ide: move ide_tf_{load,read} to ide-iops.c
[deliverable/linux.git] / drivers / ide / ide-iops.c
1 /*
2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat <alan@redhat.com>
4 *
5 */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32 * Conventional PIO operations for ATA devices
33 */
34
35 static u8 ide_inb (unsigned long port)
36 {
37 return (u8) inb(port);
38 }
39
40 static u16 ide_inw (unsigned long port)
41 {
42 return (u16) inw(port);
43 }
44
45 static void ide_outb (u8 val, unsigned long port)
46 {
47 outb(val, port);
48 }
49
50 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
51 {
52 outb(addr, port);
53 }
54
55 static void ide_outw (u16 val, unsigned long port)
56 {
57 outw(val, port);
58 }
59
60 void default_hwif_iops (ide_hwif_t *hwif)
61 {
62 hwif->OUTB = ide_outb;
63 hwif->OUTBSYNC = ide_outbsync;
64 hwif->OUTW = ide_outw;
65 hwif->INB = ide_inb;
66 hwif->INW = ide_inw;
67 }
68
69 /*
70 * MMIO operations, typically used for SATA controllers
71 */
72
73 static u8 ide_mm_inb (unsigned long port)
74 {
75 return (u8) readb((void __iomem *) port);
76 }
77
78 static u16 ide_mm_inw (unsigned long port)
79 {
80 return (u16) readw((void __iomem *) port);
81 }
82
83 static void ide_mm_outb (u8 value, unsigned long port)
84 {
85 writeb(value, (void __iomem *) port);
86 }
87
88 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
89 {
90 writeb(value, (void __iomem *) port);
91 }
92
93 static void ide_mm_outw (u16 value, unsigned long port)
94 {
95 writew(value, (void __iomem *) port);
96 }
97
98 void default_hwif_mmiops (ide_hwif_t *hwif)
99 {
100 hwif->OUTB = ide_mm_outb;
101 /* Most systems will need to override OUTBSYNC, alas however
102 this one is controller specific! */
103 hwif->OUTBSYNC = ide_mm_outbsync;
104 hwif->OUTW = ide_mm_outw;
105 hwif->INB = ide_mm_inb;
106 hwif->INW = ide_mm_inw;
107 }
108
109 EXPORT_SYMBOL(default_hwif_mmiops);
110
111 void SELECT_DRIVE (ide_drive_t *drive)
112 {
113 ide_hwif_t *hwif = drive->hwif;
114 const struct ide_port_ops *port_ops = hwif->port_ops;
115
116 if (port_ops && port_ops->selectproc)
117 port_ops->selectproc(drive);
118
119 hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
120 }
121
122 void SELECT_MASK (ide_drive_t *drive, int mask)
123 {
124 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
125
126 if (port_ops && port_ops->maskproc)
127 port_ops->maskproc(drive, mask);
128 }
129
130 void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
131 {
132 ide_hwif_t *hwif = drive->hwif;
133 struct ide_io_ports *io_ports = &hwif->io_ports;
134 struct ide_taskfile *tf = &task->tf;
135 u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
136
137 if (task->tf_flags & IDE_TFLAG_FLAGGED)
138 HIHI = 0xFF;
139
140 ide_set_irq(drive, 1);
141
142 if ((task->tf_flags & IDE_TFLAG_NO_SELECT_MASK) == 0)
143 SELECT_MASK(drive, 0);
144
145 if (task->tf_flags & IDE_TFLAG_OUT_DATA)
146 hwif->OUTW((tf->hob_data << 8) | tf->data, io_ports->data_addr);
147
148 if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
149 hwif->OUTB(tf->hob_feature, io_ports->feature_addr);
150 if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
151 hwif->OUTB(tf->hob_nsect, io_ports->nsect_addr);
152 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
153 hwif->OUTB(tf->hob_lbal, io_ports->lbal_addr);
154 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
155 hwif->OUTB(tf->hob_lbam, io_ports->lbam_addr);
156 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
157 hwif->OUTB(tf->hob_lbah, io_ports->lbah_addr);
158
159 if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
160 hwif->OUTB(tf->feature, io_ports->feature_addr);
161 if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
162 hwif->OUTB(tf->nsect, io_ports->nsect_addr);
163 if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
164 hwif->OUTB(tf->lbal, io_ports->lbal_addr);
165 if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
166 hwif->OUTB(tf->lbam, io_ports->lbam_addr);
167 if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
168 hwif->OUTB(tf->lbah, io_ports->lbah_addr);
169
170 if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
171 hwif->OUTB((tf->device & HIHI) | drive->select.all,
172 io_ports->device_addr);
173 }
174
175 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
176 {
177 ide_hwif_t *hwif = drive->hwif;
178 struct ide_io_ports *io_ports = &hwif->io_ports;
179 struct ide_taskfile *tf = &task->tf;
180
181 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
182 u16 data = hwif->INW(io_ports->data_addr);
