXT;
194 else
195 args->tf.command = ATA_CMD_FLUSH;
196 goto out_do_tf;
197
198 case idedisk_pm_standby: /* Suspend step 2 (standby) */
199 args->tf.command = ATA_CMD_STANDBYNOW1;
200 goto out_do_tf;
201
202 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
203 ide_set_max_pio(drive);
204 /*
205 * skip idedisk_pm_idle for ATAPI devices
206 */
207 if (drive->media != ide_disk)
208 pm->pm_step = ide_pm_restore_dma;
209 else
210 ide_complete_power_step(drive, rq, 0, 0);
211 return ide_stopped;
212
213 case idedisk_pm_idle: /* Resume step 2 (idle) */
214 args->tf.command = ATA_CMD_IDLEIMMEDIATE;
215 goto out_do_tf;
216
217 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
218 /*
219 * Right now, all we do is call ide_set_dma(drive),
220 * we could be smarter and check for current xfer_speed
221 * in struct drive etc...
222 */
223 if (drive->hwif->dma_ops == NULL)
224 break;
225 /*
226 * TODO: respect IDE_DFLAG_USING_DMA
227 */
228 ide_set_dma(drive);
229 break;
230 }
231 pm->pm_step = ide_pm_state_completed;
232 return ide_stopped;
233
234 out_do_tf:
235 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
236 args->data_phase = TASKFILE_NO_DATA;
237 return do_rw_taskfile(drive, args);
238 }
239
240 /**
241 * ide_end_dequeued_request - complete an IDE I/O
242 * @drive: IDE device for the I/O
243 * @uptodate:
244 * @nr_sectors: number of sectors completed
245 *
246 * Complete an I/O that is no longer on the request queue. This
247 * typically occurs when we pull the request and issue a REQUEST_SENSE.
248 * We must still finish the old request but we must not tamper with the
249 * queue in the meantime.
250 *
251 * NOTE: This path does not handle barrier, but barrier is not supported
252 * on ide-cd anyway.
253 */
254
255 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
256 int uptodate, int nr_sectors)
257 {
258 unsigned long flags;
259 int ret;
260
261 spin_lock_irqsave(&ide_lock, flags);
262 BUG_ON(!blk_rq_started(rq));
263 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
264 spin_unlock_irqrestore(&ide_lock, flags);
265
266 return ret;
267 }
268 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
269
270
271 /**
272 * ide_complete_pm_request - end the current Power Management request
273 * @drive: target drive
274 * @rq: request
275 *
276 * This function cleans up the current PM request and stops the queue
277 * if necessary.
278 */
279 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
280 {
281 unsigned long flags;
282
283 #ifdef DEBUG_PM
284 printk("%s: completing PM request, %s\n", drive->name,
285 blk_pm_suspend_request(rq) ? "suspend" : "resume");
286 #endif
287 spin_lock_irqsave(&ide_lock, flags);
288 if (blk_pm_suspend_request(rq)) {
289 blk_stop_queue(drive->queue);
290 } else {
291 drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
292 blk_start_queue(drive->queue);
293 }
294 HWGROUP(drive)->rq = NULL;
295 if (__blk_end_request(rq, 0, 0))
296 BUG();
297 spin_unlock_irqrestore(&ide_lock, flags);
298 }
299
300 /**
301 * ide_end_drive_cmd - end an explicit drive command
302 * @drive: command
303 * @stat: status bits
304 * @err: error bits
305 *
306 * Clean up after success/failure of an explicit drive command.
307 * These get thrown onto the queue so they are synchronized with
308 * real I/O operations on the drive.
309 *
310 * In LBA48 mode we have to read the register set twice to get
311 * all the extra information out.
312 */
313
314 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
315 {
316 unsigned long flags;
317 struct request *rq;
318
319 spin_lock_irqsave(&ide_lock, flags);
320 rq = HWGROUP(drive)->rq;
321 spin_unlock_irqrestore(&ide_lock, flags);
322
323 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
324 ide_task_t *task = (ide_task_t *)rq->special;
325
326 if (rq->errors == 0)
327 rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
328
329 if (task) {
330 struct ide_taskfile *tf = &task->tf;
331
332 tf->error = err;
333 tf->status = stat;
334
335 drive->hwif->tp_ops->tf_read(drive, task);
336
337 if (task->tf_flags & IDE_TFLAG_DYN)
338 kfree(task);
339 }
340 } else if (blk_pm_request(rq)) {
341 struct request_pm_state *pm = rq->data;
342 #ifdef DEBUG_PM
343 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
344 drive->name, rq->pm->pm_step, stat, err);
345 #endif
346 ide_complete_power_step(drive, rq, stat, err);
347 if (pm->pm_step == ide_pm_state_completed)
348 ide_complete_pm_request(drive, rq);
349 return;
350 }
351
352 spin_lock_irqsave(&ide_lock, flags);
353 HWGROUP(drive)->rq = NULL;
354 rq->errors = err;
355 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
356 blk_rq_bytes(rq))))
357 BUG();
358 spin_unlock_irqrestore(&ide_lock, flags);
359 }
360
361 EXPORT_SYMBOL(ide_end_drive_cmd);
362
363 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
364 {
365 if (rq->rq_disk) {
366 ide_driver_t *drv;
367
368 drv = *(ide_driver_t **)rq->rq_disk->private_data;
369 drv->end_request(drive, 0, 0);
370 } else
371 ide_end_request(drive, 0, 0);
372 }
373
374 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
375 {
376 ide_hwif_t *hwif = drive->hwif;
377
378 if ((stat & ATA_BUSY) ||
379 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
380 /* other bits are useless when BUSY */
381 rq->errors |= ERROR_RESET;
382 } else if (stat & ATA_ERR) {
383 /* err has different meaning on cdrom and tape */
384 if (err == ATA_ABORTED) {
385 if (drive->select.b.lba &&
386 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
