Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / drivers / ide / ppc / pmac.c
1 /*
2 * linux/drivers/ide/ppc/pmac.c
3 *
4 * Support for IDE interfaces on PowerMacs.
5 * These IDE interfaces are memory-mapped and have a DBDMA channel
6 * for doing DMA.
7 *
8 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
9 * Copyright (C) 2007 Bartlomiej Zolnierkiewicz
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 *
16 * Some code taken from drivers/ide/ide-dma.c:
17 *
18 * Copyright (c) 1995-1998 Mark Lord
19 *
20 * TODO: - Use pre-calculated (kauai) timing tables all the time and
21 * get rid of the "rounded" tables used previously, so we have the
22 * same table format for all controllers and can then just have one
23 * big table
24 *
25 */
26 #include <linux/types.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/delay.h>
30 #include <linux/ide.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <linux/pci.h>
34 #include <linux/adb.h>
35 #include <linux/pmu.h>
36 #include <linux/scatterlist.h>
37
38 #include <asm/prom.h>
39 #include <asm/io.h>
40 #include <asm/dbdma.h>
41 #include <asm/ide.h>
42 #include <asm/pci-bridge.h>
43 #include <asm/machdep.h>
44 #include <asm/pmac_feature.h>
45 #include <asm/sections.h>
46 #include <asm/irq.h>
47
48 #ifndef CONFIG_PPC64
49 #include <asm/mediabay.h>
50 #endif
51
52 #include "../ide-timing.h"
53
54 #undef IDE_PMAC_DEBUG
55
56 #define DMA_WAIT_TIMEOUT 50
57
58 typedef struct pmac_ide_hwif {
59 unsigned long regbase;
60 int irq;
61 int kind;
62 int aapl_bus_id;
63 unsigned cable_80 : 1;
64 unsigned mediabay : 1;
65 unsigned broken_dma : 1;
66 unsigned broken_dma_warn : 1;
67 struct device_node* node;
68 struct macio_dev *mdev;
69 u32 timings[4];
70 volatile u32 __iomem * *kauai_fcr;
71 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
72 /* Those fields are duplicating what is in hwif. We currently
73 * can't use the hwif ones because of some assumptions that are
74 * beeing done by the generic code about the kind of dma controller
75 * and format of the dma table. This will have to be fixed though.
76 */
77 volatile struct dbdma_regs __iomem * dma_regs;
78 struct dbdma_cmd* dma_table_cpu;
79 #endif
80
81 } pmac_ide_hwif_t;
82
83 static pmac_ide_hwif_t pmac_ide[MAX_HWIFS];
84 static int pmac_ide_count;
85
86 enum {
87 controller_ohare, /* OHare based */
88 controller_heathrow, /* Heathrow/Paddington */
89 controller_kl_ata3, /* KeyLargo ATA-3 */
90 controller_kl_ata4, /* KeyLargo ATA-4 */
91 controller_un_ata6, /* UniNorth2 ATA-6 */
92 controller_k2_ata6, /* K2 ATA-6 */
93 controller_sh_ata6, /* Shasta ATA-6 */
94 };
95
96 static const char* model_name[] = {
97 "OHare ATA", /* OHare based */
98 "Heathrow ATA", /* Heathrow/Paddington */
99 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
100 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
101 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
102 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
103 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
104 };
105
106 /*
107 * Extra registers, both 32-bit little-endian
108 */
109 #define IDE_TIMING_CONFIG 0x200
110 #define IDE_INTERRUPT 0x300
111
112 /* Kauai (U2) ATA has different register setup */
113 #define IDE_KAUAI_PIO_CONFIG 0x200
114 #define IDE_KAUAI_ULTRA_CONFIG 0x210
115 #define IDE_KAUAI_POLL_CONFIG 0x220
116
117 /*
118 * Timing configuration register definitions
119 */
120
121 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
122 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
123 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
124 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
125 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
126
127 /* 133Mhz cell, found in shasta.
128 * See comments about 100 Mhz Uninorth 2...