183
184 tf->data = data & 0xff;
185 tf->hob_data = (data >> 8) & 0xff;
186 }
187
188 /* be sure we're looking at the low order bits */
189 hwif->OUTB(drive->ctl & ~0x80, io_ports->ctl_addr);
190
191 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
192 tf->nsect = hwif->INB(io_ports->nsect_addr);
193 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
194 tf->lbal = hwif->INB(io_ports->lbal_addr);
195 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
196 tf->lbam = hwif->INB(io_ports->lbam_addr);
197 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
198 tf->lbah = hwif->INB(io_ports->lbah_addr);
199 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
200 tf->device = hwif->INB(io_ports->device_addr);
201
202 if (task->tf_flags & IDE_TFLAG_LBA48) {
203 hwif->OUTB(drive->ctl | 0x80, io_ports->ctl_addr);
204
205 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
206 tf->hob_feature = hwif->INB(io_ports->feature_addr);
207 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
208 tf->hob_nsect = hwif->INB(io_ports->nsect_addr);
209 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
210 tf->hob_lbal = hwif->INB(io_ports->lbal_addr);
211 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
212 tf->hob_lbam = hwif->INB(io_ports->lbam_addr);
213 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
214 tf->hob_lbah = hwif->INB(io_ports->lbah_addr);
215 }
216 }
217
218 /*
219 * Some localbus EIDE interfaces require a special access sequence
220 * when using 32-bit I/O instructions to transfer data. We call this
221 * the "vlb_sync" sequence, which consists of three successive reads
222 * of the sector count register location, with interrupts disabled
223 * to ensure that the reads all happen together.
224 */
225 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
226 {
227 (void) HWIF(drive)->INB(port);
228 (void) HWIF(drive)->INB(port);
229 (void) HWIF(drive)->INB(port);
230 }
231
232 /*
233 * This is used for most PIO data transfers *from* the IDE interface
234 *
235 * These routines will round up any request for an odd number of bytes,
236 * so if an odd len is specified, be sure that there's at least one
237 * extra byte allocated for the buffer.
238 */
239 static void ata_input_data(ide_drive_t *drive, struct request *rq,
240 void *buf, unsigned int len)
241 {
242 ide_hwif_t *hwif = drive->hwif;
243 struct ide_io_ports *io_ports = &hwif->io_ports;
244 unsigned long data_addr = io_ports->data_addr;
245 u8 io_32bit = drive->io_32bit;
246 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
247
248 len++;
249
250 if (io_32bit) {
251 unsigned long uninitialized_var(flags);
252
253 if (io_32bit & 2) {
254 local_irq_save(flags);
255 ata_vlb_sync(drive, io_ports->nsect_addr);
256 }
257
258 if (mmio)
259 __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
260 else
261 insl(data_addr, buf, len / 4);
262
263 if (io_32bit & 2)
264 local_irq_restore(flags);
265
266 if ((len & 3) >= 2) {
267 if (mmio)
268 __ide_mm_insw((void __iomem *)data_addr,
269 (u8 *)buf + (len & ~3), 1);
270 else
271 insw(data_addr, (u8 *)buf + (len & ~3), 1);
272 }
273 } else {
274 if (mmio)
275 __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
276 else
277 insw(data_addr, buf, len / 2);
278 }
279 }
280
281 /*
282 * This is used for most PIO data transfers *to* the IDE interface
283 */
284 static void ata_output_data(ide_drive_t *drive, struct request *rq,
285 void *buf, unsigned int len)
286 {
287 ide_hwif_t *hwif = drive->hwif;
288 struct ide_io_ports *io_ports = &hwif->io_ports;
289 unsigned long data_addr = io_ports->data_addr;
290 u8 io_32bit = drive->io_32bit;
291 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
292
293 if (io_32bit) {
294 unsigned long uninitialized_var(flags);
295
296 if (io_32bit & 2) {
297 local_irq_save(flags);
298 ata_vlb_sync(drive, io_ports->nsect_addr);
299 }
300
301 if (mmio)
302 __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
303 else
304 outsl(data_addr, buf, len / 4);
305
306 if (io_32bit & 2)
307 local_irq_restore(flags);
308
309 if ((len & 3) >= 2) {
310 if (mmio)
311 __ide_mm_outsw((void __iomem *)data_addr,
312 (u8 *)buf + (len & ~3), 1);
313 else
314 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
315 }
316 } else {
317 if (mmio)
318 __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
319 else
320 outsw(data_addr, buf, len / 2);
321 }
322 }
323
324 void default_hwif_transport(ide_hwif_t *hwif)
325 {
326 hwif->input_data = ata_input_data;
327 hwif->output_data = ata_output_data;
328 }