387 hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
388 return ide_stopped;
389 } else if ((err & BAD_CRC) == BAD_CRC) {
390 /* UDMA crc error, just retry the operation */
391 drive->crc_count++;
392 } else if (err & (ATA_BBK | ATA_UNC)) {
393 /* retries won't help these */
394 rq->errors = ERROR_MAX;
395 } else if (err & ATA_TRK0NF) {
396 /* help it find track zero */
397 rq->errors |= ERROR_RECAL;
398 }
399 }
400
401 if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
402 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
403 int nsect = drive->mult_count ? drive->mult_count : 1;
404
405 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
406 }
407
408 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
409 ide_kill_rq(drive, rq);
410 return ide_stopped;
411 }
412
413 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
414 rq->errors |= ERROR_RESET;
415
416 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
417 ++rq->errors;
418 return ide_do_reset(drive);
419 }
420
421 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
422 drive->special.b.recalibrate = 1;
423
424 ++rq->errors;
425
426 return ide_stopped;
427 }
428
429 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
430 {
431 ide_hwif_t *hwif = drive->hwif;
432
433 if ((stat & ATA_BUSY) ||
434 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
435 /* other bits are useless when BUSY */
436 rq->errors |= ERROR_RESET;
437 } else {
438 /* add decoding error stuff */
439 }
440
441 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
442 /* force an abort */
443 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
444
445 if (rq->errors >= ERROR_MAX) {
446 ide_kill_rq(drive, rq);
447 } else {
448 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
449 ++rq->errors;
450 return ide_do_reset(drive);
451 }
452 ++rq->errors;
453 }
454
455 return ide_stopped;
456 }
457
458 ide_startstop_t
459 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
460 {
461 if (drive->media == ide_disk)
462 return ide_ata_error(drive, rq, stat, err);
463 return ide_atapi_error(drive, rq, stat, err);
464 }
465
466 EXPORT_SYMBOL_GPL(__ide_error);
467
468 /**
469 * ide_error - handle an error on the IDE
470 * @drive: drive the error occurred on
471 * @msg: message to report
472 * @stat: status bits
473 *
474 * ide_error() takes action based on the error returned by the drive.
475 * For normal I/O that may well include retries. We deal with
476 * both new-style (taskfile) and old style command handling here.
477 * In the case of taskfile command handling there is work left to
478 * do
479 */
480
481 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
482 {
483 struct request *rq;
484 u8 err;
485
486 err = ide_dump_status(drive, msg, stat);
487
488 if ((rq = HWGROUP(drive)->rq) == NULL)
489 return ide_stopped;
490
491 /* retry only "normal" I/O: */
492 if (!blk_fs_request(rq)) {
493 rq->errors = 1;
494 ide_end_drive_cmd(drive, stat, err);
495 return ide_stopped;
496 }
497
498 if (rq->rq_disk) {
499 ide_driver_t *drv;
500
501 drv = *(ide_driver_t **)rq->rq_disk->private_data;
502 return drv->error(drive, rq, stat, err);
503 } else
504 return __ide_error(drive, rq, stat, err);
505 }
506
507 EXPORT_SYMBOL_GPL(ide_error);
508
509 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
510 {
511 tf->nsect = drive->sect;
512 tf->lbal = drive->sect;
513 tf->lbam = drive->cyl;
514 tf->lbah = drive->cyl >> 8;
515 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
516 tf->command = ATA_CMD_INIT_DEV_PARAMS;
517 }
518
519 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
520 {
521 tf->nsect = drive->sect;
522 tf->command = ATA_CMD_RESTORE;
523 }
524
525 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
526 {
527 tf->nsect = drive->mult_req;
528 tf->command = ATA_CMD_SET_MULTI;
529 }
530
531 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
532 {
533 special_t *s = &drive->special;
534 ide_task_t args;
535
536 memset(&args, 0, sizeof(ide_task_t));
537 args.data_phase = TASKFILE_NO_DATA;
538
539 if (s->b.set_geometry) {
540 s->b.set_geometry = 0;
541 ide_tf_set_specify_cmd(drive, &args.tf);
542 } else if (s->b.recalibrate) {
543 s->b.recalibrate = 0;
544 ide_tf_set_restore_cmd(drive, &args.tf);
545 } else if (s->b.set_multmode) {
546 s->b.set_multmode = 0;
547 ide_tf_set_setmult_cmd(drive, &args.tf);
548 } else if (s->all) {
549 int special = s->all;
550 s->all = 0;
551 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
552 return ide_stopped;
553 }
554
555 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
556 IDE_TFLAG_CUSTOM_HANDLER;
557
558 do_rw_taskfile(drive, &args);
559
560 return ide_started;
561 }
562
563 /*
564 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
565 */
566 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
567 {
568 switch (req_pio) {
569 case 202:
570 case 201:
571 case 200:
572 case 102:
573 case 101:
574 case 100:
575 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
576 case 9:
577 case 8:
578 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
579 case 7:
580 case 6:
581 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
582 default:
583 return 0;
584 }
585 }
586
587 /**
588 * do_special - issue some special commands
589 * @drive: drive the command is for
590 *
591 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
592 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
593 *
594 * It used to do much more, but has been scaled back.
