libata: WIN_* -> ATA_CMD_*
[deliverable/linux.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60 int ret = 1;
61 int error = 0;
62
63 if (uptodate <= 0)
64 error = uptodate ? uptodate : -EIO;
65
66 /*
67 * if failfast is set on a request, override number of sectors and
68 * complete the whole request right now
69 */
70 if (blk_noretry_request(rq) && error)
71 nr_bytes = rq->hard_nr_sectors << 9;
72
73 if (!blk_fs_request(rq) && error && !rq->errors)
74 rq->errors = -EIO;
75
76 /*
77 * decide whether to reenable DMA -- 3 is a random magic for now,
78 * if we DMA timeout more than 3 times, just stay in PIO
79 */
80 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
81 drive->state = 0;
82 ide_dma_on(drive);
83 }
84
85 if (!__blk_end_request(rq, error, nr_bytes)) {
86 if (dequeue)
87 HWGROUP(drive)->rq = NULL;
88 ret = 0;
89 }
90
91 return ret;
92 }
93
94 /**
95 * ide_end_request - complete an IDE I/O
96 * @drive: IDE device for the I/O
97 * @uptodate:
98 * @nr_sectors: number of sectors completed
99 *
100 * This is our end_request wrapper function. We complete the I/O
101 * update random number input and dequeue the request, which if
102 * it was tagged may be out of order.
103 */
104
105 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
106 {
107 unsigned int nr_bytes = nr_sectors << 9;
108 struct request *rq;
109 unsigned long flags;
110 int ret = 1;
111
112 /*
113 * room for locking improvements here, the calls below don't
114 * need the queue lock held at all
115 */
116 spin_lock_irqsave(&ide_lock, flags);
117 rq = HWGROUP(drive)->rq;
118
119 if (!nr_bytes) {
120 if (blk_pc_request(rq))
121 nr_bytes = rq->data_len;
122 else
123 nr_bytes = rq->hard_cur_sectors << 9;
124 }
125
126 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
127
128 spin_unlock_irqrestore(&ide_lock, flags);
129 return ret;
130 }
131 EXPORT_SYMBOL(ide_end_request);
132
133 /*
134 * Power Management state machine. This one is rather trivial for now,
135 * we should probably add more, like switching back to PIO on suspend
136 * to help some BIOSes, re-do the door locking on resume, etc...
137 */
138
139 enum {
140 ide_pm_flush_cache = ide_pm_state_start_suspend,
141 idedisk_pm_standby,
142
143 idedisk_pm_restore_pio = ide_pm_state_start_resume,
144 idedisk_pm_idle,
145 ide_pm_restore_dma,
146 };
147
148 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
149 {
150 struct request_pm_state *pm = rq->data;
151
152 if (drive->media != ide_disk)
153 return;
154
155 switch (pm->pm_step) {
156 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
157 if (pm->pm_state == PM_EVENT_FREEZE)
158 pm->pm_step = ide_pm_state_completed;
159 else
160 pm->pm_step = idedisk_pm_standby;
161 break;
162 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
163 pm->pm_step = ide_pm_state_completed;
164 break;
165 case idedisk_pm_restore_pio: /* Resume step 1 complete */
166 pm->pm_step = idedisk_pm_idle;
167 break;
168 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
169 pm->pm_step = ide_pm_restore_dma;
170 break;
171 }
172 }
173
174 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
175 {
176 struct request_pm_state *pm = rq->data;
177 ide_task_t *args = rq->special;
178
179 memset(args, 0, sizeof(*args));
180
181 switch (pm->pm_step) {
182 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
183 if (drive->media != ide_disk)
184 break;
185 /* Not supported? Switch to next step now. */
186 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187 ide_complete_power_step(drive, rq, 0, 0);
188 return ide_stopped;
189 }
190 if (ide_id_has_flush_cache_ext(drive->id))
191 args->tf.command = WIN_FLUSH_CACHE_EXT;
192 else
193 args->tf.command = WIN_FLUSH_CACHE;
194 goto out_do_tf;
195
196 case idedisk_pm_standby: /* Suspend step 2 (standby) */
197 args->tf.command = WIN_STANDBYNOW1;
198 goto out_do_tf;
199
200 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
201 ide_set_max_pio(drive);
202 /*
203 * skip idedisk_pm_idle for ATAPI devices
204 */
205 if (drive->media != ide_disk)
206 pm->pm_step = ide_pm_restore_dma;
207 else
208 ide_complete_power_step(drive, rq, 0, 0);
209 return ide_stopped;
210
211 case idedisk_pm_idle: /* Resume step 2 (idle) */
212 args->tf.command = WIN_IDLEIMMEDIATE;
213 goto out_do_tf;
214
215 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
216 /*
217 * Right now, all we do is call ide_set_dma(drive),
218 * we could be smarter and check for current xfer_speed
219 * in struct drive etc...
220 */
221 if (drive->hwif->dma_ops == NULL)
222 break;
223 /*
224 * TODO: respect ->using_dma setting
225 */
226 ide_set_dma(drive);
227 break;
228 }
229 pm->pm_step = ide_pm_state_completed;
230 return ide_stopped;
231
232 out_do_tf:
233 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234 args->data_phase = TASKFILE_NO_DATA;
235 return do_rw_taskfile(drive, args);
236 }
237
238 /**
239 * ide_end_dequeued_request - complete an IDE I/O
240 * @drive: IDE device for the I/O
241 * @uptodate:
242 * @nr_sectors: number of sectors completed
243 *
244 * Complete an I/O that is no longer on the request queue. This
245 * typically occurs when we pull the request and issue a REQUEST_SENSE.
246 * We must still finish the old request but we must not tamper with the
247 * queue in the meantime.
248 *
249 * NOTE: This path does not handle barrier, but barrier is not supported
250 * on ide-cd anyway.
