ide: replace the global ide_lock spinlock by per-hwgroup spinlocks (v2)
[deliverable/linux.git] / drivers / ide / ide-iops.c
1 /*
2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat
4 *
5 */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/ide.h>
22 #include <linux/bitops.h>
23 #include <linux/nmi.h>
24
25 #include <asm/byteorder.h>
26 #include <asm/irq.h>
27 #include <asm/uaccess.h>
28 #include <asm/io.h>
29
30 /*
31 * Conventional PIO operations for ATA devices
32 */
33
34 static u8 ide_inb (unsigned long port)
35 {
36 return (u8) inb(port);
37 }
38
39 static void ide_outb (u8 val, unsigned long port)
40 {
41 outb(val, port);
42 }
43
44 /*
45 * MMIO operations, typically used for SATA controllers
46 */
47
48 static u8 ide_mm_inb (unsigned long port)
49 {
50 return (u8) readb((void __iomem *) port);
51 }
52
53 static void ide_mm_outb (u8 value, unsigned long port)
54 {
55 writeb(value, (void __iomem *) port);
56 }
57
58 void SELECT_DRIVE (ide_drive_t *drive)
59 {
60 ide_hwif_t *hwif = drive->hwif;
61 const struct ide_port_ops *port_ops = hwif->port_ops;
62 ide_task_t task;
63
64 if (port_ops && port_ops->selectproc)
65 port_ops->selectproc(drive);
66
67 memset(&task, 0, sizeof(task));
68 task.tf_flags = IDE_TFLAG_OUT_DEVICE;
69
70 drive->hwif->tp_ops->tf_load(drive, &task);
71 }
72
73 void SELECT_MASK(ide_drive_t *drive, int mask)
74 {
75 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
76
77 if (port_ops && port_ops->maskproc)
78 port_ops->maskproc(drive, mask);
79 }
80
81 void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
82 {
83 if (hwif->host_flags & IDE_HFLAG_MMIO)
84 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
85 else
86 outb(cmd, hwif->io_ports.command_addr);
87 }
88 EXPORT_SYMBOL_GPL(ide_exec_command);
89
90 u8 ide_read_status(ide_hwif_t *hwif)
91 {
92 if (hwif->host_flags & IDE_HFLAG_MMIO)
93 return readb((void __iomem *)hwif->io_ports.status_addr);
94 else
95 return inb(hwif->io_ports.status_addr);
96 }
97 EXPORT_SYMBOL_GPL(ide_read_status);
98
99 u8 ide_read_altstatus(ide_hwif_t *hwif)
100 {
101 if (hwif->host_flags & IDE_HFLAG_MMIO)
102 return readb((void __iomem *)hwif->io_ports.ctl_addr);
103 else
104 return inb(hwif->io_ports.ctl_addr);
105 }
106 EXPORT_SYMBOL_GPL(ide_read_altstatus);
107
108 u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
109 {
110 if (hwif->host_flags & IDE_HFLAG_MMIO)
111 return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
112 else
113 return inb(hwif->dma_base + ATA_DMA_STATUS);
114 }
115 EXPORT_SYMBOL_GPL(ide_read_sff_dma_status);
116
117 void ide_set_irq(ide_hwif_t *hwif, int on)
118 {
119 u8 ctl = ATA_DEVCTL_OBS;
120
121 if (on == 4) { /* hack for SRST */
122 ctl |= 4;
123 on &= ~4;
124 }
125
126 ctl |= on ? 0 : 2;
127
128 if (hwif->host_flags & IDE_HFLAG_MMIO)
129 writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
130 else
131 outb(ctl, hwif->io_ports.ctl_addr);
132 }
133 EXPORT_SYMBOL_GPL(ide_set_irq);
134
135 void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
136 {
137 ide_hwif_t *hwif = drive->hwif;
138 struct ide_io_ports *io_ports = &hwif->io_ports;
139 struct ide_taskfile *tf = &task->tf;
140 void (*tf_outb)(u8 addr, unsigned long port);
141 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
142 u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
143
144 if (mmio)
145 tf_outb = ide_mm_outb;
146 else
147 tf_outb = ide_outb;
148
149 if (task->tf_flags & IDE_TFLAG_FLAGGED)
150 HIHI = 0xFF;
151
152 if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
153 u16 data = (tf->hob_data << 8) | tf->data;
154
155 if (mmio)
156 writew(data, (void __iomem *)io_ports->data_addr);
157 else
158 outw(data, io_ports->data_addr);
159 }
160
161 if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
162 tf_outb(tf->hob_feature, io_ports->feature_addr);
163 if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
164 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
165 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
166 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
167 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
168 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
169 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
170 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
171
172 if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
173 tf_outb(tf->feature, io_ports->feature_addr);
174 if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
175 tf_outb(tf->nsect, io_ports->nsect_addr);
176 if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
177 tf_outb(tf->lbal, io_ports->lbal_addr);
178 if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
