ide-pmac: store pmif instead of hwif in ->driver_data (take 2)
[deliverable/linux.git] / drivers / ide / ppc / pmac.c
1 /*
2 * Support for IDE interfaces on PowerMacs.
3 *
4 * These IDE interfaces are memory-mapped and have a DBDMA channel
5 * for doing DMA.
6 *
7 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8 * Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Some code taken from drivers/ide/ide-dma.c:
16 *
17 * Copyright (c) 1995-1998 Mark Lord
18 *
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
22 * big table
23 *
24 */
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/pci.h>
33 #include <linux/adb.h>
34 #include <linux/pmu.h>
35 #include <linux/scatterlist.h>
36
37 #include <asm/prom.h>
38 #include <asm/io.h>
39 #include <asm/dbdma.h>
40 #include <asm/ide.h>
41 #include <asm/pci-bridge.h>
42 #include <asm/machdep.h>
43 #include <asm/pmac_feature.h>
44 #include <asm/sections.h>
45 #include <asm/irq.h>
46
47 #ifndef CONFIG_PPC64
48 #include <asm/mediabay.h>
49 #endif
50
51 #undef IDE_PMAC_DEBUG
52
53 #define DMA_WAIT_TIMEOUT 50
54
55 typedef struct pmac_ide_hwif {
56 unsigned long regbase;
57 int irq;
58 int kind;
59 int aapl_bus_id;
60 unsigned mediabay : 1;
61 unsigned broken_dma : 1;
62 unsigned broken_dma_warn : 1;
63 struct device_node* node;
64 struct macio_dev *mdev;
65 u32 timings[4];
66 volatile u32 __iomem * *kauai_fcr;
67 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
68 /* Those fields are duplicating what is in hwif. We currently
69 * can't use the hwif ones because of some assumptions that are
70 * beeing done by the generic code about the kind of dma controller
71 * and format of the dma table. This will have to be fixed though.
72 */
73 volatile struct dbdma_regs __iomem * dma_regs;
74 struct dbdma_cmd* dma_table_cpu;
75 #endif
76
77 } pmac_ide_hwif_t;
78
79 enum {
80 controller_ohare, /* OHare based */
81 controller_heathrow, /* Heathrow/Paddington */
82 controller_kl_ata3, /* KeyLargo ATA-3 */
83 controller_kl_ata4, /* KeyLargo ATA-4 */
84 controller_un_ata6, /* UniNorth2 ATA-6 */
85 controller_k2_ata6, /* K2 ATA-6 */
86 controller_sh_ata6, /* Shasta ATA-6 */
87 };
88
89 static const char* model_name[] = {
90 "OHare ATA", /* OHare based */
91 "Heathrow ATA", /* Heathrow/Paddington */
92 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
93 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
94 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
95 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
96 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
97 };
98
99 /*
100 * Extra registers, both 32-bit little-endian
101 */
102 #define IDE_TIMING_CONFIG 0x200
103 #define IDE_INTERRUPT 0x300
104
105 /* Kauai (U2) ATA has different register setup */
106 #define IDE_KAUAI_PIO_CONFIG 0x200
107 #define IDE_KAUAI_ULTRA_CONFIG 0x210
108 #define IDE_KAUAI_POLL_CONFIG 0x220
109
110 /*
111 * Timing configuration register definitions
112 */
113
114 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
115 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
116 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
117 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
118 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
119
120 /* 133Mhz cell, found in shasta.
121 * See comments about 100 Mhz Uninorth 2...
122 * Note that PIO_MASK and MDMA_MASK seem to overlap
123 */
124 #define TR_133_PIOREG_PIO_MASK 0xff000fff
125 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
126 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
127 #define TR_133_UDMAREG_UDMA_EN 0x00000001
128
129 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
130 * this one yet, it appears as a pci device (106b/0033) on uninorth
131 * internal PCI bus and it's clock is controlled like gem or fw. It
132 * appears to be an evolution of keylargo ATA4 with a timing register
133 * extended to 2 32bits registers and a similar DBDMA channel. Other
134 * registers seem to exist but I can't tell much about them.
135 *
136 * So far, I'm using pre-calculated tables for this extracted from
137 * the values used by the MacOS X driver.
138 *
139 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
140 * register controls the UDMA timings. At least, it seems bit 0
141 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
142 * cycle time in units of 10ns. Bits 8..15 are used by I don't
143 * know their meaning yet
144 */
145 #define TR_100_PIOREG_PIO_MASK 0xff000fff
146 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
147 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
148 #define TR_100_UDMAREG_UDMA_EN 0x00000001
149
150
151 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
152 * 40 connector cable and to 4 on 80 connector one.
153 * Clock unit is 15ns (66Mhz)
154 *
155 * 3 Values can be programmed:
156 * - Write data setup, which appears to match the cycle time. They
157 * also call it DIOW setup.
158 * - Ready to pause time (from spec)
159 * - Address setup. That one is weird. I don't see where exactly
160 * it fits in UDMA cycles, I got it's name from an obscure piece
161 * of commented out code in Darwin. They leave it to 0, we do as
162 * well, despite a comment that would lead to think it has a
163 * min value of 45ns.
164 * Apple also add 60ns to the write data setup (or cycle time ?) on
165 * reads.
166 */
167 #define TR_66_UDMA_MASK 0xfff00000
168 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
169 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
170 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
171 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
172 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
173 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
174 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
175 #define TR_66_MDMA_MASK 0x000ffc00
176 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
177 #define TR_66_MDMA_RECOVERY_SHIFT 15
178 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
179 #define TR_66_MDMA_ACCESS_SHIFT 10
180 #define TR_66_PIO_MASK 0x000003ff
181 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
182 #define TR_66_PIO_RECOVERY_SHIFT 5
183 #define TR_66_PIO_ACCESS_MASK 0x0000001f
184 #define TR_66_PIO_ACCESS_SHIFT 0
185
186 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
187 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
188 *
189 * The access time and recovery time can be programmed. Some older
190 * Darwin code base limit OHare to 150ns cycle time. I decided to do
191 * the same here fore safety against broken old hardware ;)
192 * The HalfTick bit, when set, adds half a clock (15ns) to the access
193 * time and removes one from recovery. It's not supported on KeyLargo
194 * implementation afaik. The E bit appears to be set for PIO mode 0 and
195 * is used to reach long timings used in this mode.
