ide: add ->tf_load and ->tf_read methods
[deliverable/linux.git] / drivers / ide / ide-iops.c
1 /*
2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat <alan@redhat.com>
4 *
5 */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32 * Conventional PIO operations for ATA devices
33 */
34
35 static u8 ide_inb (unsigned long port)
36 {
37 return (u8) inb(port);
38 }
39
40 static u16 ide_inw (unsigned long port)
41 {
42 return (u16) inw(port);
43 }
44
45 static void ide_outb (u8 val, unsigned long port)
46 {
47 outb(val, port);
48 }
49
50 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
51 {
52 outb(addr, port);
53 }
54
55 static void ide_outw (u16 val, unsigned long port)
56 {
57 outw(val, port);
58 }
59
60 void default_hwif_iops (ide_hwif_t *hwif)
61 {
62 hwif->OUTB = ide_outb;
63 hwif->OUTBSYNC = ide_outbsync;
64 hwif->OUTW = ide_outw;
65 hwif->INB = ide_inb;
66 hwif->INW = ide_inw;
67 }
68
69 /*
70 * MMIO operations, typically used for SATA controllers
71 */
72
73 static u8 ide_mm_inb (unsigned long port)
74 {
75 return (u8) readb((void __iomem *) port);
76 }
77
78 static u16 ide_mm_inw (unsigned long port)
79 {
80 return (u16) readw((void __iomem *) port);
81 }
82
83 static void ide_mm_outb (u8 value, unsigned long port)
84 {
85 writeb(value, (void __iomem *) port);
86 }
87
88 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
89 {
90 writeb(value, (void __iomem *) port);
91 }
92
93 static void ide_mm_outw (u16 value, unsigned long port)
94 {
95 writew(value, (void __iomem *) port);
96 }
97
98 void default_hwif_mmiops (ide_hwif_t *hwif)
99 {
100 hwif->OUTB = ide_mm_outb;
101 /* Most systems will need to override OUTBSYNC, alas however
102 this one is controller specific! */
103 hwif->OUTBSYNC = ide_mm_outbsync;
104 hwif->OUTW = ide_mm_outw;
105 hwif->INB = ide_mm_inb;
106 hwif->INW = ide_mm_inw;
107 }
108
109 EXPORT_SYMBOL(default_hwif_mmiops);
110
111 void SELECT_DRIVE (ide_drive_t *drive)
112 {
113 ide_hwif_t *hwif = drive->hwif;
114 const struct ide_port_ops *port_ops = hwif->port_ops;
115
116 if (port_ops && port_ops->selectproc)
117 port_ops->selectproc(drive);
118
119 hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
120 }
121
122 void SELECT_MASK (ide_drive_t *drive, int mask)
123 {
124 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
125
126 if (port_ops && port_ops->maskproc)
127 port_ops->maskproc(drive, mask);
128 }
129
130 static void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
131 {
132 ide_hwif_t *hwif = drive->hwif;
133 struct ide_io_ports *io_ports = &hwif->io_ports;
134 struct ide_taskfile *tf = &task->tf;
135 u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
136
137 if (task->tf_flags & IDE_TFLAG_FLAGGED)
138 HIHI = 0xFF;
139
140 ide_set_irq(drive, 1);
141
142 if ((task->tf_flags & IDE_TFLAG_NO_SELECT_MASK) == 0)
143 SELECT_MASK(drive, 0);
144
145 if (task->tf_flags & IDE_TFLAG_OUT_DATA)
146 hwif->OUTW((tf->hob_data << 8) | tf->data, io_ports->data_addr);
147
148 if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
149 hwif->OUTB(tf->hob_feature, io_ports->feature_addr);
150 if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
151 hwif->OUTB(tf->hob_nsect, io_ports->nsect_addr);
152 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
153 hwif->OUTB(tf->hob_lbal, io_ports->lbal_addr);
154 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
155 hwif->OUTB(tf->hob_lbam, io_ports->lbam_addr);
156 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
157 hwif->OUTB(tf->hob_lbah, io_ports->lbah_addr);
158
159 if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
160 hwif->OUTB(tf->feature, io_ports->feature_addr);
161 if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
162 hwif->OUTB(tf->nsect, io_ports->nsect_addr);
163 if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
164 hwif->OUTB(tf->lbal, io_ports->lbal_addr);
165 if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
166 hwif->OUTB(tf->lbam, io_ports->lbam_addr);
167 if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
168 hwif->OUTB(tf->lbah, io_ports->lbah_addr);
169
170 if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
171 hwif->OUTB((tf->device & HIHI) | drive->select.all,
172 io_ports->device_addr);
173 }
174
175 static void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
176 {
177 ide_hwif_t *hwif = drive->hwif;
178 struct ide_io_ports *io_ports = &hwif->io_ports;
179 struct ide_taskfile *tf = &task->tf;
180
181 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
182 u16 data = hwif->INW(io_ports->data_addr);
183