179 tf_outb(tf->lbam, io_ports->lbam_addr);
180 if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
181 tf_outb(tf->lbah, io_ports->lbah_addr);
182
183 if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
184 tf_outb((tf->device & HIHI) | drive->select,
185 io_ports->device_addr);
186 }
187 EXPORT_SYMBOL_GPL(ide_tf_load);
188
189 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
190 {
191 ide_hwif_t *hwif = drive->hwif;
192 struct ide_io_ports *io_ports = &hwif->io_ports;
193 struct ide_taskfile *tf = &task->tf;
194 void (*tf_outb)(u8 addr, unsigned long port);
195 u8 (*tf_inb)(unsigned long port);
196 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
197
198 if (mmio) {
199 tf_outb = ide_mm_outb;
200 tf_inb = ide_mm_inb;
201 } else {
202 tf_outb = ide_outb;
203 tf_inb = ide_inb;
204 }
205
206 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
207 u16 data;
208
209 if (mmio)
210 data = readw((void __iomem *)io_ports->data_addr);
211 else
212 data = inw(io_ports->data_addr);
213
214 tf->data = data & 0xff;
215 tf->hob_data = (data >> 8) & 0xff;
216 }
217
218 /* be sure we're looking at the low order bits */
219 tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
220
221 if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
222 tf->feature = tf_inb(io_ports->feature_addr);
223 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
224 tf->nsect = tf_inb(io_ports->nsect_addr);
225 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
226 tf->lbal = tf_inb(io_ports->lbal_addr);
227 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
228 tf->lbam = tf_inb(io_ports->lbam_addr);
229 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
230 tf->lbah = tf_inb(io_ports->lbah_addr);
231 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
232 tf->device = tf_inb(io_ports->device_addr);
233
234 if (task->tf_flags & IDE_TFLAG_LBA48) {
235 tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
236
237 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
238 tf->hob_feature = tf_inb(io_ports->feature_addr);
239 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
240 tf->hob_nsect = tf_inb(io_ports->nsect_addr);
241 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
242 tf->hob_lbal = tf_inb(io_ports->lbal_addr);
243 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
244 tf->hob_lbam = tf_inb(io_ports->lbam_addr);
245 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
246 tf->hob_lbah = tf_inb(io_ports->lbah_addr);
247 }
248 }
249 EXPORT_SYMBOL_GPL(ide_tf_read);
250
251 /*
252 * Some localbus EIDE interfaces require a special access sequence
253 * when using 32-bit I/O instructions to transfer data. We call this
254 * the "vlb_sync" sequence, which consists of three successive reads
255 * of the sector count register location, with interrupts disabled
256 * to ensure that the reads all happen together.
257 */
258 static void ata_vlb_sync(unsigned long port)
259 {
260 (void)inb(port);
261 (void)inb(port);
262 (void)inb(port);
263 }
264
265 /*
266 * This is used for most PIO data transfers *from* the IDE interface
267 *
268 * These routines will round up any request for an odd number of bytes,
269 * so if an odd len is specified, be sure that there's at least one
270 * extra byte allocated for the buffer.
271 */
272 void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf,
273 unsigned int len)
274 {
275 ide_hwif_t *hwif = drive->hwif;
276 struct ide_io_ports *io_ports = &hwif->io_ports;
277 unsigned long data_addr = io_ports->data_addr;
278 u8 io_32bit = drive->io_32bit;
279 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
280
281 len++;
282
283 if (io_32bit) {
284 unsigned long uninitialized_var(flags);
285
286 if ((io_32bit & 2) && !mmio) {
287 local_irq_save(flags);
288 ata_vlb_sync(io_ports->nsect_addr);
289 }
290
291 if (mmio)
292 __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
293 else
294 insl(data_addr, buf, len / 4);
295
296 if ((io_32bit & 2) && !mmio)
297 local_irq_restore(flags);
298
299 if ((len & 3) >= 2) {
300 if (mmio)
301 __ide_mm_insw((void __iomem *)data_addr,
302 (u8 *)buf + (len & ~3), 1);
303 else
304 insw(data_addr, (u8 *)buf + (len & ~3), 1);
305 }
306 } else {
307 if (mmio)
308 __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
309 else
310 insw(data_addr, buf, len / 2);
311 }
312 }
313 EXPORT_SYMBOL_GPL(ide_input_data);
314
315 /*
316 * This is used for most PIO data transfers *to* the IDE interface
317 */
318 void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf,
319 unsigned int len)
320 {
321 ide_hwif_t *hwif = drive->hwif;
322 struct ide_io_ports *io_ports = &hwif->io_ports;
323 unsigned long data_addr = io_ports->data_addr;