251 */
252
253 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254 int uptodate, int nr_sectors)
255 {
256 unsigned long flags;
257 int ret;
258
259 spin_lock_irqsave(&ide_lock, flags);
260 BUG_ON(!blk_rq_started(rq));
261 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262 spin_unlock_irqrestore(&ide_lock, flags);
263
264 return ret;
265 }
266 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
267
268
269 /**
270 * ide_complete_pm_request - end the current Power Management request
271 * @drive: target drive
272 * @rq: request
273 *
274 * This function cleans up the current PM request and stops the queue
275 * if necessary.
276 */
277 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
278 {
279 unsigned long flags;
280
281 #ifdef DEBUG_PM
282 printk("%s: completing PM request, %s\n", drive->name,
283 blk_pm_suspend_request(rq) ? "suspend" : "resume");
284 #endif
285 spin_lock_irqsave(&ide_lock, flags);
286 if (blk_pm_suspend_request(rq)) {
287 blk_stop_queue(drive->queue);
288 } else {
289 drive->blocked = 0;
290 blk_start_queue(drive->queue);
291 }
292 HWGROUP(drive)->rq = NULL;
293 if (__blk_end_request(rq, 0, 0))
294 BUG();
295 spin_unlock_irqrestore(&ide_lock, flags);
296 }
297
298 /**
299 * ide_end_drive_cmd - end an explicit drive command
300 * @drive: command
301 * @stat: status bits
302 * @err: error bits
303 *
304 * Clean up after success/failure of an explicit drive command.
305 * These get thrown onto the queue so they are synchronized with
306 * real I/O operations on the drive.
307 *
308 * In LBA48 mode we have to read the register set twice to get
309 * all the extra information out.
310 */
311
312 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
313 {
314 unsigned long flags;
315 struct request *rq;
316
317 spin_lock_irqsave(&ide_lock, flags);
318 rq = HWGROUP(drive)->rq;
319 spin_unlock_irqrestore(&ide_lock, flags);
320
321 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
322 ide_task_t *task = (ide_task_t *)rq->special;
323
324 if (rq->errors == 0)
325 rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT);
326
327 if (task) {
328 struct ide_taskfile *tf = &task->tf;
329
330 tf->error = err;
331 tf->status = stat;
332
333 drive->hwif->tp_ops->tf_read(drive, task);
334
335 if (task->tf_flags & IDE_TFLAG_DYN)
336 kfree(task);
337 }
338 } else if (blk_pm_request(rq)) {
339 struct request_pm_state *pm = rq->data;
340 #ifdef DEBUG_PM
341 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
342 drive->name, rq->pm->pm_step, stat, err);
343 #endif
344 ide_complete_power_step(drive, rq, stat, err);
345 if (pm->pm_step == ide_pm_state_completed)
346 ide_complete_pm_request(drive, rq);
347 return;
348 }
349
350 spin_lock_irqsave(&ide_lock, flags);
351 HWGROUP(drive)->rq = NULL;
352 rq->errors = err;
353 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
354 blk_rq_bytes(rq))))
355 BUG();
356 spin_unlock_irqrestore(&ide_lock, flags);
357 }
358
359 EXPORT_SYMBOL(ide_end_drive_cmd);
360
361 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
362 {
363 if (rq->rq_disk) {
364 ide_driver_t *drv;
365
366 drv = *(ide_driver_t **)rq->rq_disk->private_data;
367 drv->end_request(drive, 0, 0);
368 } else
369 ide_end_request(drive, 0, 0);
370 }
371
372 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
373 {
374 ide_hwif_t *hwif = drive->hwif;
375
376 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
377 /* other bits are useless when BUSY */
378 rq->errors |= ERROR_RESET;
379 } else if (stat & ERR_STAT) {
380 /* err has different meaning on cdrom and tape */
381 if (err == ABRT_ERR) {
382 if (drive->select.b.lba &&
383 /* some newer drives don't support WIN_SPECIFY */
384 hwif->tp_ops->read_status(hwif) == WIN_SPECIFY)
385 return ide_stopped;
386 } else if ((err & BAD_CRC) == BAD_CRC) {
387 /* UDMA crc error, just retry the operation */
388 drive->crc_count++;
389 } else if (err & (BBD_ERR | ECC_ERR)) {
390 /* retries won't help these */
391 rq->errors = ERROR_MAX;
392 } else if (err & TRK0_ERR) {
393 /* help it find track zero */
394 rq->errors |= ERROR_RECAL;
395 }
396 }
397
398 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
399 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
400 int nsect = drive->mult_count ? drive->mult_count : 1;
401
402 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
403 }
404
405 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
406 ide_kill_rq(drive, rq);
407 return ide_stopped;
408 }
409
410 if (hwif->tp_ops->read_status(hwif) & (BUSY_STAT | DRQ_STAT))
411 rq->errors |= ERROR_RESET;
412
413 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
414 ++rq->errors;
415 return ide_do_reset(drive);
416 }
417
418 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
419 drive->special.b.recalibrate = 1;
420
421 ++rq->errors;
422
423 return ide_stopped;
424 }
425
426 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
427 {
428 ide_hwif_t *hwif = drive->hwif;
429
430 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
431 /* other bits are useless when BUSY */
432 rq->errors |= ERROR_RESET;
433 } else {
434 /* add decoding error stuff */
435 }
436
437 if (hwif->tp_ops->read_status(hwif) & (BUSY_STAT | DRQ_STAT))
438 /* force an abort */
439 hwif->tp_ops->exec_command(hwif, WIN_IDLEIMMEDIATE);
440
441 if (rq->errors >= ERROR_MAX) {
442 ide_kill_rq(drive, rq);
443 } else {
444 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
445 ++rq->errors;
446 return ide_do_reset(drive);
447 }
448 ++rq->errors;
449 }
450
451 return ide_stopped;
452 }
453
454 ide_startstop_t
455 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
456 {
457 if (drive->media == ide_disk)
458 return ide_ata_error(drive, rq, stat, err);
459 return ide_atapi_error(drive, rq, stat, err);
460 }
461
462 EXPORT_SYMBOL_GPL(__ide_error);
463
464 /**
465 * ide_error - handle an error on the IDE
466 * @drive: drive the error occurred on
467 * @msg: message to report
468 * @stat: status bits
469 *
470 * ide_error() takes action based on the error returned by the drive.