329
330 void ide_fix_driveid (struct hd_driveid *id)
331 {
332 #ifndef __LITTLE_ENDIAN
333 # ifdef __BIG_ENDIAN
334 int i;
335 u16 *stringcast;
336
337 id->config = __le16_to_cpu(id->config);
338 id->cyls = __le16_to_cpu(id->cyls);
339 id->reserved2 = __le16_to_cpu(id->reserved2);
340 id->heads = __le16_to_cpu(id->heads);
341 id->track_bytes = __le16_to_cpu(id->track_bytes);
342 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
343 id->sectors = __le16_to_cpu(id->sectors);
344 id->vendor0 = __le16_to_cpu(id->vendor0);
345 id->vendor1 = __le16_to_cpu(id->vendor1);
346 id->vendor2 = __le16_to_cpu(id->vendor2);
347 stringcast = (u16 *)&id->serial_no[0];
348 for (i = 0; i < (20/2); i++)
349 stringcast[i] = __le16_to_cpu(stringcast[i]);
350 id->buf_type = __le16_to_cpu(id->buf_type);
351 id->buf_size = __le16_to_cpu(id->buf_size);
352 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
353 stringcast = (u16 *)&id->fw_rev[0];
354 for (i = 0; i < (8/2); i++)
355 stringcast[i] = __le16_to_cpu(stringcast[i]);
356 stringcast = (u16 *)&id->model[0];
357 for (i = 0; i < (40/2); i++)
358 stringcast[i] = __le16_to_cpu(stringcast[i]);
359 id->dword_io = __le16_to_cpu(id->dword_io);
360 id->reserved50 = __le16_to_cpu(id->reserved50);
361 id->field_valid = __le16_to_cpu(id->field_valid);
362 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
363 id->cur_heads = __le16_to_cpu(id->cur_heads);
364 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
365 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
366 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
367 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
368 id->dma_1word = __le16_to_cpu(id->dma_1word);
369 id->dma_mword = __le16_to_cpu(id->dma_mword);
370 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
371 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
372 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
373 id->eide_pio = __le16_to_cpu(id->eide_pio);
374 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
375 for (i = 0; i < 2; ++i)
376 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
377 for (i = 0; i < 4; ++i)
378 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
379 id->queue_depth = __le16_to_cpu(id->queue_depth);
380 for (i = 0; i < 4; ++i)
381 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
382 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
383 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
384 id->command_set_1 = __le16_to_cpu(id->command_set_1);
385 id->command_set_2 = __le16_to_cpu(id->command_set_2);
386 id->cfsse = __le16_to_cpu(id->cfsse);
387 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
388 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
389 id->csf_default = __le16_to_cpu(id->csf_default);
390 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
391 id->trseuc = __le16_to_cpu(id->trseuc);
392 id->trsEuc = __le16_to_cpu(id->trsEuc);
393 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
394 id->mprc = __le16_to_cpu(id->mprc);
395 id->hw_config = __le16_to_cpu(id->hw_config);
396 id->acoustic = __le16_to_cpu(id->acoustic);
397 id->msrqs = __le16_to_cpu(id->msrqs);
398 id->sxfert = __le16_to_cpu(id->sxfert);
399 id->sal = __le16_to_cpu(id->sal);
400 id->spg = __le32_to_cpu(id->spg);
401 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
402 for (i = 0; i < 22; i++)
403 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
404 id->last_lun = __le16_to_cpu(id->last_lun);
405 id->word127 = __le16_to_cpu(id->word127);
406 id->dlf = __le16_to_cpu(id->dlf);
407 id->csfo = __le16_to_cpu(id->csfo);
408 for (i = 0; i < 26; i++)
409 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
410 id->word156 = __le16_to_cpu(id->word156);
411 for (i = 0; i < 3; i++)
412 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
413 id->cfa_power = __le16_to_cpu(id->cfa_power);
414 for (i = 0; i < 14; i++)
415 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
416 for (i = 0; i < 31; i++)
417 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
418 for (i = 0; i < 48; i++)
419 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
420 id->integrity_word = __le16_to_cpu(id->integrity_word);
421 # else
422 # error "Please fix <asm/byteorder.h>"
423 # endif
424 #endif
425 }
426
427 /*
428 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
429 * removing leading/trailing blanks and compressing internal blanks.
430 * It is primarily used to tidy up the model name/number fields as
431 * returned by the WIN_[P]IDENTIFY commands.