184 tf->data = data & 0xff;
185 tf->hob_data = (data >> 8) & 0xff;
186 }
187
188 /* be sure we're looking at the low order bits */
189 hwif->OUTB(drive->ctl & ~0x80, io_ports->ctl_addr);
190
191 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
192 tf->nsect = hwif->INB(io_ports->nsect_addr);
193 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
194 tf->lbal = hwif->INB(io_ports->lbal_addr);
195 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
196 tf->lbam = hwif->INB(io_ports->lbam_addr);
197 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
198 tf->lbah = hwif->INB(io_ports->lbah_addr);
199 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
200 tf->device = hwif->INB(io_ports->device_addr);
201
202 if (task->tf_flags & IDE_TFLAG_LBA48) {
203 hwif->OUTB(drive->ctl | 0x80, io_ports->ctl_addr);
204
205 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
206 tf->hob_feature = hwif->INB(io_ports->feature_addr);
207 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
208 tf->hob_nsect = hwif->INB(io_ports->nsect_addr);
209 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
210 tf->hob_lbal = hwif->INB(io_ports->lbal_addr);
211 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
212 tf->hob_lbam = hwif->INB(io_ports->lbam_addr);
213 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
214 tf->hob_lbah = hwif->INB(io_ports->lbah_addr);
215 }
216 }
217
218 /*
219 * Some localbus EIDE interfaces require a special access sequence
220 * when using 32-bit I/O instructions to transfer data. We call this
221 * the "vlb_sync" sequence, which consists of three successive reads
222 * of the sector count register location, with interrupts disabled
223 * to ensure that the reads all happen together.
224 */
225 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
226 {
227 (void) HWIF(drive)->INB(port);
228 (void) HWIF(drive)->INB(port);
229 (void) HWIF(drive)->INB(port);
230 }
231
232 /*
233 * This is used for most PIO data transfers *from* the IDE interface
234 *
235 * These routines will round up any request for an odd number of bytes,
236 * so if an odd len is specified, be sure that there's at least one
237 * extra byte allocated for the buffer.
238 */
239 static void ata_input_data(ide_drive_t *drive, struct request *rq,
240 void *buf, unsigned int len)
241 {
242 ide_hwif_t *hwif = drive->hwif;
243 struct ide_io_ports *io_ports = &hwif->io_ports;
244 unsigned long data_addr = io_ports->data_addr;
245 u8 io_32bit = drive->io_32bit;
246 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
247
248 len++;
249
250 if (io_32bit) {
251 unsigned long uninitialized_var(flags);
252
253 if (io_32bit & 2) {
254 local_irq_save(flags);
255 ata_vlb_sync(drive, io_ports->nsect_addr);
256 }
257
258 if (mmio)
259 __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
260 else
261 insl(data_addr, buf, len / 4);
262
263 if (io_32bit & 2)
264 local_irq_restore(flags);
265
266 if ((len & 3) >= 2) {
267 if (mmio)
268 __ide_mm_insw((void __iomem *)data_addr,
269 (u8 *)buf + (len & ~3), 1);
270 else
271 insw(data_addr, (u8 *)buf + (len & ~3), 1);
272 }
273 } else {
274 if (mmio)
275 __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
276 else
277 insw(data_addr, buf, len / 2);
278 }
279 }
280
281 /*
282 * This is used for most PIO data transfers *to* the IDE interface
283 */
284 static void ata_output_data(ide_drive_t *drive, struct request *rq,
285 void *buf, unsigned int len)
286 {
287 ide_hwif_t *hwif = drive->hwif;
288 struct ide_io_ports *io_ports = &hwif->io_ports;
289 unsigned long data_addr = io_ports->data_addr;
290 u8 io_32bit = drive->io_32bit;
291 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
292
293 if (io_32bit) {
294 unsigned long uninitialized_var(flags);
295
296 if (io_32bit & 2) {
297 local_irq_save(flags);
298 ata_vlb_sync(drive, io_ports->nsect_addr);
299 }
300
301 if (mmio)
302 __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
303 else
304 outsl(data_addr, buf, len / 4);
305
306 if (io_32bit & 2)
307 local_irq_restore(flags);
308
309 if ((len & 3) >= 2) {
310 if (mmio)
311 __ide_mm_outsw((void __iomem *)data_addr,
312 (u8 *)buf + (len & ~3), 1);
313 else
314 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
315 }
316 } else {
317 if (mmio)
318 __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
319 else
320 outsw(data_addr, buf, len / 2);
321 }
322 }
323
324 void default_hwif_transport(ide_hwif_t *hwif)
325 {
326 hwif->tf_load = ide_tf_load;
327 hwif->tf_read = ide_tf_read;
328
329 hwif->input_data = ata_input_data;