324 u8 io_32bit = drive->io_32bit;
325 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
326
327 if (io_32bit) {
328 unsigned long uninitialized_var(flags);
329
330 if ((io_32bit & 2) && !mmio) {
331 local_irq_save(flags);
332 ata_vlb_sync(io_ports->nsect_addr);
333 }
334
335 if (mmio)
336 __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
337 else
338 outsl(data_addr, buf, len / 4);
339
340 if ((io_32bit & 2) && !mmio)
341 local_irq_restore(flags);
342
343 if ((len & 3) >= 2) {
344 if (mmio)
345 __ide_mm_outsw((void __iomem *)data_addr,
346 (u8 *)buf + (len & ~3), 1);
347 else
348 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
349 }
350 } else {
351 if (mmio)
352 __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
353 else
354 outsw(data_addr, buf, len / 2);
355 }
356 }
357 EXPORT_SYMBOL_GPL(ide_output_data);
358
359 u8 ide_read_error(ide_drive_t *drive)
360 {
361 ide_task_t task;
362
363 memset(&task, 0, sizeof(task));
364 task.tf_flags = IDE_TFLAG_IN_FEATURE;
365
366 drive->hwif->tp_ops->tf_read(drive, &task);
367
368 return task.tf.error;
369 }
370 EXPORT_SYMBOL_GPL(ide_read_error);
371
372 void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
373 {
374 ide_task_t task;
375
376 memset(&task, 0, sizeof(task));
377 task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
378 IDE_TFLAG_IN_NSECT;
379
380 drive->hwif->tp_ops->tf_read(drive, &task);
381
382 *bcount = (task.tf.lbah << 8) | task.tf.lbam;
383 *ireason = task.tf.nsect & 3;
384 }
385 EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
386
387 const struct ide_tp_ops default_tp_ops = {
388 .exec_command = ide_exec_command,
389 .read_status = ide_read_status,
390 .read_altstatus = ide_read_altstatus,
391 .read_sff_dma_status = ide_read_sff_dma_status,
392
393 .set_irq = ide_set_irq,
394
395 .tf_load = ide_tf_load,
396 .tf_read = ide_tf_read,
397
398 .input_data = ide_input_data,
399 .output_data = ide_output_data,
400 };
401
402 void ide_fix_driveid(u16 *id)
403 {
404 #ifndef __LITTLE_ENDIAN
405 # ifdef __BIG_ENDIAN
406 int i;
407
408 for (i = 0; i < 256; i++)
409 id[i] = __le16_to_cpu(id[i]);
410 # else
411 # error "Please fix <asm/byteorder.h>"
412 # endif
413 #endif
414 }
415
416 /*
417 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
418 * removing leading/trailing blanks and compressing internal blanks.
419 * It is primarily used to tidy up the model name/number fields as
420 * returned by the ATA_CMD_ID_ATA[PI] commands.
421 */
422
423 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
424 {
425 u8 *p, *end = &s[bytecount & ~1]; /* bytecount must be even */
426
427 if (byteswap) {
428 /* convert from big-endian to host byte order */
429 for (p = s ; p != end ; p += 2)
430 be16_to_cpus((u16 *) p);
431 }
432
433 /* strip leading blanks */
434 p = s;
435 while (s != end && *s == ' ')
436 ++s;
437 /* compress internal blanks and strip trailing blanks */
438 while (s != end && *s) {
439 if (*s++ != ' ' || (s != end && *s && *s != ' '))
440 *p++ = *(s-1);
441 }
442 /* wipe out trailing garbage */
443 while (p != end)
444 *p++ = '\0';
445 }
446
447 EXPORT_SYMBOL(ide_fixstring);
448
449 /*
450 * Needed for PCI irq sharing
451 */
452 int drive_is_ready (ide_drive_t *drive)
453 {
454 ide_hwif_t *hwif = HWIF(drive);
455 u8 stat = 0;
456
457 if (drive->waiting_for_dma)
458 return hwif->dma_ops->dma_test_irq(drive);
459
460 /*
461 * We do a passive status test under shared PCI interrupts on
462 * cards that truly share the ATA side interrupt, but may also share
463 * an interrupt with another pci card/device. We make no assumptions
464 * about possible isa-pnp and pci-pnp issues yet.
465 */
466 if (hwif->io_ports.ctl_addr &&
467 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
468 stat = hwif->tp_ops->read_altstatus(hwif);
469 else
470 /* Note: this may clear a pending IRQ!! */
471 stat = hwif->tp_ops->read_status(hwif);
472
473 if (stat & ATA_BUSY)
474 /* drive busy: definitely not interrupting */
475 return 0;
476
477 /* drive ready: *might* be interrupting */
478 return 1;
479 }
480
481 EXPORT_SYMBOL(drive_is_ready);
482
483 /*
484 * This routine busy-waits for the drive status to be not "busy".
485 * It then checks the status for all of the "good" bits and none
486 * of the "bad" bits, and if all is okay it returns 0. All other
487 * cases return error -- caller may then invoke ide_error().
488 *
489 * This routine should get fixed to not hog the cpu during extra long waits..
490 * That could be done by busy-waiting for the first jiffy or two, and then
491 * setting a timer to wake up at half second intervals thereafter,
492 * until timeout is achieved, before timing out.
