ide: add device flags
[deliverable/linux.git] / drivers / ide / ide-iops.c
1 /*
2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat <alan@redhat.com>
4 *
5 */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/ide.h>
22 #include <linux/bitops.h>
23 #include <linux/nmi.h>
24
25 #include <asm/byteorder.h>
26 #include <asm/irq.h>
27 #include <asm/uaccess.h>
28 #include <asm/io.h>
29
30 /*
31 * Conventional PIO operations for ATA devices
32 */
33
34 static u8 ide_inb (unsigned long port)
35 {
36 return (u8) inb(port);
37 }
38
39 static void ide_outb (u8 val, unsigned long port)
40 {
41 outb(val, port);
42 }
43
44 /*
45 * MMIO operations, typically used for SATA controllers
46 */
47
48 static u8 ide_mm_inb (unsigned long port)
49 {
50 return (u8) readb((void __iomem *) port);
51 }
52
53 static void ide_mm_outb (u8 value, unsigned long port)
54 {
55 writeb(value, (void __iomem *) port);
56 }
57
58 void SELECT_DRIVE (ide_drive_t *drive)
59 {
60 ide_hwif_t *hwif = drive->hwif;
61 const struct ide_port_ops *port_ops = hwif->port_ops;
62 ide_task_t task;
63
64 if (port_ops && port_ops->selectproc)
65 port_ops->selectproc(drive);
66
67 memset(&task, 0, sizeof(task));
68 task.tf_flags = IDE_TFLAG_OUT_DEVICE;
69
70 drive->hwif->tp_ops->tf_load(drive, &task);
71 }
72
73 void SELECT_MASK(ide_drive_t *drive, int mask)
74 {
75 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
76
77 if (port_ops && port_ops->maskproc)
78 port_ops->maskproc(drive, mask);
79 }
80
81 void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
82 {
83 if (hwif->host_flags & IDE_HFLAG_MMIO)
84 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
85 else
86 outb(cmd, hwif->io_ports.command_addr);
87 }
88 EXPORT_SYMBOL_GPL(ide_exec_command);
89
90 u8 ide_read_status(ide_hwif_t *hwif)
91 {
92 if (hwif->host_flags & IDE_HFLAG_MMIO)
93 return readb((void __iomem *)hwif->io_ports.status_addr);
94 else
95 return inb(hwif->io_ports.status_addr);
96 }
97 EXPORT_SYMBOL_GPL(ide_read_status);
98
99 u8 ide_read_altstatus(ide_hwif_t *hwif)
100 {
101 if (hwif->host_flags & IDE_HFLAG_MMIO)
102 return readb((void __iomem *)hwif->io_ports.ctl_addr);
103 else
104 return inb(hwif->io_ports.ctl_addr);
105 }
106 EXPORT_SYMBOL_GPL(ide_read_altstatus);
107
108 u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
109 {
110 if (hwif->host_flags & IDE_HFLAG_MMIO)
111 return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
112 else
113 return inb(hwif->dma_base + ATA_DMA_STATUS);
114 }
115 EXPORT_SYMBOL_GPL(ide_read_sff_dma_status);
116
117 void ide_set_irq(ide_hwif_t *hwif, int on)
118 {
119 u8 ctl = ATA_DEVCTL_OBS;
120
121 if (on == 4) { /* hack for SRST */
122 ctl |= 4;
123 on &= ~4;
124 }
125
126 ctl |= on ? 0 : 2;
127
128 if (hwif->host_flags & IDE_HFLAG_MMIO)
129 writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
130 else
131 outb(ctl, hwif->io_ports.ctl_addr);
132 }
133 EXPORT_SYMBOL_GPL(ide_set_irq);
134
135 void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
136 {
137 ide_hwif_t *hwif = drive->hwif;
138 struct ide_io_ports *io_ports = &hwif->io_ports;
139 struct ide_taskfile *tf = &task->tf;
140 void (*tf_outb)(u8 addr, unsigned long port);
141 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
142 u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
143
144 if (mmio)
145 tf_outb = ide_mm_outb;
146 else
147 tf_outb = ide_outb;
148
149 if (task->tf_flags & IDE_TFLAG_FLAGGED)
150 HIHI = 0xFF;
151
152 if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
153 u16 data = (tf->hob_data << 8) | tf->data;
154
155 if (mmio)
156 writew(data, (void __iomem *)io_ports->data_addr);
157 else
158 outw(data, io_ports->data_addr);
159 }
160
161 if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
162 tf_outb(tf->hob_feature, io_ports->feature_addr);
163 if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
164 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
165 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
166 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
167 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
168 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
169 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
170 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
171
172 if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
173 tf_outb(tf->feature, io_ports->feature_addr);
174 if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
175 tf_outb(tf->nsect, io_ports->nsect_addr);
176 if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
