ide: WIN_* -> ATA_CMD_*
[deliverable/linux.git] / drivers / ide / ide-iops.c
1 /*
2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat <alan@redhat.com>
4 *
5 */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32 * Conventional PIO operations for ATA devices
33 */
34
35 static u8 ide_inb (unsigned long port)
36 {
37 return (u8) inb(port);
38 }
39
40 static void ide_outb (u8 val, unsigned long port)
41 {
42 outb(val, port);
43 }
44
45 /*
46 * MMIO operations, typically used for SATA controllers
47 */
48
49 static u8 ide_mm_inb (unsigned long port)
50 {
51 return (u8) readb((void __iomem *) port);
52 }
53
54 static void ide_mm_outb (u8 value, unsigned long port)
55 {
56 writeb(value, (void __iomem *) port);
57 }
58
59 void SELECT_DRIVE (ide_drive_t *drive)
60 {
61 ide_hwif_t *hwif = drive->hwif;
62 const struct ide_port_ops *port_ops = hwif->port_ops;
63 ide_task_t task;
64
65 if (port_ops && port_ops->selectproc)
66 port_ops->selectproc(drive);
67
68 memset(&task, 0, sizeof(task));
69 task.tf_flags = IDE_TFLAG_OUT_DEVICE;
70
71 drive->hwif->tp_ops->tf_load(drive, &task);
72 }
73
74 void SELECT_MASK(ide_drive_t *drive, int mask)
75 {
76 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
77
78 if (port_ops && port_ops->maskproc)
79 port_ops->maskproc(drive, mask);
80 }
81
82 void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
83 {
84 if (hwif->host_flags & IDE_HFLAG_MMIO)
85 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
86 else
87 outb(cmd, hwif->io_ports.command_addr);
88 }
89 EXPORT_SYMBOL_GPL(ide_exec_command);
90
91 u8 ide_read_status(ide_hwif_t *hwif)
92 {
93 if (hwif->host_flags & IDE_HFLAG_MMIO)
94 return readb((void __iomem *)hwif->io_ports.status_addr);
95 else
96 return inb(hwif->io_ports.status_addr);
97 }
98 EXPORT_SYMBOL_GPL(ide_read_status);
99
100 u8 ide_read_altstatus(ide_hwif_t *hwif)
101 {
102 if (hwif->host_flags & IDE_HFLAG_MMIO)
103 return readb((void __iomem *)hwif->io_ports.ctl_addr);
104 else
105 return inb(hwif->io_ports.ctl_addr);
106 }
107 EXPORT_SYMBOL_GPL(ide_read_altstatus);
108
109 u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
110 {
111 if (hwif->host_flags & IDE_HFLAG_MMIO)
112 return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
113 else
114 return inb(hwif->dma_base + ATA_DMA_STATUS);
115 }
116 EXPORT_SYMBOL_GPL(ide_read_sff_dma_status);
117
118 void ide_set_irq(ide_hwif_t *hwif, int on)
119 {
120 u8 ctl = ATA_DEVCTL_OBS;
121
122 if (on == 4) { /* hack for SRST */
123 ctl |= 4;
124 on &= ~4;
125 }
126
127 ctl |= on ? 0 : 2;
128
129 if (hwif->host_flags & IDE_HFLAG_MMIO)
130 writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
131 else
132 outb(ctl, hwif->io_ports.ctl_addr);
133 }
134 EXPORT_SYMBOL_GPL(ide_set_irq);
135
136 void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
137 {
138 ide_hwif_t *hwif = drive->hwif;
139 struct ide_io_ports *io_ports = &hwif->io_ports;
140 struct ide_taskfile *tf = &task->tf;
141 void (*tf_outb)(u8 addr, unsigned long port);
142 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
143 u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
144
145 if (mmio)
146 tf_outb = ide_mm_outb;
147 else
148 tf_outb = ide_outb;
149
150 if (task->tf_flags & IDE_TFLAG_FLAGGED)
151 HIHI = 0xFF;
152
153 if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
154 u16 data = (tf->hob_data << 8) | tf->data;
155
156 if (mmio)
157 writew(data, (void __iomem *)io_ports->data_addr);
158 else
159 outw(data, io_ports->data_addr);
160 }
161
162 if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
163 tf_outb(tf->hob_feature, io_ports->feature_addr);
164 if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
165 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
166 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
167 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
168 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
169 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
170 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
171 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
172
173 if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
174 tf_outb(tf->feature, io_ports->feature_addr);
175 if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
176 tf_outb(tf->nsect, io_ports->nsect_addr);
177 if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
178 tf_outb(tf->lbal, io_ports->lbal_addr);
179 if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