493 */
494 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
495 {
496 ide_hwif_t *hwif = drive->hwif;
497 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
498 unsigned long flags;
499 int i;
500 u8 stat;
501
502 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
503 stat = tp_ops->read_status(hwif);
504
505 if (stat & ATA_BUSY) {
506 local_irq_set(flags);
507 timeout += jiffies;
508 while ((stat = tp_ops->read_status(hwif)) & ATA_BUSY) {
509 if (time_after(jiffies, timeout)) {
510 /*
511 * One last read after the timeout in case
512 * heavy interrupt load made us not make any
513 * progress during the timeout..
514 */
515 stat = tp_ops->read_status(hwif);
516 if ((stat & ATA_BUSY) == 0)
517 break;
518
519 local_irq_restore(flags);
520 *rstat = stat;
521 return -EBUSY;
522 }
523 }
524 local_irq_restore(flags);
525 }
526 /*
527 * Allow status to settle, then read it again.
528 * A few rare drives vastly violate the 400ns spec here,
529 * so we'll wait up to 10usec for a "good" status
530 * rather than expensively fail things immediately.
531 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
532 */
533 for (i = 0; i < 10; i++) {
534 udelay(1);
535 stat = tp_ops->read_status(hwif);
536
537 if (OK_STAT(stat, good, bad)) {
538 *rstat = stat;
539 return 0;
540 }
541 }
542 *rstat = stat;
543 return -EFAULT;
544 }
545
546 /*
547 * In case of error returns error value after doing "*startstop = ide_error()".
548 * The caller should return the updated value of "startstop" in this case,
549 * "startstop" is unchanged when the function returns 0.
550 */
551 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
552 {
553 int err;
554 u8 stat;
555
556 /* bail early if we've exceeded max_failures */
557 if (drive->max_failures && (drive->failures > drive->max_failures)) {
558 *startstop = ide_stopped;
559 return 1;
560 }
561
562 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
563
564 if (err) {
565 char *s = (err == -EBUSY) ? "status timeout" : "status error";
566 *startstop = ide_error(drive, s, stat);
567 }
568
569 return err;
570 }
571
572 EXPORT_SYMBOL(ide_wait_stat);
573
574 /**
575 * ide_in_drive_list - look for drive in black/white list
576 * @id: drive identifier
577 * @table: list to inspect
578 *
579 * Look for a drive in the blacklist and the whitelist tables
580 * Returns 1 if the drive is found in the table.
581 */
582
583 int ide_in_drive_list(u16 *id, const struct drive_list_entry *table)
584 {
585 for ( ; table->id_model; table++)
586 if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) &&
587 (!table->id_firmware ||
588 strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware)))
589 return 1;
590 return 0;
591 }
592
593 EXPORT_SYMBOL_GPL(ide_in_drive_list);
594
595 /*
596 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
597 * We list them here and depend on the device side cable detection for them.
598 *
599 * Some optical devices with the buggy firmwares have the same problem.
600 */
601 static const struct drive_list_entry ivb_list[] = {
602 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
603 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
604 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
605 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
606 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
607 { "TSSTcorp CDDVDW SH-S202H" , "SB00" },
608 { "TSSTcorp CDDVDW SH-S202H" , "SB01" },
609 { "SAMSUNG SP0822N" , "WA100-10" },
610 { NULL , NULL }
611 };
612
613 /*
614 * All hosts that use the 80c ribbon must use!
615 * The name is derived from upper byte of word 93 and the 80c ribbon.
616 */
617 u8 eighty_ninty_three (ide_drive_t *drive)
618 {
619 ide_hwif_t *hwif = drive->hwif;
620 u16 *id = drive->id;
621 int ivb = ide_in_drive_list(id, ivb_list);
622
623 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
624 return 1;
625
626 if (ivb)
627 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
628 drive->name);
629
630 if (ata_id_is_sata(id) && !ivb)
631 return 1;
632
633 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
634 goto no_80w;
635
636 /*
637 * FIXME:
638 * - change master/slave IDENTIFY order
639 * - force bit13 (80c cable present) check also for !ivb devices
640 * (unless the slave device is pre-ATA3)
641 */
642 if ((id[ATA_ID_HW_CONFIG] & 0x4000) ||
643 (ivb && (id[ATA_ID_HW_CONFIG] & 0x2000)))
644 return 1;
645
646 no_80w:
647 if (drive->dev_flags & IDE_DFLAG_UDMA33_WARNED)
648 return 0;
649
650 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
651 "limiting max speed to UDMA33\n",
652 drive->name,
