ide: move ide_config_drive_speed() calls to upper layers (take 2)
[deliverable/linux.git] / drivers / ide / ide-iops.c
1 /*
2 * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
3 *
4 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
5 * Copyright (C) 2003 Red Hat <alan@redhat.com>
6 *
7 */
8
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/major.h>
17 #include <linux/errno.h>
18 #include <linux/genhd.h>
19 #include <linux/blkpg.h>
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/hdreg.h>
24 #include <linux/ide.h>
25 #include <linux/bitops.h>
26 #include <linux/nmi.h>
27
28 #include <asm/byteorder.h>
29 #include <asm/irq.h>
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
32
33 /*
34 * Conventional PIO operations for ATA devices
35 */
36
37 static u8 ide_inb (unsigned long port)
38 {
39 return (u8) inb(port);
40 }
41
42 static u16 ide_inw (unsigned long port)
43 {
44 return (u16) inw(port);
45 }
46
47 static void ide_insw (unsigned long port, void *addr, u32 count)
48 {
49 insw(port, addr, count);
50 }
51
52 static void ide_insl (unsigned long port, void *addr, u32 count)
53 {
54 insl(port, addr, count);
55 }
56
57 static void ide_outb (u8 val, unsigned long port)
58 {
59 outb(val, port);
60 }
61
62 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
63 {
64 outb(addr, port);
65 }
66
67 static void ide_outw (u16 val, unsigned long port)
68 {
69 outw(val, port);
70 }
71
72 static void ide_outsw (unsigned long port, void *addr, u32 count)
73 {
74 outsw(port, addr, count);
75 }
76
77 static void ide_outsl (unsigned long port, void *addr, u32 count)
78 {
79 outsl(port, addr, count);
80 }
81
82 void default_hwif_iops (ide_hwif_t *hwif)
83 {
84 hwif->OUTB = ide_outb;
85 hwif->OUTBSYNC = ide_outbsync;
86 hwif->OUTW = ide_outw;
87 hwif->OUTSW = ide_outsw;
88 hwif->OUTSL = ide_outsl;
89 hwif->INB = ide_inb;
90 hwif->INW = ide_inw;
91 hwif->INSW = ide_insw;
92 hwif->INSL = ide_insl;
93 }
94
95 /*
96 * MMIO operations, typically used for SATA controllers
97 */
98
99 static u8 ide_mm_inb (unsigned long port)
100 {
101 return (u8) readb((void __iomem *) port);
102 }
103
104 static u16 ide_mm_inw (unsigned long port)
105 {
106 return (u16) readw((void __iomem *) port);
107 }
108
109 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
110 {
111 __ide_mm_insw((void __iomem *) port, addr, count);
112 }
113
114 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
115 {
116 __ide_mm_insl((void __iomem *) port, addr, count);
117 }
118
119 static void ide_mm_outb (u8 value, unsigned long port)
120 {
121 writeb(value, (void __iomem *) port);
122 }
123
124 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
125 {
126 writeb(value, (void __iomem *) port);
127 }
128
129 static void ide_mm_outw (u16 value, unsigned long port)
130 {
131 writew(value, (void __iomem *) port);
132 }
133
134 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
135 {
136 __ide_mm_outsw((void __iomem *) port, addr, count);
137 }
138
139 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
140 {
141 __ide_mm_outsl((void __iomem *) port, addr, count);
142 }
143
144 void default_hwif_mmiops (ide_hwif_t *hwif)
145 {
146 hwif->OUTB = ide_mm_outb;
147 /* Most systems will need to override OUTBSYNC, alas however
148 this one is controller specific! */
149 hwif->OUTBSYNC = ide_mm_outbsync;
150 hwif->OUTW = ide_mm_outw;
151 hwif->OUTSW = ide_mm_outsw;
152 hwif->OUTSL = ide_mm_outsl;
153 hwif->INB = ide_mm_inb;
154 hwif->INW = ide_mm_inw;
155 hwif->INSW = ide_mm_insw;
156 hwif->INSL = ide_mm_insl;
157 }
158
159 EXPORT_SYMBOL(default_hwif_mmiops);
160
161 u32 ide_read_24 (ide_drive_t *drive)
162 {
163 u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
164 u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165 u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
166 return (hcyl<<16)|(lcyl<<8)|sect;
167 }
168
169 void SELECT_DRIVE (ide_drive_t *drive)
170 {
171 if (HWIF(drive)->selectproc)
172 HWIF(drive)->selectproc(drive);
173 HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
174 }
175
176 EXPORT_SYMBOL(SELECT_DRIVE);
177
178 void SELECT_INTERRUPT (ide_drive_t *drive)
179 {
180 if (HWIF(drive)->intrproc)
181 HWIF(drive)->intrproc(drive);
182 else
183 HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
184 }
185
186 void SELECT_MASK (ide_drive_t *drive, int mask)
187 {
188 if (HWIF(drive)->maskproc)
189 HWIF(drive)->maskproc(drive, mask);
190 }
191
192 void QUIRK_LIST (ide_drive_t *drive)
193 {
194 if (HWIF(drive)->quirkproc)
195 drive->quirk_list = HWIF(drive)->quirkproc(drive);
196 }
197
198 /*
199 * Some localbus EIDE interfaces require a special access sequence
200 * when using 32-bit I/O instructions to transfer data. We call this
201 * the "vlb_sync" sequence, which consists of three successive reads
202 * of the sector count register location, with interrupts disabled
203 * to ensure that the reads all happen together.