595 */
596
597 static ide_startstop_t do_special (ide_drive_t *drive)
598 {
599 special_t *s = &drive->special;
600
601 #ifdef DEBUG
602 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
603 #endif
604 if (s->b.set_tune) {
605 ide_hwif_t *hwif = drive->hwif;
606 const struct ide_port_ops *port_ops = hwif->port_ops;
607 u8 req_pio = drive->tune_req;
608
609 s->b.set_tune = 0;
610
611 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
612 /*
613 * take ide_lock for IDE_DFLAG_[NO_]UNMASK/[NO_]IO_32BIT
614 */
615 if (req_pio == 8 || req_pio == 9) {
616 unsigned long flags;
617
618 spin_lock_irqsave(&ide_lock, flags);
619 port_ops->set_pio_mode(drive, req_pio);
620 spin_unlock_irqrestore(&ide_lock, flags);
621 } else
622 port_ops->set_pio_mode(drive, req_pio);
623 } else {
624 int keep_dma =
625 !!(drive->dev_flags & IDE_DFLAG_USING_DMA);
626
627 ide_set_pio(drive, req_pio);
628
629 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
630 if (keep_dma)
631 ide_dma_on(drive);
632 }
633 }
634
635 return ide_stopped;
636 } else {
637 if (drive->media == ide_disk)
638 return ide_disk_special(drive);
639
640 s->all = 0;
641 drive->mult_req = 0;
642 return ide_stopped;
643 }
644 }
645
646 void ide_map_sg(ide_drive_t *drive, struct request *rq)
647 {
648 ide_hwif_t *hwif = drive->hwif;
649 struct scatterlist *sg = hwif->sg_table;
650
651 if (hwif->sg_mapped) /* needed by ide-scsi */
652 return;
653
654 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
655 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
656 } else {
657 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
658 hwif->sg_nents = 1;
659 }
660 }
661
662 EXPORT_SYMBOL_GPL(ide_map_sg);
663
664 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
665 {
666 ide_hwif_t *hwif = drive->hwif;
667
668 hwif->nsect = hwif->nleft = rq->nr_sectors;
669 hwif->cursg_ofs = 0;
670 hwif->cursg = NULL;
671 }
672
673 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
674
675 /**
676 * execute_drive_command - issue special drive command
677 * @drive: the drive to issue the command on
678 * @rq: the request structure holding the command
679 *
680 * execute_drive_cmd() issues a special drive command, usually
681 * initiated by ioctl() from the external hdparm program. The
682 * command can be a drive command, drive task or taskfile
683 * operation. Weirdly you can call it with NULL to wait for
684 * all commands to finish. Don't do this as that is due to change
685 */
686
687 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
688 struct request *rq)
689 {
690 ide_hwif_t *hwif = HWIF(drive);
691 ide_task_t *task = rq->special;
692
693 if (task) {
694 hwif->data_phase = task->data_phase;
695
696 switch (hwif->data_phase) {
697 case TASKFILE_MULTI_OUT:
698 case TASKFILE_OUT:
699 case TASKFILE_MULTI_IN:
700 case TASKFILE_IN:
701 ide_init_sg_cmd(drive, rq);
702 ide_map_sg(drive, rq);
703 default:
704 break;
705 }
706
707 return do_rw_taskfile(drive, task);
708 }
709
710 /*
711 * NULL is actually a valid way of waiting for
712 * all current requests to be flushed from the queue.
713 */
714 #ifdef DEBUG
715 printk("%s: DRIVE_CMD (null)\n", drive->name);
716 #endif
717 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
718 ide_read_error(drive));
719
720 return ide_stopped;
721 }
722
723 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
724 int arg)
725 {
726 struct request_queue *q = drive->queue;
727 struct request *rq;
728 int ret = 0;
729
730 if (!(setting->flags & DS_SYNC))
731 return setting->set(drive, arg);
732
733 rq = blk_get_request(q, READ, GFP_KERNEL);
734 if (!rq)
735 return -ENOMEM;
736
737 rq->cmd_type = REQ_TYPE_SPECIAL;
738 rq->cmd_len = 5;
739 rq->cmd[0] = REQ_DEVSET_EXEC;
740 *(int *)&rq->cmd[1] = arg;
741 rq->special = setting->set;
742
743 if (blk_execute_rq(q, NULL, rq, 0))
744 ret = rq->errors;
745 blk_put_request(rq);
746
747 return ret;
748 }
749 EXPORT_SYMBOL_GPL(ide_devset_execute);
750
751 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
752 {
753 switch (rq->cmd[0]) {
754 case REQ_DEVSET_EXEC:
755 {
756 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
757
758 err = setfunc(drive, *(int *)&rq->cmd[1]);
759 if (err)
760 rq->errors = err;
761 else
762 err = 1;
763 ide_end_request(drive, err, 0);
764 return ide_stopped;
765 }
766 case REQ_DRIVE_RESET:
767 return ide_do_reset(drive);
768 default:
769 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
770 ide_end_request(drive, 0, 0);
771 return ide_stopped;
772 }
773 }
774
775 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
776 {
777 struct request_pm_state *pm = rq->data;
778
779 if (blk_pm_suspend_request(rq) &&
780 pm->pm_step == ide_pm_state_start_suspend)
781 /* Mark drive blocked when starting the suspend sequence. */
782 drive->dev_flags |= IDE_DFLAG_BLOCKED;
783 else if (blk_pm_resume_request(rq) &&
784 pm->pm_step == ide_pm_state_start_resume) {
785 /*
786 * The first thing we do on wakeup is to wait for BSY bit to
787 * go away (with a looong timeout) as a drive on this hwif may
788 * just be POSTing itself.