177 tf_outb(tf->lbal, io_ports->lbal_addr);
178 if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
179 tf_outb(tf->lbam, io_ports->lbam_addr);
180 if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
181 tf_outb(tf->lbah, io_ports->lbah_addr);
182
183 if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
184 tf_outb((tf->device & HIHI) | drive->select.all,
185 io_ports->device_addr);
186 }
187 EXPORT_SYMBOL_GPL(ide_tf_load);
188
189 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
190 {
191 ide_hwif_t *hwif = drive->hwif;
192 struct ide_io_ports *io_ports = &hwif->io_ports;
193 struct ide_taskfile *tf = &task->tf;
194 void (*tf_outb)(u8 addr, unsigned long port);
195 u8 (*tf_inb)(unsigned long port);
196 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
197
198 if (mmio) {
199 tf_outb = ide_mm_outb;
200 tf_inb = ide_mm_inb;
201 } else {
202 tf_outb = ide_outb;
203 tf_inb = ide_inb;
204 }
205
206 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
207 u16 data;
208
209 if (mmio)
210 data = readw((void __iomem *)io_ports->data_addr);
211 else
212 data = inw(io_ports->data_addr);
213
214 tf->data = data & 0xff;
215 tf->hob_data = (data >> 8) & 0xff;
216 }
217
218 /* be sure we're looking at the low order bits */
219 tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
220
221 if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
222 tf->feature = tf_inb(io_ports->feature_addr);
223 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
224 tf->nsect = tf_inb(io_ports->nsect_addr);
225 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
226 tf->lbal = tf_inb(io_ports->lbal_addr);
227 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
228 tf->lbam = tf_inb(io_ports->lbam_addr);
229 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
230 tf->lbah = tf_inb(io_ports->lbah_addr);
231 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
232 tf->device = tf_inb(io_ports->device_addr);
233
234 if (task->tf_flags & IDE_TFLAG_LBA48) {
235 tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
236
237 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
238 tf->hob_feature = tf_inb(io_ports->feature_addr);
239 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
240 tf->hob_nsect = tf_inb(io_ports->nsect_addr);
241 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
242 tf->hob_lbal = tf_inb(io_ports->lbal_addr);
243 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
244 tf->hob_lbam = tf_inb(io_ports->lbam_addr);
245 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
246 tf->hob_lbah = tf_inb(io_ports->lbah_addr);
247 }
248 }
249 EXPORT_SYMBOL_GPL(ide_tf_read);
250
251 /*
252 * Some localbus EIDE interfaces require a special access sequence
253 * when using 32-bit I/O instructions to transfer data. We call this
254 * the "vlb_sync" sequence, which consists of three successive reads
255 * of the sector count register location, with interrupts disabled
256 * to ensure that the reads all happen together.
257 */
258 static void ata_vlb_sync(unsigned long port)
259 {
260 (void)inb(port);
261 (void)inb(port);
262 (void)inb(port);
263 }
264
265 /*
266 * This is used for most PIO data transfers *from* the IDE interface
267 *
268 * These routines will round up any request for an odd number of bytes,
269 * so if an odd len is specified, be sure that there's at least one
270 * extra byte allocated for the buffer.
271 */
272 void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf,
273 unsigned int len)
274 {
275 ide_hwif_t *hwif = drive->hwif;
276 struct ide_io_ports *io_ports = &hwif->io_ports;
277 unsigned long data_addr = io_ports->data_addr;
278 u8 io_32bit = drive->io_32bit;
279 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
280
281 len++;
282
283 if (io_32bit) {
284 unsigned long uninitialized_var(flags);
285
286 if ((io_32bit & 2) && !mmio) {
287 local_irq_save(flags);
288 ata_vlb_sync(io_ports->nsect_addr);
289 }
290
291 if (mmio)
292 __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
293 else
294 insl(data_addr, buf, len / 4);
295
296 if ((io_32bit & 2) && !mmio)
297 local_irq_restore(flags);
298
299 if ((len & 3) >= 2) {
300 if (mmio)
301 __ide_mm_insw((void __iomem *)data_addr,
302 (u8 *)buf + (len & ~3), 1);
303 else
304 insw(data_addr, (u8 *)buf + (len & ~3), 1);
305 }
306 } else {
307 if (mmio)
308 __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
309 else
310 insw(data_addr, buf, len / 2);
311 }
312 }
313 EXPORT_SYMBOL_GPL(ide_input_data);
314
315 /*
