amd74xx: workaround unreliable AltStatus register for nVidia controllers
[deliverable/linux.git] / drivers / ide / ide-iops.c
1 /*
2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat
4 *
5 */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/ide.h>
22 #include <linux/bitops.h>
23 #include <linux/nmi.h>
24
25 #include <asm/byteorder.h>
26 #include <asm/irq.h>
27 #include <asm/uaccess.h>
28 #include <asm/io.h>
29
30 /*
31 * Conventional PIO operations for ATA devices
32 */
33
34 static u8 ide_inb (unsigned long port)
35 {
36 return (u8) inb(port);
37 }
38
39 static void ide_outb (u8 val, unsigned long port)
40 {
41 outb(val, port);
42 }
43
44 /*
45 * MMIO operations, typically used for SATA controllers
46 */
47
48 static u8 ide_mm_inb (unsigned long port)
49 {
50 return (u8) readb((void __iomem *) port);
51 }
52
53 static void ide_mm_outb (u8 value, unsigned long port)
54 {
55 writeb(value, (void __iomem *) port);
56 }
57
58 void SELECT_DRIVE (ide_drive_t *drive)
59 {
60 ide_hwif_t *hwif = drive->hwif;
61 const struct ide_port_ops *port_ops = hwif->port_ops;
62 ide_task_t task;
63
64 if (port_ops && port_ops->selectproc)
65 port_ops->selectproc(drive);
66
67 memset(&task, 0, sizeof(task));
68 task.tf_flags = IDE_TFLAG_OUT_DEVICE;
69
70 drive->hwif->tp_ops->tf_load(drive, &task);
71 }
72
73 void SELECT_MASK(ide_drive_t *drive, int mask)
74 {
75 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
76
77 if (port_ops && port_ops->maskproc)
78 port_ops->maskproc(drive, mask);
79 }
80
81 void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
82 {
83 if (hwif->host_flags & IDE_HFLAG_MMIO)
84 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
85 else
86 outb(cmd, hwif->io_ports.command_addr);
87 }
88 EXPORT_SYMBOL_GPL(ide_exec_command);
89
90 u8 ide_read_status(ide_hwif_t *hwif)
91 {
92 if (hwif->host_flags & IDE_HFLAG_MMIO)
93 return readb((void __iomem *)hwif->io_ports.status_addr);
94 else
95 return inb(hwif->io_ports.status_addr);
96 }
97 EXPORT_SYMBOL_GPL(ide_read_status);
98
99 u8 ide_read_altstatus(ide_hwif_t *hwif)
100 {
101 if (hwif->host_flags & IDE_HFLAG_MMIO)
102 return readb((void __iomem *)hwif->io_ports.ctl_addr);
103 else
104 return inb(hwif->io_ports.ctl_addr);
105 }
106 EXPORT_SYMBOL_GPL(ide_read_altstatus);
107
108 u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
109 {
110 if (hwif->host_flags & IDE_HFLAG_MMIO)
111 return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
112 else
113 return inb(hwif->dma_base + ATA_DMA_STATUS);
114 }
115 EXPORT_SYMBOL_GPL(ide_read_sff_dma_status);
116
117 void ide_set_irq(ide_hwif_t *hwif, int on)
118 {
119 u8 ctl = ATA_DEVCTL_OBS;
120
121 if (on == 4) { /* hack for SRST */
122 ctl |= 4;
123 on &= ~4;
124 }
125
126 ctl |= on ? 0 : 2;
127
128 if (hwif->host_flags & IDE_HFLAG_MMIO)
129 writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
130 else
131 outb(ctl, hwif->io_ports.ctl_addr);
132 }
133 EXPORT_SYMBOL_GPL(ide_set_irq);
134
135 void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
136 {
137 ide_hwif_t *hwif = drive->hwif;
138 struct ide_io_ports *io_ports = &hwif->io_ports;
139 struct ide_taskfile *tf = &task->tf;
140 void (*tf_outb)(u8 addr, unsigned long port);
141 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
142 u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
143
144 if (mmio)
145 tf_outb = ide_mm_outb;
146 else
147 tf_outb = ide_outb;
148
149 if (task->tf_flags & IDE_TFLAG_FLAGGED)
150 HIHI = 0xFF;
151
152 if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
153 u16 data = (tf->hob_data << 8) | tf->data;
154
155 if (mmio)
156 writew(data, (void __iomem *)io_ports->data_addr);
157 else
158 outw(data, io_ports->data_addr);
159 }
160
161 if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
162 tf_outb(tf->hob_feature, io_ports->feature_addr);
163 if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
164 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
165 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
166 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
167 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
168 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
169 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
170 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
171
172 if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
173 tf_outb(tf->feature, io_ports->feature_addr);
174 if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
175 tf_outb(tf->nsect, io_ports->nsect_addr);
176 if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
177 tf_outb(tf->lbal, io_ports->lbal_addr);
178 if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