789 * We do that before even selecting as the "other" device on
790 * the bus may be broken enough to walk on our toes at this
791 * point.
792 */
793 ide_hwif_t *hwif = drive->hwif;
794 int rc;
795 #ifdef DEBUG_PM
796 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
797 #endif
798 rc = ide_wait_not_busy(hwif, 35000);
799 if (rc)
800 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
801 SELECT_DRIVE(drive);
802 hwif->tp_ops->set_irq(hwif, 1);
803 rc = ide_wait_not_busy(hwif, 100000);
804 if (rc)
805 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
806 }
807 }
808
809 /**
810 * start_request - start of I/O and command issuing for IDE
811 *
812 * start_request() initiates handling of a new I/O request. It
813 * accepts commands and I/O (read/write) requests.
814 *
815 * FIXME: this function needs a rename
816 */
817
818 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
819 {
820 ide_startstop_t startstop;
821
822 BUG_ON(!blk_rq_started(rq));
823
824 #ifdef DEBUG
825 printk("%s: start_request: current=0x%08lx\n",
826 HWIF(drive)->name, (unsigned long) rq);
827 #endif
828
829 /* bail early if we've exceeded max_failures */
830 if (drive->max_failures && (drive->failures > drive->max_failures)) {
831 rq->cmd_flags |= REQ_FAILED;
832 goto kill_rq;
833 }
834
835 if (blk_pm_request(rq))
836 ide_check_pm_state(drive, rq);
837
838 SELECT_DRIVE(drive);
839 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
840 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
841 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
842 return startstop;
843 }
844 if (!drive->special.all) {
845 ide_driver_t *drv;
846
847 /*
848 * We reset the drive so we need to issue a SETFEATURES.
849 * Do it _after_ do_special() restored device parameters.
850 */
851 if (drive->current_speed == 0xff)
852 ide_config_drive_speed(drive, drive->desired_speed);
853
854 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
855 return execute_drive_cmd(drive, rq);
856 else if (blk_pm_request(rq)) {
857 struct request_pm_state *pm = rq->data;
858 #ifdef DEBUG_PM
859 printk("%s: start_power_step(step: %d)\n",
860 drive->name, rq->pm->pm_step);
861 #endif
862 startstop = ide_start_power_step(drive, rq);
863 if (startstop == ide_stopped &&
864 pm->pm_step == ide_pm_state_completed)
865 ide_complete_pm_request(drive, rq);
866 return startstop;
867 } else if (!rq->rq_disk && blk_special_request(rq))
868 /*
869 * TODO: Once all ULDs have been modified to
870 * check for specific op codes rather than
871 * blindly accepting any special request, the
872 * check for ->rq_disk above may be replaced
873 * by a more suitable mechanism or even
874 * dropped entirely.
875 */
876 return ide_special_rq(drive, rq);
877
878 drv = *(ide_driver_t **)rq->rq_disk->private_data;
879
880 return drv->do_request(drive, rq, rq->sector);
881 }
882 return do_special(drive);
883 kill_rq:
884 ide_kill_rq(drive, rq);
885 return ide_stopped;
886 }
887
888 /**
889 * ide_stall_queue - pause an IDE device
890 * @drive: drive to stall
891 * @timeout: time to stall for (jiffies)
892 *
893 * ide_stall_queue() can be used by a drive to give excess bandwidth back
894 * to the hwgroup by sleeping for timeout jiffies.
895 */
896
897 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
898 {
899 if (timeout > WAIT_WORSTCASE)
900 timeout = WAIT_WORSTCASE;
901 drive->sleep = timeout + jiffies;
902 drive->dev_flags |= IDE_DFLAG_SLEEPING;
903 }
904
905 EXPORT_SYMBOL(ide_stall_queue);
906
907 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
908
909 /**
910 * choose_drive - select a drive to service
911 * @hwgroup: hardware group to select on
912 *
913 * choose_drive() selects the next drive which will be serviced.
914 * This is necessary because the IDE layer can't issue commands
915 * to both drives on the same cable, unlike SCSI.
916 */
917
918 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
919 {
920 ide_drive_t *drive, *best;
921
922 repeat:
923 best = NULL;
924 drive = hwgroup->drive;
925
926 /*
927 * drive is doing pre-flush, ordered write, post-flush sequence. even
928 * though that is 3 requests, it must be seen as a single transaction.
929 * we must not preempt this drive until that is complete
930 */
931 if (blk_queue_flushing(drive->queue)) {
932 /*
933 * small race where queue could get replugged during
934 * the 3-request flush cycle, just yank the plug since
935 * we want it to finish asap
936 */
937 blk_remove_plug(drive->queue);
938 return drive;
939 }
940
941 do {
942 u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
943 u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
944
945 if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
946 !elv_queue_empty(drive->queue)) {
947 if (best == NULL ||
948 (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
949 (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
950 if (!blk_queue_plugged(drive->queue))
951 best = drive;
952 }
953 }
954 } while ((drive = drive->next) != hwgroup->drive);
955
956 if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
957 (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
958 best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
959 long t = (signed long)(WAKEUP(best) - jiffies);
960 if (t >= WAIT_MIN_SLEEP) {
961 /*
962 * We *may* have some time to spare, but first let's see if
963 * someone can potentially benefit from our nice mood today..
964 */
965 drive = best->next;
966 do {
967 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
968 && time_before(jiffies - best->service_time, WAKEUP(drive))
969 && time_before(WAKEUP(drive), jiffies + t))
970 {
971 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
972 goto repeat;
973 }
974 } while ((drive = drive->next) != best);
975 }
976 }
977 return best;
978 }
979
980 /*
981 * Issue a new request to a drive from hwgroup
982 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
983 *
984 * A hwgroup is a serialized group of IDE interfaces. Usually there is
985 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
986 * may have both interfaces in a single hwgroup to "serialize" access.