471 * For normal I/O that may well include retries. We deal with
472 * both new-style (taskfile) and old style command handling here.
473 * In the case of taskfile command handling there is work left to
474 * do
475 */
476
477 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
478 {
479 struct request *rq;
480 u8 err;
481
482 err = ide_dump_status(drive, msg, stat);
483
484 if ((rq = HWGROUP(drive)->rq) == NULL)
485 return ide_stopped;
486
487 /* retry only "normal" I/O: */
488 if (!blk_fs_request(rq)) {
489 rq->errors = 1;
490 ide_end_drive_cmd(drive, stat, err);
491 return ide_stopped;
492 }
493
494 if (rq->rq_disk) {
495 ide_driver_t *drv;
496
497 drv = *(ide_driver_t **)rq->rq_disk->private_data;
498 return drv->error(drive, rq, stat, err);
499 } else
500 return __ide_error(drive, rq, stat, err);
501 }
502
503 EXPORT_SYMBOL_GPL(ide_error);
504
505 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
506 {
507 tf->nsect = drive->sect;
508 tf->lbal = drive->sect;
509 tf->lbam = drive->cyl;
510 tf->lbah = drive->cyl >> 8;
511 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
512 tf->command = WIN_SPECIFY;
513 }
514
515 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
516 {
517 tf->nsect = drive->sect;
518 tf->command = WIN_RESTORE;
519 }
520
521 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
522 {
523 tf->nsect = drive->mult_req;
524 tf->command = WIN_SETMULT;
525 }
526
527 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
528 {
529 special_t *s = &drive->special;
530 ide_task_t args;
531
532 memset(&args, 0, sizeof(ide_task_t));
533 args.data_phase = TASKFILE_NO_DATA;
534
535 if (s->b.set_geometry) {
536 s->b.set_geometry = 0;
537 ide_tf_set_specify_cmd(drive, &args.tf);
538 } else if (s->b.recalibrate) {
539 s->b.recalibrate = 0;
540 ide_tf_set_restore_cmd(drive, &args.tf);
541 } else if (s->b.set_multmode) {
542 s->b.set_multmode = 0;
543 ide_tf_set_setmult_cmd(drive, &args.tf);
544 } else if (s->all) {
545 int special = s->all;
546 s->all = 0;
547 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
548 return ide_stopped;
549 }
550
551 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
552 IDE_TFLAG_CUSTOM_HANDLER;
553
554 do_rw_taskfile(drive, &args);
555
556 return ide_started;
557 }
558
559 /*
560 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
561 */
562 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
563 {
564 switch (req_pio) {
565 case 202:
566 case 201:
567 case 200:
568 case 102:
569 case 101:
570 case 100:
571 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
572 case 9:
573 case 8:
574 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
575 case 7:
576 case 6:
577 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
578 default:
579 return 0;
580 }
581 }
582
583 /**
584 * do_special - issue some special commands
585 * @drive: drive the command is for
586 *
587 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
588 * commands to a drive. It used to do much more, but has been scaled
589 * back.
590 */
591
592 static ide_startstop_t do_special (ide_drive_t *drive)
593 {
594 special_t *s = &drive->special;
595
596 #ifdef DEBUG
597 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
598 #endif
599 if (s->b.set_tune) {
600 ide_hwif_t *hwif = drive->hwif;
601 const struct ide_port_ops *port_ops = hwif->port_ops;
602 u8 req_pio = drive->tune_req;
603
604 s->b.set_tune = 0;
605
606 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
607 /*
608 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
609 */
610 if (req_pio == 8 || req_pio == 9) {
611 unsigned long flags;
612
613 spin_lock_irqsave(&ide_lock, flags);
614 port_ops->set_pio_mode(drive, req_pio);
615 spin_unlock_irqrestore(&ide_lock, flags);
616 } else
617 port_ops->set_pio_mode(drive, req_pio);
618 } else {
619 int keep_dma = drive->using_dma;
620
621 ide_set_pio(drive, req_pio);
622
623 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
624 if (keep_dma)
625 ide_dma_on(drive);
626 }
627 }
628
629 return ide_stopped;
630 } else {
631 if (drive->media == ide_disk)
632 return ide_disk_special(drive);
633
634 s->all = 0;
635 drive->mult_req = 0;
636 return ide_stopped;
637 }
638 }
639
640 void ide_map_sg(ide_drive_t *drive, struct request *rq)
641 {
642 ide_hwif_t *hwif = drive->hwif;
643 struct scatterlist *sg = hwif->sg_table;
644
645 if (hwif->sg_mapped) /* needed by ide-scsi */
646 return;
647
648 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
649 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
650 } else {
651 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
652 hwif->sg_nents = 1;
653 }
654 }
655
656 EXPORT_SYMBOL_GPL(ide_map_sg);
657
658 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
659 {
660 ide_hwif_t *hwif = drive->hwif;
661
662 hwif->nsect = hwif->nleft = rq->nr_sectors;
663 hwif->cursg_ofs = 0;
664 hwif->cursg = NULL;
665 }
666
667 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
668
669 /**
670 * execute_drive_command - issue special drive command
671 * @drive: the drive to issue the command on
672 * @rq: the request structure holding the command
673 *
674 * execute_drive_cmd() issues a special drive command, usually
675 * initiated by ioctl() from the external hdparm program. The
676 * command can be a drive command, drive task or taskfile
677 * operation. Weirdly you can call it with NULL to wait for
678 * all commands to finish. Don't do this as that is due to change
679 */
680
681 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
682 struct request *rq)
683 {
684 ide_hwif_t *hwif = HWIF(drive);
685 ide_task_t *task = rq->special;
686
687 if (task) {
688 hwif->data_phase = task->data_phase;
689
690 switch (hwif->data_phase) {
691 case TASKFILE_MULTI_OUT:
692 case TASKFILE_OUT:
693 case TASKFILE_MULTI_IN:
694 case TASKFILE_IN:
695 ide_init_sg_cmd(drive, rq);
696 ide_map_sg(drive, rq);
697 default:
698 break;
699 }
700
701 return do_rw_taskfile(drive, task);
702 }
703
704 /*
705 * NULL is actually a valid way of waiting for
706 * all current requests to be flushed from the queue.