204 */
205 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
206 {
207 (void) HWIF(drive)->INB(port);
208 (void) HWIF(drive)->INB(port);
209 (void) HWIF(drive)->INB(port);
210 }
211
212 /*
213 * This is used for most PIO data transfers *from* the IDE interface
214 */
215 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
216 {
217 ide_hwif_t *hwif = HWIF(drive);
218 u8 io_32bit = drive->io_32bit;
219
220 if (io_32bit) {
221 if (io_32bit & 2) {
222 unsigned long flags;
223 local_irq_save(flags);
224 ata_vlb_sync(drive, IDE_NSECTOR_REG);
225 hwif->INSL(IDE_DATA_REG, buffer, wcount);
226 local_irq_restore(flags);
227 } else
228 hwif->INSL(IDE_DATA_REG, buffer, wcount);
229 } else {
230 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
231 }
232 }
233
234 /*
235 * This is used for most PIO data transfers *to* the IDE interface
236 */
237 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
238 {
239 ide_hwif_t *hwif = HWIF(drive);
240 u8 io_32bit = drive->io_32bit;
241
242 if (io_32bit) {
243 if (io_32bit & 2) {
244 unsigned long flags;
245 local_irq_save(flags);
246 ata_vlb_sync(drive, IDE_NSECTOR_REG);
247 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
248 local_irq_restore(flags);
249 } else
250 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
251 } else {
252 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
253 }
254 }
255
256 /*
257 * The following routines are mainly used by the ATAPI drivers.
258 *
259 * These routines will round up any request for an odd number of bytes,
260 * so if an odd bytecount is specified, be sure that there's at least one
261 * extra byte allocated for the buffer.
262 */
263
264 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
265 {
266 ide_hwif_t *hwif = HWIF(drive);
267
268 ++bytecount;
269 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270 if (MACH_IS_ATARI || MACH_IS_Q40) {
271 /* Atari has a byte-swapped IDE interface */
272 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
273 return;
274 }
275 #endif /* CONFIG_ATARI || CONFIG_Q40 */
276 hwif->ata_input_data(drive, buffer, bytecount / 4);
277 if ((bytecount & 0x03) >= 2)
278 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
279 }
280
281 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
282 {
283 ide_hwif_t *hwif = HWIF(drive);
284
285 ++bytecount;
286 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
287 if (MACH_IS_ATARI || MACH_IS_Q40) {
288 /* Atari has a byte-swapped IDE interface */
289 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
290 return;
291 }
292 #endif /* CONFIG_ATARI || CONFIG_Q40 */
293 hwif->ata_output_data(drive, buffer, bytecount / 4);
294 if ((bytecount & 0x03) >= 2)
295 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
296 }
297
298 void default_hwif_transport(ide_hwif_t *hwif)
299 {
300 hwif->ata_input_data = ata_input_data;
301 hwif->ata_output_data = ata_output_data;
302 hwif->atapi_input_bytes = atapi_input_bytes;
303 hwif->atapi_output_bytes = atapi_output_bytes;
304 }
305
306 /*
307 * Beginning of Taskfile OPCODE Library and feature sets.