196 */
197 #define TR_33_MDMA_MASK 0x003ff800
198 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
199 #define TR_33_MDMA_RECOVERY_SHIFT 16
200 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
201 #define TR_33_MDMA_ACCESS_SHIFT 11
202 #define TR_33_MDMA_HALFTICK 0x00200000
203 #define TR_33_PIO_MASK 0x000007ff
204 #define TR_33_PIO_E 0x00000400
205 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
206 #define TR_33_PIO_RECOVERY_SHIFT 5
207 #define TR_33_PIO_ACCESS_MASK 0x0000001f
208 #define TR_33_PIO_ACCESS_SHIFT 0
209
210 /*
211 * Interrupt register definitions
212 */
213 #define IDE_INTR_DMA 0x80000000
214 #define IDE_INTR_DEVICE 0x40000000
215
216 /*
217 * FCR Register on Kauai. Not sure what bit 0x4 is ...
218 */
219 #define KAUAI_FCR_UATA_MAGIC 0x00000004
220 #define KAUAI_FCR_UATA_RESET_N 0x00000002
221 #define KAUAI_FCR_UATA_ENABLE 0x00000001
222
223 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
224
225 /* Rounded Multiword DMA timings
226 *
227 * I gave up finding a generic formula for all controller
228 * types and instead, built tables based on timing values
229 * used by Apple in Darwin's implementation.
230 */
231 struct mdma_timings_t {
232 int accessTime;
233 int recoveryTime;
234 int cycleTime;
235 };
236
237 struct mdma_timings_t mdma_timings_33[] =
238 {
239 { 240, 240, 480 },
240 { 180, 180, 360 },
241 { 135, 135, 270 },
242 { 120, 120, 240 },
243 { 105, 105, 210 },
244 { 90, 90, 180 },
245 { 75, 75, 150 },
246 { 75, 45, 120 },
247 { 0, 0, 0 }
248 };
249
250 struct mdma_timings_t mdma_timings_33k[] =
251 {
252 { 240, 240, 480 },
253 { 180, 180, 360 },
254 { 150, 150, 300 },
255 { 120, 120, 240 },
256 { 90, 120, 210 },
257 { 90, 90, 180 },
258 { 90, 60, 150 },
259 { 90, 30, 120 },
260 { 0, 0, 0 }
261 };
262
263 struct mdma_timings_t mdma_timings_66[] =
264 {
265 { 240, 240, 480 },
266 { 180, 180, 360 },
267 { 135, 135, 270 },
268 { 120, 120, 240 },
269 { 105, 105, 210 },
270 { 90, 90, 180 },
271 { 90, 75, 165 },
272 { 75, 45, 120 },
273 { 0, 0, 0 }
274 };
275
276 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
277 struct {
278 int addrSetup; /* ??? */
279 int rdy2pause;
280 int wrDataSetup;
281 } kl66_udma_timings[] =
282 {
283 { 0, 180, 120 }, /* Mode 0 */
284 { 0, 150, 90 }, /* 1 */
285 { 0, 120, 60 }, /* 2 */
286 { 0, 90, 45 }, /* 3 */
287 { 0, 90, 30 } /* 4 */
288 };
289
290 /* UniNorth 2 ATA/100 timings */
291 struct kauai_timing {
292 int cycle_time;
293 u32 timing_reg;
294 };
295
296 static struct kauai_timing kauai_pio_timings[] =
297 {
298 { 930 , 0x08000fff },
299 { 600 , 0x08000a92 },
300 { 383 , 0x0800060f },
301 { 360 , 0x08000492 },
302 { 330 , 0x0800048f },
303 { 300 , 0x080003cf },
304 { 270 , 0x080003cc },
305 { 240 , 0x0800038b },
306 { 239 , 0x0800030c },
307 { 180 , 0x05000249 },
308 { 120 , 0x04000148 },
309 { 0 , 0 },
310 };
311
312 static struct kauai_timing kauai_mdma_timings[] =
313 {
314 { 1260 , 0x00fff000 },
315 { 480 , 0x00618000 },
316 { 360 , 0x00492000 },
317 { 270 , 0x0038e000 },
318 { 240 , 0x0030c000 },
319 { 210 , 0x002cb000 },
320 { 180 , 0x00249000 },
321 { 150 , 0x00209000 },
322 { 120 , 0x00148000 },
323 { 0 , 0 },
324 };
325
326 static struct kauai_timing kauai_udma_timings[] =
327 {
328 { 120 , 0x000070c0 },
329 { 90 , 0x00005d80 },
330 { 60 , 0x00004a60 },
331 { 45 , 0x00003a50 },
332 { 30 , 0x00002a30 },
333 { 20 , 0x00002921 },
334 { 0 , 0 },
335 };
336
337 static struct kauai_timing shasta_pio_timings[] =
338 {
339 { 930 , 0x08000fff },
340 { 600 , 0x0A000c97 },
341 { 383 , 0x07000712 },
342 { 360 , 0x040003cd },
343 { 330 , 0x040003cd },
344 { 300 , 0x040003cd },
345 { 270 , 0x040003cd },
346 { 240 , 0x040003cd },
347 { 239 , 0x040003cd },
348 { 180 , 0x0400028b },
349 { 120 , 0x0400010a },
350 { 0 , 0 },
351 };
352
353 static struct kauai_timing shasta_mdma_timings[] =
354 {
355 { 1260 , 0x00fff000 },
356 { 480 , 0x00820800 },
357 { 360 , 0x00820800 },
358 { 270 , 0x00820800 },
359 { 240 , 0x00820800 },
360 { 210 , 0x00820800 },
361 { 180 , 0x00820800 },
362 { 150 , 0x0028b000 },
363 { 120 , 0x001ca000 },
364 { 0 , 0 },
365 };
366
367 static struct kauai_timing shasta_udma133_timings[] =
368 {
369 { 120 , 0x00035901, },
370 { 90 , 0x000348b1, },
371 { 60 , 0x00033881, },
372 { 45 , 0x00033861, },
373 { 30 , 0x00033841, },
374 { 20 , 0x00033031, },
375 { 15 , 0x00033021, },
376 { 0 , 0 },
377 };
378
379
380 static inline u32
381 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
382 {
383 int i;
384
385 for (i=0; table[i].cycle_time; i++)
386 if (cycle_time > table[i+1].cycle_time)
387 return table[i].timing_reg;
388 BUG();
389 return 0;
390 }
391
392 /* allow up to 256 DBDMA commands per xfer */
393 #define MAX_DCMDS 256
394
395 /*
396 * Wait 1s for disk to answer on IDE bus after a hard reset
397 * of the device (via GPIO/FCR).
398 *
399 * Some devices seem to "pollute" the bus even after dropping
400 * the BSY bit (typically some combo drives slave on the UDMA
401 * bus) after a hard reset. Since we hard reset all drives on
402 * KeyLargo ATA66, we have to keep that delay around. I may end
403 * up not hard resetting anymore on these and keep the delay only
404 * for older interfaces instead (we have to reset when coming
405 * from MacOS...) --BenH.