330 hwif->output_data = ata_output_data;
331 }
332
333 void ide_fix_driveid (struct hd_driveid *id)
334 {
335 #ifndef __LITTLE_ENDIAN
336 # ifdef __BIG_ENDIAN
337 int i;
338 u16 *stringcast;
339
340 id->config = __le16_to_cpu(id->config);
341 id->cyls = __le16_to_cpu(id->cyls);
342 id->reserved2 = __le16_to_cpu(id->reserved2);
343 id->heads = __le16_to_cpu(id->heads);
344 id->track_bytes = __le16_to_cpu(id->track_bytes);
345 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
346 id->sectors = __le16_to_cpu(id->sectors);
347 id->vendor0 = __le16_to_cpu(id->vendor0);
348 id->vendor1 = __le16_to_cpu(id->vendor1);
349 id->vendor2 = __le16_to_cpu(id->vendor2);
350 stringcast = (u16 *)&id->serial_no[0];
351 for (i = 0; i < (20/2); i++)
352 stringcast[i] = __le16_to_cpu(stringcast[i]);
353 id->buf_type = __le16_to_cpu(id->buf_type);
354 id->buf_size = __le16_to_cpu(id->buf_size);
355 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
356 stringcast = (u16 *)&id->fw_rev[0];
357 for (i = 0; i < (8/2); i++)
358 stringcast[i] = __le16_to_cpu(stringcast[i]);
359 stringcast = (u16 *)&id->model[0];
360 for (i = 0; i < (40/2); i++)
361 stringcast[i] = __le16_to_cpu(stringcast[i]);
362 id->dword_io = __le16_to_cpu(id->dword_io);
363 id->reserved50 = __le16_to_cpu(id->reserved50);
364 id->field_valid = __le16_to_cpu(id->field_valid);
365 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
366 id->cur_heads = __le16_to_cpu(id->cur_heads);
367 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
368 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
369 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
370 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
371 id->dma_1word = __le16_to_cpu(id->dma_1word);
372 id->dma_mword = __le16_to_cpu(id->dma_mword);
373 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
374 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
375 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
376 id->eide_pio = __le16_to_cpu(id->eide_pio);
377 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
378 for (i = 0; i < 2; ++i)
379 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
380 for (i = 0; i < 4; ++i)
381 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
382 id->queue_depth = __le16_to_cpu(id->queue_depth);
383 for (i = 0; i < 4; ++i)
384 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
385 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
386 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
387 id->command_set_1 = __le16_to_cpu(id->command_set_1);
388 id->command_set_2 = __le16_to_cpu(id->command_set_2);
389 id->cfsse = __le16_to_cpu(id->cfsse);
390 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
391 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
392 id->csf_default = __le16_to_cpu(id->csf_default);
393 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
394 id->trseuc = __le16_to_cpu(id->trseuc);
395 id->trsEuc = __le16_to_cpu(id->trsEuc);
396 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
397 id->mprc = __le16_to_cpu(id->mprc);
398 id->hw_config = __le16_to_cpu(id->hw_config);
399 id->acoustic = __le16_to_cpu(id->acoustic);
400 id->msrqs = __le16_to_cpu(id->msrqs);
401 id->sxfert = __le16_to_cpu(id->sxfert);
402 id->sal = __le16_to_cpu(id->sal);
403 id->spg = __le32_to_cpu(id->spg);
404 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
405 for (i = 0; i < 22; i++)
406 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
407 id->last_lun = __le16_to_cpu(id->last_lun);
408 id->word127 = __le16_to_cpu(id->word127);
409 id->dlf = __le16_to_cpu(id->dlf);
410 id->csfo = __le16_to_cpu(id->csfo);
411 for (i = 0; i < 26; i++)
412 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
413 id->word156 = __le16_to_cpu(id->word156);
414 for (i = 0; i < 3; i++)
415 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
416 id->cfa_power = __le16_to_cpu(id->cfa_power);
417 for (i = 0; i < 14; i++)
418 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
419 for (i = 0; i < 31; i++)
420 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
421 for (i = 0; i < 48; i++)
422 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
423 id->integrity_word = __le16_to_cpu(id->integrity_word);
424 # else
425 # error "Please fix <asm/byteorder.h>"
426 # endif
427 #endif
428 }
429
430 /*
431 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
432 * removing leading/trailing blanks and compressing internal blanks.
433 * It is primarily used to tidy up the model name/number fields as
434 * returned by the WIN_[P]IDENTIFY commands.