180 tf_outb(tf->lbam, io_ports->lbam_addr);
181 if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
182 tf_outb(tf->lbah, io_ports->lbah_addr);
183
184 if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
185 tf_outb((tf->device & HIHI) | drive->select.all,
186 io_ports->device_addr);
187 }
188 EXPORT_SYMBOL_GPL(ide_tf_load);
189
190 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
191 {
192 ide_hwif_t *hwif = drive->hwif;
193 struct ide_io_ports *io_ports = &hwif->io_ports;
194 struct ide_taskfile *tf = &task->tf;
195 void (*tf_outb)(u8 addr, unsigned long port);
196 u8 (*tf_inb)(unsigned long port);
197 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
198
199 if (mmio) {
200 tf_outb = ide_mm_outb;
201 tf_inb = ide_mm_inb;
202 } else {
203 tf_outb = ide_outb;
204 tf_inb = ide_inb;
205 }
206
207 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
208 u16 data;
209
210 if (mmio)
211 data = readw((void __iomem *)io_ports->data_addr);
212 else
213 data = inw(io_ports->data_addr);
214
215 tf->data = data & 0xff;
216 tf->hob_data = (data >> 8) & 0xff;
217 }
218
219 /* be sure we're looking at the low order bits */
220 tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
221
222 if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
223 tf->feature = tf_inb(io_ports->feature_addr);
224 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
225 tf->nsect = tf_inb(io_ports->nsect_addr);
226 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
227 tf->lbal = tf_inb(io_ports->lbal_addr);
228 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
229 tf->lbam = tf_inb(io_ports->lbam_addr);
230 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
231 tf->lbah = tf_inb(io_ports->lbah_addr);
232 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
233 tf->device = tf_inb(io_ports->device_addr);
234
235 if (task->tf_flags & IDE_TFLAG_LBA48) {
236 tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
237
238 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
239 tf->hob_feature = tf_inb(io_ports->feature_addr);
240 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
241 tf->hob_nsect = tf_inb(io_ports->nsect_addr);
242 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
243 tf->hob_lbal = tf_inb(io_ports->lbal_addr);
244 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
245 tf->hob_lbam = tf_inb(io_ports->lbam_addr);
246 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
247 tf->hob_lbah = tf_inb(io_ports->lbah_addr);
248 }
249 }
250 EXPORT_SYMBOL_GPL(ide_tf_read);
251
252 /*
253 * Some localbus EIDE interfaces require a special access sequence
254 * when using 32-bit I/O instructions to transfer data. We call this
255 * the "vlb_sync" sequence, which consists of three successive reads
256 * of the sector count register location, with interrupts disabled
257 * to ensure that the reads all happen together.
258 */
259 static void ata_vlb_sync(unsigned long port)
260 {
261 (void)inb(port);
262 (void)inb(port);
263 (void)inb(port);
264 }
265
266 /*
267 * This is used for most PIO data transfers *from* the IDE interface
268 *
269 * These routines will round up any request for an odd number of bytes,
270 * so if an odd len is specified, be sure that there's at least one
271 * extra byte allocated for the buffer.
272 */
273 void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf,
274 unsigned int len)
275 {
276 ide_hwif_t *hwif = drive->hwif;
277 struct ide_io_ports *io_ports = &hwif->io_ports;
278 unsigned long data_addr = io_ports->data_addr;
279 u8 io_32bit = drive->io_32bit;
280 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
281
282 len++;
283
284 if (io_32bit) {
285 unsigned long uninitialized_var(flags);
286
287 if ((io_32bit & 2) && !mmio) {
288 local_irq_save(flags);
289 ata_vlb_sync(io_ports->nsect_addr);
290 }
291
292 if (mmio)
293 __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
294 else
295 insl(data_addr, buf, len / 4);
296
297 if ((io_32bit & 2) && !mmio)
298 local_irq_restore(flags);
299
300 if ((len & 3) >= 2) {
301 if (mmio)
302 __ide_mm_insw((void __iomem *)data_addr,
303 (u8 *)buf + (len & ~3), 1);
304 else
305 insw(data_addr, (u8 *)buf + (len & ~3), 1);
306 }
307 } else {
308 if (mmio)
309 __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
310 else
311 insw(data_addr, buf, len / 2);
312 }
313 }
314 EXPORT_SYMBOL_GPL(ide_input_data);
315
316 /*
317 * This is used for most PIO data transfers *to* the IDE interface