707 */
708 #ifdef DEBUG
709 printk("%s: DRIVE_CMD (null)\n", drive->name);
710 #endif
711 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
712 ide_read_error(drive));
713
714 return ide_stopped;
715 }
716
717 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
718 {
719 switch (rq->cmd[0]) {
720 case REQ_DRIVE_RESET:
721 return ide_do_reset(drive);
722 default:
723 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
724 ide_end_request(drive, 0, 0);
725 return ide_stopped;
726 }
727 }
728
729 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
730 {
731 struct request_pm_state *pm = rq->data;
732
733 if (blk_pm_suspend_request(rq) &&
734 pm->pm_step == ide_pm_state_start_suspend)
735 /* Mark drive blocked when starting the suspend sequence. */
736 drive->blocked = 1;
737 else if (blk_pm_resume_request(rq) &&
738 pm->pm_step == ide_pm_state_start_resume) {
739 /*
740 * The first thing we do on wakeup is to wait for BSY bit to
741 * go away (with a looong timeout) as a drive on this hwif may
742 * just be POSTing itself.
743 * We do that before even selecting as the "other" device on
744 * the bus may be broken enough to walk on our toes at this
745 * point.
746 */
747 ide_hwif_t *hwif = drive->hwif;
748 int rc;
749 #ifdef DEBUG_PM
750 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
751 #endif
752 rc = ide_wait_not_busy(hwif, 35000);
753 if (rc)
754 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
755 SELECT_DRIVE(drive);
756 hwif->tp_ops->set_irq(hwif, 1);
757 rc = ide_wait_not_busy(hwif, 100000);
758 if (rc)
759 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
760 }
761 }
762
763 /**
764 * start_request - start of I/O and command issuing for IDE
765 *
766 * start_request() initiates handling of a new I/O request. It
767 * accepts commands and I/O (read/write) requests. It also does
768 * the final remapping for weird stuff like EZDrive. Once
769 * device mapper can work sector level the EZDrive stuff can go away
770 *
771 * FIXME: this function needs a rename
772 */
773
774 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
775 {
776 ide_startstop_t startstop;
777 sector_t block;
778
779 BUG_ON(!blk_rq_started(rq));
780
781 #ifdef DEBUG
782 printk("%s: start_request: current=0x%08lx\n",
783 HWIF(drive)->name, (unsigned long) rq);
784 #endif
785
786 /* bail early if we've exceeded max_failures */
787 if (drive->max_failures && (drive->failures > drive->max_failures)) {
788 rq->cmd_flags |= REQ_FAILED;
789 goto kill_rq;
790 }
791
792 block = rq->sector;
793 if (blk_fs_request(rq) &&
794 (drive->media == ide_disk || drive->media == ide_floppy)) {
795 block += drive->sect0;
796 }
797 /* Yecch - this will shift the entire interval,
798 possibly killing some innocent following sector */
799 if (block == 0 && drive->remap_0_to_1 == 1)
800 block = 1; /* redirect MBR access to EZ-Drive partn table */
801
802 if (blk_pm_request(rq))
803 ide_check_pm_state(drive, rq);
804
805 SELECT_DRIVE(drive);
806 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
807 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
808 return startstop;
809 }
810 if (!drive->special.all) {
811 ide_driver_t *drv;
812
813 /*
814 * We reset the drive so we need to issue a SETFEATURES.
815 * Do it _after_ do_special() restored device parameters.
816 */
817 if (drive->current_speed == 0xff)
818 ide_config_drive_speed(drive, drive->desired_speed);
819
820 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
821 return execute_drive_cmd(drive, rq);
822 else if (blk_pm_request(rq)) {
823 struct request_pm_state *pm = rq->data;
824 #ifdef DEBUG_PM
825 printk("%s: start_power_step(step: %d)\n",
826 drive->name, rq->pm->pm_step);
827 #endif
828 startstop = ide_start_power_step(drive, rq);
829 if (startstop == ide_stopped &&
830 pm->pm_step == ide_pm_state_completed)
831 ide_complete_pm_request(drive, rq);
832 return startstop;
833 } else if (!rq->rq_disk && blk_special_request(rq))
834 /*
835 * TODO: Once all ULDs have been modified to
836 * check for specific op codes rather than
837 * blindly accepting any special request, the
838 * check for ->rq_disk above may be replaced
839 * by a more suitable mechanism or even
840 * dropped entirely.
841 */
842 return ide_special_rq(drive, rq);
843
844 drv = *(ide_driver_t **)rq->rq_disk->private_data;
845 return drv->do_request(drive, rq, block);
846 }
847 return do_special(drive);
848 kill_rq:
849 ide_kill_rq(drive, rq);
850 return ide_stopped;
851 }
852
853 /**
854 * ide_stall_queue - pause an IDE device
855 * @drive: drive to stall
856 * @timeout: time to stall for (jiffies)
857 *
858 * ide_stall_queue() can be used by a drive to give excess bandwidth back
859 * to the hwgroup by sleeping for timeout jiffies.
860 */
861
862 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
863 {
864 if (timeout > WAIT_WORSTCASE)
865 timeout = WAIT_WORSTCASE;
866 drive->sleep = timeout + jiffies;
867 drive->sleeping = 1;
868 }
869
870 EXPORT_SYMBOL(ide_stall_queue);
871
872 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
873
874 /**
875 * choose_drive - select a drive to service
876 * @hwgroup: hardware group to select on
877 *
878 * choose_drive() selects the next drive which will be serviced.