316 * This is used for most PIO data transfers *to* the IDE interface
317 */
318 void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf,
319 unsigned int len)
320 {
321 ide_hwif_t *hwif = drive->hwif;
322 struct ide_io_ports *io_ports = &hwif->io_ports;
323 unsigned long data_addr = io_ports->data_addr;
324 u8 io_32bit = drive->io_32bit;
325 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
326
327 if (io_32bit) {
328 unsigned long uninitialized_var(flags);
329
330 if ((io_32bit & 2) && !mmio) {
331 local_irq_save(flags);
332 ata_vlb_sync(io_ports->nsect_addr);
333 }
334
335 if (mmio)
336 __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
337 else
338 outsl(data_addr, buf, len / 4);
339
340 if ((io_32bit & 2) && !mmio)
341 local_irq_restore(flags);
342
343 if ((len & 3) >= 2) {
344 if (mmio)
345 __ide_mm_outsw((void __iomem *)data_addr,
346 (u8 *)buf + (len & ~3), 1);
347 else
348 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
349 }
350 } else {
351 if (mmio)
352 __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
353 else
354 outsw(data_addr, buf, len / 2);
355 }
356 }
357 EXPORT_SYMBOL_GPL(ide_output_data);
358
359 u8 ide_read_error(ide_drive_t *drive)
360 {
361 ide_task_t task;
362
363 memset(&task, 0, sizeof(task));
364 task.tf_flags = IDE_TFLAG_IN_FEATURE;
365
366 drive->hwif->tp_ops->tf_read(drive, &task);
367
368 return task.tf.error;
369 }
370 EXPORT_SYMBOL_GPL(ide_read_error);
371
372 void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
373 {
374 ide_task_t task;
375
376 memset(&task, 0, sizeof(task));
377 task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
378 IDE_TFLAG_IN_NSECT;
379
380 drive->hwif->tp_ops->tf_read(drive, &task);
381
382 *bcount = (task.tf.lbah << 8) | task.tf.lbam;
383 *ireason = task.tf.nsect & 3;
384 }
385 EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
386
387 const struct ide_tp_ops default_tp_ops = {
388 .exec_command = ide_exec_command,
389 .read_status = ide_read_status,
390 .read_altstatus = ide_read_altstatus,
391 .read_sff_dma_status = ide_read_sff_dma_status,
392
393 .set_irq = ide_set_irq,
394
395 .tf_load = ide_tf_load,
396 .tf_read = ide_tf_read,
397
398 .input_data = ide_input_data,
399 .output_data = ide_output_data,
400 };
401
402 void ide_fix_driveid(u16 *id)
403 {
404 #ifndef __LITTLE_ENDIAN
405 # ifdef __BIG_ENDIAN
406 int i;
407
408 for (i = 0; i < 256; i++)
409 id[i] = __le16_to_cpu(id[i]);
410 # else
411 # error "Please fix <asm/byteorder.h>"
412 # endif
413 #endif
414 }
415
416 /*
417 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
418 * removing leading/trailing blanks and compressing internal blanks.
419 * It is primarily used to tidy up the model name/number fields as
420 * returned by the ATA_CMD_ID_ATA[PI] commands.
421 */
422
423 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
424 {
425 u8 *p, *end = &s[bytecount & ~1]; /* bytecount must be even */
426
427 if (byteswap) {
428 /* convert from big-endian to host byte order */
429 for (p = s ; p != end ; p += 2)
430 be16_to_cpus((u16 *) p);
431 }
432
433 /* strip leading blanks */
434 p = s;
435 while (s != end && *s == ' ')
436 ++s;
437 /* compress internal blanks and strip trailing blanks */
438 while (s != end && *s) {
439 if (*s++ != ' ' || (s != end && *s && *s != ' '))
440 *p++ = *(s-1);
441 }
442 /* wipe out trailing garbage */
443 while (p != end)
444 *p++ = '\0';
445 }
446
447 EXPORT_SYMBOL(ide_fixstring);
448
449 /*
450 * Needed for PCI irq sharing
451 */
452 int drive_is_ready (ide_drive_t *drive)
453 {
454 ide_hwif_t *hwif = HWIF(drive);
455 u8 stat = 0;
456
457 if (drive->waiting_for_dma)
458 return hwif->dma_ops->dma_test_irq(drive);
459
460 #if 0
461 /* need to guarantee 400ns since last command was issued */
462 udelay(1);
463 #endif
464
465 /*
466 * We do a passive status test under shared PCI interrupts on
467 * cards that truly share the ATA side interrupt, but may also share
468 * an interrupt with another pci card/device. We make no assumptions
469 * about possible isa-pnp and pci-pnp issues yet.
470 */
471 if (hwif->io_ports.ctl_addr)
472 stat = hwif->tp_ops->read_altstatus(hwif);
473 else
474 /* Note: this may clear a pending IRQ!! */
475 stat = hwif->tp_ops->read_status(hwif);
476
477 if (stat & ATA_BUSY)
478 /* drive busy: definitely not interrupting */
479 return 0;
480
481 /* drive ready: *might* be interrupting */
482 return 1;
483 }
484
485 EXPORT_SYMBOL(drive_is_ready);
486
487 /*
488 * This routine busy-waits for the drive status to be not "busy".