179 tf_outb(tf->lbam, io_ports->lbam_addr);
180 if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
181 tf_outb(tf->lbah, io_ports->lbah_addr);
182
183 if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
184 tf_outb((tf->device & HIHI) | drive->select,
185 io_ports->device_addr);
186 }
187 EXPORT_SYMBOL_GPL(ide_tf_load);
188
189 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
190 {
191 ide_hwif_t *hwif = drive->hwif;
192 struct ide_io_ports *io_ports = &hwif->io_ports;
193 struct ide_taskfile *tf = &task->tf;
194 void (*tf_outb)(u8 addr, unsigned long port);
195 u8 (*tf_inb)(unsigned long port);
196 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
197
198 if (mmio) {
199 tf_outb = ide_mm_outb;
200 tf_inb = ide_mm_inb;
201 } else {
202 tf_outb = ide_outb;
203 tf_inb = ide_inb;
204 }
205
206 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
207 u16 data;
208
209 if (mmio)
210 data = readw((void __iomem *)io_ports->data_addr);
211 else
212 data = inw(io_ports->data_addr);
213
214 tf->data = data & 0xff;
215 tf->hob_data = (data >> 8) & 0xff;
216 }
217
218 /* be sure we're looking at the low order bits */
219 tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
220
221 if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
222 tf->feature = tf_inb(io_ports->feature_addr);
223 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
224 tf->nsect = tf_inb(io_ports->nsect_addr);
225 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
226 tf->lbal = tf_inb(io_ports->lbal_addr);
227 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
228 tf->lbam = tf_inb(io_ports->lbam_addr);
229 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
230 tf->lbah = tf_inb(io_ports->lbah_addr);
231 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
232 tf->device = tf_inb(io_ports->device_addr);
233
234 if (task->tf_flags & IDE_TFLAG_LBA48) {
235 tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
236
237 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
238 tf->hob_feature = tf_inb(io_ports->feature_addr);
239 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
240 tf->hob_nsect = tf_inb(io_ports->nsect_addr);
241 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
242 tf->hob_lbal = tf_inb(io_ports->lbal_addr);
243 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
244 tf->hob_lbam = tf_inb(io_ports->lbam_addr);
245 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
246 tf->hob_lbah = tf_inb(io_ports->lbah_addr);
247 }
248 }
249 EXPORT_SYMBOL_GPL(ide_tf_read);
250
251 /*
252 * Some localbus EIDE interfaces require a special access sequence
253 * when using 32-bit I/O instructions to transfer data. We call this
254 * the "vlb_sync" sequence, which consists of three successive reads
255 * of the sector count register location, with interrupts disabled
256 * to ensure that the reads all happen together.
257 */
258 static void ata_vlb_sync(unsigned long port)
259 {
260 (void)inb(port);
261 (void)inb(port);
262 (void)inb(port);
263 }
264
265 /*
266 * This is used for most PIO data transfers *from* the IDE interface
267 *
268 * These routines will round up any request for an odd number of bytes,
269 * so if an odd len is specified, be sure that there's at least one
270 * extra byte allocated for the buffer.
271 */
272 void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf,
273 unsigned int len)
274 {
275 ide_hwif_t *hwif = drive->hwif;
276 struct ide_io_ports *io_ports = &hwif->io_ports;
277 unsigned long data_addr = io_ports->data_addr;
278 u8 io_32bit = drive->io_32bit;
279 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
280
281 len++;
282
283 if (io_32bit) {
284 unsigned long uninitialized_var(flags);
285
286 if ((io_32bit & 2) && !mmio) {
287 local_irq_save(flags);
288 ata_vlb_sync(io_ports->nsect_addr);
289 }
290
291 if (mmio)
292 __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
293 else
294 insl(data_addr, buf, len / 4);
295
296 if ((io_32bit & 2) && !mmio)
297 local_irq_restore(flags);
298
299 if ((len & 3) >= 2) {
300 if (mmio)
301 __ide_mm_insw((void __iomem *)data_addr,
302 (u8 *)buf + (len & ~3), 1);
303 else
304 insw(data_addr, (u8 *)buf + (len & ~3), 1);
305 }
306 } else {
307 if (mmio)
308 __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
309 else
310 insw(data_addr, buf, len / 2);
311 }
312 }
313 EXPORT_SYMBOL_GPL(ide_input_data);
314
315 /*
316 * This is used for most PIO data transfers *to* the IDE interface
317 */
318 void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf,
319 unsigned int len)
320 {
321 ide_hwif_t *hwif = drive->hwif;