435 */
436
437 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
438 {
439 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
440
441 if (byteswap) {
442 /* convert from big-endian to host byte order */
443 for (p = end ; p != s;) {
444 unsigned short *pp = (unsigned short *) (p -= 2);
445 *pp = ntohs(*pp);
446 }
447 }
448 /* strip leading blanks */
449 while (s != end && *s == ' ')
450 ++s;
451 /* compress internal blanks and strip trailing blanks */
452 while (s != end && *s) {
453 if (*s++ != ' ' || (s != end && *s && *s != ' '))
454 *p++ = *(s-1);
455 }
456 /* wipe out trailing garbage */
457 while (p != end)
458 *p++ = '\0';
459 }
460
461 EXPORT_SYMBOL(ide_fixstring);
462
463 /*
464 * Needed for PCI irq sharing
465 */
466 int drive_is_ready (ide_drive_t *drive)
467 {
468 ide_hwif_t *hwif = HWIF(drive);
469 u8 stat = 0;
470
471 if (drive->waiting_for_dma)
472 return hwif->dma_ops->dma_test_irq(drive);
473
474 #if 0
475 /* need to guarantee 400ns since last command was issued */
476 udelay(1);
477 #endif
478
479 /*
480 * We do a passive status test under shared PCI interrupts on
481 * cards that truly share the ATA side interrupt, but may also share
482 * an interrupt with another pci card/device. We make no assumptions
483 * about possible isa-pnp and pci-pnp issues yet.
484 */
485 if (hwif->io_ports.ctl_addr)
486 stat = ide_read_altstatus(drive);
487 else
488 /* Note: this may clear a pending IRQ!! */
489 stat = ide_read_status(drive);
490
491 if (stat & BUSY_STAT)
492 /* drive busy: definitely not interrupting */
493 return 0;
494
495 /* drive ready: *might* be interrupting */
496 return 1;
497 }
498
499 EXPORT_SYMBOL(drive_is_ready);
500
501 /*
502 * This routine busy-waits for the drive status to be not "busy".
503 * It then checks the status for all of the "good" bits and none
504 * of the "bad" bits, and if all is okay it returns 0. All other
505 * cases return error -- caller may then invoke ide_error().
506 *
507 * This routine should get fixed to not hog the cpu during extra long waits..
508 * That could be done by busy-waiting for the first jiffy or two, and then
509 * setting a timer to wake up at half second intervals thereafter,
510 * until timeout is achieved, before timing out.
511 */
512 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
513 {
514 unsigned long flags;
515 int i;
516 u8 stat;
517
518 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
519 stat = ide_read_status(drive);
520
521 if (stat & BUSY_STAT) {
522 local_irq_set(flags);
523 timeout += jiffies;
524 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
525 if (time_after(jiffies, timeout)) {
526 /*
527 * One last read after the timeout in case
528 * heavy interrupt load made us not make any
529 * progress during the timeout..
530 */
531 stat = ide_read_status(drive);
532 if (!(stat & BUSY_STAT))
533 break;
534
535 local_irq_restore(flags);
536 *rstat = stat;
537 return -EBUSY;
538 }
539 }
540 local_irq_restore(flags);
541 }
542 /*
543 * Allow status to settle, then read it again.
544 * A few rare drives vastly violate the 400ns spec here,
545 * so we'll wait up to 10usec for a "good" status
546 * rather than expensively fail things immediately.
547 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
548 */
549 for (i = 0; i < 10; i++) {
550 udelay(1);
551 stat = ide_read_status(drive);
552
553 if (OK_STAT(stat, good, bad)) {
554 *rstat = stat;
555 return 0;
556 }
557 }
558 *rstat = stat;
559 return -EFAULT;
560 }
561
562 /*
563 * In case of error returns error value after doing "*startstop = ide_error()".
564 * The caller should return the updated value of "startstop" in this case,
565 * "startstop" is unchanged when the function returns 0.
566 */
567 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
568 {
569 int err;
570 u8 stat;
571
572 /* bail early if we've exceeded max_failures */
573 if (drive->max_failures && (drive->failures > drive->max_failures)) {
574 *startstop = ide_stopped;
575 return 1;
576 }
577
578 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
579
580 if (err) {
581 char *s = (err == -EBUSY) ? "status timeout" : "status error";
582 *startstop = ide_error(drive, s, stat);
583 }
584
585 return err;
586 }
587
588 EXPORT_SYMBOL(ide_wait_stat);
589
590 /**
591 * ide_in_drive_list - look for drive in black/white list
592 * @id: drive identifier
593 * @drive_table: list to inspect
594 *
595 * Look for a drive in the blacklist and the whitelist tables
596 * Returns 1 if the drive is found in the table.