653 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
654
655 drive->dev_flags |= IDE_DFLAG_UDMA33_WARNED;
656
657 return 0;
658 }
659
660 int ide_driveid_update(ide_drive_t *drive)
661 {
662 ide_hwif_t *hwif = drive->hwif;
663 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
664 u16 *id;
665 unsigned long flags;
666 u8 stat;
667
668 /*
669 * Re-read drive->id for possible DMA mode
670 * change (copied from ide-probe.c)
671 */
672
673 SELECT_MASK(drive, 1);
674 tp_ops->set_irq(hwif, 0);
675 msleep(50);
676 tp_ops->exec_command(hwif, ATA_CMD_ID_ATA);
677
678 if (ide_busy_sleep(hwif, WAIT_WORSTCASE, 1)) {
679 SELECT_MASK(drive, 0);
680 return 0;
681 }
682
683 msleep(50); /* wait for IRQ and ATA_DRQ */
684 stat = tp_ops->read_status(hwif);
685
686 if (!OK_STAT(stat, ATA_DRQ, BAD_R_STAT)) {
687 SELECT_MASK(drive, 0);
688 printk("%s: CHECK for good STATUS\n", drive->name);
689 return 0;
690 }
691 local_irq_save(flags);
692 SELECT_MASK(drive, 0);
693 id = kmalloc(SECTOR_SIZE, GFP_ATOMIC);
694 if (!id) {
695 local_irq_restore(flags);
696 return 0;
697 }
698 tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
699 (void)tp_ops->read_status(hwif); /* clear drive IRQ */
700 local_irq_enable();
701 local_irq_restore(flags);
702 ide_fix_driveid(id);
703
704 drive->id[ATA_ID_UDMA_MODES] = id[ATA_ID_UDMA_MODES];
705 drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES];
706 drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES];
707 /* anything more ? */
708
709 kfree(id);
710
711 if ((drive->dev_flags & IDE_DFLAG_USING_DMA) && ide_id_dma_bug(drive))
712 ide_dma_off(drive);
713
714 return 1;
715 }
716
717 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
718 {
719 ide_hwif_t *hwif = drive->hwif;
720 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
721 u16 *id = drive->id, i;
722 int error = 0;
723 u8 stat;
724 ide_task_t task;
725
726 #ifdef CONFIG_BLK_DEV_IDEDMA
727 if (hwif->dma_ops) /* check if host supports DMA */
728 hwif->dma_ops->dma_host_set(drive, 0);
729 #endif
730
731 /* Skip setting PIO flow-control modes on pre-EIDE drives */
732 if ((speed & 0xf8) == XFER_PIO_0 && ata_id_has_iordy(drive->id) == 0)
733 goto skip;
734
735 /*
736 * Don't use ide_wait_cmd here - it will
737 * attempt to set_geometry and recalibrate,
738 * but for some reason these don't work at
739 * this point (lost interrupt).
740 */
741 /*
742 * Select the drive, and issue the SETFEATURES command
743 */
744 disable_irq_nosync(hwif->irq);
745
746 /*
747 * FIXME: we race against the running IRQ here if
748 * this is called from non IRQ context. If we use
749 * disable_irq() we hang on the error path. Work
750 * is needed.
751 */
752
753 udelay(1);
754 SELECT_DRIVE(drive);
755 SELECT_MASK(drive, 1);
756 udelay(1);
757 tp_ops->set_irq(hwif, 0);
758
759 memset(&task, 0, sizeof(task));
760 task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
761 task.tf.feature = SETFEATURES_XFER;
762 task.tf.nsect = speed;
763
764 tp_ops->tf_load(drive, &task);
765
766 tp_ops->exec_command(hwif, ATA_CMD_SET_FEATURES);
767
768 if (drive->quirk_list == 2)
769 tp_ops->set_irq(hwif, 1);
770
771 error = __ide_wait_stat(drive, drive->ready_stat,
772 ATA_BUSY | ATA_DRQ | ATA_ERR,
773 WAIT_CMD, &stat);
774
775 SELECT_MASK(drive, 0);
776
777 enable_irq(hwif->irq);
778
779 if (error) {
780 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
781 return error;
782 }
783
784 id[ATA_ID_UDMA_MODES] &= ~0xFF00;
785 id[ATA_ID_MWDMA_MODES] &= ~0x0F00;
786 id[ATA_ID_SWDMA_MODES] &= ~0x0F00;
787
788 skip:
789 #ifdef CONFIG_BLK_DEV_IDEDMA
790 if (speed >= XFER_SW_DMA_0 && (drive->dev_flags & IDE_DFLAG_USING_DMA))
791 hwif->dma_ops->dma_host_set(drive, 1);
792 else if (hwif->dma_ops) /* check if host supports DMA */
793 ide_dma_off_quietly(drive);
794 #endif
795
796 if (speed >= XFER_UDMA_0) {
797 i = 1 << (speed - XFER_UDMA_0);
798 id[ATA_ID_UDMA_MODES] |= (i << 8 | i);
799 } else if (speed >= XFER_MW_DMA_0) {
800 i = 1 << (speed - XFER_MW_DMA_0);
801 id[ATA_ID_MWDMA_MODES] |= (i << 8 | i);
802 } else if (speed >= XFER_SW_DMA_0) {
803 i = 1 << (speed - XFER_SW_DMA_0);
804 id[ATA_ID_SWDMA_MODES] |= (i << 8 | i);
805 }
806
807 if (!drive->init_speed)
808 drive->init_speed = speed;
809 drive->current_speed = speed;
810 return error;
811 }
812
813 /*
814 * This should get invoked any time we exit the driver to
815 * wait for an interrupt response from a drive. handler() points
816 * at the appropriate code to handle the next interrupt, and a
817 * timer is started to prevent us from waiting forever in case
818 * something goes wrong (see the ide_timer_expiry() handler later on).