987 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
988 * together into one hwgroup for serialized access.
989 *
990 * Note also that several hwgroups can end up sharing a single IRQ,
991 * possibly along with many other devices. This is especially common in
992 * PCI-based systems with off-board IDE controller cards.
993 *
994 * The IDE driver uses the single global ide_lock spinlock to protect
995 * access to the request queues, and to protect the hwgroup->busy flag.
996 *
997 * The first thread into the driver for a particular hwgroup sets the
998 * hwgroup->busy flag to indicate that this hwgroup is now active,
999 * and then initiates processing of the top request from the request queue.
1000 *
1001 * Other threads attempting entry notice the busy setting, and will simply
1002 * queue their new requests and exit immediately. Note that hwgroup->busy
1003 * remains set even when the driver is merely awaiting the next interrupt.
1004 * Thus, the meaning is "this hwgroup is busy processing a request".
1005 *
1006 * When processing of a request completes, the completing thread or IRQ-handler
1007 * will start the next request from the queue. If no more work remains,
1008 * the driver will clear the hwgroup->busy flag and exit.
1009 *
1010 * The ide_lock (spinlock) is used to protect all access to the
1011 * hwgroup->busy flag, but is otherwise not needed for most processing in
1012 * the driver. This makes the driver much more friendlier to shared IRQs
1013 * than previous designs, while remaining 100% (?) SMP safe and capable.
1014 */
1015 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1016 {
1017 ide_drive_t *drive;
1018 ide_hwif_t *hwif;
1019 struct request *rq;
1020 ide_startstop_t startstop;
1021 int loops = 0;
1022
1023 /* for atari only: POSSIBLY BROKEN HERE(?) */
1024 ide_get_lock(ide_intr, hwgroup);
1025
1026 /* caller must own ide_lock */
1027 BUG_ON(!irqs_disabled());
1028
1029 while (!hwgroup->busy) {
1030 hwgroup->busy = 1;
1031 drive = choose_drive(hwgroup);
1032 if (drive == NULL) {
1033 int sleeping = 0;
1034 unsigned long sleep = 0; /* shut up, gcc */
1035 hwgroup->rq = NULL;
1036 drive = hwgroup->drive;
1037 do {
1038 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
1039 (sleeping == 0 ||
1040 time_before(drive->sleep, sleep))) {
1041 sleeping = 1;
1042 sleep = drive->sleep;
1043 }
1044 } while ((drive = drive->next) != hwgroup->drive);
1045 if (sleeping) {
1046 /*
1047 * Take a short snooze, and then wake up this hwgroup again.
1048 * This gives other hwgroups on the same a chance to
1049 * play fairly with us, just in case there are big differences
1050 * in relative throughputs.. don't want to hog the cpu too much.
1051 */
1052 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1053 sleep = jiffies + WAIT_MIN_SLEEP;
1054 #if 1
1055 if (timer_pending(&hwgroup->timer))
1056 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1057 #endif
1058 /* so that ide_timer_expiry knows what to do */
1059 hwgroup->sleeping = 1;
1060 hwgroup->req_gen_timer = hwgroup->req_gen;
1061 mod_timer(&hwgroup->timer, sleep);
1062 /* we purposely leave hwgroup->busy==1
1063 * while sleeping */
1064 } else {
1065 /* Ugly, but how can we sleep for the lock
1066 * otherwise? perhaps from tq_disk?
1067 */
1068
1069 /* for atari only */
1070 ide_release_lock();
1071 hwgroup->busy = 0;
1072 }
1073
1074 /* no more work for this hwgroup (for now) */
1075 return;
1076 }
1077 again:
1078 hwif = HWIF(drive);
1079 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1080 /*
1081 * set nIEN for previous hwif, drives in the
1082 * quirk_list may not like intr setups/cleanups
1083 */
1084 if (drive->quirk_list != 1)
1085 hwif->tp_ops->set_irq(hwif, 0);
1086 }
1087 hwgroup->hwif = hwif;
1088 hwgroup->drive = drive;
1089 drive->dev_flags &= ~IDE_DFLAG_SLEEPING;
1090 drive->service_start = jiffies;
1091
1092 if (blk_queue_plugged(drive->queue)) {
1093 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1094 break;
1095 }
1096
1097 /*
1098 * we know that the queue isn't empty, but this can happen
1099 * if the q->prep_rq_fn() decides to kill a request
1100 */
1101 rq = elv_next_request(drive->queue);
1102 if (!rq) {
1103 hwgroup->busy = 0;
1104 break;
1105 }
1106
1107 /*
1108 * Sanity: don't accept a request that isn't a PM request
1109 * if we are currently power managed. This is very important as
1110 * blk_stop_queue() doesn't prevent the elv_next_request()
1111 * above to return us whatever is in the queue. Since we call
1112 * ide_do_request() ourselves, we end up taking requests while
1113 * the queue is blocked...
1114 *
1115 * We let requests forced at head of queue with ide-preempt
1116 * though. I hope that doesn't happen too much, hopefully not
1117 * unless the subdriver triggers such a thing in its own PM
1118 * state machine.