308 */
309 void ide_fix_driveid (struct hd_driveid *id)
310 {
311 #ifndef __LITTLE_ENDIAN
312 # ifdef __BIG_ENDIAN
313 int i;
314 u16 *stringcast;
315
316 id->config = __le16_to_cpu(id->config);
317 id->cyls = __le16_to_cpu(id->cyls);
318 id->reserved2 = __le16_to_cpu(id->reserved2);
319 id->heads = __le16_to_cpu(id->heads);
320 id->track_bytes = __le16_to_cpu(id->track_bytes);
321 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
322 id->sectors = __le16_to_cpu(id->sectors);
323 id->vendor0 = __le16_to_cpu(id->vendor0);
324 id->vendor1 = __le16_to_cpu(id->vendor1);
325 id->vendor2 = __le16_to_cpu(id->vendor2);
326 stringcast = (u16 *)&id->serial_no[0];
327 for (i = 0; i < (20/2); i++)
328 stringcast[i] = __le16_to_cpu(stringcast[i]);
329 id->buf_type = __le16_to_cpu(id->buf_type);
330 id->buf_size = __le16_to_cpu(id->buf_size);
331 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
332 stringcast = (u16 *)&id->fw_rev[0];
333 for (i = 0; i < (8/2); i++)
334 stringcast[i] = __le16_to_cpu(stringcast[i]);
335 stringcast = (u16 *)&id->model[0];
336 for (i = 0; i < (40/2); i++)
337 stringcast[i] = __le16_to_cpu(stringcast[i]);
338 id->dword_io = __le16_to_cpu(id->dword_io);
339 id->reserved50 = __le16_to_cpu(id->reserved50);
340 id->field_valid = __le16_to_cpu(id->field_valid);
341 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
342 id->cur_heads = __le16_to_cpu(id->cur_heads);
343 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
344 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
345 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
346 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
347 id->dma_1word = __le16_to_cpu(id->dma_1word);
348 id->dma_mword = __le16_to_cpu(id->dma_mword);
349 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
350 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
351 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
352 id->eide_pio = __le16_to_cpu(id->eide_pio);
353 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
354 for (i = 0; i < 2; ++i)
355 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
356 for (i = 0; i < 4; ++i)
357 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
358 id->queue_depth = __le16_to_cpu(id->queue_depth);
359 for (i = 0; i < 4; ++i)
360 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
361 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
362 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
363 id->command_set_1 = __le16_to_cpu(id->command_set_1);
364 id->command_set_2 = __le16_to_cpu(id->command_set_2);
365 id->cfsse = __le16_to_cpu(id->cfsse);
366 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
367 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
368 id->csf_default = __le16_to_cpu(id->csf_default);
369 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
370 id->trseuc = __le16_to_cpu(id->trseuc);
371 id->trsEuc = __le16_to_cpu(id->trsEuc);
372 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
373 id->mprc = __le16_to_cpu(id->mprc);
374 id->hw_config = __le16_to_cpu(id->hw_config);
375 id->acoustic = __le16_to_cpu(id->acoustic);
376 id->msrqs = __le16_to_cpu(id->msrqs);
377 id->sxfert = __le16_to_cpu(id->sxfert);
378 id->sal = __le16_to_cpu(id->sal);
379 id->spg = __le32_to_cpu(id->spg);
380 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
381 for (i = 0; i < 22; i++)
382 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
383 id->last_lun = __le16_to_cpu(id->last_lun);
384 id->word127 = __le16_to_cpu(id->word127);
385 id->dlf = __le16_to_cpu(id->dlf);
386 id->csfo = __le16_to_cpu(id->csfo);
387 for (i = 0; i < 26; i++)
388 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
389 id->word156 = __le16_to_cpu(id->word156);
390 for (i = 0; i < 3; i++)
391 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
392 id->cfa_power = __le16_to_cpu(id->cfa_power);
393 for (i = 0; i < 14; i++)
394 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
395 for (i = 0; i < 31; i++)
396 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
397 for (i = 0; i < 48; i++)
398 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
399 id->integrity_word = __le16_to_cpu(id->integrity_word);
400 # else
401 # error "Please fix <asm/byteorder.h>"
402 # endif
403 #endif
404 }
405
406 /* FIXME: exported for use by the USB storage (isd200.c) code only */
407 EXPORT_SYMBOL(ide_fix_driveid);
408
409 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
410 {
411 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
412
413 if (byteswap) {
414 /* convert from big-endian to host byte order */
415 for (p = end ; p != s;) {
416 unsigned short *pp = (unsigned short *) (p -= 2);
417 *pp = ntohs(*pp);
418 }
419 }
420 /* strip leading blanks */
421 while (s != end && *s == ' ')
422 ++s;
423 /* compress internal blanks and strip trailing blanks */
424 while (s != end && *s) {
425 if (*s++ != ' ' || (s != end && *s && *s != ' '))
426 *p++ = *(s-1);
427 }
428 /* wipe out trailing garbage */
429 while (p != end)
430 *p++ = '\0';
431 }
432
433 EXPORT_SYMBOL(ide_fixstring);
434
435 /*
436 * Needed for PCI irq sharing
437 */
438 int drive_is_ready (ide_drive_t *drive)
439 {
440 ide_hwif_t *hwif = HWIF(drive);
441 u8 stat = 0;
442
443 if (drive->waiting_for_dma)
444 return hwif->ide_dma_test_irq(drive);
445
446 #if 0
447 /* need to guarantee 400ns since last command was issued */
448 udelay(1);
449 #endif
450
451 #ifdef CONFIG_IDEPCI_SHARE_IRQ
452 /*
453 * We do a passive status test under shared PCI interrupts on
454 * cards that truly share the ATA side interrupt, but may also share
455 * an interrupt with another pci card/device. We make no assumptions
456 * about possible isa-pnp and pci-pnp issues yet.