489 * It then checks the status for all of the "good" bits and none
490 * of the "bad" bits, and if all is okay it returns 0. All other
491 * cases return error -- caller may then invoke ide_error().
492 *
493 * This routine should get fixed to not hog the cpu during extra long waits..
494 * That could be done by busy-waiting for the first jiffy or two, and then
495 * setting a timer to wake up at half second intervals thereafter,
496 * until timeout is achieved, before timing out.
497 */
498 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
499 {
500 ide_hwif_t *hwif = drive->hwif;
501 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
502 unsigned long flags;
503 int i;
504 u8 stat;
505
506 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
507 stat = tp_ops->read_status(hwif);
508
509 if (stat & ATA_BUSY) {
510 local_irq_set(flags);
511 timeout += jiffies;
512 while ((stat = tp_ops->read_status(hwif)) & ATA_BUSY) {
513 if (time_after(jiffies, timeout)) {
514 /*
515 * One last read after the timeout in case
516 * heavy interrupt load made us not make any
517 * progress during the timeout..
518 */
519 stat = tp_ops->read_status(hwif);
520 if ((stat & ATA_BUSY) == 0)
521 break;
522
523 local_irq_restore(flags);
524 *rstat = stat;
525 return -EBUSY;
526 }
527 }
528 local_irq_restore(flags);
529 }
530 /*
531 * Allow status to settle, then read it again.
532 * A few rare drives vastly violate the 400ns spec here,
533 * so we'll wait up to 10usec for a "good" status
534 * rather than expensively fail things immediately.
535 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
536 */
537 for (i = 0; i < 10; i++) {
538 udelay(1);
539 stat = tp_ops->read_status(hwif);
540
541 if (OK_STAT(stat, good, bad)) {
542 *rstat = stat;
543 return 0;
544 }
545 }
546 *rstat = stat;
547 return -EFAULT;
548 }
549
550 /*
551 * In case of error returns error value after doing "*startstop = ide_error()".
552 * The caller should return the updated value of "startstop" in this case,
553 * "startstop" is unchanged when the function returns 0.
554 */
555 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
556 {
557 int err;
558 u8 stat;
559
560 /* bail early if we've exceeded max_failures */
561 if (drive->max_failures && (drive->failures > drive->max_failures)) {
562 *startstop = ide_stopped;
563 return 1;
564 }
565
566 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
567
568 if (err) {
569 char *s = (err == -EBUSY) ? "status timeout" : "status error";
570 *startstop = ide_error(drive, s, stat);
571 }
572
573 return err;
574 }
575
576 EXPORT_SYMBOL(ide_wait_stat);
577
578 /**
579 * ide_in_drive_list - look for drive in black/white list
580 * @id: drive identifier
581 * @table: list to inspect
582 *
583 * Look for a drive in the blacklist and the whitelist tables
584 * Returns 1 if the drive is found in the table.
585 */
586
587 int ide_in_drive_list(u16 *id, const struct drive_list_entry *table)
588 {
589 for ( ; table->id_model; table++)
590 if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) &&
591 (!table->id_firmware ||
592 strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware)))
593 return 1;
594 return 0;
595 }
596
597 EXPORT_SYMBOL_GPL(ide_in_drive_list);
598
599 /*
600 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
601 * We list them here and depend on the device side cable detection for them.
602 *
603 * Some optical devices with the buggy firmwares have the same problem.
604 */
605 static const struct drive_list_entry ivb_list[] = {
606 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
607 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
608 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
609 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
610 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
611 { "TSSTcorp CDDVDW SH-S202H" , "SB00" },
612 { "TSSTcorp CDDVDW SH-S202H" , "SB01" },
613 { NULL , NULL }
614 };
615
616 /*
617 * All hosts that use the 80c ribbon must use!
618 * The name is derived from upper byte of word 93 and the 80c ribbon.