1119 *
1120 * We count how many times we loop here to make sure we service
1121 * all drives in the hwgroup without looping for ever
1122 */
1123 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1124 blk_pm_request(rq) == 0 &&
1125 (rq->cmd_flags & REQ_PREEMPT) == 0) {
1126 drive = drive->next ? drive->next : hwgroup->drive;
1127 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1128 goto again;
1129 /* We clear busy, there should be no pending ATA command at this point. */
1130 hwgroup->busy = 0;
1131 break;
1132 }
1133
1134 hwgroup->rq = rq;
1135
1136 /*
1137 * Some systems have trouble with IDE IRQs arriving while
1138 * the driver is still setting things up. So, here we disable
1139 * the IRQ used by this interface while the request is being started.
1140 * This may look bad at first, but pretty much the same thing
1141 * happens anyway when any interrupt comes in, IDE or otherwise
1142 * -- the kernel masks the IRQ while it is being handled.
1143 */
1144 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1145 disable_irq_nosync(hwif->irq);
1146 spin_unlock(&ide_lock);
1147 local_irq_enable_in_hardirq();
1148 /* allow other IRQs while we start this request */
1149 startstop = start_request(drive, rq);
1150 spin_lock_irq(&ide_lock);
1151 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1152 enable_irq(hwif->irq);
1153 if (startstop == ide_stopped)
1154 hwgroup->busy = 0;
1155 }
1156 }
1157
1158 /*
1159 * Passes the stuff to ide_do_request
1160 */
1161 void do_ide_request(struct request_queue *q)
1162 {
1163 ide_drive_t *drive = q->queuedata;
1164
1165 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1166 }
1167
1168 /*
1169 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1170 * retry the current request in pio mode instead of risking tossing it
1171 * all away
1172 */
1173 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1174 {
1175 ide_hwif_t *hwif = HWIF(drive);
1176 struct request *rq;
1177 ide_startstop_t ret = ide_stopped;
1178
1179 /*
1180 * end current dma transaction
1181 */
1182
1183 if (error < 0) {
1184 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1185 (void)hwif->dma_ops->dma_end(drive);
1186 ret = ide_error(drive, "dma timeout error",
1187 hwif->tp_ops->read_status(hwif));
1188 } else {
1189 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1190 hwif->dma_ops->dma_timeout(drive);
1191 }
1192
1193 /*
1194 * disable dma for now, but remember that we did so because of
1195 * a timeout -- we'll reenable after we finish this next request
1196 * (or rather the first chunk of it) in pio.
1197 */
1198 drive->retry_pio++;
1199 drive->state = DMA_PIO_RETRY;
1200 ide_dma_off_quietly(drive);
1201
1202 /*
1203 * un-busy drive etc (hwgroup->busy is cleared on return) and
1204 * make sure request is sane
1205 */
1206 rq = HWGROUP(drive)->rq;
1207
1208 if (!rq)
1209 goto out;
1210
1211 HWGROUP(drive)->rq = NULL;
1212
1213 rq->errors = 0;
1214
1215 if (!rq->bio)
1216 goto out;
1217
1218 rq->sector = rq->bio->bi_sector;
1219 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1220 rq->hard_cur_sectors = rq->current_nr_sectors;
1221 rq->buffer = bio_data(rq->bio);
1222 out:
1223 return ret;
1224 }
1225
1226 /**
1227 * ide_timer_expiry - handle lack of an IDE interrupt
1228 * @data: timer callback magic (hwgroup)
1229 *
1230 * An IDE command has timed out before the expected drive return
1231 * occurred. At this point we attempt to clean up the current
1232 * mess. If the current handler includes an expiry handler then
1233 * we invoke the expiry handler, and providing it is happy the
1234 * work is done. If that fails we apply generic recovery rules
1235 * invoking the handler and checking the drive DMA status. We
1236 * have an excessively incestuous relationship with the DMA
1237 * logic that wants cleaning up.
1238 */
1239
1240 void ide_timer_expiry (unsigned long data)
1241 {
1242 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1243 ide_handler_t *handler;
1244 ide_expiry_t *expiry;
1245 unsigned long flags;
1246 unsigned long wait = -1;
1247
1248 spin_lock_irqsave(&ide_lock, flags);
1249
1250 if (((handler = hwgroup->handler) == NULL) ||
1251 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1252 /*
1253 * Either a marginal timeout occurred
1254 * (got the interrupt just as timer expired),
1255 * or we were "sleeping" to give other devices a chance.
1256 * Either way, we don't really want to complain about anything.