406 */
407 #define IDE_WAKEUP_DELAY (1*HZ)
408
409 static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
410 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
411 static void pmac_ide_selectproc(ide_drive_t *drive);
412 static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
413
414 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
415
416 #define PMAC_IDE_REG(x) \
417 ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
418
419 /*
420 * Apply the timings of the proper unit (master/slave) to the shared
421 * timing register when selecting that unit. This version is for
422 * ASICs with a single timing register
423 */
424 static void
425 pmac_ide_selectproc(ide_drive_t *drive)
426 {
427 ide_hwif_t *hwif = drive->hwif;
428 pmac_ide_hwif_t *pmif =
429 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
430
431 if (pmif == NULL)
432 return;
433
434 if (drive->select.b.unit & 0x01)
435 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
436 else
437 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
438 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
439 }
440
441 /*
442 * Apply the timings of the proper unit (master/slave) to the shared
443 * timing register when selecting that unit. This version is for
444 * ASICs with a dual timing register (Kauai)
445 */
446 static void
447 pmac_ide_kauai_selectproc(ide_drive_t *drive)
448 {
449 ide_hwif_t *hwif = drive->hwif;
450 pmac_ide_hwif_t *pmif =
451 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
452
453 if (pmif == NULL)
454 return;
455
456 if (drive->select.b.unit & 0x01) {
457 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
458 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
459 } else {
460 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
461 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
462 }
463 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
464 }
465
466 /*
467 * Force an update of controller timing values for a given drive
468 */
469 static void
470 pmac_ide_do_update_timings(ide_drive_t *drive)
471 {
472 ide_hwif_t *hwif = drive->hwif;
473 pmac_ide_hwif_t *pmif =
474 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
475
476 if (pmif == NULL)
477 return;
478
479 if (pmif->kind == controller_sh_ata6 ||
480 pmif->kind == controller_un_ata6 ||
481 pmif->kind == controller_k2_ata6)
482 pmac_ide_kauai_selectproc(drive);
483 else
484 pmac_ide_selectproc(drive);
485 }
486
487 static void pmac_outbsync(ide_hwif_t *hwif, u8 value, unsigned long port)
488 {
489 u32 tmp;
490
491 writeb(value, (void __iomem *) port);
492 tmp = readl((void __iomem *)(hwif->io_ports.data_addr
493 + IDE_TIMING_CONFIG));
494 }
495
496 /*
497 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
498 */
499 static void
500 pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
501 {
502 ide_hwif_t *hwif = drive->hwif;
503 pmac_ide_hwif_t *pmif =
504 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
505 struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
506 u32 *timings, t;
507 unsigned accessTicks, recTicks;
508 unsigned accessTime, recTime;
509 unsigned int cycle_time;
510
511 if (pmif == NULL)
512 return;
513
514 /* which drive is it ? */
515 timings = &pmif->timings[drive->select.b.unit & 0x01];
516 t = *timings;
517
518 cycle_time = ide_pio_cycle_time(drive, pio);
519
520 switch (pmif->kind) {
521 case controller_sh_ata6: {
522 /* 133Mhz cell */
523 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
524 t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
525 break;
526 }
527 case controller_un_ata6:
528 case controller_k2_ata6: {
529 /* 100Mhz cell */
530 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
531 t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
532 break;
533 }
534 case controller_kl_ata4:
535 /* 66Mhz cell */
536 recTime = cycle_time - tim->active - tim->setup;
537 recTime = max(recTime, 150U);
538 accessTime = tim->active;
539 accessTime = max(accessTime, 150U);
540 accessTicks = SYSCLK_TICKS_66(accessTime);
541 accessTicks = min(accessTicks, 0x1fU);
542 recTicks = SYSCLK_TICKS_66(recTime);
543 recTicks = min(recTicks, 0x1fU);
544 t = (t & ~TR_66_PIO_MASK) |
545 (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
546 (recTicks << TR_66_PIO_RECOVERY_SHIFT);
547 break;
548 default: {
549 /* 33Mhz cell */
550 int ebit = 0;
551 recTime = cycle_time - tim->active - tim->setup;
552 recTime = max(recTime, 150U);
553 accessTime = tim->active;
554 accessTime = max(accessTime, 150U);
555 accessTicks = SYSCLK_TICKS(accessTime);
556 accessTicks = min(accessTicks, 0x1fU);
557 accessTicks = max(accessTicks, 4U);
558 recTicks = SYSCLK_TICKS(recTime);
559 recTicks = min(recTicks, 0x1fU);
560 recTicks = max(recTicks, 5U) - 4;
561 if (recTicks > 9) {
562 recTicks--; /* guess, but it's only for PIO0, so... */
563 ebit = 1;
564 }
565 t = (t & ~TR_33_PIO_MASK) |
566 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
567 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
568 if (ebit)
569 t |= TR_33_PIO_E;
570 break;
571 }
572 }
573
574 #ifdef IDE_PMAC_DEBUG
575 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
576 drive->name, pio, *timings);
577 #endif
578
579 *timings = t;
580 pmac_ide_do_update_timings(drive);
581 }
582
583 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
584
585 /*
586 * Calculate KeyLargo ATA/66 UDMA timings
587 */
588 static int
589 set_timings_udma_ata4(u32 *timings, u8 speed)
590 {
591 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
592
593 if (speed > XFER_UDMA_4)
594 return 1;
595
596 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
597 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
598 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
599
600 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
601 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
602 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
603 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
604 TR_66_UDMA_EN;
605 #ifdef IDE_PMAC_DEBUG
606 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
607 speed & 0xf, *timings);
608 #endif
609
610 return 0;
611 }
612
613 /*
614 * Calculate Kauai ATA/100 UDMA timings
615 */
616 static int
617 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
618 {
619 struct ide_timing *t = ide_timing_find_mode(speed);
620 u32 tr;
621
622 if (speed > XFER_UDMA_5 || t == NULL)
623 return 1;
624 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
625 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
626 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
627
628 return 0;
629 }
630
631 /*
632 * Calculate Shasta ATA/133 UDMA timings
633 */
634 static int
635 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
636 {
637 struct ide_timing *t = ide_timing_find_mode(speed);
638 u32 tr;
639
640 if (speed > XFER_UDMA_6 || t == NULL)
641 return 1;
642 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
643 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
644 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
645
646 return 0;
647 }
648
649 /*
650 * Calculate MDMA timings for all cells
651 */
652 static void
653 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
654 u8 speed)
655 {
656 int cycleTime, accessTime = 0, recTime = 0;
657 unsigned accessTicks, recTicks;
658 struct hd_driveid *id = drive->id;
659 struct mdma_timings_t* tm = NULL;
660 int i;
661
662 /* Get default cycle time for mode */
663 switch(speed & 0xf) {
664 case 0: cycleTime = 480; break;
665 case 1: cycleTime = 150; break;
666 case 2: cycleTime = 120; break;
667 default:
668 BUG();
669 break;
670 }
671
672 /* Check if drive provides explicit DMA cycle time */
673 if ((id->field_valid & 2) && id->eide_dma_time)
674 cycleTime = max_t(int, id->eide_dma_time, cycleTime);