879 * This is necessary because the IDE layer can't issue commands
880 * to both drives on the same cable, unlike SCSI.
881 */
882
883 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
884 {
885 ide_drive_t *drive, *best;
886
887 repeat:
888 best = NULL;
889 drive = hwgroup->drive;
890
891 /*
892 * drive is doing pre-flush, ordered write, post-flush sequence. even
893 * though that is 3 requests, it must be seen as a single transaction.
894 * we must not preempt this drive until that is complete
895 */
896 if (blk_queue_flushing(drive->queue)) {
897 /*
898 * small race where queue could get replugged during
899 * the 3-request flush cycle, just yank the plug since
900 * we want it to finish asap
901 */
902 blk_remove_plug(drive->queue);
903 return drive;
904 }
905
906 do {
907 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
908 && !elv_queue_empty(drive->queue)) {
909 if (!best
910 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
911 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
912 {
913 if (!blk_queue_plugged(drive->queue))
914 best = drive;
915 }
916 }
917 } while ((drive = drive->next) != hwgroup->drive);
918 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
919 long t = (signed long)(WAKEUP(best) - jiffies);
920 if (t >= WAIT_MIN_SLEEP) {
921 /*
922 * We *may* have some time to spare, but first let's see if
923 * someone can potentially benefit from our nice mood today..
924 */
925 drive = best->next;
926 do {
927 if (!drive->sleeping
928 && time_before(jiffies - best->service_time, WAKEUP(drive))
929 && time_before(WAKEUP(drive), jiffies + t))
930 {
931 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
932 goto repeat;
933 }
934 } while ((drive = drive->next) != best);
935 }
936 }
937 return best;
938 }
939
940 /*
941 * Issue a new request to a drive from hwgroup
942 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
943 *
944 * A hwgroup is a serialized group of IDE interfaces. Usually there is
945 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
946 * may have both interfaces in a single hwgroup to "serialize" access.
947 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
948 * together into one hwgroup for serialized access.
949 *
950 * Note also that several hwgroups can end up sharing a single IRQ,
951 * possibly along with many other devices. This is especially common in
952 * PCI-based systems with off-board IDE controller cards.
953 *
954 * The IDE driver uses the single global ide_lock spinlock to protect
955 * access to the request queues, and to protect the hwgroup->busy flag.
956 *
957 * The first thread into the driver for a particular hwgroup sets the
958 * hwgroup->busy flag to indicate that this hwgroup is now active,
959 * and then initiates processing of the top request from the request queue.
960 *
961 * Other threads attempting entry notice the busy setting, and will simply
962 * queue their new requests and exit immediately. Note that hwgroup->busy
963 * remains set even when the driver is merely awaiting the next interrupt.
964 * Thus, the meaning is "this hwgroup is busy processing a request".
965 *
966 * When processing of a request completes, the completing thread or IRQ-handler
967 * will start the next request from the queue. If no more work remains,
968 * the driver will clear the hwgroup->busy flag and exit.
969 *
970 * The ide_lock (spinlock) is used to protect all access to the
971 * hwgroup->busy flag, but is otherwise not needed for most processing in
972 * the driver. This makes the driver much more friendlier to shared IRQs
973 * than previous designs, while remaining 100% (?) SMP safe and capable.
974 */
975 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
976 {
977 ide_drive_t *drive;
978 ide_hwif_t *hwif;
979 struct request *rq;
980 ide_startstop_t startstop;
981 int loops = 0;
982
983 /* for atari only: POSSIBLY BROKEN HERE(?) */
984 ide_get_lock(ide_intr, hwgroup);
985
986 /* caller must own ide_lock */
987 BUG_ON(!irqs_disabled());
988
989 while (!hwgroup->busy) {
990 hwgroup->busy = 1;
991 drive = choose_drive(hwgroup);
992 if (drive == NULL) {
993 int sleeping = 0;
994 unsigned long sleep = 0; /* shut up, gcc */
995 hwgroup->rq = NULL;
996 drive = hwgroup->drive;
997 do {
998 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
999 sleeping = 1;
1000 sleep = drive->sleep;
1001 }
1002 } while ((drive = drive->next) != hwgroup->drive);
1003 if (sleeping) {
1004 /*
1005 * Take a short snooze, and then wake up this hwgroup again.
1006 * This gives other hwgroups on the same a chance to
1007 * play fairly with us, just in case there are big differences
1008 * in relative throughputs.. don't want to hog the cpu too much.
1009 */
1010 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1011 sleep = jiffies + WAIT_MIN_SLEEP;
1012 #if 1
1013 if (timer_pending(&hwgroup->timer))
1014 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1015 #endif
1016 /* so that ide_timer_expiry knows what to do */
1017 hwgroup->sleeping = 1;
1018 hwgroup->req_gen_timer = hwgroup->req_gen;
1019 mod_timer(&hwgroup->timer, sleep);
1020 /* we purposely leave hwgroup->busy==1
1021 * while sleeping */
1022 } else {
1023 /* Ugly, but how can we sleep for the lock
1024 * otherwise? perhaps from tq_disk?
1025 */
1026
1027 /* for atari only */
1028 ide_release_lock();
1029 hwgroup->busy = 0;
1030 }
1031
1032 /* no more work for this hwgroup (for now) */
1033 return;
1034 }
1035 again:
1036 hwif = HWIF(drive);
1037 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1038 /*
1039 * set nIEN for previous hwif, drives in the
1040 * quirk_list may not like intr setups/cleanups
1041 */
1042 if (drive->quirk_list != 1)
1043 hwif->tp_ops->set_irq(hwif, 0);
1044 }
1045 hwgroup->hwif = hwif;
1046 hwgroup->drive = drive;
1047 drive->sleeping = 0;
1048 drive->service_start = jiffies;
1049
1050 if (blk_queue_plugged(drive->queue)) {
1051 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1052 break;
1053 }
1054
1055 /*
1056 * we know that the queue isn't empty, but this can happen
1057 * if the q->prep_rq_fn() decides to kill a request
1058 */
1059 rq = elv_next_request(drive->queue);
1060 if (!rq) {
1061 hwgroup->busy = 0;
1062 break;
1063 }
1064
1065 /*
1066 * Sanity: don't accept a request that isn't a PM request
1067 * if we are currently power managed. This is very important as
1068 * blk_stop_queue() doesn't prevent the elv_next_request()
1069 * above to return us whatever is in the queue. Since we call
1070 * ide_do_request() ourselves, we end up taking requests while
1071 * the queue is blocked...