432 */
433
434 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
435 {
436 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
437
438 if (byteswap) {
439 /* convert from big-endian to host byte order */
440 for (p = end ; p != s;) {
441 unsigned short *pp = (unsigned short *) (p -= 2);
442 *pp = ntohs(*pp);
443 }
444 }
445 /* strip leading blanks */
446 while (s != end && *s == ' ')
447 ++s;
448 /* compress internal blanks and strip trailing blanks */
449 while (s != end && *s) {
450 if (*s++ != ' ' || (s != end && *s && *s != ' '))
451 *p++ = *(s-1);
452 }
453 /* wipe out trailing garbage */
454 while (p != end)
455 *p++ = '\0';
456 }
457
458 EXPORT_SYMBOL(ide_fixstring);
459
460 /*
461 * Needed for PCI irq sharing
462 */
463 int drive_is_ready (ide_drive_t *drive)
464 {
465 ide_hwif_t *hwif = HWIF(drive);
466 u8 stat = 0;
467
468 if (drive->waiting_for_dma)
469 return hwif->dma_ops->dma_test_irq(drive);
470
471 #if 0
472 /* need to guarantee 400ns since last command was issued */
473 udelay(1);
474 #endif
475
476 /*
477 * We do a passive status test under shared PCI interrupts on
478 * cards that truly share the ATA side interrupt, but may also share
479 * an interrupt with another pci card/device. We make no assumptions
480 * about possible isa-pnp and pci-pnp issues yet.
481 */
482 if (hwif->io_ports.ctl_addr)
483 stat = ide_read_altstatus(drive);
484 else
485 /* Note: this may clear a pending IRQ!! */
486 stat = ide_read_status(drive);
487
488 if (stat & BUSY_STAT)
489 /* drive busy: definitely not interrupting */
490 return 0;
491
492 /* drive ready: *might* be interrupting */
493 return 1;
494 }
495
496 EXPORT_SYMBOL(drive_is_ready);
497
498 /*
499 * This routine busy-waits for the drive status to be not "busy".
500 * It then checks the status for all of the "good" bits and none
501 * of the "bad" bits, and if all is okay it returns 0. All other
502 * cases return error -- caller may then invoke ide_error().
503 *
504 * This routine should get fixed to not hog the cpu during extra long waits..
505 * That could be done by busy-waiting for the first jiffy or two, and then
506 * setting a timer to wake up at half second intervals thereafter,
507 * until timeout is achieved, before timing out.
508 */
509 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
510 {
511 unsigned long flags;
512 int i;
513 u8 stat;
514
515 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
516 stat = ide_read_status(drive);
517
518 if (stat & BUSY_STAT) {
519 local_irq_set(flags);
520 timeout += jiffies;
521 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
522 if (time_after(jiffies, timeout)) {
523 /*
524 * One last read after the timeout in case
525 * heavy interrupt load made us not make any
526 * progress during the timeout..
527 */
528 stat = ide_read_status(drive);
529 if (!(stat & BUSY_STAT))
530 break;
531
532 local_irq_restore(flags);
533 *rstat = stat;
534 return -EBUSY;
535 }
536 }
537 local_irq_restore(flags);
538 }
539 /*
540 * Allow status to settle, then read it again.
541 * A few rare drives vastly violate the 400ns spec here,
542 * so we'll wait up to 10usec for a "good" status
543 * rather than expensively fail things immediately.
544 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
545 */
546 for (i = 0; i < 10; i++) {
547 udelay(1);
548 stat = ide_read_status(drive);
549
550 if (OK_STAT(stat, good, bad)) {
551 *rstat = stat;
552 return 0;
553 }
554 }
555 *rstat = stat;
556 return -EFAULT;
557 }
558
559 /*
560 * In case of error returns error value after doing "*startstop = ide_error()".
561 * The caller should return the updated value of "startstop" in this case,
562 * "startstop" is unchanged when the function returns 0.
563 */
564 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
565 {
566 int err;
567 u8 stat;
568
569 /* bail early if we've exceeded max_failures */
570 if (drive->max_failures && (drive->failures > drive->max_failures)) {
571 *startstop = ide_stopped;
572 return 1;
573 }
574
575 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
576
577 if (err) {
578 char *s = (err == -EBUSY) ? "status timeout" : "status error";
579 *startstop = ide_error(drive, s, stat);
580 }
581
582 return err;
583 }
584
585 EXPORT_SYMBOL(ide_wait_stat);
586
587 /**
588 * ide_in_drive_list - look for drive in black/white list
589 * @id: drive identifier
590 * @drive_table: list to inspect
591 *
592 * Look for a drive in the blacklist and the whitelist tables
593 * Returns 1 if the drive is found in the table.