318 */
319 void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf,
320 unsigned int len)
321 {
322 ide_hwif_t *hwif = drive->hwif;
323 struct ide_io_ports *io_ports = &hwif->io_ports;
324 unsigned long data_addr = io_ports->data_addr;
325 u8 io_32bit = drive->io_32bit;
326 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
327
328 if (io_32bit) {
329 unsigned long uninitialized_var(flags);
330
331 if ((io_32bit & 2) && !mmio) {
332 local_irq_save(flags);
333 ata_vlb_sync(io_ports->nsect_addr);
334 }
335
336 if (mmio)
337 __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
338 else
339 outsl(data_addr, buf, len / 4);
340
341 if ((io_32bit & 2) && !mmio)
342 local_irq_restore(flags);
343
344 if ((len & 3) >= 2) {
345 if (mmio)
346 __ide_mm_outsw((void __iomem *)data_addr,
347 (u8 *)buf + (len & ~3), 1);
348 else
349 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
350 }
351 } else {
352 if (mmio)
353 __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
354 else
355 outsw(data_addr, buf, len / 2);
356 }
357 }
358 EXPORT_SYMBOL_GPL(ide_output_data);
359
360 u8 ide_read_error(ide_drive_t *drive)
361 {
362 ide_task_t task;
363
364 memset(&task, 0, sizeof(task));
365 task.tf_flags = IDE_TFLAG_IN_FEATURE;
366
367 drive->hwif->tp_ops->tf_read(drive, &task);
368
369 return task.tf.error;
370 }
371 EXPORT_SYMBOL_GPL(ide_read_error);
372
373 void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
374 {
375 ide_task_t task;
376
377 memset(&task, 0, sizeof(task));
378 task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
379 IDE_TFLAG_IN_NSECT;
380
381 drive->hwif->tp_ops->tf_read(drive, &task);
382
383 *bcount = (task.tf.lbah << 8) | task.tf.lbam;
384 *ireason = task.tf.nsect & 3;
385 }
386 EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
387
388 const struct ide_tp_ops default_tp_ops = {
389 .exec_command = ide_exec_command,
390 .read_status = ide_read_status,
391 .read_altstatus = ide_read_altstatus,
392 .read_sff_dma_status = ide_read_sff_dma_status,
393
394 .set_irq = ide_set_irq,
395
396 .tf_load = ide_tf_load,
397 .tf_read = ide_tf_read,
398
399 .input_data = ide_input_data,
400 .output_data = ide_output_data,
401 };
402
403 void ide_fix_driveid(u16 *id)
404 {
405 #ifndef __LITTLE_ENDIAN
406 # ifdef __BIG_ENDIAN
407 int i;
408
409 for (i = 0; i < 256; i++)
410 id[i] = __le16_to_cpu(id[i]);
411 # else
412 # error "Please fix <asm/byteorder.h>"
413 # endif
414 #endif
415 }
416
417 /*
418 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
419 * removing leading/trailing blanks and compressing internal blanks.
420 * It is primarily used to tidy up the model name/number fields as
421 * returned by the ATA_CMD_ID_ATA[PI] commands.
422 */
423
424 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
425 {
426 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
427
428 if (byteswap) {
429 /* convert from big-endian to host byte order */
430 for (p = end ; p != s;)
431 be16_to_cpus((u16 *)(p -= 2));
432 }
433 /* strip leading blanks */
434 while (s != end && *s == ' ')
435 ++s;
436 /* compress internal blanks and strip trailing blanks */
437 while (s != end && *s) {
438 if (*s++ != ' ' || (s != end && *s && *s != ' '))
439 *p++ = *(s-1);
440 }
441 /* wipe out trailing garbage */
442 while (p != end)
443 *p++ = '\0';
444 }
445
446 EXPORT_SYMBOL(ide_fixstring);
447
448 /*
449 * Needed for PCI irq sharing
450 */
451 int drive_is_ready (ide_drive_t *drive)
452 {
453 ide_hwif_t *hwif = HWIF(drive);
454 u8 stat = 0;
455
456 if (drive->waiting_for_dma)
457 return hwif->dma_ops->dma_test_irq(drive);
458
459 #if 0
460 /* need to guarantee 400ns since last command was issued */
461 udelay(1);
462 #endif
463
464 /*
465 * We do a passive status test under shared PCI interrupts on
466 * cards that truly share the ATA side interrupt, but may also share
467 * an interrupt with another pci card/device. We make no assumptions
468 * about possible isa-pnp and pci-pnp issues yet.
469 */
470 if (hwif->io_ports.ctl_addr)
471 stat = hwif->tp_ops->read_altstatus(hwif);
472 else
473 /* Note: this may clear a pending IRQ!! */
474 stat = hwif->tp_ops->read_status(hwif);
475
476 if (stat & BUSY_STAT)
477 /* drive busy: definitely not interrupting */
478 return 0;
479
480 /* drive ready: *might* be interrupting */
481 return 1;
482 }
483
484 EXPORT_SYMBOL(drive_is_ready);
485
486 /*
487 * This routine busy-waits for the drive status to be not "busy".