1257 */
1258 if (hwgroup->sleeping) {
1259 hwgroup->sleeping = 0;
1260 hwgroup->busy = 0;
1261 }
1262 } else {
1263 ide_drive_t *drive = hwgroup->drive;
1264 if (!drive) {
1265 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1266 hwgroup->handler = NULL;
1267 } else {
1268 ide_hwif_t *hwif;
1269 ide_startstop_t startstop = ide_stopped;
1270 if (!hwgroup->busy) {
1271 hwgroup->busy = 1; /* paranoia */
1272 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1273 }
1274 if ((expiry = hwgroup->expiry) != NULL) {
1275 /* continue */
1276 if ((wait = expiry(drive)) > 0) {
1277 /* reset timer */
1278 hwgroup->timer.expires = jiffies + wait;
1279 hwgroup->req_gen_timer = hwgroup->req_gen;
1280 add_timer(&hwgroup->timer);
1281 spin_unlock_irqrestore(&ide_lock, flags);
1282 return;
1283 }
1284 }
1285 hwgroup->handler = NULL;
1286 /*
1287 * We need to simulate a real interrupt when invoking
1288 * the handler() function, which means we need to
1289 * globally mask the specific IRQ:
1290 */
1291 spin_unlock(&ide_lock);
1292 hwif = HWIF(drive);
1293 /* disable_irq_nosync ?? */
1294 disable_irq(hwif->irq);
1295 /* local CPU only,
1296 * as if we were handling an interrupt */
1297 local_irq_disable();
1298 if (hwgroup->polling) {
1299 startstop = handler(drive);
1300 } else if (drive_is_ready(drive)) {
1301 if (drive->waiting_for_dma)
1302 hwif->dma_ops->dma_lost_irq(drive);
1303 (void)ide_ack_intr(hwif);
1304 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1305 startstop = handler(drive);
1306 } else {
1307 if (drive->waiting_for_dma) {
1308 startstop = ide_dma_timeout_retry(drive, wait);
1309 } else
1310 startstop =
1311 ide_error(drive, "irq timeout",
1312 hwif->tp_ops->read_status(hwif));
1313 }
1314 drive->service_time = jiffies - drive->service_start;
1315 spin_lock_irq(&ide_lock);
1316 enable_irq(hwif->irq);
1317 if (startstop == ide_stopped)
1318 hwgroup->busy = 0;
1319 }
1320 }
1321 ide_do_request(hwgroup, IDE_NO_IRQ);
1322 spin_unlock_irqrestore(&ide_lock, flags);
1323 }
1324
1325 /**
1326 * unexpected_intr - handle an unexpected IDE interrupt
1327 * @irq: interrupt line
1328 * @hwgroup: hwgroup being processed
1329 *
1330 * There's nothing really useful we can do with an unexpected interrupt,
1331 * other than reading the status register (to clear it), and logging it.
1332 * There should be no way that an irq can happen before we're ready for it,
1333 * so we needn't worry much about losing an "important" interrupt here.
1334 *
1335 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1336 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1337 * looks "good", we just ignore the interrupt completely.
1338 *
1339 * This routine assumes __cli() is in effect when called.
1340 *
1341 * If an unexpected interrupt happens on irq15 while we are handling irq14
1342 * and if the two interfaces are "serialized" (CMD640), then it looks like
1343 * we could screw up by interfering with a new request being set up for
1344 * irq15.
1345 *
1346 * In reality, this is a non-issue. The new command is not sent unless
1347 * the drive is ready to accept one, in which case we know the drive is
1348 * not trying to interrupt us. And ide_set_handler() is always invoked
1349 * before completing the issuance of any new drive command, so we will not
1350 * be accidentally invoked as a result of any valid command completion
1351 * interrupt.
1352 *
1353 * Note that we must walk the entire hwgroup here. We know which hwif
1354 * is doing the current command, but we don't know which hwif burped
1355 * mysteriously.
1356 */
1357
1358 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1359 {
1360 u8 stat;
1361 ide_hwif_t *hwif = hwgroup->hwif;
1362
1363 /*
1364 * handle the unexpected interrupt
1365 */
1366 do {
1367 if (hwif->irq == irq) {
1368 stat = hwif->tp_ops->read_status(hwif);
1369
1370 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1371 /* Try to not flood the console with msgs */
1372 static unsigned long last_msgtime, count;
1373 ++count;
1374 if (time_after(jiffies, last_msgtime + HZ)) {
1375 last_msgtime = jiffies;
1376 printk(KERN_ERR "%s%s: unexpected interrupt, "
1377 "status=0x%02x, count=%ld\n",
1378 hwif->name,
1379 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1380 }
1381 }
1382 }
1383 } while ((hwif = hwif->next) != hwgroup->hwif);
1384 }
1385
1386 /**
1387 * ide_intr - default IDE interrupt handler
1388 * @irq: interrupt number
1389 * @dev_id: hwif group
1390 * @regs: unused weirdness from the kernel irq layer
1391 *
1392 * This is the default IRQ handler for the IDE layer. You should
1393 * not need to override it. If you do be aware it is subtle in
1394 * places
1395 *
1396 * hwgroup->hwif is the interface in the group currently performing
1397 * a command. hwgroup->drive is the drive and hwgroup->handler is
1398 * the IRQ handler to call. As we issue a command the handlers
1399 * step through multiple states, reassigning the handler to the
1400 * next step in the process. Unlike a smart SCSI controller IDE
1401 * expects the main processor to sequence the various transfer
1402 * stages. We also manage a poll timer to catch up with most
1403 * timeout situations. There are still a few where the handlers
1404 * don't ever decide to give up.
1405 *
1406 * The handler eventually returns ide_stopped to indicate the
1407 * request completed. At this point we issue the next request
1408 * on the hwgroup and the process begins again.
1409 */
1410
1411 irqreturn_t ide_intr (int irq, void *dev_id)
1412 {
1413 unsigned long flags;
1414 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1415 ide_hwif_t *hwif;
1416 ide_drive_t *drive;
1417 ide_handler_t *handler;
1418 ide_startstop_t startstop;
1419
1420 spin_lock_irqsave(&ide_lock, flags);
1421 hwif = hwgroup->hwif;
1422
1423 if (!ide_ack_intr(hwif)) {
1424 spin_unlock_irqrestore(&ide_lock, flags);
1425 return IRQ_NONE;
1426 }
1427
1428 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1429 /*
1430 * Not expecting an interrupt from this drive.
1431 * That means this could be:
1432 * (1) an interrupt from another PCI device
1433 * sharing the same PCI INT# as us.
1434 * or (2) a drive just entered sleep or standby mode,
1435 * and is interrupting to let us know.
1436 * or (3) a spurious interrupt of unknown origin.
1437 *
1438 * For PCI, we cannot tell the difference,
1439 * so in that case we just ignore it and hope it goes away.