675
676 /* OHare limits according to some old Apple sources */
677 if ((intf_type == controller_ohare) && (cycleTime < 150))
678 cycleTime = 150;
679 /* Get the proper timing array for this controller */
680 switch(intf_type) {
681 case controller_sh_ata6:
682 case controller_un_ata6:
683 case controller_k2_ata6:
684 break;
685 case controller_kl_ata4:
686 tm = mdma_timings_66;
687 break;
688 case controller_kl_ata3:
689 tm = mdma_timings_33k;
690 break;
691 default:
692 tm = mdma_timings_33;
693 break;
694 }
695 if (tm != NULL) {
696 /* Lookup matching access & recovery times */
697 i = -1;
698 for (;;) {
699 if (tm[i+1].cycleTime < cycleTime)
700 break;
701 i++;
702 }
703 cycleTime = tm[i].cycleTime;
704 accessTime = tm[i].accessTime;
705 recTime = tm[i].recoveryTime;
706
707 #ifdef IDE_PMAC_DEBUG
708 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
709 drive->name, cycleTime, accessTime, recTime);
710 #endif
711 }
712 switch(intf_type) {
713 case controller_sh_ata6: {
714 /* 133Mhz cell */
715 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
716 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
717 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
718 }
719 case controller_un_ata6:
720 case controller_k2_ata6: {
721 /* 100Mhz cell */
722 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
723 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
724 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
725 }
726 break;
727 case controller_kl_ata4:
728 /* 66Mhz cell */
729 accessTicks = SYSCLK_TICKS_66(accessTime);
730 accessTicks = min(accessTicks, 0x1fU);
731 accessTicks = max(accessTicks, 0x1U);
732 recTicks = SYSCLK_TICKS_66(recTime);
733 recTicks = min(recTicks, 0x1fU);
734 recTicks = max(recTicks, 0x3U);
735 /* Clear out mdma bits and disable udma */
736 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
737 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
738 (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
739 break;
740 case controller_kl_ata3:
741 /* 33Mhz cell on KeyLargo */
742 accessTicks = SYSCLK_TICKS(accessTime);
743 accessTicks = max(accessTicks, 1U);
744 accessTicks = min(accessTicks, 0x1fU);
745 accessTime = accessTicks * IDE_SYSCLK_NS;
746 recTicks = SYSCLK_TICKS(recTime);
747 recTicks = max(recTicks, 1U);
748 recTicks = min(recTicks, 0x1fU);
749 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
750 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
751 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
752 break;
753 default: {
754 /* 33Mhz cell on others */
755 int halfTick = 0;
756 int origAccessTime = accessTime;
757 int origRecTime = recTime;
758
759 accessTicks = SYSCLK_TICKS(accessTime);
760 accessTicks = max(accessTicks, 1U);
761 accessTicks = min(accessTicks, 0x1fU);
762 accessTime = accessTicks * IDE_SYSCLK_NS;
763 recTicks = SYSCLK_TICKS(recTime);
764 recTicks = max(recTicks, 2U) - 1;
765 recTicks = min(recTicks, 0x1fU);
766 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
767 if ((accessTicks > 1) &&
768 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
769 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
770 halfTick = 1;
771 accessTicks--;
772 }
773 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
774 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
775 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
776 if (halfTick)
777 *timings |= TR_33_MDMA_HALFTICK;
778 }
779 }
780 #ifdef IDE_PMAC_DEBUG
781 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
782 drive->name, speed & 0xf, *timings);
783 #endif
784 }
785 #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
786
787 static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
788 {
789 ide_hwif_t *hwif = drive->hwif;
790 pmac_ide_hwif_t *pmif =
791 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
792 int unit = (drive->select.b.unit & 0x01);
793 int ret = 0;
794 u32 *timings, *timings2, tl[2];
795
796 timings = &pmif->timings[unit];
797 timings2 = &pmif->timings[unit+2];
798
799 /* Copy timings to local image */
800 tl[0] = *timings;
801 tl[1] = *timings2;
802
803 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
804 if (speed >= XFER_UDMA_0) {
805 if (pmif->kind == controller_kl_ata4)
806 ret = set_timings_udma_ata4(&tl[0], speed);
807 else if (pmif->kind == controller_un_ata6
808 || pmif->kind == controller_k2_ata6)
809 ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
810 else if (pmif->kind == controller_sh_ata6)
811 ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
812 else
813 ret = -1;
814 } else
815 set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
816 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
817 if (ret)
818 return;
819
820 /* Apply timings to controller */
821 *timings = tl[0];
822 *timings2 = tl[1];
823
824 pmac_ide_do_update_timings(drive);
825 }
826
827 /*
828 * Blast some well known "safe" values to the timing registers at init or
829 * wakeup from sleep time, before we do real calculation
830 */
831 static void
832 sanitize_timings(pmac_ide_hwif_t *pmif)
833 {
834 unsigned int value, value2 = 0;
835
836 switch(pmif->kind) {
837 case controller_sh_ata6:
838 value = 0x0a820c97;
839 value2 = 0x00033031;
840 break;
841 case controller_un_ata6:
842 case controller_k2_ata6:
843 value = 0x08618a92;
844 value2 = 0x00002921;
845 break;
846 case controller_kl_ata4:
847 value = 0x0008438c;
848 break;
849 case controller_kl_ata3:
850 value = 0x00084526;
851 break;
852 case controller_heathrow:
853 case controller_ohare:
854 default:
855 value = 0x00074526;
856 break;
857 }
858 pmif->timings[0] = pmif->timings[1] = value;
859 pmif->timings[2] = pmif->timings[3] = value2;
860 }
861
862 /* Suspend call back, should be called after the child devices
863 * have actually been suspended
864 */
865 static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
866 {
867 /* We clear the timings */
868 pmif->timings[0] = 0;
869 pmif->timings[1] = 0;
870
871 disable_irq(pmif->irq);
872
873 /* The media bay will handle itself just fine */
874 if (pmif->mediabay)
875 return 0;
876
877 /* Kauai has bus control FCRs directly here */
878 if (pmif->kauai_fcr) {
879 u32 fcr = readl(pmif->kauai_fcr);
880 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
881 writel(fcr, pmif->kauai_fcr);
882 }
883
884 /* Disable the bus on older machines and the cell on kauai */
885 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
886 0);
887
888 return 0;
889 }
890
891 /* Resume call back, should be called before the child devices
892 * are resumed
893 */
894 static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
895 {
896 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
897 if (!pmif->mediabay) {
898 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
899 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
900 msleep(10);
901 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
902
903 /* Kauai has it different */
904 if (pmif->kauai_fcr) {
905 u32 fcr = readl(pmif->kauai_fcr);
906 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
907 writel(fcr, pmif->kauai_fcr);
908 }
909
910 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
911 }
912
913 /* Sanitize drive timings */
914 sanitize_timings(pmif);
915
916 enable_irq(pmif->irq);
917
918 return 0;
919 }
920
921 static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
922 {
923 pmac_ide_hwif_t *pmif =
924 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
925 struct device_node *np = pmif->node;
926 const char *cable = of_get_property(np, "cable-type", NULL);
927
928 /* Get cable type from device-tree. */
929 if (cable && !strncmp(cable, "80-", 3))
930 return ATA_CBL_PATA80;
931
932 /*
933 * G5's seem to have incorrect cable type in device-tree.