594 */
595
596 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
597 {
598 for ( ; drive_table->id_model; drive_table++)
599 if ((!strcmp(drive_table->id_model, id->model)) &&
600 (!drive_table->id_firmware ||
601 strstr(id->fw_rev, drive_table->id_firmware)))
602 return 1;
603 return 0;
604 }
605
606 EXPORT_SYMBOL_GPL(ide_in_drive_list);
607
608 /*
609 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
610 * We list them here and depend on the device side cable detection for them.
611 *
612 * Some optical devices with the buggy firmwares have the same problem.
613 */
614 static const struct drive_list_entry ivb_list[] = {
615 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
616 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
617 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
618 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
619 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
620 { NULL , NULL }
621 };
622
623 /*
624 * All hosts that use the 80c ribbon must use!
625 * The name is derived from upper byte of word 93 and the 80c ribbon.
626 */
627 u8 eighty_ninty_three (ide_drive_t *drive)
628 {
629 ide_hwif_t *hwif = drive->hwif;
630 struct hd_driveid *id = drive->id;
631 int ivb = ide_in_drive_list(id, ivb_list);
632
633 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
634 return 1;
635
636 if (ivb)
637 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
638 drive->name);
639
640 if (ide_dev_is_sata(id) && !ivb)
641 return 1;
642
643 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
644 goto no_80w;
645
646 /*
647 * FIXME:
648 * - change master/slave IDENTIFY order
649 * - force bit13 (80c cable present) check also for !ivb devices
650 * (unless the slave device is pre-ATA3)
651 */
652 if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
653 return 1;
654
655 no_80w:
656 if (drive->udma33_warned == 1)
657 return 0;
658
659 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
660 "limiting max speed to UDMA33\n",
661 drive->name,
662 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
663
664 drive->udma33_warned = 1;
665
666 return 0;
667 }
668
669 int ide_driveid_update(ide_drive_t *drive)
670 {
671 ide_hwif_t *hwif = drive->hwif;
672 struct hd_driveid *id;
673 unsigned long timeout, flags;
674 u8 stat;
675
676 /*
677 * Re-read drive->id for possible DMA mode
678 * change (copied from ide-probe.c)
679 */
680
681 SELECT_MASK(drive, 1);
682 ide_set_irq(drive, 1);
683 msleep(50);
684 hwif->OUTBSYNC(drive, WIN_IDENTIFY, hwif->io_ports.command_addr);
685 timeout = jiffies + WAIT_WORSTCASE;
686 do {
687 if (time_after(jiffies, timeout)) {
688 SELECT_MASK(drive, 0);
689 return 0; /* drive timed-out */
690 }
691
692 msleep(50); /* give drive a breather */
693 stat = ide_read_altstatus(drive);
694 } while (stat & BUSY_STAT);
695
696 msleep(50); /* wait for IRQ and DRQ_STAT */
697 stat = ide_read_status(drive);
698
699 if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
700 SELECT_MASK(drive, 0);
701 printk("%s: CHECK for good STATUS\n", drive->name);
702 return 0;
703 }
704 local_irq_save(flags);
705 SELECT_MASK(drive, 0);
706 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
707 if (!id) {
708 local_irq_restore(flags);
709 return 0;
710 }
711 hwif->input_data(drive, NULL, id, SECTOR_SIZE);
712 (void)ide_read_status(drive); /* clear drive IRQ */
713 local_irq_enable();
714 local_irq_restore(flags);
715 ide_fix_driveid(id);
716 if (id) {
717 drive->id->dma_ultra = id->dma_ultra;
718 drive->id->dma_mword = id->dma_mword;
719 drive->id->dma_1word = id->dma_1word;
720 /* anything more ? */
721 kfree(id);
722
723 if (drive->using_dma && ide_id_dma_bug(drive))
724 ide_dma_off(drive);
725 }
726
727 return 1;
728 }
729
730 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
731 {
732 ide_hwif_t *hwif = drive->hwif;
733 struct ide_io_ports *io_ports = &hwif->io_ports;
734 int error = 0;
735 u8 stat;
736
737 // while (HWGROUP(drive)->busy)
738 // msleep(50);
739
740 #ifdef CONFIG_BLK_DEV_IDEDMA
741 if (hwif->dma_ops) /* check if host supports DMA */
742 hwif->dma_ops->dma_host_set(drive, 0);
743 #endif
744
745 /* Skip setting PIO flow-control modes on pre-EIDE drives */
746 if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
747 goto skip;
748
749 /*
750 * Don't use ide_wait_cmd here - it will
751 * attempt to set_geometry and recalibrate,
752 * but for some reason these don't work at
753 * this point (lost interrupt).
754 */
755 /*
756 * Select the drive, and issue the SETFEATURES command
757 */
758 disable_irq_nosync(hwif->irq);
759
760 /*
761 * FIXME: we race against the running IRQ here if
762 * this is called from non IRQ context. If we use
763 * disable_irq() we hang on the error path. Work
764 * is needed.