619 */
620 u8 eighty_ninty_three (ide_drive_t *drive)
621 {
622 ide_hwif_t *hwif = drive->hwif;
623 u16 *id = drive->id;
624 int ivb = ide_in_drive_list(id, ivb_list);
625
626 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
627 return 1;
628
629 if (ivb)
630 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
631 drive->name);
632
633 if (ata_id_is_sata(id) && !ivb)
634 return 1;
635
636 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
637 goto no_80w;
638
639 /*
640 * FIXME:
641 * - change master/slave IDENTIFY order
642 * - force bit13 (80c cable present) check also for !ivb devices
643 * (unless the slave device is pre-ATA3)
644 */
645 if ((id[ATA_ID_HW_CONFIG] & 0x4000) ||
646 (ivb && (id[ATA_ID_HW_CONFIG] & 0x2000)))
647 return 1;
648
649 no_80w:
650 if (drive->dev_flags & IDE_DFLAG_UDMA33_WARNED)
651 return 0;
652
653 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
654 "limiting max speed to UDMA33\n",
655 drive->name,
656 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
657
658 drive->dev_flags |= IDE_DFLAG_UDMA33_WARNED;
659
660 return 0;
661 }
662
663 int ide_driveid_update(ide_drive_t *drive)
664 {
665 ide_hwif_t *hwif = drive->hwif;
666 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
667 u16 *id;
668 unsigned long flags;
669 u8 stat;
670
671 /*
672 * Re-read drive->id for possible DMA mode
673 * change (copied from ide-probe.c)
674 */
675
676 SELECT_MASK(drive, 1);
677 tp_ops->set_irq(hwif, 0);
678 msleep(50);
679 tp_ops->exec_command(hwif, ATA_CMD_ID_ATA);
680
681 if (ide_busy_sleep(hwif, WAIT_WORSTCASE, 1)) {
682 SELECT_MASK(drive, 0);
683 return 0;
684 }
685
686 msleep(50); /* wait for IRQ and ATA_DRQ */
687 stat = tp_ops->read_status(hwif);
688
689 if (!OK_STAT(stat, ATA_DRQ, BAD_R_STAT)) {
690 SELECT_MASK(drive, 0);
691 printk("%s: CHECK for good STATUS\n", drive->name);
692 return 0;
693 }
694 local_irq_save(flags);
695 SELECT_MASK(drive, 0);
696 id = kmalloc(SECTOR_SIZE, GFP_ATOMIC);
697 if (!id) {
698 local_irq_restore(flags);
699 return 0;
700 }
701 tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
702 (void)tp_ops->read_status(hwif); /* clear drive IRQ */
703 local_irq_enable();
704 local_irq_restore(flags);
705 ide_fix_driveid(id);
706
707 drive->id[ATA_ID_UDMA_MODES] = id[ATA_ID_UDMA_MODES];
708 drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES];
709 drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES];
710 /* anything more ? */
711
712 kfree(id);
713
714 if ((drive->dev_flags & IDE_DFLAG_USING_DMA) && ide_id_dma_bug(drive))
715 ide_dma_off(drive);
716
717 return 1;
718 }
719
720 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
721 {
722 ide_hwif_t *hwif = drive->hwif;
723 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
724 u16 *id = drive->id, i;
725 int error = 0;
726 u8 stat;
727 ide_task_t task;
728
729 #ifdef CONFIG_BLK_DEV_IDEDMA
730 if (hwif->dma_ops) /* check if host supports DMA */
731 hwif->dma_ops->dma_host_set(drive, 0);
732 #endif
733
734 /* Skip setting PIO flow-control modes on pre-EIDE drives */
735 if ((speed & 0xf8) == XFER_PIO_0 && ata_id_has_iordy(drive->id) == 0)
736 goto skip;
737
738 /*
739 * Don't use ide_wait_cmd here - it will
740 * attempt to set_geometry and recalibrate,
741 * but for some reason these don't work at
742 * this point (lost interrupt).
743 */
744 /*
745 * Select the drive, and issue the SETFEATURES command
746 */
747 disable_irq_nosync(hwif->irq);
748
749 /*
750 * FIXME: we race against the running IRQ here if
751 * this is called from non IRQ context. If we use
752 * disable_irq() we hang on the error path. Work
753 * is needed.