488 * It then checks the status for all of the "good" bits and none
489 * of the "bad" bits, and if all is okay it returns 0. All other
490 * cases return error -- caller may then invoke ide_error().
491 *
492 * This routine should get fixed to not hog the cpu during extra long waits..
493 * That could be done by busy-waiting for the first jiffy or two, and then
494 * setting a timer to wake up at half second intervals thereafter,
495 * until timeout is achieved, before timing out.
496 */
497 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
498 {
499 ide_hwif_t *hwif = drive->hwif;
500 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
501 unsigned long flags;
502 int i;
503 u8 stat;
504
505 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
506 stat = tp_ops->read_status(hwif);
507
508 if (stat & BUSY_STAT) {
509 local_irq_set(flags);
510 timeout += jiffies;
511 while ((stat = tp_ops->read_status(hwif)) & BUSY_STAT) {
512 if (time_after(jiffies, timeout)) {
513 /*
514 * One last read after the timeout in case
515 * heavy interrupt load made us not make any
516 * progress during the timeout..
517 */
518 stat = tp_ops->read_status(hwif);
519 if (!(stat & BUSY_STAT))
520 break;
521
522 local_irq_restore(flags);
523 *rstat = stat;
524 return -EBUSY;
525 }
526 }
527 local_irq_restore(flags);
528 }
529 /*
530 * Allow status to settle, then read it again.
531 * A few rare drives vastly violate the 400ns spec here,
532 * so we'll wait up to 10usec for a "good" status
533 * rather than expensively fail things immediately.
534 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
535 */
536 for (i = 0; i < 10; i++) {
537 udelay(1);
538 stat = tp_ops->read_status(hwif);
539
540 if (OK_STAT(stat, good, bad)) {
541 *rstat = stat;
542 return 0;
543 }
544 }
545 *rstat = stat;
546 return -EFAULT;
547 }
548
549 /*
550 * In case of error returns error value after doing "*startstop = ide_error()".
551 * The caller should return the updated value of "startstop" in this case,
552 * "startstop" is unchanged when the function returns 0.
553 */
554 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
555 {
556 int err;
557 u8 stat;
558
559 /* bail early if we've exceeded max_failures */
560 if (drive->max_failures && (drive->failures > drive->max_failures)) {
561 *startstop = ide_stopped;
562 return 1;
563 }
564
565 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
566
567 if (err) {
568 char *s = (err == -EBUSY) ? "status timeout" : "status error";
569 *startstop = ide_error(drive, s, stat);
570 }
571
572 return err;
573 }
574
575 EXPORT_SYMBOL(ide_wait_stat);
576
577 /**
578 * ide_in_drive_list - look for drive in black/white list
579 * @id: drive identifier
580 * @table: list to inspect
581 *
582 * Look for a drive in the blacklist and the whitelist tables
583 * Returns 1 if the drive is found in the table.
584 */
585
586 int ide_in_drive_list(u16 *id, const struct drive_list_entry *table)
587 {
588 for ( ; table->id_model; table++)
589 if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) &&
590 (!table->id_firmware ||
591 strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware)))
592 return 1;
593 return 0;
594 }
595
596 EXPORT_SYMBOL_GPL(ide_in_drive_list);
597
598 /*
599 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
600 * We list them here and depend on the device side cable detection for them.
601 *
602 * Some optical devices with the buggy firmwares have the same problem.
603 */
604 static const struct drive_list_entry ivb_list[] = {
605 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
606 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
607 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
608 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
609 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
610 { "TSSTcorp CDDVDW SH-S202H" , "SB00" },
611 { "TSSTcorp CDDVDW SH-S202H" , "SB01" },
612 { NULL , NULL }
613 };
614
615 /*
616 * All hosts that use the 80c ribbon must use!
617 * The name is derived from upper byte of word 93 and the 80c ribbon.