765 */
766
767 udelay(1);
768 SELECT_DRIVE(drive);
769 SELECT_MASK(drive, 0);
770 udelay(1);
771 ide_set_irq(drive, 0);
772 hwif->OUTB(speed, io_ports->nsect_addr);
773 hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
774 hwif->OUTBSYNC(drive, WIN_SETFEATURES, io_ports->command_addr);
775 if (drive->quirk_list == 2)
776 ide_set_irq(drive, 1);
777
778 error = __ide_wait_stat(drive, drive->ready_stat,
779 BUSY_STAT|DRQ_STAT|ERR_STAT,
780 WAIT_CMD, &stat);
781
782 SELECT_MASK(drive, 0);
783
784 enable_irq(hwif->irq);
785
786 if (error) {
787 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
788 return error;
789 }
790
791 drive->id->dma_ultra &= ~0xFF00;
792 drive->id->dma_mword &= ~0x0F00;
793 drive->id->dma_1word &= ~0x0F00;
794
795 skip:
796 #ifdef CONFIG_BLK_DEV_IDEDMA
797 if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
798 drive->using_dma)
799 hwif->dma_ops->dma_host_set(drive, 1);
800 else if (hwif->dma_ops) /* check if host supports DMA */
801 ide_dma_off_quietly(drive);
802 #endif
803
804 switch(speed) {
805 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
806 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
807 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
808 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
809 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
810 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
811 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
812 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
813 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
814 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
815 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
816 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
817 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
818 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
819 default: break;
820 }
821 if (!drive->init_speed)
822 drive->init_speed = speed;
823 drive->current_speed = speed;
824 return error;
825 }
826
827 /*
828 * This should get invoked any time we exit the driver to
829 * wait for an interrupt response from a drive. handler() points
830 * at the appropriate code to handle the next interrupt, and a
831 * timer is started to prevent us from waiting forever in case
832 * something goes wrong (see the ide_timer_expiry() handler later on).
833 *
834 * See also ide_execute_command
835 */
836 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
837 unsigned int timeout, ide_expiry_t *expiry)
838 {
839 ide_hwgroup_t *hwgroup = HWGROUP(drive);
840
841 BUG_ON(hwgroup->handler);
842 hwgroup->handler = handler;
843 hwgroup->expiry = expiry;
844 hwgroup->timer.expires = jiffies + timeout;
845 hwgroup->req_gen_timer = hwgroup->req_gen;
846 add_timer(&hwgroup->timer);
847 }
848
849 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
850 unsigned int timeout, ide_expiry_t *expiry)
851 {
852 unsigned long flags;
853 spin_lock_irqsave(&ide_lock, flags);
854 __ide_set_handler(drive, handler, timeout, expiry);
855 spin_unlock_irqrestore(&ide_lock, flags);
856 }
857
858 EXPORT_SYMBOL(ide_set_handler);
859
860 /**
861 * ide_execute_command - execute an IDE command
862 * @drive: IDE drive to issue the command against
863 * @command: command byte to write
864 * @handler: handler for next phase
865 * @timeout: timeout for command
866 * @expiry: handler to run on timeout
867 *
868 * Helper function to issue an IDE command. This handles the
869 * atomicity requirements, command timing and ensures that the
870 * handler and IRQ setup do not race. All IDE command kick off
871 * should go via this function or do equivalent locking.
872 */
873
874 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
875 unsigned timeout, ide_expiry_t *expiry)
876 {
877 unsigned long flags;
878 ide_hwif_t *hwif = HWIF(drive);
879
880 spin_lock_irqsave(&ide_lock, flags);
881 __ide_set_handler(drive, handler, timeout, expiry);
882 hwif->OUTBSYNC(drive, cmd, hwif->io_ports.command_addr);
883 /*
884 * Drive takes 400nS to respond, we must avoid the IRQ being
885 * serviced before that.
886 *
887 * FIXME: we could skip this delay with care on non shared devices
888 */
889 ndelay(400);
890 spin_unlock_irqrestore(&ide_lock, flags);
891 }
892 EXPORT_SYMBOL(ide_execute_command);
893
894 void ide_execute_pkt_cmd(ide_drive_t *drive)
895 {
896 ide_hwif_t *hwif = drive->hwif;
897 unsigned long flags;
898
899 spin_lock_irqsave(&ide_lock, flags);
900 hwif->OUTBSYNC(drive, WIN_PACKETCMD, hwif->io_ports.command_addr);
901 ndelay(400);
902 spin_unlock_irqrestore(&ide_lock, flags);
903 }
904 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
905
906 /* needed below */
907 static ide_startstop_t do_reset1 (ide_drive_t *, int);
908
909 /*
910 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
911 * during an atapi drive reset operation. If the drive has not yet responded,
912 * and we have not yet hit our maximum waiting time, then the timer is restarted
913 * for another 50ms.