819 *
820 * See also ide_execute_command
821 */
822 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
823 unsigned int timeout, ide_expiry_t *expiry)
824 {
825 ide_hwgroup_t *hwgroup = HWGROUP(drive);
826
827 BUG_ON(hwgroup->handler);
828 hwgroup->handler = handler;
829 hwgroup->expiry = expiry;
830 hwgroup->timer.expires = jiffies + timeout;
831 hwgroup->req_gen_timer = hwgroup->req_gen;
832 add_timer(&hwgroup->timer);
833 }
834
835 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
836 unsigned int timeout, ide_expiry_t *expiry)
837 {
838 ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
839 unsigned long flags;
840
841 spin_lock_irqsave(&hwgroup->lock, flags);
842 __ide_set_handler(drive, handler, timeout, expiry);
843 spin_unlock_irqrestore(&hwgroup->lock, flags);
844 }
845
846 EXPORT_SYMBOL(ide_set_handler);
847
848 /**
849 * ide_execute_command - execute an IDE command
850 * @drive: IDE drive to issue the command against
851 * @command: command byte to write
852 * @handler: handler for next phase
853 * @timeout: timeout for command
854 * @expiry: handler to run on timeout
855 *
856 * Helper function to issue an IDE command. This handles the
857 * atomicity requirements, command timing and ensures that the
858 * handler and IRQ setup do not race. All IDE command kick off
859 * should go via this function or do equivalent locking.
860 */
861
862 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
863 unsigned timeout, ide_expiry_t *expiry)
864 {
865 ide_hwif_t *hwif = drive->hwif;
866 ide_hwgroup_t *hwgroup = hwif->hwgroup;
867 unsigned long flags;
868
869 spin_lock_irqsave(&hwgroup->lock, flags);
870 __ide_set_handler(drive, handler, timeout, expiry);
871 hwif->tp_ops->exec_command(hwif, cmd);
872 /*
873 * Drive takes 400nS to respond, we must avoid the IRQ being
874 * serviced before that.
875 *
876 * FIXME: we could skip this delay with care on non shared devices
877 */
878 ndelay(400);
879 spin_unlock_irqrestore(&hwgroup->lock, flags);
880 }
881 EXPORT_SYMBOL(ide_execute_command);
882
883 void ide_execute_pkt_cmd(ide_drive_t *drive)
884 {
885 ide_hwif_t *hwif = drive->hwif;
886 ide_hwgroup_t *hwgroup = hwif->hwgroup;
887 unsigned long flags;
888
889 spin_lock_irqsave(&hwgroup->lock, flags);
890 hwif->tp_ops->exec_command(hwif, ATA_CMD_PACKET);
891 ndelay(400);
892 spin_unlock_irqrestore(&hwgroup->lock, flags);
893 }
894 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
895
896 static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
897 {
898 struct request *rq = drive->hwif->hwgroup->rq;
899
900 if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
901 ide_end_request(drive, err ? err : 1, 0);
902 }
903
904 /* needed below */
905 static ide_startstop_t do_reset1 (ide_drive_t *, int);
906
907 /*
908 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
909 * during an atapi drive reset operation. If the drive has not yet responded,
910 * and we have not yet hit our maximum waiting time, then the timer is restarted
911 * for another 50ms.
912 */
913 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
914 {
915 ide_hwif_t *hwif = drive->hwif;
916 ide_hwgroup_t *hwgroup = hwif->hwgroup;
917 u8 stat;
918
919 SELECT_DRIVE(drive);
920 udelay (10);
921 stat = hwif->tp_ops->read_status(hwif);
922
923 if (OK_STAT(stat, 0, ATA_BUSY))
924 printk("%s: ATAPI reset complete\n", drive->name);
925 else {
926 if (time_before(jiffies, hwgroup->poll_timeout)) {
927 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
928 /* continue polling */
929 return ide_started;
930 }
931 /* end of polling */
932 hwgroup->polling = 0;
933 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
934 drive->name, stat);
935 /* do it the old fashioned way */
936 return do_reset1(drive, 1);
937 }
938 /* done polling */
939 hwgroup->polling = 0;
940 ide_complete_drive_reset(drive, 0);
941 return ide_stopped;
942 }
943
944 static void ide_reset_report_error(ide_hwif_t *hwif, u8 err)
945 {
946 static const char *err_master_vals[] =
947 { NULL, "passed", "formatter device error",
948 "sector buffer error", "ECC circuitry error",
949 "controlling MPU error" };
950
951 u8 err_master = err & 0x7f;
952
953 printk(KERN_ERR "%s: reset: master: ", hwif->name);
954 if (err_master && err_master < 6)
955 printk(KERN_CONT "%s", err_master_vals[err_master]);
956 else
957 printk(KERN_CONT "error (0x%02x?)", err);
958 if (err & 0x80)
959 printk(KERN_CONT "; slave: failed");
960 printk(KERN_CONT "\n");
961 }
962
963 /*
964 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
965 * during an ide reset operation. If the drives have not yet responded,
966 * and we have not yet hit our maximum waiting time, then the timer is restarted
967 * for another 50ms.