597 */
598
599 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
600 {
601 for ( ; drive_table->id_model; drive_table++)
602 if ((!strcmp(drive_table->id_model, id->model)) &&
603 (!drive_table->id_firmware ||
604 strstr(id->fw_rev, drive_table->id_firmware)))
605 return 1;
606 return 0;
607 }
608
609 EXPORT_SYMBOL_GPL(ide_in_drive_list);
610
611 /*
612 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
613 * We list them here and depend on the device side cable detection for them.
614 *
615 * Some optical devices with the buggy firmwares have the same problem.
616 */
617 static const struct drive_list_entry ivb_list[] = {
618 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
619 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
620 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
621 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
622 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
623 { NULL , NULL }
624 };
625
626 /*
627 * All hosts that use the 80c ribbon must use!
628 * The name is derived from upper byte of word 93 and the 80c ribbon.
629 */
630 u8 eighty_ninty_three (ide_drive_t *drive)
631 {
632 ide_hwif_t *hwif = drive->hwif;
633 struct hd_driveid *id = drive->id;
634 int ivb = ide_in_drive_list(id, ivb_list);
635
636 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
637 return 1;
638
639 if (ivb)
640 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
641 drive->name);
642
643 if (ide_dev_is_sata(id) && !ivb)
644 return 1;
645
646 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
647 goto no_80w;
648
649 /*
650 * FIXME:
651 * - change master/slave IDENTIFY order
652 * - force bit13 (80c cable present) check also for !ivb devices
653 * (unless the slave device is pre-ATA3)
654 */
655 if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
656 return 1;
657
658 no_80w:
659 if (drive->udma33_warned == 1)
660 return 0;
661
662 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
663 "limiting max speed to UDMA33\n",
664 drive->name,
665 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
666
667 drive->udma33_warned = 1;
668
669 return 0;
670 }
671
672 int ide_driveid_update(ide_drive_t *drive)
673 {
674 ide_hwif_t *hwif = drive->hwif;
675 struct hd_driveid *id;
676 unsigned long timeout, flags;
677 u8 stat;
678
679 /*
680 * Re-read drive->id for possible DMA mode
681 * change (copied from ide-probe.c)
682 */
683
684 SELECT_MASK(drive, 1);
685 ide_set_irq(drive, 1);
686 msleep(50);
687 hwif->OUTBSYNC(drive, WIN_IDENTIFY, hwif->io_ports.command_addr);
688 timeout = jiffies + WAIT_WORSTCASE;
689 do {
690 if (time_after(jiffies, timeout)) {
691 SELECT_MASK(drive, 0);
692 return 0; /* drive timed-out */
693 }
694
695 msleep(50); /* give drive a breather */
696 stat = ide_read_altstatus(drive);
697 } while (stat & BUSY_STAT);
698
699 msleep(50); /* wait for IRQ and DRQ_STAT */
700 stat = ide_read_status(drive);
701
702 if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
703 SELECT_MASK(drive, 0);
704 printk("%s: CHECK for good STATUS\n", drive->name);
705 return 0;
706 }
707 local_irq_save(flags);
708 SELECT_MASK(drive, 0);
709 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
710 if (!id) {
711 local_irq_restore(flags);
712 return 0;
713 }
714 hwif->input_data(drive, NULL, id, SECTOR_SIZE);
715 (void)ide_read_status(drive); /* clear drive IRQ */
716 local_irq_enable();
717 local_irq_restore(flags);
718 ide_fix_driveid(id);
719 if (id) {
720 drive->id->dma_ultra = id->dma_ultra;
721 drive->id->dma_mword = id->dma_mword;
722 drive->id->dma_1word = id->dma_1word;
723 /* anything more ? */
724 kfree(id);
725
726 if (drive->using_dma && ide_id_dma_bug(drive))
727 ide_dma_off(drive);
728 }
729
730 return 1;
731 }
732
733 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
734 {
735 ide_hwif_t *hwif = drive->hwif;
736 struct ide_io_ports *io_ports = &hwif->io_ports;
737 int error = 0;
738 u8 stat;
739
740 // while (HWGROUP(drive)->busy)
741 // msleep(50);
742
743 #ifdef CONFIG_BLK_DEV_IDEDMA
744 if (hwif->dma_ops) /* check if host supports DMA */
745 hwif->dma_ops->dma_host_set(drive, 0);
746 #endif
747
748 /* Skip setting PIO flow-control modes on pre-EIDE drives */
749 if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
750 goto skip;
751
752 /*
753 * Don't use ide_wait_cmd here - it will
754 * attempt to set_geometry and recalibrate,
755 * but for some reason these don't work at
756 * this point (lost interrupt).
757 */
758 /*
759 * Select the drive, and issue the SETFEATURES command
760 */
761 disable_irq_nosync(hwif->irq);
762
763 /*
764 * FIXME: we race against the running IRQ here if
765 * this is called from non IRQ context. If we use
766 * disable_irq() we hang on the error path. Work
767 * is needed.