1072 *
1073 * We let requests forced at head of queue with ide-preempt
1074 * though. I hope that doesn't happen too much, hopefully not
1075 * unless the subdriver triggers such a thing in its own PM
1076 * state machine.
1077 *
1078 * We count how many times we loop here to make sure we service
1079 * all drives in the hwgroup without looping for ever
1080 */
1081 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1082 drive = drive->next ? drive->next : hwgroup->drive;
1083 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1084 goto again;
1085 /* We clear busy, there should be no pending ATA command at this point. */
1086 hwgroup->busy = 0;
1087 break;
1088 }
1089
1090 hwgroup->rq = rq;
1091
1092 /*
1093 * Some systems have trouble with IDE IRQs arriving while
1094 * the driver is still setting things up. So, here we disable
1095 * the IRQ used by this interface while the request is being started.
1096 * This may look bad at first, but pretty much the same thing
1097 * happens anyway when any interrupt comes in, IDE or otherwise
1098 * -- the kernel masks the IRQ while it is being handled.
1099 */
1100 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1101 disable_irq_nosync(hwif->irq);
1102 spin_unlock(&ide_lock);
1103 local_irq_enable_in_hardirq();
1104 /* allow other IRQs while we start this request */
1105 startstop = start_request(drive, rq);
1106 spin_lock_irq(&ide_lock);
1107 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1108 enable_irq(hwif->irq);
1109 if (startstop == ide_stopped)
1110 hwgroup->busy = 0;
1111 }
1112 }
1113
1114 /*
1115 * Passes the stuff to ide_do_request
1116 */
1117 void do_ide_request(struct request_queue *q)
1118 {
1119 ide_drive_t *drive = q->queuedata;
1120
1121 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1122 }
1123
1124 /*
1125 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1126 * retry the current request in pio mode instead of risking tossing it
1127 * all away
1128 */
1129 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1130 {
1131 ide_hwif_t *hwif = HWIF(drive);
1132 struct request *rq;
1133 ide_startstop_t ret = ide_stopped;
1134
1135 /*
1136 * end current dma transaction
1137 */
1138
1139 if (error < 0) {
1140 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1141 (void)hwif->dma_ops->dma_end(drive);
1142 ret = ide_error(drive, "dma timeout error",
1143 hwif->tp_ops->read_status(hwif));
1144 } else {
1145 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1146 hwif->dma_ops->dma_timeout(drive);
1147 }
1148
1149 /*
1150 * disable dma for now, but remember that we did so because of
1151 * a timeout -- we'll reenable after we finish this next request
1152 * (or rather the first chunk of it) in pio.
1153 */
1154 drive->retry_pio++;
1155 drive->state = DMA_PIO_RETRY;
1156 ide_dma_off_quietly(drive);
1157
1158 /*
1159 * un-busy drive etc (hwgroup->busy is cleared on return) and
1160 * make sure request is sane
1161 */
1162 rq = HWGROUP(drive)->rq;
1163
1164 if (!rq)
1165 goto out;
1166
1167 HWGROUP(drive)->rq = NULL;
1168
1169 rq->errors = 0;
1170
1171 if (!rq->bio)
1172 goto out;
1173
1174 rq->sector = rq->bio->bi_sector;
1175 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1176 rq->hard_cur_sectors = rq->current_nr_sectors;
1177 rq->buffer = bio_data(rq->bio);
1178 out:
1179 return ret;
1180 }
1181
1182 /**
1183 * ide_timer_expiry - handle lack of an IDE interrupt
1184 * @data: timer callback magic (hwgroup)
1185 *
1186 * An IDE command has timed out before the expected drive return
1187 * occurred. At this point we attempt to clean up the current
1188 * mess. If the current handler includes an expiry handler then
1189 * we invoke the expiry handler, and providing it is happy the
1190 * work is done. If that fails we apply generic recovery rules
1191 * invoking the handler and checking the drive DMA status. We
1192 * have an excessively incestuous relationship with the DMA
1193 * logic that wants cleaning up.
1194 */
1195
1196 void ide_timer_expiry (unsigned long data)
1197 {
1198 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1199 ide_handler_t *handler;
1200 ide_expiry_t *expiry;
1201 unsigned long flags;
1202 unsigned long wait = -1;
1203
1204 spin_lock_irqsave(&ide_lock, flags);
1205
1206 if (((handler = hwgroup->handler) == NULL) ||
1207 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1208 /*
1209 * Either a marginal timeout occurred
1210 * (got the interrupt just as timer expired),
1211 * or we were "sleeping" to give other devices a chance.
1212 * Either way, we don't really want to complain about anything.