129 * Note that PIO_MASK and MDMA_MASK seem to overlap
130 */
131 #define TR_133_PIOREG_PIO_MASK 0xff000fff
132 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
133 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
134 #define TR_133_UDMAREG_UDMA_EN 0x00000001
135
136 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
137 * this one yet, it appears as a pci device (106b/0033) on uninorth
138 * internal PCI bus and it's clock is controlled like gem or fw. It
139 * appears to be an evolution of keylargo ATA4 with a timing register
140 * extended to 2 32bits registers and a similar DBDMA channel. Other
141 * registers seem to exist but I can't tell much about them.
142 *
143 * So far, I'm using pre-calculated tables for this extracted from
144 * the values used by the MacOS X driver.
145 *
146 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
147 * register controls the UDMA timings. At least, it seems bit 0
148 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
149 * cycle time in units of 10ns. Bits 8..15 are used by I don't
150 * know their meaning yet
151 */
152 #define TR_100_PIOREG_PIO_MASK 0xff000fff
153 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
154 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
155 #define TR_100_UDMAREG_UDMA_EN 0x00000001
156
157
158 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
159 * 40 connector cable and to 4 on 80 connector one.
160 * Clock unit is 15ns (66Mhz)
161 *
162 * 3 Values can be programmed:
163 * - Write data setup, which appears to match the cycle time. They
164 * also call it DIOW setup.
165 * - Ready to pause time (from spec)
166 * - Address setup. That one is weird. I don't see where exactly
167 * it fits in UDMA cycles, I got it's name from an obscure piece
168 * of commented out code in Darwin. They leave it to 0, we do as
169 * well, despite a comment that would lead to think it has a
170 * min value of 45ns.
171 * Apple also add 60ns to the write data setup (or cycle time ?) on
172 * reads.
173 */
174 #define TR_66_UDMA_MASK 0xfff00000
175 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
176 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
177 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
178 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
179 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
180 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
181 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
182 #define TR_66_MDMA_MASK 0x000ffc00
183 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
184 #define TR_66_MDMA_RECOVERY_SHIFT 15
185 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
186 #define TR_66_MDMA_ACCESS_SHIFT 10
187 #define TR_66_PIO_MASK 0x000003ff
188 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
189 #define TR_66_PIO_RECOVERY_SHIFT 5
190 #define TR_66_PIO_ACCESS_MASK 0x0000001f
191 #define TR_66_PIO_ACCESS_SHIFT 0
192
193 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
194 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
195 *
196 * The access time and recovery time can be programmed. Some older
197 * Darwin code base limit OHare to 150ns cycle time. I decided to do
198 * the same here fore safety against broken old hardware ;)
199 * The HalfTick bit, when set, adds half a clock (15ns) to the access
200 * time and removes one from recovery. It's not supported on KeyLargo
201 * implementation afaik. The E bit appears to be set for PIO mode 0 and
202 * is used to reach long timings used in this mode.
203 */
204 #define TR_33_MDMA_MASK 0x003ff800
205 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
206 #define TR_33_MDMA_RECOVERY_SHIFT 16
207 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
208 #define TR_33_MDMA_ACCESS_SHIFT 11
209 #define TR_33_MDMA_HALFTICK 0x00200000
210 #define TR_33_PIO_MASK 0x000007ff
211 #define TR_33_PIO_E 0x00000400
212 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
213 #define TR_33_PIO_RECOVERY_SHIFT 5
214 #define TR_33_PIO_ACCESS_MASK 0x0000001f
215 #define TR_33_PIO_ACCESS_SHIFT 0
216
217 /*
218 * Interrupt register definitions
219 */
220 #define IDE_INTR_DMA 0x80000000
221 #define IDE_INTR_DEVICE 0x40000000
222
223 /*
224 * FCR Register on Kauai. Not sure what bit 0x4 is ...
225 */
226 #define KAUAI_FCR_UATA_MAGIC 0x00000004
227 #define KAUAI_FCR_UATA_RESET_N 0x00000002
228 #define KAUAI_FCR_UATA_ENABLE 0x00000001
229
230 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
231
232 /* Rounded Multiword DMA timings
233 *
234 * I gave up finding a generic formula for all controller
235 * types and instead, built tables based on timing values
236 * used by Apple in Darwin's implementation.