754 */
755
756 udelay(1);
757 SELECT_DRIVE(drive);
758 SELECT_MASK(drive, 0);
759 udelay(1);
760 tp_ops->set_irq(hwif, 0);
761
762 memset(&task, 0, sizeof(task));
763 task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
764 task.tf.feature = SETFEATURES_XFER;
765 task.tf.nsect = speed;
766
767 tp_ops->tf_load(drive, &task);
768
769 tp_ops->exec_command(hwif, ATA_CMD_SET_FEATURES);
770
771 if (drive->quirk_list == 2)
772 tp_ops->set_irq(hwif, 1);
773
774 error = __ide_wait_stat(drive, drive->ready_stat,
775 ATA_BUSY | ATA_DRQ | ATA_ERR,
776 WAIT_CMD, &stat);
777
778 SELECT_MASK(drive, 0);
779
780 enable_irq(hwif->irq);
781
782 if (error) {
783 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
784 return error;
785 }
786
787 id[ATA_ID_UDMA_MODES] &= ~0xFF00;
788 id[ATA_ID_MWDMA_MODES] &= ~0x0F00;
789 id[ATA_ID_SWDMA_MODES] &= ~0x0F00;
790
791 skip:
792 #ifdef CONFIG_BLK_DEV_IDEDMA
793 if (speed >= XFER_SW_DMA_0 && (drive->dev_flags & IDE_DFLAG_USING_DMA))
794 hwif->dma_ops->dma_host_set(drive, 1);
795 else if (hwif->dma_ops) /* check if host supports DMA */
796 ide_dma_off_quietly(drive);
797 #endif
798
799 if (speed >= XFER_UDMA_0) {
800 i = 1 << (speed - XFER_UDMA_0);
801 id[ATA_ID_UDMA_MODES] |= (i << 8 | i);
802 } else if (speed >= XFER_MW_DMA_0) {
803 i = 1 << (speed - XFER_MW_DMA_0);
804 id[ATA_ID_MWDMA_MODES] |= (i << 8 | i);
805 } else if (speed >= XFER_SW_DMA_0) {
806 i = 1 << (speed - XFER_SW_DMA_0);
807 id[ATA_ID_SWDMA_MODES] |= (i << 8 | i);
808 }
809
810 if (!drive->init_speed)
811 drive->init_speed = speed;
812 drive->current_speed = speed;
813 return error;
814 }
815
816 /*
817 * This should get invoked any time we exit the driver to
818 * wait for an interrupt response from a drive. handler() points
819 * at the appropriate code to handle the next interrupt, and a
820 * timer is started to prevent us from waiting forever in case
821 * something goes wrong (see the ide_timer_expiry() handler later on).
822 *
823 * See also ide_execute_command
824 */
825 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
826 unsigned int timeout, ide_expiry_t *expiry)
827 {
828 ide_hwgroup_t *hwgroup = HWGROUP(drive);
829
830 BUG_ON(hwgroup->handler);
831 hwgroup->handler = handler;
832 hwgroup->expiry = expiry;
833 hwgroup->timer.expires = jiffies + timeout;
834 hwgroup->req_gen_timer = hwgroup->req_gen;
835 add_timer(&hwgroup->timer);
836 }
837
838 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
839 unsigned int timeout, ide_expiry_t *expiry)
840 {
841 unsigned long flags;
842 spin_lock_irqsave(&ide_lock, flags);
843 __ide_set_handler(drive, handler, timeout, expiry);
844 spin_unlock_irqrestore(&ide_lock, flags);
845 }
846
847 EXPORT_SYMBOL(ide_set_handler);
848
849 /**
850 * ide_execute_command - execute an IDE command
851 * @drive: IDE drive to issue the command against
852 * @command: command byte to write
853 * @handler: handler for next phase
854 * @timeout: timeout for command
855 * @expiry: handler to run on timeout
856 *
857 * Helper function to issue an IDE command. This handles the
858 * atomicity requirements, command timing and ensures that the
859 * handler and IRQ setup do not race. All IDE command kick off
860 * should go via this function or do equivalent locking.
861 */
862
863 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
864 unsigned timeout, ide_expiry_t *expiry)
865 {
866 unsigned long flags;
867 ide_hwif_t *hwif = HWIF(drive);
868
869 spin_lock_irqsave(&ide_lock, flags);
870 __ide_set_handler(drive, handler, timeout, expiry);
871 hwif->tp_ops->exec_command(hwif, cmd);
872 /*
873 * Drive takes 400nS to respond, we must avoid the IRQ being
874 * serviced before that.
875 *
876 * FIXME: we could skip this delay with care on non shared devices
877 */
878 ndelay(400);
879 spin_unlock_irqrestore(&ide_lock, flags);
880 }
881 EXPORT_SYMBOL(ide_execute_command);
882
883 void ide_execute_pkt_cmd(ide_drive_t *drive)
884 {
885 ide_hwif_t *hwif = drive->hwif;
886 unsigned long flags;
887
888 spin_lock_irqsave(&ide_lock, flags);
889 hwif->tp_ops->exec_command(hwif, ATA_CMD_PACKET);
890 ndelay(400);
891 spin_unlock_irqrestore(&ide_lock, flags);
892 }
893 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
894
895 static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
896 {
897 struct request *rq = drive->hwif->hwgroup->rq;
898
899 if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
900 ide_end_request(drive, err ? err : 1, 0);
901 }
902
903 /* needed below */
904 static ide_startstop_t do_reset1 (ide_drive_t *, int);
905
906 /*
907 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
908 * during an atapi drive reset operation. If the drive has not yet responded,
909 * and we have not yet hit our maximum waiting time, then the timer is restarted
910 * for another 50ms.