457 */
458 if (IDE_CONTROL_REG)
459 stat = hwif->INB(IDE_ALTSTATUS_REG);
460 else
461 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
462 /* Note: this may clear a pending IRQ!! */
463 stat = hwif->INB(IDE_STATUS_REG);
464
465 if (stat & BUSY_STAT)
466 /* drive busy: definitely not interrupting */
467 return 0;
468
469 /* drive ready: *might* be interrupting */
470 return 1;
471 }
472
473 EXPORT_SYMBOL(drive_is_ready);
474
475 /*
476 * This routine busy-waits for the drive status to be not "busy".
477 * It then checks the status for all of the "good" bits and none
478 * of the "bad" bits, and if all is okay it returns 0. All other
479 * cases return error -- caller may then invoke ide_error().
480 *
481 * This routine should get fixed to not hog the cpu during extra long waits..
482 * That could be done by busy-waiting for the first jiffy or two, and then
483 * setting a timer to wake up at half second intervals thereafter,
484 * until timeout is achieved, before timing out.
485 */
486 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
487 {
488 ide_hwif_t *hwif = drive->hwif;
489 unsigned long flags;
490 int i;
491 u8 stat;
492
493 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
494 if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
495 local_irq_set(flags);
496 timeout += jiffies;
497 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
498 if (time_after(jiffies, timeout)) {
499 /*
500 * One last read after the timeout in case
501 * heavy interrupt load made us not make any
502 * progress during the timeout..
503 */
504 stat = hwif->INB(IDE_STATUS_REG);
505 if (!(stat & BUSY_STAT))
506 break;
507
508 local_irq_restore(flags);
509 *rstat = stat;
510 return -EBUSY;
511 }
512 }
513 local_irq_restore(flags);
514 }
515 /*
516 * Allow status to settle, then read it again.
517 * A few rare drives vastly violate the 400ns spec here,
518 * so we'll wait up to 10usec for a "good" status
519 * rather than expensively fail things immediately.
520 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
521 */
522 for (i = 0; i < 10; i++) {
523 udelay(1);
524 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
525 *rstat = stat;
526 return 0;
527 }
528 }
529 *rstat = stat;
530 return -EFAULT;
531 }
532
533 /*
534 * In case of error returns error value after doing "*startstop = ide_error()".
535 * The caller should return the updated value of "startstop" in this case,
536 * "startstop" is unchanged when the function returns 0.
537 */
538 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
539 {
540 int err;
541 u8 stat;
542
543 /* bail early if we've exceeded max_failures */
544 if (drive->max_failures && (drive->failures > drive->max_failures)) {
545 *startstop = ide_stopped;
546 return 1;
547 }
548
549 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
550
551 if (err) {
552 char *s = (err == -EBUSY) ? "status timeout" : "status error";
553 *startstop = ide_error(drive, s, stat);
554 }
555
556 return err;
557 }
558
559 EXPORT_SYMBOL(ide_wait_stat);
560
561 /**
562 * ide_in_drive_list - look for drive in black/white list
563 * @id: drive identifier
564 * @drive_table: list to inspect
565 *
566 * Look for a drive in the blacklist and the whitelist tables
567 * Returns 1 if the drive is found in the table.
568 */
569
570 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
571 {
572 for ( ; drive_table->id_model; drive_table++)
573 if ((!strcmp(drive_table->id_model, id->model)) &&
574 (!drive_table->id_firmware ||
575 strstr(id->fw_rev, drive_table->id_firmware)))
576 return 1;
577 return 0;
578 }
579
580 EXPORT_SYMBOL_GPL(ide_in_drive_list);
581
582 /*
583 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
584 * We list them here and depend on the device side cable detection for them.
585 */
586 static const struct drive_list_entry ivb_list[] = {
587 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
588 { NULL , NULL }
589 };
590
591 /*
592 * All hosts that use the 80c ribbon must use!
593 * The name is derived from upper byte of word 93 and the 80c ribbon.