618 */
619 u8 eighty_ninty_three (ide_drive_t *drive)
620 {
621 ide_hwif_t *hwif = drive->hwif;
622 u16 *id = drive->id;
623 int ivb = ide_in_drive_list(id, ivb_list);
624
625 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
626 return 1;
627
628 if (ivb)
629 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
630 drive->name);
631
632 if (ide_dev_is_sata(id) && !ivb)
633 return 1;
634
635 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
636 goto no_80w;
637
638 /*
639 * FIXME:
640 * - change master/slave IDENTIFY order
641 * - force bit13 (80c cable present) check also for !ivb devices
642 * (unless the slave device is pre-ATA3)
643 */
644 if ((id[ATA_ID_HW_CONFIG] & 0x4000) ||
645 (ivb && (id[ATA_ID_HW_CONFIG] & 0x2000)))
646 return 1;
647
648 no_80w:
649 if (drive->udma33_warned == 1)
650 return 0;
651
652 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
653 "limiting max speed to UDMA33\n",
654 drive->name,
655 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
656
657 drive->udma33_warned = 1;
658
659 return 0;
660 }
661
662 int ide_driveid_update(ide_drive_t *drive)
663 {
664 ide_hwif_t *hwif = drive->hwif;
665 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
666 u16 *id;
667 unsigned long timeout, flags;
668 u8 stat;
669
670 /*
671 * Re-read drive->id for possible DMA mode
672 * change (copied from ide-probe.c)
673 */
674
675 SELECT_MASK(drive, 1);
676 tp_ops->set_irq(hwif, 0);
677 msleep(50);
678 tp_ops->exec_command(hwif, ATA_CMD_ID_ATA);
679 timeout = jiffies + WAIT_WORSTCASE;
680 do {
681 if (time_after(jiffies, timeout)) {
682 SELECT_MASK(drive, 0);
683 return 0; /* drive timed-out */
684 }
685
686 msleep(50); /* give drive a breather */
687 stat = tp_ops->read_altstatus(hwif);
688 } while (stat & BUSY_STAT);
689
690 msleep(50); /* wait for IRQ and DRQ_STAT */
691 stat = tp_ops->read_status(hwif);
692
693 if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
694 SELECT_MASK(drive, 0);
695 printk("%s: CHECK for good STATUS\n", drive->name);
696 return 0;
697 }
698 local_irq_save(flags);
699 SELECT_MASK(drive, 0);
700 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
701 if (!id) {
702 local_irq_restore(flags);
703 return 0;
704 }
705 tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
706 (void)tp_ops->read_status(hwif); /* clear drive IRQ */
707 local_irq_enable();
708 local_irq_restore(flags);
709 ide_fix_driveid(id);
710
711 drive->id[ATA_ID_UDMA_MODES] = id[ATA_ID_UDMA_MODES];
712 drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES];
713 drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES];
714 /* anything more ? */
715
716 kfree(id);
717
718 if (drive->using_dma && ide_id_dma_bug(drive))
719 ide_dma_off(drive);
720
721 return 1;
722 }
723
724 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
725 {
726 ide_hwif_t *hwif = drive->hwif;
727 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
728 u16 *id = drive->id, i;
729 int error = 0;
730 u8 stat;
731 ide_task_t task;
732
733 #ifdef CONFIG_BLK_DEV_IDEDMA
734 if (hwif->dma_ops) /* check if host supports DMA */
735 hwif->dma_ops->dma_host_set(drive, 0);
736 #endif
737
738 /* Skip setting PIO flow-control modes on pre-EIDE drives */
739 if ((speed & 0xf8) == XFER_PIO_0 && ata_id_has_iordy(drive->id) == 0)
740 goto skip;
741
742 /*
743 * Don't use ide_wait_cmd here - it will
744 * attempt to set_geometry and recalibrate,
745 * but for some reason these don't work at
746 * this point (lost interrupt).
747 */
748 /*
749 * Select the drive, and issue the SETFEATURES command
750 */
751 disable_irq_nosync(hwif->irq);
752
753 /*
754 * FIXME: we race against the running IRQ here if
755 * this is called from non IRQ context. If we use
756 * disable_irq() we hang on the error path. Work
757 * is needed.