968 */
969 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
970 {
971 ide_hwgroup_t *hwgroup = HWGROUP(drive);
972 ide_hwif_t *hwif = HWIF(drive);
973 const struct ide_port_ops *port_ops = hwif->port_ops;
974 u8 tmp;
975 int err = 0;
976
977 if (port_ops && port_ops->reset_poll) {
978 err = port_ops->reset_poll(drive);
979 if (err) {
980 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
981 hwif->name, drive->name);
982 goto out;
983 }
984 }
985
986 tmp = hwif->tp_ops->read_status(hwif);
987
988 if (!OK_STAT(tmp, 0, ATA_BUSY)) {
989 if (time_before(jiffies, hwgroup->poll_timeout)) {
990 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
991 /* continue polling */
992 return ide_started;
993 }
994 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
995 drive->failures++;
996 err = -EIO;
997 } else {
998 tmp = ide_read_error(drive);
999
1000 if (tmp == 1) {
1001 printk(KERN_INFO "%s: reset: success\n", hwif->name);
1002 drive->failures = 0;
1003 } else {
1004 ide_reset_report_error(hwif, tmp);
1005 drive->failures++;
1006 err = -EIO;
1007 }
1008 }
1009 out:
1010 hwgroup->polling = 0; /* done polling */
1011 ide_complete_drive_reset(drive, err);
1012 return ide_stopped;
1013 }
1014
1015 static void ide_disk_pre_reset(ide_drive_t *drive)
1016 {
1017 int legacy = (drive->id[ATA_ID_CFS_ENABLE_2] & 0x0400) ? 0 : 1;
1018
1019 drive->special.all = 0;
1020 drive->special.b.set_geometry = legacy;
1021 drive->special.b.recalibrate = legacy;
1022
1023 drive->mult_count = 0;
1024 drive->dev_flags &= ~IDE_DFLAG_PARKED;
1025
1026 if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0 &&
1027 (drive->dev_flags & IDE_DFLAG_USING_DMA) == 0)
1028 drive->mult_req = 0;
1029
1030 if (drive->mult_req != drive->mult_count)
1031 drive->special.b.set_multmode = 1;
1032 }
1033
1034 static void pre_reset(ide_drive_t *drive)
1035 {
1036 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1037
1038 if (drive->media == ide_disk)
1039 ide_disk_pre_reset(drive);
1040 else
1041 drive->dev_flags |= IDE_DFLAG_POST_RESET;
1042
1043 if (drive->dev_flags & IDE_DFLAG_USING_DMA) {
1044 if (drive->crc_count)
1045 ide_check_dma_crc(drive);
1046 else
1047 ide_dma_off(drive);
1048 }
1049
1050 if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0) {
1051 if ((drive->dev_flags & IDE_DFLAG_USING_DMA) == 0) {
1052 drive->dev_flags &= ~IDE_DFLAG_UNMASK;
1053 drive->io_32bit = 0;
1054 }
1055 return;
1056 }
1057
1058 if (port_ops && port_ops->pre_reset)
1059 port_ops->pre_reset(drive);
1060
1061 if (drive->current_speed != 0xff)
1062 drive->desired_speed = drive->current_speed;
1063 drive->current_speed = 0xff;
1064 }
1065
1066 /*
1067 * do_reset1() attempts to recover a confused drive by resetting it.
1068 * Unfortunately, resetting a disk drive actually resets all devices on
1069 * the same interface, so it can really be thought of as resetting the
1070 * interface rather than resetting the drive.
1071 *
1072 * ATAPI devices have their own reset mechanism which allows them to be
1073 * individually reset without clobbering other devices on the same interface.
1074 *
1075 * Unfortunately, the IDE interface does not generate an interrupt to let
1076 * us know when the reset operation has finished, so we must poll for this.
1077 * Equally poor, though, is the fact that this may a very long time to complete,
1078 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1079 * we set a timer to poll at 50ms intervals.