934 * Let's assume they have a 80 conductor cable, this seem
935 * to be always the case unless the user mucked around.
936 */
937 if (of_device_is_compatible(np, "K2-UATA") ||
938 of_device_is_compatible(np, "shasta-ata"))
939 return ATA_CBL_PATA80;
940
941 return ATA_CBL_PATA40;
942 }
943
944 static const struct ide_port_ops pmac_ide_ata6_port_ops = {
945 .set_pio_mode = pmac_ide_set_pio_mode,
946 .set_dma_mode = pmac_ide_set_dma_mode,
947 .selectproc = pmac_ide_kauai_selectproc,
948 .cable_detect = pmac_ide_cable_detect,
949 };
950
951 static const struct ide_port_ops pmac_ide_ata4_port_ops = {
952 .set_pio_mode = pmac_ide_set_pio_mode,
953 .set_dma_mode = pmac_ide_set_dma_mode,
954 .selectproc = pmac_ide_selectproc,
955 .cable_detect = pmac_ide_cable_detect,
956 };
957
958 static const struct ide_port_ops pmac_ide_port_ops = {
959 .set_pio_mode = pmac_ide_set_pio_mode,
960 .set_dma_mode = pmac_ide_set_dma_mode,
961 .selectproc = pmac_ide_selectproc,
962 };
963
964 static const struct ide_dma_ops pmac_dma_ops;
965
966 static const struct ide_port_info pmac_port_info = {
967 .init_dma = pmac_ide_init_dma,
968 .chipset = ide_pmac,
969 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
970 .dma_ops = &pmac_dma_ops,
971 #endif
972 .port_ops = &pmac_ide_port_ops,
973 .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
974 IDE_HFLAG_POST_SET_MODE |
975 IDE_HFLAG_MMIO |
976 IDE_HFLAG_UNMASK_IRQS,
977 .pio_mask = ATA_PIO4,
978 .mwdma_mask = ATA_MWDMA2,
979 };
980
981 /*
982 * Setup, register & probe an IDE channel driven by this driver, this is
983 * called by one of the 2 probe functions (macio or PCI).
984 */
985 static int __devinit
986 pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif, hw_regs_t *hw)
987 {
988 struct device_node *np = pmif->node;
989 const int *bidp;
990 u8 idx[4] = { 0xff, 0xff, 0xff, 0xff };
991 struct ide_port_info d = pmac_port_info;
992
993 pmif->broken_dma = pmif->broken_dma_warn = 0;
994 if (of_device_is_compatible(np, "shasta-ata")) {
995 pmif->kind = controller_sh_ata6;
996 d.port_ops = &pmac_ide_ata6_port_ops;
997 d.udma_mask = ATA_UDMA6;
998 } else if (of_device_is_compatible(np, "kauai-ata")) {
999 pmif->kind = controller_un_ata6;
1000 d.port_ops = &pmac_ide_ata6_port_ops;
1001 d.udma_mask = ATA_UDMA5;
1002 } else if (of_device_is_compatible(np, "K2-UATA")) {
1003 pmif->kind = controller_k2_ata6;
1004 d.port_ops = &pmac_ide_ata6_port_ops;
1005 d.udma_mask = ATA_UDMA5;
1006 } else if (of_device_is_compatible(np, "keylargo-ata")) {
1007 if (strcmp(np->name, "ata-4") == 0) {
1008 pmif->kind = controller_kl_ata4;
1009 d.port_ops = &pmac_ide_ata4_port_ops;
1010 d.udma_mask = ATA_UDMA4;
1011 } else
1012 pmif->kind = controller_kl_ata3;
1013 } else if (of_device_is_compatible(np, "heathrow-ata")) {
1014 pmif->kind = controller_heathrow;
1015 } else {
1016 pmif->kind = controller_ohare;
1017 pmif->broken_dma = 1;
1018 }
1019
1020 bidp = of_get_property(np, "AAPL,bus-id", NULL);
1021 pmif->aapl_bus_id = bidp ? *bidp : 0;
1022
1023 /* On Kauai-type controllers, we make sure the FCR is correct */
1024 if (pmif->kauai_fcr)
1025 writel(KAUAI_FCR_UATA_MAGIC |
1026 KAUAI_FCR_UATA_RESET_N |
1027 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1028
1029 pmif->mediabay = 0;
1030
1031 /* Make sure we have sane timings */
1032 sanitize_timings(pmif);
1033
1034 #ifndef CONFIG_PPC64
1035 /* XXX FIXME: Media bay stuff need re-organizing */
1036 if (np->parent && np->parent->name
1037 && strcasecmp(np->parent->name, "media-bay") == 0) {
1038 #ifdef CONFIG_PMAC_MEDIABAY
1039 media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq,
1040 hwif);
1041 #endif /* CONFIG_PMAC_MEDIABAY */
1042 pmif->mediabay = 1;
1043 if (!bidp)
1044 pmif->aapl_bus_id = 1;
1045 } else if (pmif->kind == controller_ohare) {
1046 /* The code below is having trouble on some ohare machines
1047 * (timing related ?). Until I can put my hand on one of these
1048 * units, I keep the old way
1049 */
1050 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1051 } else
1052 #endif
1053 {
1054 /* This is necessary to enable IDE when net-booting */
1055 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1056 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1057 msleep(10);
1058 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1059 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1060 }
1061
1062 /* Setup MMIO ops */
1063 default_hwif_mmiops(hwif);
1064 hwif->OUTBSYNC = pmac_outbsync;
1065
1066 ide_init_port_hw(hwif, hw);
1067
1068 printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
1069 hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
1070 pmif->mediabay ? " (mediabay)" : "", hwif->irq);
1071
1072 if (pmif->mediabay) {
1073 #ifdef CONFIG_PMAC_MEDIABAY
1074 if (check_media_bay_by_base(pmif->regbase, MB_CD)) {
1075 #else
1076 if (1) {
1077 #endif
1078 hwif->drives[0].noprobe = 1;
1079 hwif->drives[1].noprobe = 1;
1080 }
1081 }
1082
1083 idx[0] = hwif->index;
1084
1085 ide_device_add(idx, &d);
1086
1087 return 0;
1088 }
1089
1090 static void __devinit pmac_ide_init_ports(hw_regs_t *hw, unsigned long base)
1091 {
1092 int i;
1093
1094 for (i = 0; i < 8; ++i)
1095 hw->io_ports_array[i] = base + i * 0x10;
1096
1097 hw->io_ports.ctl_addr = base + 0x160;
1098 }
1099
1100 /*
1101 * Attach to a macio probed interface
1102 */
1103 static int __devinit
1104 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1105 {
1106 void __iomem *base;
1107 unsigned long regbase;
1108 ide_hwif_t *hwif;
1109 pmac_ide_hwif_t *pmif;
1110 int irq, rc;
1111 hw_regs_t hw;
1112
1113 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1114 if (pmif == NULL)
1115 return -ENOMEM;
1116
1117 hwif = ide_find_port();
1118 if (hwif == NULL) {
1119 printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
1120 printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
1121 rc = -ENODEV;
1122 goto out_free_pmif;
1123 }
1124
1125 if (macio_resource_count(mdev) == 0) {
1126 printk(KERN_WARNING "ide-pmac: no address for %s\n",
1127 mdev->ofdev.node->full_name);
1128 rc = -ENXIO;
1129 goto out_free_pmif;
1130 }
1131
1132 /* Request memory resource for IO ports */
1133 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1134 printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1135 "%s!\n", mdev->ofdev.node->full_name);
1136 rc = -EBUSY;
1137 goto out_free_pmif;
1138 }
1139
1140 /* XXX This is bogus. Should be fixed in the registry by checking
1141 * the kind of host interrupt controller, a bit like gatwick
1142 * fixes in irq.c. That works well enough for the single case
1143 * where that happens though...