758 */
759
760 udelay(1);
761 SELECT_DRIVE(drive);
762 SELECT_MASK(drive, 0);
763 udelay(1);
764 tp_ops->set_irq(hwif, 0);
765
766 memset(&task, 0, sizeof(task));
767 task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
768 task.tf.feature = SETFEATURES_XFER;
769 task.tf.nsect = speed;
770
771 tp_ops->tf_load(drive, &task);
772
773 tp_ops->exec_command(hwif, ATA_CMD_SET_FEATURES);
774
775 if (drive->quirk_list == 2)
776 tp_ops->set_irq(hwif, 1);
777
778 error = __ide_wait_stat(drive, drive->ready_stat,
779 BUSY_STAT|DRQ_STAT|ERR_STAT,
780 WAIT_CMD, &stat);
781
782 SELECT_MASK(drive, 0);
783
784 enable_irq(hwif->irq);
785
786 if (error) {
787 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
788 return error;
789 }
790
791 id[ATA_ID_UDMA_MODES] &= ~0xFF00;
792 id[ATA_ID_MWDMA_MODES] &= ~0x0F00;
793 id[ATA_ID_SWDMA_MODES] &= ~0x0F00;
794
795 skip:
796 #ifdef CONFIG_BLK_DEV_IDEDMA
797 if (speed >= XFER_SW_DMA_0 && drive->using_dma)
798 hwif->dma_ops->dma_host_set(drive, 1);
799 else if (hwif->dma_ops) /* check if host supports DMA */
800 ide_dma_off_quietly(drive);
801 #endif
802
803 if (speed >= XFER_UDMA_0) {
804 i = 1 << (speed - XFER_UDMA_0);
805 id[ATA_ID_UDMA_MODES] |= (i << 8 | i);
806 } else if (speed >= XFER_MW_DMA_0) {
807 i = 1 << (speed - XFER_MW_DMA_0);
808 id[ATA_ID_MWDMA_MODES] |= (i << 8 | i);
809 } else if (speed >= XFER_SW_DMA_0) {
810 i = 1 << (speed - XFER_SW_DMA_0);
811 id[ATA_ID_SWDMA_MODES] |= (i << 8 | i);
812 }
813
814 if (!drive->init_speed)
815 drive->init_speed = speed;
816 drive->current_speed = speed;
817 return error;
818 }
819
820 /*
821 * This should get invoked any time we exit the driver to
822 * wait for an interrupt response from a drive. handler() points
823 * at the appropriate code to handle the next interrupt, and a
824 * timer is started to prevent us from waiting forever in case
825 * something goes wrong (see the ide_timer_expiry() handler later on).
826 *
827 * See also ide_execute_command
828 */
829 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
830 unsigned int timeout, ide_expiry_t *expiry)
831 {
832 ide_hwgroup_t *hwgroup = HWGROUP(drive);
833
834 BUG_ON(hwgroup->handler);
835 hwgroup->handler = handler;
836 hwgroup->expiry = expiry;
837 hwgroup->timer.expires = jiffies + timeout;
838 hwgroup->req_gen_timer = hwgroup->req_gen;
839 add_timer(&hwgroup->timer);
840 }
841
842 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
843 unsigned int timeout, ide_expiry_t *expiry)
844 {
845 unsigned long flags;
846 spin_lock_irqsave(&ide_lock, flags);
847 __ide_set_handler(drive, handler, timeout, expiry);
848 spin_unlock_irqrestore(&ide_lock, flags);
849 }
850
851 EXPORT_SYMBOL(ide_set_handler);
852
853 /**
854 * ide_execute_command - execute an IDE command
855 * @drive: IDE drive to issue the command against
856 * @command: command byte to write
857 * @handler: handler for next phase
858 * @timeout: timeout for command
859 * @expiry: handler to run on timeout
860 *
861 * Helper function to issue an IDE command. This handles the
862 * atomicity requirements, command timing and ensures that the
863 * handler and IRQ setup do not race. All IDE command kick off
864 * should go via this function or do equivalent locking.
865 */
866
867 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
868 unsigned timeout, ide_expiry_t *expiry)
869 {
870 unsigned long flags;
871 ide_hwif_t *hwif = HWIF(drive);
872
873 spin_lock_irqsave(&ide_lock, flags);
874 __ide_set_handler(drive, handler, timeout, expiry);
875 hwif->tp_ops->exec_command(hwif, cmd);
876 /*
877 * Drive takes 400nS to respond, we must avoid the IRQ being
878 * serviced before that.
879 *
880 * FIXME: we could skip this delay with care on non shared devices
881 */
882 ndelay(400);
883 spin_unlock_irqrestore(&ide_lock, flags);
884 }
885 EXPORT_SYMBOL(ide_execute_command);
886
887 void ide_execute_pkt_cmd(ide_drive_t *drive)
888 {
889 ide_hwif_t *hwif = drive->hwif;
890 unsigned long flags;
891
892 spin_lock_irqsave(&ide_lock, flags);
893 hwif->tp_ops->exec_command(hwif, ATA_CMD_PACKET);
894 ndelay(400);
895 spin_unlock_irqrestore(&ide_lock, flags);
896 }
897 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
898
899 static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
900 {
901 struct request *rq = drive->hwif->hwgroup->rq;
902
903 if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
904 ide_end_request(drive, err ? err : 1, 0);
905 }
906
907 /* needed below */
908 static ide_startstop_t do_reset1 (ide_drive_t *, int);
909
910 /*
911 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
912 * during an atapi drive reset operation. If the drive has not yet responded,
913 * and we have not yet hit our maximum waiting time, then the timer is restarted
914 * for another 50ms.