768 */
769
770 udelay(1);
771 SELECT_DRIVE(drive);
772 SELECT_MASK(drive, 0);
773 udelay(1);
774 ide_set_irq(drive, 0);
775 hwif->OUTB(speed, io_ports->nsect_addr);
776 hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
777 hwif->OUTBSYNC(drive, WIN_SETFEATURES, io_ports->command_addr);
778 if (drive->quirk_list == 2)
779 ide_set_irq(drive, 1);
780
781 error = __ide_wait_stat(drive, drive->ready_stat,
782 BUSY_STAT|DRQ_STAT|ERR_STAT,
783 WAIT_CMD, &stat);
784
785 SELECT_MASK(drive, 0);
786
787 enable_irq(hwif->irq);
788
789 if (error) {
790 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
791 return error;
792 }
793
794 drive->id->dma_ultra &= ~0xFF00;
795 drive->id->dma_mword &= ~0x0F00;
796 drive->id->dma_1word &= ~0x0F00;
797
798 skip:
799 #ifdef CONFIG_BLK_DEV_IDEDMA
800 if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
801 drive->using_dma)
802 hwif->dma_ops->dma_host_set(drive, 1);
803 else if (hwif->dma_ops) /* check if host supports DMA */
804 ide_dma_off_quietly(drive);
805 #endif
806
807 switch(speed) {
808 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
809 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
810 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
811 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
812 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
813 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
814 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
815 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
816 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
817 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
818 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
819 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
820 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
821 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
822 default: break;
823 }
824 if (!drive->init_speed)
825 drive->init_speed = speed;
826 drive->current_speed = speed;
827 return error;
828 }
829
830 /*
831 * This should get invoked any time we exit the driver to
832 * wait for an interrupt response from a drive. handler() points
833 * at the appropriate code to handle the next interrupt, and a
834 * timer is started to prevent us from waiting forever in case
835 * something goes wrong (see the ide_timer_expiry() handler later on).
836 *
837 * See also ide_execute_command
838 */
839 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
840 unsigned int timeout, ide_expiry_t *expiry)
841 {
842 ide_hwgroup_t *hwgroup = HWGROUP(drive);
843
844 BUG_ON(hwgroup->handler);
845 hwgroup->handler = handler;
846 hwgroup->expiry = expiry;
847 hwgroup->timer.expires = jiffies + timeout;
848 hwgroup->req_gen_timer = hwgroup->req_gen;
849 add_timer(&hwgroup->timer);
850 }
851
852 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
853 unsigned int timeout, ide_expiry_t *expiry)
854 {
855 unsigned long flags;
856 spin_lock_irqsave(&ide_lock, flags);
857 __ide_set_handler(drive, handler, timeout, expiry);
858 spin_unlock_irqrestore(&ide_lock, flags);
859 }
860
861 EXPORT_SYMBOL(ide_set_handler);
862
863 /**
864 * ide_execute_command - execute an IDE command
865 * @drive: IDE drive to issue the command against
866 * @command: command byte to write
867 * @handler: handler for next phase
868 * @timeout: timeout for command
869 * @expiry: handler to run on timeout
870 *
871 * Helper function to issue an IDE command. This handles the
872 * atomicity requirements, command timing and ensures that the
873 * handler and IRQ setup do not race. All IDE command kick off
874 * should go via this function or do equivalent locking.
875 */
876
877 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
878 unsigned timeout, ide_expiry_t *expiry)
879 {
880 unsigned long flags;
881 ide_hwif_t *hwif = HWIF(drive);
882
883 spin_lock_irqsave(&ide_lock, flags);
884 __ide_set_handler(drive, handler, timeout, expiry);
885 hwif->OUTBSYNC(drive, cmd, hwif->io_ports.command_addr);
886 /*
887 * Drive takes 400nS to respond, we must avoid the IRQ being
888 * serviced before that.
889 *
890 * FIXME: we could skip this delay with care on non shared devices
891 */
892 ndelay(400);
893 spin_unlock_irqrestore(&ide_lock, flags);
894 }
895 EXPORT_SYMBOL(ide_execute_command);
896
897 void ide_execute_pkt_cmd(ide_drive_t *drive)
898 {
899 ide_hwif_t *hwif = drive->hwif;
900 unsigned long flags;
901
902 spin_lock_irqsave(&ide_lock, flags);
903 hwif->OUTBSYNC(drive, WIN_PACKETCMD, hwif->io_ports.command_addr);
904 ndelay(400);
905 spin_unlock_irqrestore(&ide_lock, flags);
906 }
907 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
908
909 /* needed below */
910 static ide_startstop_t do_reset1 (ide_drive_t *, int);
911
912 /*
913 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
914 * during an atapi drive reset operation. If the drive has not yet responded,
915 * and we have not yet hit our maximum waiting time, then the timer is restarted
916 * for another 50ms.