911 */
912 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
913 {
914 ide_hwif_t *hwif = drive->hwif;
915 ide_hwgroup_t *hwgroup = hwif->hwgroup;
916 u8 stat;
917
918 SELECT_DRIVE(drive);
919 udelay (10);
920 stat = hwif->tp_ops->read_status(hwif);
921
922 if (OK_STAT(stat, 0, ATA_BUSY))
923 printk("%s: ATAPI reset complete\n", drive->name);
924 else {
925 if (time_before(jiffies, hwgroup->poll_timeout)) {
926 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
927 /* continue polling */
928 return ide_started;
929 }
930 /* end of polling */
931 hwgroup->polling = 0;
932 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
933 drive->name, stat);
934 /* do it the old fashioned way */
935 return do_reset1(drive, 1);
936 }
937 /* done polling */
938 hwgroup->polling = 0;
939 ide_complete_drive_reset(drive, 0);
940 return ide_stopped;
941 }
942
943 /*
944 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
945 * during an ide reset operation. If the drives have not yet responded,
946 * and we have not yet hit our maximum waiting time, then the timer is restarted
947 * for another 50ms.
948 */
949 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
950 {
951 ide_hwgroup_t *hwgroup = HWGROUP(drive);
952 ide_hwif_t *hwif = HWIF(drive);
953 const struct ide_port_ops *port_ops = hwif->port_ops;
954 u8 tmp;
955 int err = 0;
956
957 if (port_ops && port_ops->reset_poll) {
958 err = port_ops->reset_poll(drive);
959 if (err) {
960 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
961 hwif->name, drive->name);
962 goto out;
963 }
964 }
965
966 tmp = hwif->tp_ops->read_status(hwif);
967
968 if (!OK_STAT(tmp, 0, ATA_BUSY)) {
969 if (time_before(jiffies, hwgroup->poll_timeout)) {
970 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
971 /* continue polling */
972 return ide_started;
973 }
974 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
975 drive->failures++;
976 err = -EIO;
977 } else {
978 printk("%s: reset: ", hwif->name);
979 tmp = ide_read_error(drive);
980
981 if (tmp == 1) {
982 printk("success\n");
983 drive->failures = 0;
984 } else {
985 drive->failures++;
986 printk("master: ");
987 switch (tmp & 0x7f) {
988 case 1: printk("passed");
989 break;
990 case 2: printk("formatter device error");
991 break;
992 case 3: printk("sector buffer error");
993 break;
994 case 4: printk("ECC circuitry error");
995 break;
996 case 5: printk("controlling MPU error");
997 break;
998 default:printk("error (0x%02x?)", tmp);
999 }
1000 if (tmp & 0x80)
1001 printk("; slave: failed");
1002 printk("\n");
1003 err = -EIO;
1004 }
1005 }
1006 out:
1007 hwgroup->polling = 0; /* done polling */
1008 ide_complete_drive_reset(drive, err);
1009 return ide_stopped;
1010 }
1011
1012 static void ide_disk_pre_reset(ide_drive_t *drive)
1013 {
1014 int legacy = (drive->id[ATA_ID_CFS_ENABLE_2] & 0x0400) ? 0 : 1;
1015
1016 drive->special.all = 0;
1017 drive->special.b.set_geometry = legacy;
1018 drive->special.b.recalibrate = legacy;
1019
1020 drive->mult_count = 0;
1021
1022 if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0 &&
1023 (drive->dev_flags & IDE_DFLAG_USING_DMA) == 0)
1024 drive->mult_req = 0;
1025
1026 if (drive->mult_req != drive->mult_count)
1027 drive->special.b.set_multmode = 1;
1028 }
1029
1030 static void pre_reset(ide_drive_t *drive)
1031 {
1032 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1033
1034 if (drive->media == ide_disk)
1035 ide_disk_pre_reset(drive);
1036 else
1037 drive->dev_flags |= IDE_DFLAG_POST_RESET;
1038
1039 if (drive->dev_flags & IDE_DFLAG_USING_DMA) {
1040 if (drive->crc_count)
1041 ide_check_dma_crc(drive);
1042 else
1043 ide_dma_off(drive);
1044 }
1045
1046 if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0) {
1047 if ((drive->dev_flags & IDE_DFLAG_USING_DMA) == 0) {
1048 drive->dev_flags &= ~IDE_DFLAG_UNMASK;
1049 drive->io_32bit = 0;
1050 }
1051 return;
1052 }
1053
1054 if (port_ops && port_ops->pre_reset)
1055 port_ops->pre_reset(drive);
1056
1057 if (drive->current_speed != 0xff)
1058 drive->desired_speed = drive->current_speed;
1059 drive->current_speed = 0xff;
1060 }
1061
1062 /*
1063 * do_reset1() attempts to recover a confused drive by resetting it.
1064 * Unfortunately, resetting a disk drive actually resets all devices on
1065 * the same interface, so it can really be thought of as resetting the
1066 * interface rather than resetting the drive.