322 struct ide_io_ports *io_ports = &hwif->io_ports;
323 unsigned long data_addr = io_ports->data_addr;
324 u8 io_32bit = drive->io_32bit;
325 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
326
327 if (io_32bit) {
328 unsigned long uninitialized_var(flags);
329
330 if ((io_32bit & 2) && !mmio) {
331 local_irq_save(flags);
332 ata_vlb_sync(io_ports->nsect_addr);
333 }
334
335 if (mmio)
336 __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
337 else
338 outsl(data_addr, buf, len / 4);
339
340 if ((io_32bit & 2) && !mmio)
341 local_irq_restore(flags);
342
343 if ((len & 3) >= 2) {
344 if (mmio)
345 __ide_mm_outsw((void __iomem *)data_addr,
346 (u8 *)buf + (len & ~3), 1);
347 else
348 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
349 }
350 } else {
351 if (mmio)
352 __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
353 else
354 outsw(data_addr, buf, len / 2);
355 }
356 }
357 EXPORT_SYMBOL_GPL(ide_output_data);
358
359 u8 ide_read_error(ide_drive_t *drive)
360 {
361 ide_task_t task;
362
363 memset(&task, 0, sizeof(task));
364 task.tf_flags = IDE_TFLAG_IN_FEATURE;
365
366 drive->hwif->tp_ops->tf_read(drive, &task);
367
368 return task.tf.error;
369 }
370 EXPORT_SYMBOL_GPL(ide_read_error);
371
372 void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
373 {
374 ide_task_t task;
375
376 memset(&task, 0, sizeof(task));
377 task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
378 IDE_TFLAG_IN_NSECT;
379
380 drive->hwif->tp_ops->tf_read(drive, &task);
381
382 *bcount = (task.tf.lbah << 8) | task.tf.lbam;
383 *ireason = task.tf.nsect & 3;
384 }
385 EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
386
387 const struct ide_tp_ops default_tp_ops = {
388 .exec_command = ide_exec_command,
389 .read_status = ide_read_status,
390 .read_altstatus = ide_read_altstatus,
391 .read_sff_dma_status = ide_read_sff_dma_status,
392
393 .set_irq = ide_set_irq,
394
395 .tf_load = ide_tf_load,
396 .tf_read = ide_tf_read,
397
398 .input_data = ide_input_data,
399 .output_data = ide_output_data,
400 };
401
402 void ide_fix_driveid(u16 *id)
403 {
404 #ifndef __LITTLE_ENDIAN
405 # ifdef __BIG_ENDIAN
406 int i;
407
408 for (i = 0; i < 256; i++)
409 id[i] = __le16_to_cpu(id[i]);
410 # else
411 # error "Please fix <asm/byteorder.h>"
412 # endif
413 #endif
414 }
415
416 /*
417 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
418 * removing leading/trailing blanks and compressing internal blanks.
419 * It is primarily used to tidy up the model name/number fields as
420 * returned by the ATA_CMD_ID_ATA[PI] commands.
421 */
422
423 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
424 {
425 u8 *p, *end = &s[bytecount & ~1]; /* bytecount must be even */
426
427 if (byteswap) {
428 /* convert from big-endian to host byte order */
429 for (p = s ; p != end ; p += 2)
430 be16_to_cpus((u16 *) p);
431 }
432
433 /* strip leading blanks */
434 p = s;
435 while (s != end && *s == ' ')
436 ++s;
437 /* compress internal blanks and strip trailing blanks */
438 while (s != end && *s) {
439 if (*s++ != ' ' || (s != end && *s && *s != ' '))
440 *p++ = *(s-1);
441 }
442 /* wipe out trailing garbage */
443 while (p != end)
444 *p++ = '\0';
445 }
446
447 EXPORT_SYMBOL(ide_fixstring);
448
449 /*
450 * Needed for PCI irq sharing
451 */
452 int drive_is_ready (ide_drive_t *drive)
453 {
454 ide_hwif_t *hwif = HWIF(drive);
455 u8 stat = 0;
456
457 if (drive->waiting_for_dma)
458 return hwif->dma_ops->dma_test_irq(drive);
459
460 #if 0
461 /* need to guarantee 400ns since last command was issued */
462 udelay(1);
463 #endif
464
465 /*
466 * We do a passive status test under shared PCI interrupts on
467 * cards that truly share the ATA side interrupt, but may also share
468 * an interrupt with another pci card/device. We make no assumptions
469 * about possible isa-pnp and pci-pnp issues yet.
470 */
471 if (hwif->io_ports.ctl_addr &&
472 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
473 stat = hwif->tp_ops->read_altstatus(hwif);
474 else
475 /* Note: this may clear a pending IRQ!! */
476 stat = hwif->tp_ops->read_status(hwif);
477
478 if (stat & ATA_BUSY)
479 /* drive busy: definitely not interrupting */
480 return 0;
481
482 /* drive ready: *might* be interrupting */
483 return 1;
484 }
485
486 EXPORT_SYMBOL(drive_is_ready);
487
488 /*
489 * This routine busy-waits for the drive status to be not "busy".
490 * It then checks the status for all of the "good" bits and none
491 * of the "bad" bits, and if all is okay it returns 0. All other
492 * cases return error -- caller may then invoke ide_error().
493 *
494 * This routine should get fixed to not hog the cpu during extra long waits..