914 */
915 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
916 {
917 ide_hwgroup_t *hwgroup = HWGROUP(drive);
918 u8 stat;
919
920 SELECT_DRIVE(drive);
921 udelay (10);
922 stat = ide_read_status(drive);
923
924 if (OK_STAT(stat, 0, BUSY_STAT))
925 printk("%s: ATAPI reset complete\n", drive->name);
926 else {
927 if (time_before(jiffies, hwgroup->poll_timeout)) {
928 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
929 /* continue polling */
930 return ide_started;
931 }
932 /* end of polling */
933 hwgroup->polling = 0;
934 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
935 drive->name, stat);
936 /* do it the old fashioned way */
937 return do_reset1(drive, 1);
938 }
939 /* done polling */
940 hwgroup->polling = 0;
941 hwgroup->resetting = 0;
942 return ide_stopped;
943 }
944
945 /*
946 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
947 * during an ide reset operation. If the drives have not yet responded,
948 * and we have not yet hit our maximum waiting time, then the timer is restarted
949 * for another 50ms.
950 */
951 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
952 {
953 ide_hwgroup_t *hwgroup = HWGROUP(drive);
954 ide_hwif_t *hwif = HWIF(drive);
955 const struct ide_port_ops *port_ops = hwif->port_ops;
956 u8 tmp;
957
958 if (port_ops && port_ops->reset_poll) {
959 if (port_ops->reset_poll(drive)) {
960 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
961 hwif->name, drive->name);
962 return ide_stopped;
963 }
964 }
965
966 tmp = ide_read_status(drive);
967
968 if (!OK_STAT(tmp, 0, BUSY_STAT)) {
969 if (time_before(jiffies, hwgroup->poll_timeout)) {
970 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
971 /* continue polling */
972 return ide_started;
973 }
974 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
975 drive->failures++;
976 } else {
977 printk("%s: reset: ", hwif->name);
978 tmp = ide_read_error(drive);
979
980 if (tmp == 1) {
981 printk("success\n");
982 drive->failures = 0;
983 } else {
984 drive->failures++;
985 printk("master: ");
986 switch (tmp & 0x7f) {
987 case 1: printk("passed");
988 break;
989 case 2: printk("formatter device error");
990 break;
991 case 3: printk("sector buffer error");
992 break;
993 case 4: printk("ECC circuitry error");
994 break;
995 case 5: printk("controlling MPU error");
996 break;
997 default:printk("error (0x%02x?)", tmp);
998 }
999 if (tmp & 0x80)
1000 printk("; slave: failed");
1001 printk("\n");
1002 }
1003 }
1004 hwgroup->polling = 0; /* done polling */
1005 hwgroup->resetting = 0; /* done reset attempt */
1006 return ide_stopped;
1007 }
1008
1009 static void ide_disk_pre_reset(ide_drive_t *drive)
1010 {
1011 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1012
1013 drive->special.all = 0;
1014 drive->special.b.set_geometry = legacy;
1015 drive->special.b.recalibrate = legacy;
1016 drive->mult_count = 0;
1017 if (!drive->keep_settings && !drive->using_dma)
1018 drive->mult_req = 0;
1019 if (drive->mult_req != drive->mult_count)
1020 drive->special.b.set_multmode = 1;
1021 }
1022
1023 static void pre_reset(ide_drive_t *drive)
1024 {
1025 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1026
1027 if (drive->media == ide_disk)
1028 ide_disk_pre_reset(drive);
1029 else
1030 drive->post_reset = 1;
1031
1032 if (drive->using_dma) {
1033 if (drive->crc_count)
1034 ide_check_dma_crc(drive);
1035 else
1036 ide_dma_off(drive);
1037 }
1038
1039 if (!drive->keep_settings) {
1040 if (!drive->using_dma) {
1041 drive->unmask = 0;
1042 drive->io_32bit = 0;
1043 }
1044 return;
1045 }
1046
1047 if (port_ops && port_ops->pre_reset)
1048 port_ops->pre_reset(drive);
1049
1050 if (drive->current_speed != 0xff)
1051 drive->desired_speed = drive->current_speed;
1052 drive->current_speed = 0xff;
1053 }
1054
1055 /*
1056 * do_reset1() attempts to recover a confused drive by resetting it.
1057 * Unfortunately, resetting a disk drive actually resets all devices on
1058 * the same interface, so it can really be thought of as resetting the
1059 * interface rather than resetting the drive.
1060 *
1061 * ATAPI devices have their own reset mechanism which allows them to be
1062 * individually reset without clobbering other devices on the same interface.