594 */
595 u8 eighty_ninty_three (ide_drive_t *drive)
596 {
597 ide_hwif_t *hwif = drive->hwif;
598 struct hd_driveid *id = drive->id;
599 int ivb = ide_in_drive_list(id, ivb_list);
600
601 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
602 return 1;
603
604 if (ivb)
605 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
606 drive->name);
607
608 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
609 goto no_80w;
610
611 if (ide_dev_is_sata(id))
612 return 1;
613
614 /*
615 * FIXME:
616 * - change master/slave IDENTIFY order
617 * - force bit13 (80c cable present) check also for !ivb devices
618 * (unless the slave device is pre-ATA3)
619 */
620 #ifndef CONFIG_IDEDMA_IVB
621 if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
622 #else
623 if (id->hw_config & 0x6000)
624 #endif
625 return 1;
626
627 no_80w:
628 if (drive->udma33_warned == 1)
629 return 0;
630
631 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
632 "limiting max speed to UDMA33\n",
633 drive->name,
634 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
635
636 drive->udma33_warned = 1;
637
638 return 0;
639 }
640
641 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
642 {
643 if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
644 (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
645 (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
646 if (eighty_ninty_three(drive) == 0) {
647 printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
648 "be set\n", drive->name);
649 return 1;
650 }
651 }
652
653 return 0;
654 }
655
656 /*
657 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
658 * 1 : Safe to update drive->id DMA registers.
659 * 0 : OOPs not allowed.
660 */
661 int set_transfer (ide_drive_t *drive, ide_task_t *args)
662 {
663 if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
664 (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
665 (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
666 (drive->id->dma_ultra ||
667 drive->id->dma_mword ||
668 drive->id->dma_1word))
669 return 1;
670
671 return 0;
672 }
673
674 #ifdef CONFIG_BLK_DEV_IDEDMA
675 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
676 {
677 if (!drive->crc_count)
678 return drive->current_speed;
679 drive->crc_count = 0;
680
681 switch(drive->current_speed) {
682 case XFER_UDMA_7: return XFER_UDMA_6;
683 case XFER_UDMA_6: return XFER_UDMA_5;
684 case XFER_UDMA_5: return XFER_UDMA_4;
685 case XFER_UDMA_4: return XFER_UDMA_3;
686 case XFER_UDMA_3: return XFER_UDMA_2;
687 case XFER_UDMA_2: return XFER_UDMA_1;
688 case XFER_UDMA_1: return XFER_UDMA_0;
689 /*
690 * OOPS we do not goto non Ultra DMA modes
691 * without iCRC's available we force
692 * the system to PIO and make the user
693 * invoke the ATA-1 ATA-2 DMA modes.
694 */
695 case XFER_UDMA_0:
696 default: return XFER_PIO_4;
697 }
698 }
699 #endif /* CONFIG_BLK_DEV_IDEDMA */
700
701 /*
702 * Update the
703 */
704 int ide_driveid_update (ide_drive_t *drive)
705 {
706 ide_hwif_t *hwif = HWIF(drive);
707 struct hd_driveid *id;
708 #if 0
709 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
710 if (!id)
711 return 0;
712
713 taskfile_lib_get_identify(drive, (char *)&id);
714
715 ide_fix_driveid(id);
716 if (id) {
717 drive->id->dma_ultra = id->dma_ultra;
718 drive->id->dma_mword = id->dma_mword;
719 drive->id->dma_1word = id->dma_1word;
720 /* anything more ? */
721 kfree(id);
722 }
723 return 1;
724 #else
725 /*
726 * Re-read drive->id for possible DMA mode
727 * change (copied from ide-probe.c)
728 */
729 unsigned long timeout, flags;
730
731 SELECT_MASK(drive, 1);
732 if (IDE_CONTROL_REG)
733 hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
734 msleep(50);
735 hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
736 timeout = jiffies + WAIT_WORSTCASE;
737 do {
738 if (time_after(jiffies, timeout)) {
739 SELECT_MASK(drive, 0);
740 return 0; /* drive timed-out */
741 }
742 msleep(50); /* give drive a breather */
743 } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
744 msleep(50); /* wait for IRQ and DRQ_STAT */
745 if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
746 SELECT_MASK(drive, 0);
747 printk("%s: CHECK for good STATUS\n", drive->name);
748 return 0;
749 }
750 local_irq_save(flags);
751 SELECT_MASK(drive, 0);
752 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
753 if (!id) {
754 local_irq_restore(flags);
755 return 0;
756 }
757 ata_input_data(drive, id, SECTOR_WORDS);
758 (void) hwif->INB(IDE_STATUS_REG); /* clear drive IRQ */
759 local_irq_enable();
760 local_irq_restore(flags);
761 ide_fix_driveid(id);
762 if (id) {
763 drive->id->dma_ultra = id->dma_ultra;
764 drive->id->dma_mword = id->dma_mword;
765 drive->id->dma_1word = id->dma_1word;
766 /* anything more ? */
767 kfree(id);
768 }
769
770 return 1;
771 #endif
772 }
773
774 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
775 {
776 ide_hwif_t *hwif = drive->hwif;
777 int error;
778 u8 stat;
779
780 // while (HWGROUP(drive)->busy)
781 // msleep(50);
782
783 #ifdef CONFIG_BLK_DEV_IDEDMA
784 if (hwif->ide_dma_check) /* check if host supports DMA */
785 hwif->dma_host_off(drive);
786 #endif
787
788 /*
789 * Don't use ide_wait_cmd here - it will
790 * attempt to set_geometry and recalibrate,
791 * but for some reason these don't work at
792 * this point (lost interrupt).