495 * That could be done by busy-waiting for the first jiffy or two, and then
496 * setting a timer to wake up at half second intervals thereafter,
497 * until timeout is achieved, before timing out.
498 */
499 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
500 {
501 ide_hwif_t *hwif = drive->hwif;
502 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
503 unsigned long flags;
504 int i;
505 u8 stat;
506
507 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
508 stat = tp_ops->read_status(hwif);
509
510 if (stat & ATA_BUSY) {
511 local_irq_set(flags);
512 timeout += jiffies;
513 while ((stat = tp_ops->read_status(hwif)) & ATA_BUSY) {
514 if (time_after(jiffies, timeout)) {
515 /*
516 * One last read after the timeout in case
517 * heavy interrupt load made us not make any
518 * progress during the timeout..
519 */
520 stat = tp_ops->read_status(hwif);
521 if ((stat & ATA_BUSY) == 0)
522 break;
523
524 local_irq_restore(flags);
525 *rstat = stat;
526 return -EBUSY;
527 }
528 }
529 local_irq_restore(flags);
530 }
531 /*
532 * Allow status to settle, then read it again.
533 * A few rare drives vastly violate the 400ns spec here,
534 * so we'll wait up to 10usec for a "good" status
535 * rather than expensively fail things immediately.
536 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
537 */
538 for (i = 0; i < 10; i++) {
539 udelay(1);
540 stat = tp_ops->read_status(hwif);
541
542 if (OK_STAT(stat, good, bad)) {
543 *rstat = stat;
544 return 0;
545 }
546 }
547 *rstat = stat;
548 return -EFAULT;
549 }
550
551 /*
552 * In case of error returns error value after doing "*startstop = ide_error()".
553 * The caller should return the updated value of "startstop" in this case,
554 * "startstop" is unchanged when the function returns 0.
555 */
556 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
557 {
558 int err;
559 u8 stat;
560
561 /* bail early if we've exceeded max_failures */
562 if (drive->max_failures && (drive->failures > drive->max_failures)) {
563 *startstop = ide_stopped;
564 return 1;
565 }
566
567 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
568
569 if (err) {
570 char *s = (err == -EBUSY) ? "status timeout" : "status error";
571 *startstop = ide_error(drive, s, stat);
572 }
573
574 return err;
575 }
576
577 EXPORT_SYMBOL(ide_wait_stat);
578
579 /**
580 * ide_in_drive_list - look for drive in black/white list
581 * @id: drive identifier
582 * @table: list to inspect
583 *
584 * Look for a drive in the blacklist and the whitelist tables
585 * Returns 1 if the drive is found in the table.
586 */
587
588 int ide_in_drive_list(u16 *id, const struct drive_list_entry *table)
589 {
590 for ( ; table->id_model; table++)
591 if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) &&
592 (!table->id_firmware ||
593 strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware)))
594 return 1;
595 return 0;
596 }
597
598 EXPORT_SYMBOL_GPL(ide_in_drive_list);
599
600 /*
601 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
602 * We list them here and depend on the device side cable detection for them.
603 *
604 * Some optical devices with the buggy firmwares have the same problem.
605 */
606 static const struct drive_list_entry ivb_list[] = {
607 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
608 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
609 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
610 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
611 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
612 { "TSSTcorp CDDVDW SH-S202H" , "SB00" },
613 { "TSSTcorp CDDVDW SH-S202H" , "SB01" },
614 { NULL , NULL }
615 };
616
617 /*
618 * All hosts that use the 80c ribbon must use!
619 * The name is derived from upper byte of word 93 and the 80c ribbon.