1213 */
1214 if (hwgroup->sleeping) {
1215 hwgroup->sleeping = 0;
1216 hwgroup->busy = 0;
1217 }
1218 } else {
1219 ide_drive_t *drive = hwgroup->drive;
1220 if (!drive) {
1221 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1222 hwgroup->handler = NULL;
1223 } else {
1224 ide_hwif_t *hwif;
1225 ide_startstop_t startstop = ide_stopped;
1226 if (!hwgroup->busy) {
1227 hwgroup->busy = 1; /* paranoia */
1228 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1229 }
1230 if ((expiry = hwgroup->expiry) != NULL) {
1231 /* continue */
1232 if ((wait = expiry(drive)) > 0) {
1233 /* reset timer */
1234 hwgroup->timer.expires = jiffies + wait;
1235 hwgroup->req_gen_timer = hwgroup->req_gen;
1236 add_timer(&hwgroup->timer);
1237 spin_unlock_irqrestore(&ide_lock, flags);
1238 return;
1239 }
1240 }
1241 hwgroup->handler = NULL;
1242 /*
1243 * We need to simulate a real interrupt when invoking
1244 * the handler() function, which means we need to
1245 * globally mask the specific IRQ:
1246 */
1247 spin_unlock(&ide_lock);
1248 hwif = HWIF(drive);
1249 /* disable_irq_nosync ?? */
1250 disable_irq(hwif->irq);
1251 /* local CPU only,
1252 * as if we were handling an interrupt */
1253 local_irq_disable();
1254 if (hwgroup->polling) {
1255 startstop = handler(drive);
1256 } else if (drive_is_ready(drive)) {
1257 if (drive->waiting_for_dma)
1258 hwif->dma_ops->dma_lost_irq(drive);
1259 (void)ide_ack_intr(hwif);
1260 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1261 startstop = handler(drive);
1262 } else {
1263 if (drive->waiting_for_dma) {
1264 startstop = ide_dma_timeout_retry(drive, wait);
1265 } else
1266 startstop =
1267 ide_error(drive, "irq timeout",
1268 hwif->tp_ops->read_status(hwif));
1269 }
1270 drive->service_time = jiffies - drive->service_start;
1271 spin_lock_irq(&ide_lock);
1272 enable_irq(hwif->irq);
1273 if (startstop == ide_stopped)
1274 hwgroup->busy = 0;
1275 }
1276 }
1277 ide_do_request(hwgroup, IDE_NO_IRQ);
1278 spin_unlock_irqrestore(&ide_lock, flags);
1279 }
1280
1281 /**
1282 * unexpected_intr - handle an unexpected IDE interrupt
1283 * @irq: interrupt line
1284 * @hwgroup: hwgroup being processed
1285 *
1286 * There's nothing really useful we can do with an unexpected interrupt,
1287 * other than reading the status register (to clear it), and logging it.
1288 * There should be no way that an irq can happen before we're ready for it,
1289 * so we needn't worry much about losing an "important" interrupt here.
1290 *
1291 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1292 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1293 * looks "good", we just ignore the interrupt completely.
1294 *
1295 * This routine assumes __cli() is in effect when called.
1296 *
1297 * If an unexpected interrupt happens on irq15 while we are handling irq14
1298 * and if the two interfaces are "serialized" (CMD640), then it looks like
1299 * we could screw up by interfering with a new request being set up for
1300 * irq15.
1301 *
1302 * In reality, this is a non-issue. The new command is not sent unless
1303 * the drive is ready to accept one, in which case we know the drive is
1304 * not trying to interrupt us. And ide_set_handler() is always invoked
1305 * before completing the issuance of any new drive command, so we will not
1306 * be accidentally invoked as a result of any valid command completion
1307 * interrupt.
1308 *
1309 * Note that we must walk the entire hwgroup here. We know which hwif
1310 * is doing the current command, but we don't know which hwif burped
1311 * mysteriously.
1312 */
1313
1314 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1315 {
1316 u8 stat;
1317 ide_hwif_t *hwif = hwgroup->hwif;
1318
1319 /*
1320 * handle the unexpected interrupt
1321 */
1322 do {
1323 if (hwif->irq == irq) {
1324 stat = hwif->tp_ops->read_status(hwif);
1325
1326 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1327 /* Try to not flood the console with msgs */
1328 static unsigned long last_msgtime, count;
1329 ++count;
1330 if (time_after(jiffies, last_msgtime + HZ)) {
1331 last_msgtime = jiffies;
1332 printk(KERN_ERR "%s%s: unexpected interrupt, "
1333 "status=0x%02x, count=%ld\n",
1334 hwif->name,
1335 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1336 }
1337 }
1338 }
1339 } while ((hwif = hwif->next) != hwgroup->hwif);
1340 }
1341
1342 /**
1343 * ide_intr - default IDE interrupt handler
1344 * @irq: interrupt number
1345 * @dev_id: hwif group
1346 * @regs: unused weirdness from the kernel irq layer
1347 *
1348 * This is the default IRQ handler for the IDE layer. You should
1349 * not need to override it. If you do be aware it is subtle in
1350 * places
1351 *
1352 * hwgroup->hwif is the interface in the group currently performing
1353 * a command. hwgroup->drive is the drive and hwgroup->handler is
1354 * the IRQ handler to call. As we issue a command the handlers
1355 * step through multiple states, reassigning the handler to the
1356 * next step in the process. Unlike a smart SCSI controller IDE
1357 * expects the main processor to sequence the various transfer
1358 * stages. We also manage a poll timer to catch up with most
1359 * timeout situations. There are still a few where the handlers
1360 * don't ever decide to give up.
1361 *
1362 * The handler eventually returns ide_stopped to indicate the
1363 * request completed. At this point we issue the next request
1364 * on the hwgroup and the process begins again.
1365 */
1366
1367 irqreturn_t ide_intr (int irq, void *dev_id)
1368 {
1369 unsigned long flags;
1370 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1371 ide_hwif_t *hwif;
1372 ide_drive_t *drive;
1373 ide_handler_t *handler;
1374 ide_startstop_t startstop;
1375
1376 spin_lock_irqsave(&ide_lock, flags);
1377 hwif = hwgroup->hwif;
1378
1379 if (!ide_ack_intr(hwif)) {
1380 spin_unlock_irqrestore(&ide_lock, flags);
1381 return IRQ_NONE;
1382 }
1383
1384 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1385 /*
1386 * Not expecting an interrupt from this drive.
1387 * That means this could be:
1388 * (1) an interrupt from another PCI device
1389 * sharing the same PCI INT# as us.