1063 *
1064 * Unfortunately, the IDE interface does not generate an interrupt to let
1065 * us know when the reset operation has finished, so we must poll for this.
1066 * Equally poor, though, is the fact that this may a very long time to complete,
1067 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1068 * we set a timer to poll at 50ms intervals.
1069 */
1070 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1071 {
1072 unsigned int unit;
1073 unsigned long flags;
1074 ide_hwif_t *hwif;
1075 ide_hwgroup_t *hwgroup;
1076 struct ide_io_ports *io_ports;
1077 const struct ide_port_ops *port_ops;
1078 u8 ctl;
1079
1080 spin_lock_irqsave(&ide_lock, flags);
1081 hwif = HWIF(drive);
1082 hwgroup = HWGROUP(drive);
1083
1084 io_ports = &hwif->io_ports;
1085
1086 /* We must not reset with running handlers */
1087 BUG_ON(hwgroup->handler != NULL);
1088
1089 /* For an ATAPI device, first try an ATAPI SRST. */
1090 if (drive->media != ide_disk && !do_not_try_atapi) {
1091 hwgroup->resetting = 1;
1092 pre_reset(drive);
1093 SELECT_DRIVE(drive);
1094 udelay (20);
1095 hwif->OUTBSYNC(drive, WIN_SRST, io_ports->command_addr);
1096 ndelay(400);
1097 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1098 hwgroup->polling = 1;
1099 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1100 spin_unlock_irqrestore(&ide_lock, flags);
1101 return ide_started;
1102 }
1103
1104 /*
1105 * First, reset any device state data we were maintaining
1106 * for any of the drives on this interface.
1107 */
1108 for (unit = 0; unit < MAX_DRIVES; ++unit)
1109 pre_reset(&hwif->drives[unit]);
1110
1111 if (io_ports->ctl_addr == 0) {
1112 spin_unlock_irqrestore(&ide_lock, flags);
1113 return ide_stopped;
1114 }
1115
1116 hwgroup->resetting = 1;
1117 /*
1118 * Note that we also set nIEN while resetting the device,
1119 * to mask unwanted interrupts from the interface during the reset.
1120 * However, due to the design of PC hardware, this will cause an
1121 * immediate interrupt due to the edge transition it produces.
1122 * This single interrupt gives us a "fast poll" for drives that
1123 * recover from reset very quickly, saving us the first 50ms wait time.
1124 */
1125 /* set SRST and nIEN */
1126 hwif->OUTBSYNC(drive, drive->ctl|6, io_ports->ctl_addr);
1127 /* more than enough time */
1128 udelay(10);
1129 if (drive->quirk_list == 2)
1130 ctl = drive->ctl; /* clear SRST and nIEN */
1131 else
1132 ctl = drive->ctl | 2; /* clear SRST, leave nIEN */
1133 hwif->OUTBSYNC(drive, ctl, io_ports->ctl_addr);
1134 /* more than enough time */
1135 udelay(10);
1136 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1137 hwgroup->polling = 1;
1138 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1139
1140 /*
1141 * Some weird controller like resetting themselves to a strange
1142 * state when the disks are reset this way. At least, the Winbond
1143 * 553 documentation says that
1144 */
1145 port_ops = hwif->port_ops;
1146 if (port_ops && port_ops->resetproc)
1147 port_ops->resetproc(drive);
1148
1149 spin_unlock_irqrestore(&ide_lock, flags);
1150 return ide_started;
1151 }
1152
1153 /*
1154 * ide_do_reset() is the entry point to the drive/interface reset code.
1155 */
1156
1157 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1158 {
1159 return do_reset1(drive, 0);
1160 }
1161
1162 EXPORT_SYMBOL(ide_do_reset);
1163
1164 /*
1165 * ide_wait_not_busy() waits for the currently selected device on the hwif
1166 * to report a non-busy status, see comments in ide_probe_port().
1167 */
1168 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1169 {
1170 u8 stat = 0;
1171
1172 while(timeout--) {
1173 /*
1174 * Turn this into a schedule() sleep once I'm sure
1175 * about locking issues (2.5 work ?).
1176 */
1177 mdelay(1);
1178 stat = hwif->INB(hwif->io_ports.status_addr);
1179 if ((stat & BUSY_STAT) == 0)
1180 return 0;
1181 /*
1182 * Assume a value of 0xff means nothing is connected to
1183 * the interface and it doesn't implement the pull-down
1184 * resistor on D7.
1185 */
1186 if (stat == 0xff)
1187 return -ENODEV;
1188 touch_softlockup_watchdog();
1189 touch_nmi_watchdog();
1190 }
1191 return -EBUSY;
1192 }
1193
1194 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1195
This page took 0.061885 seconds and 6 git commands to generate.