917 */
918 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
919 {
920 ide_hwgroup_t *hwgroup = HWGROUP(drive);
921 u8 stat;
922
923 SELECT_DRIVE(drive);
924 udelay (10);
925 stat = ide_read_status(drive);
926
927 if (OK_STAT(stat, 0, BUSY_STAT))
928 printk("%s: ATAPI reset complete\n", drive->name);
929 else {
930 if (time_before(jiffies, hwgroup->poll_timeout)) {
931 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
932 /* continue polling */
933 return ide_started;
934 }
935 /* end of polling */
936 hwgroup->polling = 0;
937 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
938 drive->name, stat);
939 /* do it the old fashioned way */
940 return do_reset1(drive, 1);
941 }
942 /* done polling */
943 hwgroup->polling = 0;
944 hwgroup->resetting = 0;
945 return ide_stopped;
946 }
947
948 /*
949 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
950 * during an ide reset operation. If the drives have not yet responded,
951 * and we have not yet hit our maximum waiting time, then the timer is restarted
952 * for another 50ms.
953 */
954 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
955 {
956 ide_hwgroup_t *hwgroup = HWGROUP(drive);
957 ide_hwif_t *hwif = HWIF(drive);
958 const struct ide_port_ops *port_ops = hwif->port_ops;
959 u8 tmp;
960
961 if (port_ops && port_ops->reset_poll) {
962 if (port_ops->reset_poll(drive)) {
963 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
964 hwif->name, drive->name);
965 return ide_stopped;
966 }
967 }
968
969 tmp = ide_read_status(drive);
970
971 if (!OK_STAT(tmp, 0, BUSY_STAT)) {
972 if (time_before(jiffies, hwgroup->poll_timeout)) {
973 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
974 /* continue polling */
975 return ide_started;
976 }
977 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
978 drive->failures++;
979 } else {
980 printk("%s: reset: ", hwif->name);
981 tmp = ide_read_error(drive);
982
983 if (tmp == 1) {
984 printk("success\n");
985 drive->failures = 0;
986 } else {
987 drive->failures++;
988 printk("master: ");
989 switch (tmp & 0x7f) {
990 case 1: printk("passed");
991 break;
992 case 2: printk("formatter device error");
993 break;
994 case 3: printk("sector buffer error");
995 break;
996 case 4: printk("ECC circuitry error");
997 break;
998 case 5: printk("controlling MPU error");
999 break;
1000 default:printk("error (0x%02x?)", tmp);
1001 }
1002 if (tmp & 0x80)
1003 printk("; slave: failed");
1004 printk("\n");
1005 }
1006 }
1007 hwgroup->polling = 0; /* done polling */
1008 hwgroup->resetting = 0; /* done reset attempt */
1009 return ide_stopped;
1010 }
1011
1012 static void ide_disk_pre_reset(ide_drive_t *drive)
1013 {
1014 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1015
1016 drive->special.all = 0;
1017 drive->special.b.set_geometry = legacy;
1018 drive->special.b.recalibrate = legacy;
1019 drive->mult_count = 0;
1020 if (!drive->keep_settings && !drive->using_dma)
1021 drive->mult_req = 0;
1022 if (drive->mult_req != drive->mult_count)
1023 drive->special.b.set_multmode = 1;
1024 }
1025
1026 static void pre_reset(ide_drive_t *drive)
1027 {
1028 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1029
1030 if (drive->media == ide_disk)
1031 ide_disk_pre_reset(drive);
1032 else
1033 drive->post_reset = 1;
1034
1035 if (drive->using_dma) {
1036 if (drive->crc_count)
1037 ide_check_dma_crc(drive);
1038 else
1039 ide_dma_off(drive);
1040 }
1041
1042 if (!drive->keep_settings) {
1043 if (!drive->using_dma) {
1044 drive->unmask = 0;
1045 drive->io_32bit = 0;
1046 }
1047 return;
1048 }
1049
1050 if (port_ops && port_ops->pre_reset)
1051 port_ops->pre_reset(drive);
1052
1053 if (drive->current_speed != 0xff)
1054 drive->desired_speed = drive->current_speed;
1055 drive->current_speed = 0xff;
1056 }
1057
1058 /*
1059 * do_reset1() attempts to recover a confused drive by resetting it.
1060 * Unfortunately, resetting a disk drive actually resets all devices on
1061 * the same interface, so it can really be thought of as resetting the
1062 * interface rather than resetting the drive.
1063 *
1064 * ATAPI devices have their own reset mechanism which allows them to be
1065 * individually reset without clobbering other devices on the same interface.