1390 * or (2) a drive just entered sleep or standby mode,
1391 * and is interrupting to let us know.
1392 * or (3) a spurious interrupt of unknown origin.
1393 *
1394 * For PCI, we cannot tell the difference,
1395 * so in that case we just ignore it and hope it goes away.
1396 *
1397 * FIXME: unexpected_intr should be hwif-> then we can
1398 * remove all the ifdef PCI crap
1399 */
1400 #ifdef CONFIG_BLK_DEV_IDEPCI
1401 if (hwif->chipset != ide_pci)
1402 #endif /* CONFIG_BLK_DEV_IDEPCI */
1403 {
1404 /*
1405 * Probably not a shared PCI interrupt,
1406 * so we can safely try to do something about it:
1407 */
1408 unexpected_intr(irq, hwgroup);
1409 #ifdef CONFIG_BLK_DEV_IDEPCI
1410 } else {
1411 /*
1412 * Whack the status register, just in case
1413 * we have a leftover pending IRQ.
1414 */
1415 (void)hwif->tp_ops->read_status(hwif);
1416 #endif /* CONFIG_BLK_DEV_IDEPCI */
1417 }
1418 spin_unlock_irqrestore(&ide_lock, flags);
1419 return IRQ_NONE;
1420 }
1421 drive = hwgroup->drive;
1422 if (!drive) {
1423 /*
1424 * This should NEVER happen, and there isn't much
1425 * we could do about it here.
1426 *
1427 * [Note - this can occur if the drive is hot unplugged]
1428 */
1429 spin_unlock_irqrestore(&ide_lock, flags);
1430 return IRQ_HANDLED;
1431 }
1432 if (!drive_is_ready(drive)) {
1433 /*
1434 * This happens regularly when we share a PCI IRQ with
1435 * another device. Unfortunately, it can also happen
1436 * with some buggy drives that trigger the IRQ before
1437 * their status register is up to date. Hopefully we have
1438 * enough advance overhead that the latter isn't a problem.
1439 */
1440 spin_unlock_irqrestore(&ide_lock, flags);
1441 return IRQ_NONE;
1442 }
1443 if (!hwgroup->busy) {
1444 hwgroup->busy = 1; /* paranoia */
1445 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1446 }
1447 hwgroup->handler = NULL;
1448 hwgroup->req_gen++;
1449 del_timer(&hwgroup->timer);
1450 spin_unlock(&ide_lock);
1451
1452 /* Some controllers might set DMA INTR no matter DMA or PIO;
1453 * bmdma status might need to be cleared even for
1454 * PIO interrupts to prevent spurious/lost irq.
1455 */
1456 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1457 /* ide_dma_end() needs bmdma status for error checking.
1458 * So, skip clearing bmdma status here and leave it
1459 * to ide_dma_end() if this is dma interrupt.
1460 */
1461 hwif->ide_dma_clear_irq(drive);
1462
1463 if (drive->unmask)
1464 local_irq_enable_in_hardirq();
1465 /* service this interrupt, may set handler for next interrupt */
1466 startstop = handler(drive);
1467 spin_lock_irq(&ide_lock);
1468
1469 /*
1470 * Note that handler() may have set things up for another
1471 * interrupt to occur soon, but it cannot happen until
1472 * we exit from this routine, because it will be the
1473 * same irq as is currently being serviced here, and Linux
1474 * won't allow another of the same (on any CPU) until we return.
1475 */
1476 drive->service_time = jiffies - drive->service_start;
1477 if (startstop == ide_stopped) {
1478 if (hwgroup->handler == NULL) { /* paranoia */
1479 hwgroup->busy = 0;
1480 ide_do_request(hwgroup, hwif->irq);
1481 } else {
1482 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1483 "on exit\n", drive->name);
1484 }
1485 }
1486 spin_unlock_irqrestore(&ide_lock, flags);
1487 return IRQ_HANDLED;
1488 }
1489
1490 /**
1491 * ide_do_drive_cmd - issue IDE special command
1492 * @drive: device to issue command
1493 * @rq: request to issue
1494 *
1495 * This function issues a special IDE device request
1496 * onto the request queue.
1497 *
1498 * the rq is queued at the head of the request queue, displacing
1499 * the currently-being-processed request and this function
1500 * returns immediately without waiting for the new rq to be
1501 * completed. This is VERY DANGEROUS, and is intended for
1502 * careful use by the ATAPI tape/cdrom driver code.
1503 */
1504
1505 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1506 {
1507 unsigned long flags;
1508 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1509
1510 spin_lock_irqsave(&ide_lock, flags);
1511 hwgroup->rq = NULL;
1512 __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1);
1513 __generic_unplug_device(drive->queue);
1514 spin_unlock_irqrestore(&ide_lock, flags);
1515 }
1516
1517 EXPORT_SYMBOL(ide_do_drive_cmd);
1518
1519 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1520 {
1521 ide_hwif_t *hwif = drive->hwif;
1522 ide_task_t task;
1523
1524 memset(&task, 0, sizeof(task));
1525 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1526 IDE_TFLAG_OUT_FEATURE | tf_flags;
1527 task.tf.feature = dma; /* Use PIO/DMA */
1528 task.tf.lbam = bcount & 0xff;
1529 task.tf.lbah = (bcount >> 8) & 0xff;
1530
1531 ide_tf_dump(drive->name, &task.tf);
1532 hwif->tp_ops->set_irq(hwif, 1);
1533 SELECT_MASK(drive, 0);
1534 hwif->tp_ops->tf_load(drive, &task);
1535 }
1536
1537 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1538
1539 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1540 {
1541 ide_hwif_t *hwif = drive->hwif;
1542 u8 buf[4] = { 0 };
1543
1544 while (len > 0) {
1545 if (write)
1546 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1547 else
1548 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1549 len -= 4;
1550 }
1551 }
1552 EXPORT_SYMBOL_GPL(ide_pad_transfer);
This page took 0.06142 seconds and 6 git commands to generate.