237 */
238 struct mdma_timings_t {
239 int accessTime;
240 int recoveryTime;
241 int cycleTime;
242 };
243
244 struct mdma_timings_t mdma_timings_33[] =
245 {
246 { 240, 240, 480 },
247 { 180, 180, 360 },
248 { 135, 135, 270 },
249 { 120, 120, 240 },
250 { 105, 105, 210 },
251 { 90, 90, 180 },
252 { 75, 75, 150 },
253 { 75, 45, 120 },
254 { 0, 0, 0 }
255 };
256
257 struct mdma_timings_t mdma_timings_33k[] =
258 {
259 { 240, 240, 480 },
260 { 180, 180, 360 },
261 { 150, 150, 300 },
262 { 120, 120, 240 },
263 { 90, 120, 210 },
264 { 90, 90, 180 },
265 { 90, 60, 150 },
266 { 90, 30, 120 },
267 { 0, 0, 0 }
268 };
269
270 struct mdma_timings_t mdma_timings_66[] =
271 {
272 { 240, 240, 480 },
273 { 180, 180, 360 },
274 { 135, 135, 270 },
275 { 120, 120, 240 },
276 { 105, 105, 210 },
277 { 90, 90, 180 },
278 { 90, 75, 165 },
279 { 75, 45, 120 },
280 { 0, 0, 0 }
281 };
282
283 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
284 struct {
285 int addrSetup; /* ??? */
286 int rdy2pause;
287 int wrDataSetup;
288 } kl66_udma_timings[] =
289 {
290 { 0, 180, 120 }, /* Mode 0 */
291 { 0, 150, 90 }, /* 1 */
292 { 0, 120, 60 }, /* 2 */
293 { 0, 90, 45 }, /* 3 */
294 { 0, 90, 30 } /* 4 */
295 };
296
297 /* UniNorth 2 ATA/100 timings */
298 struct kauai_timing {
299 int cycle_time;
300 u32 timing_reg;
301 };
302
303 static struct kauai_timing kauai_pio_timings[] =
304 {
305 { 930 , 0x08000fff },
306 { 600 , 0x08000a92 },
307 { 383 , 0x0800060f },
308 { 360 , 0x08000492 },
309 { 330 , 0x0800048f },
310 { 300 , 0x080003cf },
311 { 270 , 0x080003cc },
312 { 240 , 0x0800038b },
313 { 239 , 0x0800030c },
314 { 180 , 0x05000249 },
315 { 120 , 0x04000148 },
316 { 0 , 0 },
317 };
318
319 static struct kauai_timing kauai_mdma_timings[] =
320 {
321 { 1260 , 0x00fff000 },
322 { 480 , 0x00618000 },
323 { 360 , 0x00492000 },
324 { 270 , 0x0038e000 },
325 { 240 , 0x0030c000 },
326 { 210 , 0x002cb000 },
327 { 180 , 0x00249000 },
328 { 150 , 0x00209000 },
329 { 120 , 0x00148000 },
330 { 0 , 0 },
331 };
332
333 static struct kauai_timing kauai_udma_timings[] =
334 {
335 { 120 , 0x000070c0 },
336 { 90 , 0x00005d80 },
337 { 60 , 0x00004a60 },
338 { 45 , 0x00003a50 },
339 { 30 , 0x00002a30 },
340 { 20 , 0x00002921 },
341 { 0 , 0 },
342 };
343
344 static struct kauai_timing shasta_pio_timings[] =
345 {
346 { 930 , 0x08000fff },
347 { 600 , 0x0A000c97 },
348 { 383 , 0x07000712 },
349 { 360 , 0x040003cd },
350 { 330 , 0x040003cd },
351 { 300 , 0x040003cd },
352 { 270 , 0x040003cd },
353 { 240 , 0x040003cd },
354 { 239 , 0x040003cd },
355 { 180 , 0x0400028b },
356 { 120 , 0x0400010a },
357 { 0 , 0 },
358 };
359
360 static struct kauai_timing shasta_mdma_timings[] =
361 {
362 { 1260 , 0x00fff000 },
363 { 480 , 0x00820800 },
364 { 360 , 0x00820800 },
365 { 270 , 0x00820800 },
366 { 240 , 0x00820800 },
367 { 210 , 0x00820800 },
368 { 180 , 0x00820800 },
369 { 150 , 0x0028b000 },
370 { 120 , 0x001ca000 },
371 { 0 , 0 },
372 };
373
374 static struct kauai_timing shasta_udma133_timings[] =
375 {
376 { 120 , 0x00035901, },
377 { 90 , 0x000348b1, },
378 { 60 , 0x00033881, },
379 { 45 , 0x00033861, },
380 { 30 , 0x00033841, },