620 */
621 u8 eighty_ninty_three (ide_drive_t *drive)
622 {
623 ide_hwif_t *hwif = drive->hwif;
624 u16 *id = drive->id;
625 int ivb = ide_in_drive_list(id, ivb_list);
626
627 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
628 return 1;
629
630 if (ivb)
631 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
632 drive->name);
633
634 if (ata_id_is_sata(id) && !ivb)
635 return 1;
636
637 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
638 goto no_80w;
639
640 /*
641 * FIXME:
642 * - change master/slave IDENTIFY order
643 * - force bit13 (80c cable present) check also for !ivb devices
644 * (unless the slave device is pre-ATA3)
645 */
646 if ((id[ATA_ID_HW_CONFIG] & 0x4000) ||
647 (ivb && (id[ATA_ID_HW_CONFIG] & 0x2000)))
648 return 1;
649
650 no_80w:
651 if (drive->dev_flags & IDE_DFLAG_UDMA33_WARNED)
652 return 0;
653
654 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
655 "limiting max speed to UDMA33\n",
656 drive->name,
657 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
658
659 drive->dev_flags |= IDE_DFLAG_UDMA33_WARNED;
660
661 return 0;
662 }
663
664 int ide_driveid_update(ide_drive_t *drive)
665 {
666 ide_hwif_t *hwif = drive->hwif;
667 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
668 u16 *id;
669 unsigned long flags;
670 u8 stat;
671
672 /*
673 * Re-read drive->id for possible DMA mode
674 * change (copied from ide-probe.c)
675 */
676
677 SELECT_MASK(drive, 1);
678 tp_ops->set_irq(hwif, 0);
679 msleep(50);
680 tp_ops->exec_command(hwif, ATA_CMD_ID_ATA);
681
682 if (ide_busy_sleep(hwif, WAIT_WORSTCASE, 1)) {
683 SELECT_MASK(drive, 0);
684 return 0;
685 }
686
687 msleep(50); /* wait for IRQ and ATA_DRQ */
688 stat = tp_ops->read_status(hwif);
689
690 if (!OK_STAT(stat, ATA_DRQ, BAD_R_STAT)) {
691 SELECT_MASK(drive, 0);
692 printk("%s: CHECK for good STATUS\n", drive->name);
693 return 0;
694 }
695 local_irq_save(flags);
696 SELECT_MASK(drive, 0);
697 id = kmalloc(SECTOR_SIZE, GFP_ATOMIC);
698 if (!id) {
699 local_irq_restore(flags);
700 return 0;
701 }
702 tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
703 (void)tp_ops->read_status(hwif); /* clear drive IRQ */
704 local_irq_enable();
705 local_irq_restore(flags);
706 ide_fix_driveid(id);
707
708 drive->id[ATA_ID_UDMA_MODES] = id[ATA_ID_UDMA_MODES];
709 drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES];
710 drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES];
711 /* anything more ? */
712
713 kfree(id);
714
715 if ((drive->dev_flags & IDE_DFLAG_USING_DMA) && ide_id_dma_bug(drive))
716 ide_dma_off(drive);
717
718 return 1;
719 }
720
721 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
722 {
723 ide_hwif_t *hwif = drive->hwif;
724 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
725 u16 *id = drive->id, i;
726 int error = 0;
727 u8 stat;
728 ide_task_t task;
729
730 #ifdef CONFIG_BLK_DEV_IDEDMA
731 if (hwif->dma_ops) /* check if host supports DMA */
732 hwif->dma_ops->dma_host_set(drive, 0);
733 #endif
734
735 /* Skip setting PIO flow-control modes on pre-EIDE drives */
736 if ((speed & 0xf8) == XFER_PIO_0 && ata_id_has_iordy(drive->id) == 0)
737 goto skip;
738
739 /*
740 * Don't use ide_wait_cmd here - it will
741 * attempt to set_geometry and recalibrate,
742 * but for some reason these don't work at
743 * this point (lost interrupt).
744 */
745 /*
746 * Select the drive, and issue the SETFEATURES command
747 */
748 disable_irq_nosync(hwif->irq);
749
750 /*
751 * FIXME: we race against the running IRQ here if
752 * this is called from non IRQ context. If we use
753 * disable_irq() we hang on the error path. Work
754 * is needed.
755 */
756
757 udelay(1);
758 SELECT_DRIVE(drive);
759 SELECT_MASK(drive, 1);
760 udelay(1);
761 tp_ops->set_irq(hwif, 0);
762
763 memset(&task, 0, sizeof(task));
764 task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
765 task.tf.feature = SETFEATURES_XFER;
766 task.tf.nsect = speed;
767
768 tp_ops->tf_load(drive, &task);
769
770 tp_ops->exec_command(hwif, ATA_CMD_SET_FEATURES);
771
772 if (drive->quirk_list == 2)
773 tp_ops->set_irq(hwif, 1);
774
775 error = __ide_wait_stat(drive, drive->ready_stat,
776 ATA_BUSY | ATA_DRQ | ATA_ERR,
777 WAIT_CMD, &stat);
778
779 SELECT_MASK(drive, 0);
780
781 enable_irq(hwif->irq);
782
783 if (error) {
784 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
785 return error;
786 }
787
788 id[ATA_ID_UDMA_MODES] &= ~0xFF00;
789 id[ATA_ID_MWDMA_MODES] &= ~0x0F00;
790 id[ATA_ID_SWDMA_MODES] &= ~0x0F00;
791
792 skip:
793 #ifdef CONFIG_BLK_DEV_IDEDMA
794 if (speed >= XFER_SW_DMA_0 && (drive->dev_flags & IDE_DFLAG_USING_DMA))
795 hwif->dma_ops->dma_host_set(drive, 1);
796 else if (hwif->dma_ops) /* check if host supports DMA */
797 ide_dma_off_quietly(drive);
798 #endif
799
800 if (speed >= XFER_UDMA_0) {
801 i = 1 << (speed - XFER_UDMA_0);
802 id[ATA_ID_UDMA_MODES] |= (i << 8 | i);
803 } else if (speed >= XFER_MW_DMA_0) {
804 i = 1 << (speed - XFER_MW_DMA_0);
805 id[ATA_ID_MWDMA_MODES] |= (i << 8 | i);
806 } else if (speed >= XFER_SW_DMA_0) {
807 i = 1 << (speed - XFER_SW_DMA_0);
808 id[ATA_ID_SWDMA_MODES] |= (i << 8 | i);
809 }
810
811 if (!drive->init_speed)
812 drive->init_speed = speed;
813 drive->current_speed = speed;
814 return error;
815 }
816
817 /*
818 * This should get invoked any time we exit the driver to
819 * wait for an interrupt response from a drive. handler() points
820 * at the appropriate code to handle the next interrupt, and a
821 * timer is started to prevent us from waiting forever in case
822 * something goes wrong (see the ide_timer_expiry() handler later on).