793 */
794 /*
795 * Select the drive, and issue the SETFEATURES command
796 */
797 disable_irq_nosync(hwif->irq);
798
799 /*
800 * FIXME: we race against the running IRQ here if
801 * this is called from non IRQ context. If we use
802 * disable_irq() we hang on the error path. Work
803 * is needed.
804 */
805
806 udelay(1);
807 SELECT_DRIVE(drive);
808 SELECT_MASK(drive, 0);
809 udelay(1);
810 if (IDE_CONTROL_REG)
811 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
812 hwif->OUTB(speed, IDE_NSECTOR_REG);
813 hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
814 hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
815 if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
816 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
817
818 error = __ide_wait_stat(drive, drive->ready_stat,
819 BUSY_STAT|DRQ_STAT|ERR_STAT,
820 WAIT_CMD, &stat);
821
822 SELECT_MASK(drive, 0);
823
824 enable_irq(hwif->irq);
825
826 if (error) {
827 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
828 return error;
829 }
830
831 drive->id->dma_ultra &= ~0xFF00;
832 drive->id->dma_mword &= ~0x0F00;
833 drive->id->dma_1word &= ~0x0F00;
834
835 #ifdef CONFIG_BLK_DEV_IDEDMA
836 if (speed >= XFER_SW_DMA_0)
837 hwif->dma_host_on(drive);
838 else if (hwif->ide_dma_check) /* check if host supports DMA */
839 hwif->dma_off_quietly(drive);
840 #endif
841
842 switch(speed) {
843 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
844 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
845 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
846 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
847 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
848 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
849 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
850 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
851 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
852 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
853 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
854 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
855 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
856 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
857 default: break;
858 }
859 if (!drive->init_speed)
860 drive->init_speed = speed;
861 drive->current_speed = speed;
862 return error;
863 }
864
865 /*
866 * This should get invoked any time we exit the driver to
867 * wait for an interrupt response from a drive. handler() points
868 * at the appropriate code to handle the next interrupt, and a
869 * timer is started to prevent us from waiting forever in case
870 * something goes wrong (see the ide_timer_expiry() handler later on).
871 *
872 * See also ide_execute_command
873 */
874 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
875 unsigned int timeout, ide_expiry_t *expiry)
876 {
877 ide_hwgroup_t *hwgroup = HWGROUP(drive);
878
879 if (hwgroup->handler != NULL) {
880 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
881 "old=%p, new=%p\n",
882 drive->name, hwgroup->handler, handler);
883 }
884 hwgroup->handler = handler;
885 hwgroup->expiry = expiry;
886 hwgroup->timer.expires = jiffies + timeout;
887 hwgroup->req_gen_timer = hwgroup->req_gen;
888 add_timer(&hwgroup->timer);
889 }
890
891 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
892 unsigned int timeout, ide_expiry_t *expiry)
893 {
894 unsigned long flags;
895 spin_lock_irqsave(&ide_lock, flags);
896 __ide_set_handler(drive, handler, timeout, expiry);
897 spin_unlock_irqrestore(&ide_lock, flags);
898 }
899
900 EXPORT_SYMBOL(ide_set_handler);
901
902 /**
903 * ide_execute_command - execute an IDE command
904 * @drive: IDE drive to issue the command against
905 * @command: command byte to write
906 * @handler: handler for next phase
907 * @timeout: timeout for command
908 * @expiry: handler to run on timeout
909 *
910 * Helper function to issue an IDE command. This handles the
911 * atomicity requirements, command timing and ensures that the
912 * handler and IRQ setup do not race. All IDE command kick off
913 * should go via this function or do equivalent locking.
914 */
915
916 void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
917 {
918 unsigned long flags;
919 ide_hwgroup_t *hwgroup = HWGROUP(drive);
920 ide_hwif_t *hwif = HWIF(drive);
921
922 spin_lock_irqsave(&ide_lock, flags);
923
924 BUG_ON(hwgroup->handler);
925 hwgroup->handler = handler;
926 hwgroup->expiry = expiry;
927 hwgroup->timer.expires = jiffies + timeout;
928 hwgroup->req_gen_timer = hwgroup->req_gen;
929 add_timer(&hwgroup->timer);
930 hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
931 /* Drive takes 400nS to respond, we must avoid the IRQ being
932 serviced before that.