1144 */
1145 if (macio_irq_count(mdev) == 0) {
1146 printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1147 "13\n", mdev->ofdev.node->full_name);
1148 irq = irq_create_mapping(NULL, 13);
1149 } else
1150 irq = macio_irq(mdev, 0);
1151
1152 base = ioremap(macio_resource_start(mdev, 0), 0x400);
1153 regbase = (unsigned long) base;
1154
1155 pmif->mdev = mdev;
1156 pmif->node = mdev->ofdev.node;
1157 pmif->regbase = regbase;
1158 pmif->irq = irq;
1159 pmif->kauai_fcr = NULL;
1160 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1161 if (macio_resource_count(mdev) >= 2) {
1162 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1163 printk(KERN_WARNING "ide-pmac: can't request DMA "
1164 "resource for %s!\n",
1165 mdev->ofdev.node->full_name);
1166 else
1167 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1168 } else
1169 pmif->dma_regs = NULL;
1170 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1171 dev_set_drvdata(&mdev->ofdev.dev, pmif);
1172
1173 memset(&hw, 0, sizeof(hw));
1174 pmac_ide_init_ports(&hw, pmif->regbase);
1175 hw.irq = irq;
1176 hw.dev = &mdev->bus->pdev->dev;
1177 hw.parent = &mdev->ofdev.dev;
1178
1179 rc = pmac_ide_setup_device(pmif, hwif, &hw);
1180 if (rc != 0) {
1181 /* The inteface is released to the common IDE layer */
1182 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1183 iounmap(base);
1184 if (pmif->dma_regs) {
1185 iounmap(pmif->dma_regs);
1186 macio_release_resource(mdev, 1);
1187 }
1188 macio_release_resource(mdev, 0);
1189 kfree(pmif);
1190 }
1191
1192 return rc;
1193
1194 out_free_pmif:
1195 kfree(pmif);
1196 return rc;
1197 }
1198
1199 static int
1200 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1201 {
1202 pmac_ide_hwif_t *pmif =
1203 (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1204 int rc = 0;
1205
1206 if (mesg.event != mdev->ofdev.dev.power.power_state.event
1207 && (mesg.event & PM_EVENT_SLEEP)) {
1208 rc = pmac_ide_do_suspend(pmif);
1209 if (rc == 0)
1210 mdev->ofdev.dev.power.power_state = mesg;
1211 }
1212
1213 return rc;
1214 }
1215
1216 static int
1217 pmac_ide_macio_resume(struct macio_dev *mdev)
1218 {
1219 pmac_ide_hwif_t *pmif =
1220 (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1221 int rc = 0;
1222
1223 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1224 rc = pmac_ide_do_resume(pmif);
1225 if (rc == 0)
1226 mdev->ofdev.dev.power.power_state = PMSG_ON;
1227 }
1228
1229 return rc;
1230 }
1231
1232 /*
1233 * Attach to a PCI probed interface
1234 */
1235 static int __devinit
1236 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1237 {
1238 ide_hwif_t *hwif;
1239 struct device_node *np;
1240 pmac_ide_hwif_t *pmif;
1241 void __iomem *base;
1242 unsigned long rbase, rlen;
1243 int rc;
1244 hw_regs_t hw;
1245
1246 np = pci_device_to_OF_node(pdev);
1247 if (np == NULL) {
1248 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1249 return -ENODEV;
1250 }
1251
1252 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1253 if (pmif == NULL)
1254 return -ENOMEM;
1255
1256 hwif = ide_find_port();
1257 if (hwif == NULL) {
1258 printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
1259 printk(KERN_ERR " %s\n", np->full_name);
1260 rc = -ENODEV;
1261 goto out_free_pmif;
1262 }
1263
1264 if (pci_enable_device(pdev)) {
1265 printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1266 "%s\n", np->full_name);
1267 rc = -ENXIO;
1268 goto out_free_pmif;
1269 }
1270 pci_set_master(pdev);
1271
1272 if (pci_request_regions(pdev, "Kauai ATA")) {
1273 printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1274 "%s\n", np->full_name);
1275 rc = -ENXIO;
1276 goto out_free_pmif;
1277 }
1278
1279 pmif->mdev = NULL;
1280 pmif->node = np;
1281
1282 rbase = pci_resource_start(pdev, 0);
1283 rlen = pci_resource_len(pdev, 0);
1284
1285 base = ioremap(rbase, rlen);
1286 pmif->regbase = (unsigned long) base + 0x2000;
1287 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1288 pmif->dma_regs = base + 0x1000;
1289 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1290 pmif->kauai_fcr = base;
1291 pmif->irq = pdev->irq;
1292
1293 pci_set_drvdata(pdev, pmif);
1294
1295 memset(&hw, 0, sizeof(hw));
1296 pmac_ide_init_ports(&hw, pmif->regbase);
1297 hw.irq = pdev->irq;
1298 hw.dev = &pdev->dev;
1299
1300 rc = pmac_ide_setup_device(pmif, hwif, &hw);
1301 if (rc != 0) {
1302 /* The inteface is released to the common IDE layer */
1303 pci_set_drvdata(pdev, NULL);
1304 iounmap(base);
1305 pci_release_regions(pdev);
1306 kfree(pmif);
1307 }
1308
1309 return rc;
1310
1311 out_free_pmif:
1312 kfree(pmif);
1313 return rc;
1314 }
1315
1316 static int
1317 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1318 {
1319 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
1320 int rc = 0;
1321
1322 if (mesg.event != pdev->dev.power.power_state.event
1323 && (mesg.event & PM_EVENT_SLEEP)) {
1324 rc = pmac_ide_do_suspend(pmif);
1325 if (rc == 0)
1326 pdev->dev.power.power_state = mesg;
1327 }
1328
1329 return rc;
1330 }
1331
1332 static int
1333 pmac_ide_pci_resume(struct pci_dev *pdev)
1334 {
1335 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
1336 int rc = 0;
1337
1338 if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1339 rc = pmac_ide_do_resume(pmif);
1340 if (rc == 0)
1341 pdev->dev.power.power_state = PMSG_ON;
1342 }
1343
1344 return rc;
1345 }
1346
1347 static struct of_device_id pmac_ide_macio_match[] =
1348 {
1349 {
1350 .name = "IDE",
1351 },
1352 {
1353 .name = "ATA",
1354 },
1355 {
1356 .type = "ide",
1357 },
1358 {
1359 .type = "ata",
1360 },
1361 {},
1362 };
1363
1364 static struct macio_driver pmac_ide_macio_driver =
1365 {
1366 .name = "ide-pmac",
1367 .match_table = pmac_ide_macio_match,