823 *
824 * See also ide_execute_command
825 */
826 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
827 unsigned int timeout, ide_expiry_t *expiry)
828 {
829 ide_hwgroup_t *hwgroup = HWGROUP(drive);
830
831 BUG_ON(hwgroup->handler);
832 hwgroup->handler = handler;
833 hwgroup->expiry = expiry;
834 hwgroup->timer.expires = jiffies + timeout;
835 hwgroup->req_gen_timer = hwgroup->req_gen;
836 add_timer(&hwgroup->timer);
837 }
838
839 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
840 unsigned int timeout, ide_expiry_t *expiry)
841 {
842 unsigned long flags;
843 spin_lock_irqsave(&ide_lock, flags);
844 __ide_set_handler(drive, handler, timeout, expiry);
845 spin_unlock_irqrestore(&ide_lock, flags);
846 }
847
848 EXPORT_SYMBOL(ide_set_handler);
849
850 /**
851 * ide_execute_command - execute an IDE command
852 * @drive: IDE drive to issue the command against
853 * @command: command byte to write
854 * @handler: handler for next phase
855 * @timeout: timeout for command
856 * @expiry: handler to run on timeout
857 *
858 * Helper function to issue an IDE command. This handles the
859 * atomicity requirements, command timing and ensures that the
860 * handler and IRQ setup do not race. All IDE command kick off
861 * should go via this function or do equivalent locking.
862 */
863
864 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
865 unsigned timeout, ide_expiry_t *expiry)
866 {
867 unsigned long flags;
868 ide_hwif_t *hwif = HWIF(drive);
869
870 spin_lock_irqsave(&ide_lock, flags);
871 __ide_set_handler(drive, handler, timeout, expiry);
872 hwif->tp_ops->exec_command(hwif, cmd);
873 /*
874 * Drive takes 400nS to respond, we must avoid the IRQ being
875 * serviced before that.
876 *
877 * FIXME: we could skip this delay with care on non shared devices
878 */
879 ndelay(400);
880 spin_unlock_irqrestore(&ide_lock, flags);
881 }
882 EXPORT_SYMBOL(ide_execute_command);
883
884 void ide_execute_pkt_cmd(ide_drive_t *drive)
885 {
886 ide_hwif_t *hwif = drive->hwif;
887 unsigned long flags;
888
889 spin_lock_irqsave(&ide_lock, flags);
890 hwif->tp_ops->exec_command(hwif, ATA_CMD_PACKET);
891 ndelay(400);
892 spin_unlock_irqrestore(&ide_lock, flags);
893 }
894 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
895
896 static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
897 {
898 struct request *rq = drive->hwif->hwgroup->rq;
899
900 if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
901 ide_end_request(drive, err ? err : 1, 0);
902 }
903
904 /* needed below */
905 static ide_startstop_t do_reset1 (ide_drive_t *, int);
906
907 /*
908 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
909 * during an atapi drive reset operation. If the drive has not yet responded,
910 * and we have not yet hit our maximum waiting time, then the timer is restarted
911 * for another 50ms.
912 */
913 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
914 {
915 ide_hwif_t *hwif = drive->hwif;
916 ide_hwgroup_t *hwgroup = hwif->hwgroup;
917 u8 stat;
918
919 SELECT_DRIVE(drive);
920 udelay (10);
921 stat = hwif->tp_ops->read_status(hwif);
922
923 if (OK_STAT(stat, 0, ATA_BUSY))
924 printk("%s: ATAPI reset complete\n", drive->name);
925 else {
926 if (time_before(jiffies, hwgroup->poll_timeout)) {
927 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
928 /* continue polling */
929 return ide_started;
930 }
931 /* end of polling */
932 hwgroup->polling = 0;
933 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
934 drive->name, stat);
935 /* do it the old fashioned way */
936 return do_reset1(drive, 1);
937 }
938 /* done polling */
939 hwgroup->polling = 0;
940 ide_complete_drive_reset(drive, 0);
941 return ide_stopped;
942 }
943
944 static void ide_reset_report_error(ide_hwif_t *hwif, u8 err)
945 {
946 static const char *err_master_vals[] =
947 { NULL, "passed", "formatter device error",
948 "sector buffer error", "ECC circuitry error",
949 "controlling MPU error" };
950
951 u8 err_master = err & 0x7f;
952
953 printk(KERN_ERR "%s: reset: master: ", hwif->name);
954 if (err_master && err_master < 6)
955 printk(KERN_CONT "%s", err_master_vals[err_master]);
956 else
957 printk(KERN_CONT "error (0x%02x?)", err);
958 if (err & 0x80)
959 printk(KERN_CONT "; slave: failed");
960 printk(KERN_CONT "\n");
961 }
962
963 /*
964 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
965 * during an ide reset operation. If the drives have not yet responded,
966 * and we have not yet hit our maximum waiting time, then the timer is restarted
967 * for another 50ms.