933
934 FIXME: we could skip this delay with care on non shared
935 devices
936 */
937 ndelay(400);
938 spin_unlock_irqrestore(&ide_lock, flags);
939 }
940
941 EXPORT_SYMBOL(ide_execute_command);
942
943
944 /* needed below */
945 static ide_startstop_t do_reset1 (ide_drive_t *, int);
946
947 /*
948 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
949 * during an atapi drive reset operation. If the drive has not yet responded,
950 * and we have not yet hit our maximum waiting time, then the timer is restarted
951 * for another 50ms.
952 */
953 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
954 {
955 ide_hwgroup_t *hwgroup = HWGROUP(drive);
956 ide_hwif_t *hwif = HWIF(drive);
957 u8 stat;
958
959 SELECT_DRIVE(drive);
960 udelay (10);
961
962 if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
963 printk("%s: ATAPI reset complete\n", drive->name);
964 } else {
965 if (time_before(jiffies, hwgroup->poll_timeout)) {
966 BUG_ON(HWGROUP(drive)->handler != NULL);
967 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
968 /* continue polling */
969 return ide_started;
970 }
971 /* end of polling */
972 hwgroup->polling = 0;
973 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
974 drive->name, stat);
975 /* do it the old fashioned way */
976 return do_reset1(drive, 1);
977 }
978 /* done polling */
979 hwgroup->polling = 0;
980 hwgroup->resetting = 0;
981 return ide_stopped;
982 }
983
984 /*
985 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
986 * during an ide reset operation. If the drives have not yet responded,
987 * and we have not yet hit our maximum waiting time, then the timer is restarted
988 * for another 50ms.
989 */
990 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
991 {
992 ide_hwgroup_t *hwgroup = HWGROUP(drive);
993 ide_hwif_t *hwif = HWIF(drive);
994 u8 tmp;
995
996 if (hwif->reset_poll != NULL) {
997 if (hwif->reset_poll(drive)) {
998 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
999 hwif->name, drive->name);
1000 return ide_stopped;
1001 }
1002 }
1003
1004 if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1005 if (time_before(jiffies, hwgroup->poll_timeout)) {
1006 BUG_ON(HWGROUP(drive)->handler != NULL);
1007 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1008 /* continue polling */
1009 return ide_started;
1010 }
1011 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1012 drive->failures++;
1013 } else {
1014 printk("%s: reset: ", hwif->name);
1015 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1016 printk("success\n");
1017 drive->failures = 0;
1018 } else {
1019 drive->failures++;
1020 printk("master: ");
1021 switch (tmp & 0x7f) {
1022 case 1: printk("passed");
1023 break;
1024 case 2: printk("formatter device error");
1025 break;
1026 case 3: printk("sector buffer error");
1027 break;
1028 case 4: printk("ECC circuitry error");
1029 break;
1030 case 5: printk("controlling MPU error");
1031 break;
1032 default:printk("error (0x%02x?)", tmp);
1033 }
1034 if (tmp & 0x80)
1035 printk("; slave: failed");
1036 printk("\n");
1037 }
1038 }
1039 hwgroup->polling = 0; /* done polling */
1040 hwgroup->resetting = 0; /* done reset attempt */
1041 return ide_stopped;
1042 }
1043
1044 static void check_dma_crc(ide_drive_t *drive)
1045 {
1046 #ifdef CONFIG_BLK_DEV_IDEDMA
1047 if (drive->crc_count) {
1048 drive->hwif->dma_off_quietly(drive);
1049 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1050 if (drive->current_speed >= XFER_SW_DMA_0)
1051 (void) HWIF(drive)->ide_dma_on(drive);
1052 } else
1053 ide_dma_off(drive);
1054 #endif
1055 }
1056
1057 static void ide_disk_pre_reset(ide_drive_t *drive)
1058 {
1059 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1060
1061 drive->special.all = 0;
1062 drive->special.b.set_geometry = legacy;
1063 drive->special.b.recalibrate = legacy;
1064 if (OK_TO_RESET_CONTROLLER)
1065 drive->mult_count = 0;
1066 if (!drive->keep_settings && !drive->using_dma)
1067 drive->mult_req = 0;
1068 if (drive->mult_req != drive->mult_count)
1069 drive->special.b.set_multmode = 1;
1070 }
1071
1072 static void pre_reset(ide_drive_t *drive)
1073 {
1074 if (drive->media == ide_disk)
1075 ide_disk_pre_reset(drive);
1076 else
1077 drive->post_reset = 1;
1078
1079 if (!drive->keep_settings) {
1080 if (drive->using_dma) {
1081 check_dma_crc(drive);
1082 } else {
1083 drive->unmask = 0;
1084 drive->io_32bit = 0;
1085 }
1086 return;
1087 }
1088 if (drive->using_dma)
1089 check_dma_crc(drive);
1090
1091 if (HWIF(drive)->pre_reset != NULL)
1092 HWIF(drive)->pre_reset(drive);
1093
1094 if (drive->current_speed != 0xff)
1095 drive->desired_speed = drive->current_speed;
1096 drive->current_speed = 0xff;
1097 }
1098
1099 /*
1100 * do_reset1() attempts to recover a confused drive by resetting it.