1440 *
1441 * FIXME: unexpected_intr should be hwif-> then we can
1442 * remove all the ifdef PCI crap
1443 */
1444 #ifdef CONFIG_BLK_DEV_IDEPCI
1445 if (hwif->chipset != ide_pci)
1446 #endif /* CONFIG_BLK_DEV_IDEPCI */
1447 {
1448 /*
1449 * Probably not a shared PCI interrupt,
1450 * so we can safely try to do something about it:
1451 */
1452 unexpected_intr(irq, hwgroup);
1453 #ifdef CONFIG_BLK_DEV_IDEPCI
1454 } else {
1455 /*
1456 * Whack the status register, just in case
1457 * we have a leftover pending IRQ.
1458 */
1459 (void)hwif->tp_ops->read_status(hwif);
1460 #endif /* CONFIG_BLK_DEV_IDEPCI */
1461 }
1462 spin_unlock_irqrestore(&ide_lock, flags);
1463 return IRQ_NONE;
1464 }
1465 drive = hwgroup->drive;
1466 if (!drive) {
1467 /*
1468 * This should NEVER happen, and there isn't much
1469 * we could do about it here.
1470 *
1471 * [Note - this can occur if the drive is hot unplugged]
1472 */
1473 spin_unlock_irqrestore(&ide_lock, flags);
1474 return IRQ_HANDLED;
1475 }
1476 if (!drive_is_ready(drive)) {
1477 /*
1478 * This happens regularly when we share a PCI IRQ with
1479 * another device. Unfortunately, it can also happen
1480 * with some buggy drives that trigger the IRQ before
1481 * their status register is up to date. Hopefully we have
1482 * enough advance overhead that the latter isn't a problem.
1483 */
1484 spin_unlock_irqrestore(&ide_lock, flags);
1485 return IRQ_NONE;
1486 }
1487 if (!hwgroup->busy) {
1488 hwgroup->busy = 1; /* paranoia */
1489 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1490 }
1491 hwgroup->handler = NULL;
1492 hwgroup->req_gen++;
1493 del_timer(&hwgroup->timer);
1494 spin_unlock(&ide_lock);
1495
1496 /* Some controllers might set DMA INTR no matter DMA or PIO;
1497 * bmdma status might need to be cleared even for
1498 * PIO interrupts to prevent spurious/lost irq.
1499 */
1500 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1501 /* ide_dma_end() needs bmdma status for error checking.
1502 * So, skip clearing bmdma status here and leave it
1503 * to ide_dma_end() if this is dma interrupt.
1504 */
1505 hwif->ide_dma_clear_irq(drive);
1506
1507 if (drive->dev_flags & IDE_DFLAG_UNMASK)
1508 local_irq_enable_in_hardirq();
1509 /* service this interrupt, may set handler for next interrupt */
1510 startstop = handler(drive);
1511 spin_lock_irq(&ide_lock);
1512
1513 /*
1514 * Note that handler() may have set things up for another
1515 * interrupt to occur soon, but it cannot happen until
1516 * we exit from this routine, because it will be the
1517 * same irq as is currently being serviced here, and Linux
1518 * won't allow another of the same (on any CPU) until we return.
1519 */
1520 drive->service_time = jiffies - drive->service_start;
1521 if (startstop == ide_stopped) {
1522 if (hwgroup->handler == NULL) { /* paranoia */
1523 hwgroup->busy = 0;
1524 ide_do_request(hwgroup, hwif->irq);
1525 } else {
1526 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1527 "on exit\n", drive->name);
1528 }
1529 }
1530 spin_unlock_irqrestore(&ide_lock, flags);
1531 return IRQ_HANDLED;
1532 }
1533
1534 /**
1535 * ide_do_drive_cmd - issue IDE special command
1536 * @drive: device to issue command
1537 * @rq: request to issue
1538 *
1539 * This function issues a special IDE device request
1540 * onto the request queue.
1541 *
1542 * the rq is queued at the head of the request queue, displacing
1543 * the currently-being-processed request and this function
1544 * returns immediately without waiting for the new rq to be
1545 * completed. This is VERY DANGEROUS, and is intended for
1546 * careful use by the ATAPI tape/cdrom driver code.
1547 */
1548
1549 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1550 {
1551 unsigned long flags;
1552 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1553
1554 spin_lock_irqsave(&ide_lock, flags);
1555 hwgroup->rq = NULL;
1556 __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1);
1557 __generic_unplug_device(drive->queue);
1558 spin_unlock_irqrestore(&ide_lock, flags);
1559 }
1560
1561 EXPORT_SYMBOL(ide_do_drive_cmd);
1562
1563 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1564 {
1565 ide_hwif_t *hwif = drive->hwif;
1566 ide_task_t task;
1567
1568 memset(&task, 0, sizeof(task));
1569 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1570 IDE_TFLAG_OUT_FEATURE | tf_flags;
1571 task.tf.feature = dma; /* Use PIO/DMA */
1572 task.tf.lbam = bcount & 0xff;
1573 task.tf.lbah = (bcount >> 8) & 0xff;
1574
1575 ide_tf_dump(drive->name, &task.tf);
1576 hwif->tp_ops->set_irq(hwif, 1);
1577 SELECT_MASK(drive, 0);
1578 hwif->tp_ops->tf_load(drive, &task);
1579 }
1580
1581 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1582
1583 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1584 {
1585 ide_hwif_t *hwif = drive->hwif;
1586 u8 buf[4] = { 0 };
1587
1588 while (len > 0) {
1589 if (write)
1590 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1591 else
1592 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1593 len -= 4;
1594 }
1595 }
1596 EXPORT_SYMBOL_GPL(ide_pad_transfer);
This page took 0.060413 seconds and 6 git commands to generate.