968 */
969 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
970 {
971 ide_hwgroup_t *hwgroup = HWGROUP(drive);
972 ide_hwif_t *hwif = HWIF(drive);
973 const struct ide_port_ops *port_ops = hwif->port_ops;
974 u8 tmp;
975 int err = 0;
976
977 if (port_ops && port_ops->reset_poll) {
978 err = port_ops->reset_poll(drive);
979 if (err) {
980 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
981 hwif->name, drive->name);
982 goto out;
983 }
984 }
985
986 tmp = hwif->tp_ops->read_status(hwif);
987
988 if (!OK_STAT(tmp, 0, ATA_BUSY)) {
989 if (time_before(jiffies, hwgroup->poll_timeout)) {
990 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
991 /* continue polling */
992 return ide_started;
993 }
994 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
995 drive->failures++;
996 err = -EIO;
997 } else {
998 tmp = ide_read_error(drive);
999
1000 if (tmp == 1) {
1001 printk(KERN_INFO "%s: reset: success\n", hwif->name);
1002 drive->failures = 0;
1003 } else {
1004 ide_reset_report_error(hwif, tmp);
1005 drive->failures++;
1006 err = -EIO;
1007 }
1008 }
1009 out:
1010 hwgroup->polling = 0; /* done polling */
1011 ide_complete_drive_reset(drive, err);
1012 return ide_stopped;
1013 }
1014
1015 static void ide_disk_pre_reset(ide_drive_t *drive)
1016 {
1017 int legacy = (drive->id[ATA_ID_CFS_ENABLE_2] & 0x0400) ? 0 : 1;
1018
1019 drive->special.all = 0;
1020 drive->special.b.set_geometry = legacy;
1021 drive->special.b.recalibrate = legacy;
1022
1023 drive->mult_count = 0;
1024 drive->dev_flags &= ~IDE_DFLAG_PARKED;
1025
1026 if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0 &&
1027 (drive->dev_flags & IDE_DFLAG_USING_DMA) == 0)
1028 drive->mult_req = 0;
1029
1030 if (drive->mult_req != drive->mult_count)
1031 drive->special.b.set_multmode = 1;
1032 }
1033
1034 static void pre_reset(ide_drive_t *drive)
1035 {
1036 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1037
1038 if (drive->media == ide_disk)
1039 ide_disk_pre_reset(drive);
1040 else
1041 drive->dev_flags |= IDE_DFLAG_POST_RESET;
1042
1043 if (drive->dev_flags & IDE_DFLAG_USING_DMA) {
1044 if (drive->crc_count)
1045 ide_check_dma_crc(drive);
1046 else
1047 ide_dma_off(drive);
1048 }
1049
1050 if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0) {
1051 if ((drive->dev_flags & IDE_DFLAG_USING_DMA) == 0) {
1052 drive->dev_flags &= ~IDE_DFLAG_UNMASK;
1053 drive->io_32bit = 0;
1054 }
1055 return;
1056 }
1057
1058 if (port_ops && port_ops->pre_reset)
1059 port_ops->pre_reset(drive);
1060
1061 if (drive->current_speed != 0xff)
1062 drive->desired_speed = drive->current_speed;
1063 drive->current_speed = 0xff;
1064 }
1065
1066 /*
1067 * do_reset1() attempts to recover a confused drive by resetting it.
1068 * Unfortunately, resetting a disk drive actually resets all devices on
1069 * the same interface, so it can really be thought of as resetting the
1070 * interface rather than resetting the drive.
1071 *
1072 * ATAPI devices have their own reset mechanism which allows them to be
1073 * individually reset without clobbering other devices on the same interface.
1074 *
1075 * Unfortunately, the IDE interface does not generate an interrupt to let
1076 * us know when the reset operation has finished, so we must poll for this.
1077 * Equally poor, though, is the fact that this may a very long time to complete,
1078 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1079 * we set a timer to poll at 50ms intervals.