915 */
916 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
917 {
918 ide_hwif_t *hwif = drive->hwif;
919 ide_hwgroup_t *hwgroup = hwif->hwgroup;
920 u8 stat;
921
922 SELECT_DRIVE(drive);
923 udelay (10);
924 stat = hwif->tp_ops->read_status(hwif);
925
926 if (OK_STAT(stat, 0, BUSY_STAT))
927 printk("%s: ATAPI reset complete\n", drive->name);
928 else {
929 if (time_before(jiffies, hwgroup->poll_timeout)) {
930 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
931 /* continue polling */
932 return ide_started;
933 }
934 /* end of polling */
935 hwgroup->polling = 0;
936 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
937 drive->name, stat);
938 /* do it the old fashioned way */
939 return do_reset1(drive, 1);
940 }
941 /* done polling */
942 hwgroup->polling = 0;
943 ide_complete_drive_reset(drive, 0);
944 return ide_stopped;
945 }
946
947 /*
948 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
949 * during an ide reset operation. If the drives have not yet responded,
950 * and we have not yet hit our maximum waiting time, then the timer is restarted
951 * for another 50ms.
952 */
953 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
954 {
955 ide_hwgroup_t *hwgroup = HWGROUP(drive);
956 ide_hwif_t *hwif = HWIF(drive);
957 const struct ide_port_ops *port_ops = hwif->port_ops;
958 u8 tmp;
959 int err = 0;
960
961 if (port_ops && port_ops->reset_poll) {
962 err = port_ops->reset_poll(drive);
963 if (err) {
964 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
965 hwif->name, drive->name);
966 goto out;
967 }
968 }
969
970 tmp = hwif->tp_ops->read_status(hwif);
971
972 if (!OK_STAT(tmp, 0, BUSY_STAT)) {
973 if (time_before(jiffies, hwgroup->poll_timeout)) {
974 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
975 /* continue polling */
976 return ide_started;
977 }
978 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
979 drive->failures++;
980 err = -EIO;
981 } else {
982 printk("%s: reset: ", hwif->name);
983 tmp = ide_read_error(drive);
984
985 if (tmp == 1) {
986 printk("success\n");
987 drive->failures = 0;
988 } else {
989 drive->failures++;
990 printk("master: ");
991 switch (tmp & 0x7f) {
992 case 1: printk("passed");
993 break;
994 case 2: printk("formatter device error");
995 break;
996 case 3: printk("sector buffer error");
997 break;
998 case 4: printk("ECC circuitry error");
999 break;
1000 case 5: printk("controlling MPU error");
1001 break;
1002 default:printk("error (0x%02x?)", tmp);
1003 }
1004 if (tmp & 0x80)
1005 printk("; slave: failed");
1006 printk("\n");
1007 err = -EIO;
1008 }
1009 }
1010 out:
1011 hwgroup->polling = 0; /* done polling */
1012 ide_complete_drive_reset(drive, err);
1013 return ide_stopped;
1014 }
1015
1016 static void ide_disk_pre_reset(ide_drive_t *drive)
1017 {
1018 int legacy = (drive->id[ATA_ID_CFS_ENABLE_2] & 0x0400) ? 0 : 1;
1019
1020 drive->special.all = 0;
1021 drive->special.b.set_geometry = legacy;
1022 drive->special.b.recalibrate = legacy;
1023 drive->mult_count = 0;
1024 if (!drive->keep_settings && !drive->using_dma)
1025 drive->mult_req = 0;
1026 if (drive->mult_req != drive->mult_count)
1027 drive->special.b.set_multmode = 1;
1028 }
1029
1030 static void pre_reset(ide_drive_t *drive)
1031 {
1032 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1033
1034 if (drive->media == ide_disk)
1035 ide_disk_pre_reset(drive);
1036 else
1037 drive->post_reset = 1;
1038
1039 if (drive->using_dma) {
1040 if (drive->crc_count)
1041 ide_check_dma_crc(drive);
1042 else
1043 ide_dma_off(drive);
1044 }
1045
1046 if (!drive->keep_settings) {
1047 if (!drive->using_dma) {
1048 drive->unmask = 0;
1049 drive->io_32bit = 0;
1050 }
1051 return;
1052 }
1053
1054 if (port_ops && port_ops->pre_reset)
1055 port_ops->pre_reset(drive);
1056
1057 if (drive->current_speed != 0xff)
1058 drive->desired_speed = drive->current_speed;
1059 drive->current_speed = 0xff;
1060 }
1061
1062 /*
1063 * do_reset1() attempts to recover a confused drive by resetting it.
1064 * Unfortunately, resetting a disk drive actually resets all devices on
1065 * the same interface, so it can really be thought of as resetting the
1066 * interface rather than resetting the drive.
1067 *
1068 * ATAPI devices have their own reset mechanism which allows them to be
1069 * individually reset without clobbering other devices on the same interface.