1080 */
1081 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1082 {
1083 ide_hwif_t *hwif = drive->hwif;
1084 ide_hwgroup_t *hwgroup = hwif->hwgroup;
1085 struct ide_io_ports *io_ports = &hwif->io_ports;
1086 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
1087 const struct ide_port_ops *port_ops;
1088 unsigned long flags, timeout;
1089 unsigned int unit;
1090 DEFINE_WAIT(wait);
1091
1092 spin_lock_irqsave(&hwgroup->lock, flags);
1093
1094 /* We must not reset with running handlers */
1095 BUG_ON(hwgroup->handler != NULL);
1096
1097 /* For an ATAPI device, first try an ATAPI SRST. */
1098 if (drive->media != ide_disk && !do_not_try_atapi) {
1099 pre_reset(drive);
1100 SELECT_DRIVE(drive);
1101 udelay (20);
1102 tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET);
1103 ndelay(400);
1104 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1105 hwgroup->polling = 1;
1106 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1107 spin_unlock_irqrestore(&hwgroup->lock, flags);
1108 return ide_started;
1109 }
1110
1111 /* We must not disturb devices in the IDE_DFLAG_PARKED state. */
1112 do {
1113 unsigned long now;
1114
1115 prepare_to_wait(&ide_park_wq, &wait, TASK_UNINTERRUPTIBLE);
1116 timeout = jiffies;
1117 for (unit = 0; unit < MAX_DRIVES; unit++) {
1118 ide_drive_t *tdrive = &hwif->drives[unit];
1119
1120 if (tdrive->dev_flags & IDE_DFLAG_PRESENT &&
1121 tdrive->dev_flags & IDE_DFLAG_PARKED &&
1122 time_after(tdrive->sleep, timeout))
1123 timeout = tdrive->sleep;
1124 }
1125
1126 now = jiffies;
1127 if (time_before_eq(timeout, now))
1128 break;
1129
1130 spin_unlock_irqrestore(&hwgroup->lock, flags);
1131 timeout = schedule_timeout_uninterruptible(timeout - now);
1132 spin_lock_irqsave(&hwgroup->lock, flags);
1133 } while (timeout);
1134 finish_wait(&ide_park_wq, &wait);
1135
1136 /*
1137 * First, reset any device state data we were maintaining
1138 * for any of the drives on this interface.
1139 */
1140 for (unit = 0; unit < MAX_DRIVES; ++unit)
1141 pre_reset(&hwif->drives[unit]);
1142
1143 if (io_ports->ctl_addr == 0) {
1144 spin_unlock_irqrestore(&hwgroup->lock, flags);
1145 ide_complete_drive_reset(drive, -ENXIO);
1146 return ide_stopped;
1147 }
1148
1149 /*
1150 * Note that we also set nIEN while resetting the device,
1151 * to mask unwanted interrupts from the interface during the reset.
1152 * However, due to the design of PC hardware, this will cause an
1153 * immediate interrupt due to the edge transition it produces.
1154 * This single interrupt gives us a "fast poll" for drives that
1155 * recover from reset very quickly, saving us the first 50ms wait time.
1156 *
1157 * TODO: add ->softreset method and stop abusing ->set_irq
1158 */
1159 /* set SRST and nIEN */
1160 tp_ops->set_irq(hwif, 4);
1161 /* more than enough time */
1162 udelay(10);
1163 /* clear SRST, leave nIEN (unless device is on the quirk list) */
1164 tp_ops->set_irq(hwif, drive->quirk_list == 2);
1165 /* more than enough time */
1166 udelay(10);
1167 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1168 hwgroup->polling = 1;
1169 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1170
1171 /*
1172 * Some weird controller like resetting themselves to a strange
1173 * state when the disks are reset this way. At least, the Winbond
1174 * 553 documentation says that
1175 */
1176 port_ops = hwif->port_ops;
1177 if (port_ops && port_ops->resetproc)
1178 port_ops->resetproc(drive);
1179
1180 spin_unlock_irqrestore(&hwgroup->lock, flags);
1181 return ide_started;
1182 }
1183
1184 /*
1185 * ide_do_reset() is the entry point to the drive/interface reset code.
1186 */
1187
1188 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1189 {
1190 return do_reset1(drive, 0);
1191 }
1192
1193 EXPORT_SYMBOL(ide_do_reset);
1194
1195 /*
1196 * ide_wait_not_busy() waits for the currently selected device on the hwif
1197 * to report a non-busy status, see comments in ide_probe_port().
1198 */
1199 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1200 {
1201 u8 stat = 0;
1202
1203 while(timeout--) {
1204 /*
1205 * Turn this into a schedule() sleep once I'm sure
1206 * about locking issues (2.5 work ?).
1207 */
1208 mdelay(1);
1209 stat = hwif->tp_ops->read_status(hwif);
1210 if ((stat & ATA_BUSY) == 0)
1211 return 0;
1212 /*
1213 * Assume a value of 0xff means nothing is connected to
1214 * the interface and it doesn't implement the pull-down
1215 * resistor on D7.
1216 */
1217 if (stat == 0xff)
1218 return -ENODEV;
1219 touch_softlockup_watchdog();
1220 touch_nmi_watchdog();
1221 }
1222 return -EBUSY;
1223 }
1224
1225 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1226
This page took 0.100214 seconds and 5 git commands to generate.