1080 */
1081 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1082 {
1083 unsigned int unit;
1084 unsigned long flags, timeout;
1085 ide_hwif_t *hwif;
1086 ide_hwgroup_t *hwgroup;
1087 struct ide_io_ports *io_ports;
1088 const struct ide_tp_ops *tp_ops;
1089 const struct ide_port_ops *port_ops;
1090 DEFINE_WAIT(wait);
1091
1092 spin_lock_irqsave(&ide_lock, flags);
1093 hwif = HWIF(drive);
1094 hwgroup = HWGROUP(drive);
1095
1096 io_ports = &hwif->io_ports;
1097
1098 tp_ops = hwif->tp_ops;
1099
1100 /* We must not reset with running handlers */
1101 BUG_ON(hwgroup->handler != NULL);
1102
1103 /* For an ATAPI device, first try an ATAPI SRST. */
1104 if (drive->media != ide_disk && !do_not_try_atapi) {
1105 pre_reset(drive);
1106 SELECT_DRIVE(drive);
1107 udelay (20);
1108 tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET);
1109 ndelay(400);
1110 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1111 hwgroup->polling = 1;
1112 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1113 spin_unlock_irqrestore(&ide_lock, flags);
1114 return ide_started;
1115 }
1116
1117 /* We must not disturb devices in the IDE_DFLAG_PARKED state. */
1118 do {
1119 unsigned long now;
1120
1121 prepare_to_wait(&ide_park_wq, &wait, TASK_UNINTERRUPTIBLE);
1122 timeout = jiffies;
1123 for (unit = 0; unit < MAX_DRIVES; unit++) {
1124 ide_drive_t *tdrive = &hwif->drives[unit];
1125
1126 if (tdrive->dev_flags & IDE_DFLAG_PRESENT &&
1127 tdrive->dev_flags & IDE_DFLAG_PARKED &&
1128 time_after(tdrive->sleep, timeout))
1129 timeout = tdrive->sleep;
1130 }
1131
1132 now = jiffies;
1133 if (time_before_eq(timeout, now))
1134 break;
1135
1136 spin_unlock_irqrestore(&ide_lock, flags);
1137 timeout = schedule_timeout_uninterruptible(timeout - now);
1138 spin_lock_irqsave(&ide_lock, flags);
1139 } while (timeout);
1140 finish_wait(&ide_park_wq, &wait);
1141
1142 /*
1143 * First, reset any device state data we were maintaining
1144 * for any of the drives on this interface.
1145 */
1146 for (unit = 0; unit < MAX_DRIVES; ++unit)
1147 pre_reset(&hwif->drives[unit]);
1148
1149 if (io_ports->ctl_addr == 0) {
1150 spin_unlock_irqrestore(&ide_lock, flags);
1151 ide_complete_drive_reset(drive, -ENXIO);
1152 return ide_stopped;
1153 }
1154
1155 /*
1156 * Note that we also set nIEN while resetting the device,
1157 * to mask unwanted interrupts from the interface during the reset.
1158 * However, due to the design of PC hardware, this will cause an
1159 * immediate interrupt due to the edge transition it produces.
1160 * This single interrupt gives us a "fast poll" for drives that
1161 * recover from reset very quickly, saving us the first 50ms wait time.
1162 *
1163 * TODO: add ->softreset method and stop abusing ->set_irq
1164 */
1165 /* set SRST and nIEN */
1166 tp_ops->set_irq(hwif, 4);
1167 /* more than enough time */
1168 udelay(10);
1169 /* clear SRST, leave nIEN (unless device is on the quirk list) */
1170 tp_ops->set_irq(hwif, drive->quirk_list == 2);
1171 /* more than enough time */
1172 udelay(10);
1173 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1174 hwgroup->polling = 1;
1175 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1176
1177 /*
1178 * Some weird controller like resetting themselves to a strange
1179 * state when the disks are reset this way. At least, the Winbond
1180 * 553 documentation says that
1181 */
1182 port_ops = hwif->port_ops;
1183 if (port_ops && port_ops->resetproc)
1184 port_ops->resetproc(drive);
1185
1186 spin_unlock_irqrestore(&ide_lock, flags);
1187 return ide_started;
1188 }
1189
1190 /*
1191 * ide_do_reset() is the entry point to the drive/interface reset code.
1192 */
1193
1194 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1195 {
1196 return do_reset1(drive, 0);
1197 }
1198
1199 EXPORT_SYMBOL(ide_do_reset);
1200
1201 /*
1202 * ide_wait_not_busy() waits for the currently selected device on the hwif
1203 * to report a non-busy status, see comments in ide_probe_port().
1204 */
1205 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1206 {
1207 u8 stat = 0;
1208
1209 while(timeout--) {
1210 /*
1211 * Turn this into a schedule() sleep once I'm sure
1212 * about locking issues (2.5 work ?).
1213 */
1214 mdelay(1);
1215 stat = hwif->tp_ops->read_status(hwif);
1216 if ((stat & ATA_BUSY) == 0)
1217 return 0;
1218 /*
1219 * Assume a value of 0xff means nothing is connected to
1220 * the interface and it doesn't implement the pull-down
1221 * resistor on D7.
1222 */
1223 if (stat == 0xff)
1224 return -ENODEV;
1225 touch_softlockup_watchdog();
1226 touch_nmi_watchdog();
1227 }
1228 return -EBUSY;
1229 }
1230
1231 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1232
This page took 0.057362 seconds and 6 git commands to generate.