1101 * Unfortunately, resetting a disk drive actually resets all devices on
1102 * the same interface, so it can really be thought of as resetting the
1103 * interface rather than resetting the drive.
1104 *
1105 * ATAPI devices have their own reset mechanism which allows them to be
1106 * individually reset without clobbering other devices on the same interface.
1107 *
1108 * Unfortunately, the IDE interface does not generate an interrupt to let
1109 * us know when the reset operation has finished, so we must poll for this.
1110 * Equally poor, though, is the fact that this may a very long time to complete,
1111 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1112 * we set a timer to poll at 50ms intervals.
1113 */
1114 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1115 {
1116 unsigned int unit;
1117 unsigned long flags;
1118 ide_hwif_t *hwif;
1119 ide_hwgroup_t *hwgroup;
1120
1121 spin_lock_irqsave(&ide_lock, flags);
1122 hwif = HWIF(drive);
1123 hwgroup = HWGROUP(drive);
1124
1125 /* We must not reset with running handlers */
1126 BUG_ON(hwgroup->handler != NULL);
1127
1128 /* For an ATAPI device, first try an ATAPI SRST. */
1129 if (drive->media != ide_disk && !do_not_try_atapi) {
1130 hwgroup->resetting = 1;
1131 pre_reset(drive);
1132 SELECT_DRIVE(drive);
1133 udelay (20);
1134 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1135 ndelay(400);
1136 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1137 hwgroup->polling = 1;
1138 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1139 spin_unlock_irqrestore(&ide_lock, flags);
1140 return ide_started;
1141 }
1142
1143 /*
1144 * First, reset any device state data we were maintaining
1145 * for any of the drives on this interface.
1146 */
1147 for (unit = 0; unit < MAX_DRIVES; ++unit)
1148 pre_reset(&hwif->drives[unit]);
1149
1150 #if OK_TO_RESET_CONTROLLER
1151 if (!IDE_CONTROL_REG) {
1152 spin_unlock_irqrestore(&ide_lock, flags);
1153 return ide_stopped;
1154 }
1155
1156 hwgroup->resetting = 1;
1157 /*
1158 * Note that we also set nIEN while resetting the device,
1159 * to mask unwanted interrupts from the interface during the reset.
1160 * However, due to the design of PC hardware, this will cause an
1161 * immediate interrupt due to the edge transition it produces.
1162 * This single interrupt gives us a "fast poll" for drives that
1163 * recover from reset very quickly, saving us the first 50ms wait time.
1164 */
1165 /* set SRST and nIEN */
1166 hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1167 /* more than enough time */
1168 udelay(10);
1169 if (drive->quirk_list == 2) {
1170 /* clear SRST and nIEN */
1171 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1172 } else {
1173 /* clear SRST, leave nIEN */
1174 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1175 }
1176 /* more than enough time */
1177 udelay(10);
1178 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1179 hwgroup->polling = 1;
1180 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1181
1182 /*
1183 * Some weird controller like resetting themselves to a strange
1184 * state when the disks are reset this way. At least, the Winbond
1185 * 553 documentation says that
1186 */
1187 if (hwif->resetproc != NULL) {
1188 hwif->resetproc(drive);
1189 }
1190
1191 #endif /* OK_TO_RESET_CONTROLLER */
1192
1193 spin_unlock_irqrestore(&ide_lock, flags);
1194 return ide_started;
1195 }
1196
1197 /*
1198 * ide_do_reset() is the entry point to the drive/interface reset code.
1199 */
1200
1201 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1202 {
1203 return do_reset1(drive, 0);
1204 }
1205
1206 EXPORT_SYMBOL(ide_do_reset);
1207
1208 /*
1209 * ide_wait_not_busy() waits for the currently selected device on the hwif
1210 * to report a non-busy status, see comments in probe_hwif().
1211 */
1212 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1213 {
1214 u8 stat = 0;
1215
1216 while(timeout--) {
1217 /*
1218 * Turn this into a schedule() sleep once I'm sure
1219 * about locking issues (2.5 work ?).
1220 */
1221 mdelay(1);
1222 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1223 if ((stat & BUSY_STAT) == 0)
1224 return 0;
1225 /*
1226 * Assume a value of 0xff means nothing is connected to
1227 * the interface and it doesn't implement the pull-down
1228 * resistor on D7.
1229 */
1230 if (stat == 0xff)
1231 return -ENODEV;
1232 touch_softlockup_watchdog();
1233 touch_nmi_watchdog();
1234 }
1235 return -EBUSY;
1236 }
1237
1238 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1239
This page took 0.05872 seconds and 5 git commands to generate.