1067 *
1068 * ATAPI devices have their own reset mechanism which allows them to be
1069 * individually reset without clobbering other devices on the same interface.
1070 *
1071 * Unfortunately, the IDE interface does not generate an interrupt to let
1072 * us know when the reset operation has finished, so we must poll for this.
1073 * Equally poor, though, is the fact that this may a very long time to complete,
1074 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1075 * we set a timer to poll at 50ms intervals.
1076 */
1077 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1078 {
1079 unsigned int unit;
1080 unsigned long flags;
1081 ide_hwif_t *hwif;
1082 ide_hwgroup_t *hwgroup;
1083 struct ide_io_ports *io_ports;
1084 const struct ide_tp_ops *tp_ops;
1085 const struct ide_port_ops *port_ops;
1086
1087 spin_lock_irqsave(&ide_lock, flags);
1088 hwif = HWIF(drive);
1089 hwgroup = HWGROUP(drive);
1090
1091 io_ports = &hwif->io_ports;
1092
1093 tp_ops = hwif->tp_ops;
1094
1095 /* We must not reset with running handlers */
1096 BUG_ON(hwgroup->handler != NULL);
1097
1098 /* For an ATAPI device, first try an ATAPI SRST. */
1099 if (drive->media != ide_disk && !do_not_try_atapi) {
1100 pre_reset(drive);
1101 SELECT_DRIVE(drive);
1102 udelay (20);
1103 tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET);
1104 ndelay(400);
1105 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1106 hwgroup->polling = 1;
1107 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1108 spin_unlock_irqrestore(&ide_lock, flags);
1109 return ide_started;
1110 }
1111
1112 /*
1113 * First, reset any device state data we were maintaining
1114 * for any of the drives on this interface.
1115 */
1116 for (unit = 0; unit < MAX_DRIVES; ++unit)
1117 pre_reset(&hwif->drives[unit]);
1118
1119 if (io_ports->ctl_addr == 0) {
1120 spin_unlock_irqrestore(&ide_lock, flags);
1121 ide_complete_drive_reset(drive, -ENXIO);
1122 return ide_stopped;
1123 }
1124
1125 /*
1126 * Note that we also set nIEN while resetting the device,
1127 * to mask unwanted interrupts from the interface during the reset.
1128 * However, due to the design of PC hardware, this will cause an
1129 * immediate interrupt due to the edge transition it produces.
1130 * This single interrupt gives us a "fast poll" for drives that
1131 * recover from reset very quickly, saving us the first 50ms wait time.
1132 *
1133 * TODO: add ->softreset method and stop abusing ->set_irq
1134 */
1135 /* set SRST and nIEN */
1136 tp_ops->set_irq(hwif, 4);
1137 /* more than enough time */
1138 udelay(10);
1139 /* clear SRST, leave nIEN (unless device is on the quirk list) */
1140 tp_ops->set_irq(hwif, drive->quirk_list == 2);
1141 /* more than enough time */
1142 udelay(10);
1143 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1144 hwgroup->polling = 1;
1145 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1146
1147 /*
1148 * Some weird controller like resetting themselves to a strange
1149 * state when the disks are reset this way. At least, the Winbond
1150 * 553 documentation says that
1151 */
1152 port_ops = hwif->port_ops;
1153 if (port_ops && port_ops->resetproc)
1154 port_ops->resetproc(drive);
1155
1156 spin_unlock_irqrestore(&ide_lock, flags);
1157 return ide_started;
1158 }
1159
1160 /*
1161 * ide_do_reset() is the entry point to the drive/interface reset code.
1162 */
1163
1164 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1165 {
1166 return do_reset1(drive, 0);
1167 }
1168
1169 EXPORT_SYMBOL(ide_do_reset);
1170
1171 /*
1172 * ide_wait_not_busy() waits for the currently selected device on the hwif
1173 * to report a non-busy status, see comments in ide_probe_port().
1174 */
1175 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1176 {
1177 u8 stat = 0;
1178
1179 while(timeout--) {
1180 /*
1181 * Turn this into a schedule() sleep once I'm sure
1182 * about locking issues (2.5 work ?).
1183 */
1184 mdelay(1);
1185 stat = hwif->tp_ops->read_status(hwif);
1186 if ((stat & ATA_BUSY) == 0)
1187 return 0;
1188 /*
1189 * Assume a value of 0xff means nothing is connected to
1190 * the interface and it doesn't implement the pull-down
1191 * resistor on D7.
1192 */
1193 if (stat == 0xff)
1194 return -ENODEV;
1195 touch_softlockup_watchdog();
1196 touch_nmi_watchdog();
1197 }
1198 return -EBUSY;
1199 }
1200
1201 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1202
This page took 0.097522 seconds and 5 git commands to generate.