1066 *
1067 * Unfortunately, the IDE interface does not generate an interrupt to let
1068 * us know when the reset operation has finished, so we must poll for this.
1069 * Equally poor, though, is the fact that this may a very long time to complete,
1070 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1071 * we set a timer to poll at 50ms intervals.
1072 */
1073 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1074 {
1075 unsigned int unit;
1076 unsigned long flags;
1077 ide_hwif_t *hwif;
1078 ide_hwgroup_t *hwgroup;
1079 struct ide_io_ports *io_ports;
1080 const struct ide_port_ops *port_ops;
1081 u8 ctl;
1082
1083 spin_lock_irqsave(&ide_lock, flags);
1084 hwif = HWIF(drive);
1085 hwgroup = HWGROUP(drive);
1086
1087 io_ports = &hwif->io_ports;
1088
1089 /* We must not reset with running handlers */
1090 BUG_ON(hwgroup->handler != NULL);
1091
1092 /* For an ATAPI device, first try an ATAPI SRST. */
1093 if (drive->media != ide_disk && !do_not_try_atapi) {
1094 hwgroup->resetting = 1;
1095 pre_reset(drive);
1096 SELECT_DRIVE(drive);
1097 udelay (20);
1098 hwif->OUTBSYNC(drive, WIN_SRST, io_ports->command_addr);
1099 ndelay(400);
1100 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1101 hwgroup->polling = 1;
1102 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1103 spin_unlock_irqrestore(&ide_lock, flags);
1104 return ide_started;
1105 }
1106
1107 /*
1108 * First, reset any device state data we were maintaining
1109 * for any of the drives on this interface.
1110 */
1111 for (unit = 0; unit < MAX_DRIVES; ++unit)
1112 pre_reset(&hwif->drives[unit]);
1113
1114 if (io_ports->ctl_addr == 0) {
1115 spin_unlock_irqrestore(&ide_lock, flags);
1116 return ide_stopped;
1117 }
1118
1119 hwgroup->resetting = 1;
1120 /*
1121 * Note that we also set nIEN while resetting the device,
1122 * to mask unwanted interrupts from the interface during the reset.
1123 * However, due to the design of PC hardware, this will cause an
1124 * immediate interrupt due to the edge transition it produces.
1125 * This single interrupt gives us a "fast poll" for drives that
1126 * recover from reset very quickly, saving us the first 50ms wait time.
1127 */
1128 /* set SRST and nIEN */
1129 hwif->OUTBSYNC(drive, drive->ctl|6, io_ports->ctl_addr);
1130 /* more than enough time */
1131 udelay(10);
1132 if (drive->quirk_list == 2)
1133 ctl = drive->ctl; /* clear SRST and nIEN */
1134 else
1135 ctl = drive->ctl | 2; /* clear SRST, leave nIEN */
1136 hwif->OUTBSYNC(drive, ctl, io_ports->ctl_addr);
1137 /* more than enough time */
1138 udelay(10);
1139 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1140 hwgroup->polling = 1;
1141 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1142
1143 /*
1144 * Some weird controller like resetting themselves to a strange
1145 * state when the disks are reset this way. At least, the Winbond
1146 * 553 documentation says that
1147 */
1148 port_ops = hwif->port_ops;
1149 if (port_ops && port_ops->resetproc)
1150 port_ops->resetproc(drive);
1151
1152 spin_unlock_irqrestore(&ide_lock, flags);
1153 return ide_started;
1154 }
1155
1156 /*
1157 * ide_do_reset() is the entry point to the drive/interface reset code.
1158 */
1159
1160 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1161 {
1162 return do_reset1(drive, 0);
1163 }
1164
1165 EXPORT_SYMBOL(ide_do_reset);
1166
1167 /*
1168 * ide_wait_not_busy() waits for the currently selected device on the hwif
1169 * to report a non-busy status, see comments in ide_probe_port().
1170 */
1171 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1172 {
1173 u8 stat = 0;
1174
1175 while(timeout--) {
1176 /*
1177 * Turn this into a schedule() sleep once I'm sure
1178 * about locking issues (2.5 work ?).
1179 */
1180 mdelay(1);
1181 stat = hwif->INB(hwif->io_ports.status_addr);
1182 if ((stat & BUSY_STAT) == 0)
1183 return 0;
1184 /*
1185 * Assume a value of 0xff means nothing is connected to
1186 * the interface and it doesn't implement the pull-down
1187 * resistor on D7.
1188 */
1189 if (stat == 0xff)
1190 return -ENODEV;
1191 touch_softlockup_watchdog();
1192 touch_nmi_watchdog();
1193 }
1194 return -EBUSY;
1195 }
1196
1197 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1198
This page took 0.056988 seconds and 6 git commands to generate.