1070 *
1071 * Unfortunately, the IDE interface does not generate an interrupt to let
1072 * us know when the reset operation has finished, so we must poll for this.
1073 * Equally poor, though, is the fact that this may a very long time to complete,
1074 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1075 * we set a timer to poll at 50ms intervals.
1076 */
1077 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1078 {
1079 unsigned int unit;
1080 unsigned long flags;
1081 ide_hwif_t *hwif;
1082 ide_hwgroup_t *hwgroup;
1083 struct ide_io_ports *io_ports;
1084 const struct ide_tp_ops *tp_ops;
1085 const struct ide_port_ops *port_ops;
1086
1087 spin_lock_irqsave(&ide_lock, flags);
1088 hwif = HWIF(drive);
1089 hwgroup = HWGROUP(drive);
1090
1091 io_ports = &hwif->io_ports;
1092
1093 tp_ops = hwif->tp_ops;
1094
1095 /* We must not reset with running handlers */
1096 BUG_ON(hwgroup->handler != NULL);
1097
1098 /* For an ATAPI device, first try an ATAPI SRST. */
1099 if (drive->media != ide_disk && !do_not_try_atapi) {
1100 pre_reset(drive);
1101 SELECT_DRIVE(drive);
1102 udelay (20);
1103 tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET);
1104 ndelay(400);
1105 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1106 hwgroup->polling = 1;
1107 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1108 spin_unlock_irqrestore(&ide_lock, flags);
1109 return ide_started;
1110 }
1111
1112 /*
1113 * First, reset any device state data we were maintaining
1114 * for any of the drives on this interface.
1115 */
1116 for (unit = 0; unit < MAX_DRIVES; ++unit)
1117 pre_reset(&hwif->drives[unit]);
1118
1119 if (io_ports->ctl_addr == 0) {
1120 spin_unlock_irqrestore(&ide_lock, flags);
1121 ide_complete_drive_reset(drive, -ENXIO);
1122 return ide_stopped;
1123 }
1124
1125 /*
1126 * Note that we also set nIEN while resetting the device,
1127 * to mask unwanted interrupts from the interface during the reset.
1128 * However, due to the design of PC hardware, this will cause an
1129 * immediate interrupt due to the edge transition it produces.
1130 * This single interrupt gives us a "fast poll" for drives that
1131 * recover from reset very quickly, saving us the first 50ms wait time.
1132 *
1133 * TODO: add ->softreset method and stop abusing ->set_irq
1134 */
1135 /* set SRST and nIEN */
1136 tp_ops->set_irq(hwif, 4);
1137 /* more than enough time */
1138 udelay(10);
1139 /* clear SRST, leave nIEN (unless device is on the quirk list) */
1140 tp_ops->set_irq(hwif, drive->quirk_list == 2);
1141 /* more than enough time */
1142 udelay(10);
1143 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1144 hwgroup->polling = 1;
1145 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1146
1147 /*
1148 * Some weird controller like resetting themselves to a strange
1149 * state when the disks are reset this way. At least, the Winbond
1150 * 553 documentation says that
1151 */
1152 port_ops = hwif->port_ops;
1153 if (port_ops && port_ops->resetproc)
1154 port_ops->resetproc(drive);
1155
1156 spin_unlock_irqrestore(&ide_lock, flags);
1157 return ide_started;
1158 }
1159
1160 /*
1161 * ide_do_reset() is the entry point to the drive/interface reset code.
1162 */
1163
1164 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1165 {
1166 return do_reset1(drive, 0);
1167 }
1168
1169 EXPORT_SYMBOL(ide_do_reset);
1170
1171 /*
1172 * ide_wait_not_busy() waits for the currently selected device on the hwif
1173 * to report a non-busy status, see comments in ide_probe_port().
1174 */
1175 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1176 {
1177 u8 stat = 0;
1178
1179 while(timeout--) {
1180 /*
1181 * Turn this into a schedule() sleep once I'm sure
1182 * about locking issues (2.5 work ?).
1183 */
1184 mdelay(1);
1185 stat = hwif->tp_ops->read_status(hwif);
1186 if ((stat & BUSY_STAT) == 0)
1187 return 0;
1188 /*
1189 * Assume a value of 0xff means nothing is connected to
1190 * the interface and it doesn't implement the pull-down
1191 * resistor on D7.
1192 */
1193 if (stat == 0xff)
1194 return -ENODEV;
1195 touch_softlockup_watchdog();
1196 touch_nmi_watchdog();
1197 }
1198 return -EBUSY;
1199 }
1200
1201 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1202
This page took 0.07264 seconds and 5 git commands to generate.