1368 .probe = pmac_ide_macio_attach,
1369 .suspend = pmac_ide_macio_suspend,
1370 .resume = pmac_ide_macio_resume,
1371 };
1372
1373 static const struct pci_device_id pmac_ide_pci_match[] = {
1374 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
1375 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
1376 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
1377 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
1378 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
1379 {},
1380 };
1381
1382 static struct pci_driver pmac_ide_pci_driver = {
1383 .name = "ide-pmac",
1384 .id_table = pmac_ide_pci_match,
1385 .probe = pmac_ide_pci_attach,
1386 .suspend = pmac_ide_pci_suspend,
1387 .resume = pmac_ide_pci_resume,
1388 };
1389 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1390
1391 int __init pmac_ide_probe(void)
1392 {
1393 int error;
1394
1395 if (!machine_is(powermac))
1396 return -ENODEV;
1397
1398 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1399 error = pci_register_driver(&pmac_ide_pci_driver);
1400 if (error)
1401 goto out;
1402 error = macio_register_driver(&pmac_ide_macio_driver);
1403 if (error) {
1404 pci_unregister_driver(&pmac_ide_pci_driver);
1405 goto out;
1406 }
1407 #else
1408 error = macio_register_driver(&pmac_ide_macio_driver);
1409 if (error)
1410 goto out;
1411 error = pci_register_driver(&pmac_ide_pci_driver);
1412 if (error) {
1413 macio_unregister_driver(&pmac_ide_macio_driver);
1414 goto out;
1415 }
1416 #endif
1417 out:
1418 return error;
1419 }
1420
1421 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1422
1423 /*
1424 * pmac_ide_build_dmatable builds the DBDMA command list
1425 * for a transfer and sets the DBDMA channel to point to it.
1426 */
1427 static int
1428 pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
1429 {
1430 ide_hwif_t *hwif = drive->hwif;
1431 pmac_ide_hwif_t *pmif =
1432 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1433 struct dbdma_cmd *table;
1434 int i, count = 0;
1435 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1436 struct scatterlist *sg;
1437 int wr = (rq_data_dir(rq) == WRITE);
1438
1439 /* DMA table is already aligned */
1440 table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1441
1442 /* Make sure DMA controller is stopped (necessary ?) */
1443 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1444 while (readl(&dma->status) & RUN)
1445 udelay(1);
1446
1447 hwif->sg_nents = i = ide_build_sglist(drive, rq);
1448
1449 if (!i)
1450 return 0;
1451
1452 /* Build DBDMA commands list */
1453 sg = hwif->sg_table;
1454 while (i && sg_dma_len(sg)) {
1455 u32 cur_addr;
1456 u32 cur_len;
1457
1458 cur_addr = sg_dma_address(sg);
1459 cur_len = sg_dma_len(sg);
1460
1461 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1462 if (pmif->broken_dma_warn == 0) {
1463 printk(KERN_WARNING "%s: DMA on non aligned address, "
1464 "switching to PIO on Ohare chipset\n", drive->name);
1465 pmif->broken_dma_warn = 1;
1466 }
1467 goto use_pio_instead;
1468 }
1469 while (cur_len) {
1470 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1471
1472 if (count++ >= MAX_DCMDS) {
1473 printk(KERN_WARNING "%s: DMA table too small\n",
1474 drive->name);
1475 goto use_pio_instead;
1476 }
1477 st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1478 st_le16(&table->req_count, tc);
1479 st_le32(&table->phy_addr, cur_addr);
1480 table->cmd_dep = 0;
1481 table->xfer_status = 0;
1482 table->res_count = 0;
1483 cur_addr += tc;
1484 cur_len -= tc;
1485 ++table;
1486 }
1487 sg = sg_next(sg);
1488 i--;
1489 }
1490
1491 /* convert the last command to an input/output last command */
1492 if (count) {
1493 st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1494 /* add the stop command to the end of the list */
1495 memset(table, 0, sizeof(struct dbdma_cmd));
1496 st_le16(&table->command, DBDMA_STOP);
1497 mb();
1498 writel(hwif->dmatable_dma, &dma->cmdptr);
1499 return 1;
1500 }
1501
1502 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1503
1504 use_pio_instead:
1505 ide_destroy_dmatable(drive);
1506
1507 return 0; /* revert to PIO for this request */
1508 }
1509
1510 /* Teardown mappings after DMA has completed. */
1511 static void
1512 pmac_ide_destroy_dmatable (ide_drive_t *drive)
1513 {
1514 ide_hwif_t *hwif = drive->hwif;
1515
1516 if (hwif->sg_nents) {
1517 ide_destroy_dmatable(drive);
1518 hwif->sg_nents = 0;
1519 }
1520 }
1521
1522 /*
1523 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1524 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1525 */
1526 static int
1527 pmac_ide_dma_setup(ide_drive_t *drive)
1528 {
1529 ide_hwif_t *hwif = HWIF(drive);
1530 pmac_ide_hwif_t *pmif =
1531 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1532 struct request *rq = HWGROUP(drive)->rq;
1533 u8 unit = (drive->select.b.unit & 0x01);
1534 u8 ata4;
1535
1536 if (pmif == NULL)
1537 return 1;
1538 ata4 = (pmif->kind == controller_kl_ata4);
1539
1540 if (!pmac_ide_build_dmatable(drive, rq)) {
1541 ide_map_sg(drive, rq);
1542 return 1;
1543 }
1544
1545 /* Apple adds 60ns to wrDataSetup on reads */
1546 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1547 writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
1548 PMAC_IDE_REG(IDE_TIMING_CONFIG));
1549 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1550 }
1551
1552 drive->waiting_for_dma = 1;
1553
1554 return 0;
1555 }
1556
1557 static void
1558 pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
1559 {
1560 /* issue cmd to drive */
1561 ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
1562 }
1563
1564 /*
1565 * Kick the DMA controller into life after the DMA command has been issued
1566 * to the drive.
1567 */
1568 static void
1569 pmac_ide_dma_start(ide_drive_t *drive)
1570 {
1571 ide_hwif_t *hwif = drive->hwif;
1572 pmac_ide_hwif_t *pmif =
1573 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1574 volatile struct dbdma_regs __iomem *dma;
1575
1576 dma = pmif->dma_regs;
1577
1578 writel((RUN << 16) | RUN, &dma->control);
1579 /* Make sure it gets to the controller right now */
1580 (void)readl(&dma->control);
1581 }
1582
1583 /*
1584 * After a DMA transfer, make sure the controller is stopped
1585 */
1586 static int
1587 pmac_ide_dma_end (ide_drive_t *drive)
1588 {
1589 ide_hwif_t *hwif = drive->hwif;
1590 pmac_ide_hwif_t *pmif =
1591 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1592 volatile struct dbdma_regs __iomem *dma;
1593 u32 dstat;
1594
1595 if (pmif == NULL)
1596 return 0;
1597 dma = pmif->dma_regs;
1598
1599 drive->waiting_for_dma = 0;
1600 dstat = readl(&dma->status);
1601 writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1602 pmac_ide_destroy_dmatable(drive);
1603 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1604 * in theory, but with ATAPI decices doing buffer underruns, that would
1605 * cause us to disable DMA, which isn't what we want
1606 */
1607 return (dstat & (RUN|DEAD)) != RUN;
1608 }
1609
1610 /*
1611 * Check out that the interrupt we got was for us. We can't always know this
1612 * for sure with those Apple interfaces (well, we could on the recent ones but
1613 * that's not implemented yet), on the other hand, we don't have shared interrupts
1614 * so it's not really a problem
1615 */
1616 static int
1617 pmac_ide_dma_test_irq (ide_drive_t *drive)
1618 {
1619 ide_hwif_t *hwif = drive->hwif;
1620 pmac_ide_hwif_t *pmif =
1621 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1622 volatile struct dbdma_regs __iomem *dma;
1623 unsigned long status, timeout;
1624
1625 if (pmif == NULL)
1626 return 0;
1627 dma = pmif->dma_regs;
1628
1629 /* We have to things to deal with here:
1630 *
1631 * - The dbdma won't stop if the command was started
1632 * but completed with an error without transferring all
1633 * datas. This happens when bad blocks are met during
1634 * a multi-block transfer.
1635 *
1636 * - The dbdma fifo hasn't yet finished flushing to
1637 * to system memory when the disk interrupt occurs.
1638 *
1639 */
1640
1641 /* If ACTIVE is cleared, the STOP command have passed and
1642 * transfer is complete.
1643 */
1644 status = readl(&dma->status);
1645 if (!(status & ACTIVE))
1646 return 1;
1647 if (!drive->waiting_for_dma)
1648 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1649 called while not waiting\n", HWIF(drive)->index);
1650
1651 /* If dbdma didn't execute the STOP command yet, the
1652 * active bit is still set. We consider that we aren't
1653 * sharing interrupts (which is hopefully the case with
1654 * those controllers) and so we just try to flush the
1655 * channel for pending data in the fifo
1656 */
1657 udelay(1);
1658 writel((FLUSH << 16) | FLUSH, &dma->control);
1659 timeout = 0;
1660 for (;;) {
1661 udelay(1);
1662 status = readl(&dma->status);
1663 if ((status & FLUSH) == 0)
1664 break;
1665 if (++timeout > 100) {
1666 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1667 timeout flushing channel\n", HWIF(drive)->index);
1668 break;
1669 }
1670 }
1671 return 1;
1672 }
1673
1674 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1675 {
1676 }
1677
1678 static void
1679 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1680 {
1681 ide_hwif_t *hwif = drive->hwif;
1682 pmac_ide_hwif_t *pmif =
1683 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1684 volatile struct dbdma_regs __iomem *dma;
1685 unsigned long status;
1686
1687 if (pmif == NULL)
1688 return;
1689 dma = pmif->dma_regs;
1690
1691 status = readl(&dma->status);
1692 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1693 }
1694
1695 static const struct ide_dma_ops pmac_dma_ops = {
1696 .dma_host_set = pmac_ide_dma_host_set,
1697 .dma_setup = pmac_ide_dma_setup,
1698 .dma_exec_cmd = pmac_ide_dma_exec_cmd,
1699 .dma_start = pmac_ide_dma_start,
1700 .dma_end = pmac_ide_dma_end,
1701 .dma_test_irq = pmac_ide_dma_test_irq,
1702 .dma_timeout = ide_dma_timeout,
1703 .dma_lost_irq = pmac_ide_dma_lost_irq,
1704 };
1705
1706 /*
1707 * Allocate the data structures needed for using DMA with an interface
1708 * and fill the proper list of functions pointers
1709 */
1710 static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1711 const struct ide_port_info *d)
1712 {
1713 pmac_ide_hwif_t *pmif =
1714 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1715 struct pci_dev *dev = to_pci_dev(hwif->dev);
1716
1717 /* We won't need pci_dev if we switch to generic consistent
1718 * DMA routines ...
1719 */
1720 if (dev == NULL || pmif->dma_regs == 0)
1721 return -ENODEV;
1722 /*
1723 * Allocate space for the DBDMA commands.
1724 * The +2 is +1 for the stop command and +1 to allow for
1725 * aligning the start address to a multiple of 16 bytes.
1726 */
1727 pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
1728 dev,
1729 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1730 &hwif->dmatable_dma);
1731 if (pmif->dma_table_cpu == NULL) {
1732 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1733 hwif->name);
1734 return -ENOMEM;
1735 }
1736
1737 hwif->sg_max_nents = MAX_DCMDS;
1738
1739 return 0;
1740 }
1741 #else
1742 static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1743 const struct ide_port_info *d)
1744 {
1745 return -EOPNOTSUPP;
1746 }
1747 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1748
1749 module_init(pmac_ide_probe);
1750
1751 MODULE_LICENSE("GPL");
This page took 0.121375 seconds and 5 git commands to generate.