381 { 20 , 0x00033031, },
382 { 15 , 0x00033021, },
383 { 0 , 0 },
384 };
385
386
387 static inline u32
388 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
389 {
390 int i;
391
392 for (i=0; table[i].cycle_time; i++)
393 if (cycle_time > table[i+1].cycle_time)
394 return table[i].timing_reg;
395 return 0;
396 }
397
398 /* allow up to 256 DBDMA commands per xfer */
399 #define MAX_DCMDS 256
400
401 /*
402 * Wait 1s for disk to answer on IDE bus after a hard reset
403 * of the device (via GPIO/FCR).
404 *
405 * Some devices seem to "pollute" the bus even after dropping
406 * the BSY bit (typically some combo drives slave on the UDMA
407 * bus) after a hard reset. Since we hard reset all drives on
408 * KeyLargo ATA66, we have to keep that delay around. I may end
409 * up not hard resetting anymore on these and keep the delay only
410 * for older interfaces instead (we have to reset when coming
411 * from MacOS...) --BenH.
412 */
413 #define IDE_WAKEUP_DELAY (1*HZ)
414
415 static void pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif);
416 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
417 static void pmac_ide_selectproc(ide_drive_t *drive);
418 static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
419
420 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
421
422 /*
423 * N.B. this can't be an initfunc, because the media-bay task can
424 * call ide_[un]register at any time.
425 */
426 void
427 pmac_ide_init_hwif_ports(hw_regs_t *hw,
428 unsigned long data_port, unsigned long ctrl_port,
429 int *irq)
430 {
431 int i, ix;
432
433 if (data_port == 0)
434 return;
435
436 for (ix = 0; ix < MAX_HWIFS; ++ix)
437 if (data_port == pmac_ide[ix].regbase)
438 break;
439
440 if (ix >= MAX_HWIFS) {
441 /* Probably a PCI interface... */
442 for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; ++i)
443 hw->io_ports[i] = data_port + i - IDE_DATA_OFFSET;
444 hw->io_ports[IDE_CONTROL_OFFSET] = ctrl_port;
445 return;
446 }
447
448 for (i = 0; i < 8; ++i)
449 hw->io_ports[i] = data_port + i * 0x10;
450 hw->io_ports[8] = data_port + 0x160;
451
452 if (irq != NULL)
453 *irq = pmac_ide[ix].irq;
454
455 hw->dev = &pmac_ide[ix].mdev->ofdev.dev;
456 }
457
458 #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
459
460 /*
461 * Apply the timings of the proper unit (master/slave) to the shared
462 * timing register when selecting that unit. This version is for
463 * ASICs with a single timing register
464 */
465 static void
466 pmac_ide_selectproc(ide_drive_t *drive)
467 {
468 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
469
470 if (pmif == NULL)
471 return;
472
473 if (drive->select.b.unit & 0x01)
474 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
475 else
476 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
477 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
478 }
479
480 /*
481 * Apply the timings of the proper unit (master/slave) to the shared
482 * timing register when selecting that unit. This version is for
483 * ASICs with a dual timing register (Kauai)
484 */
485 static void
486 pmac_ide_kauai_selectproc(ide_drive_t *drive)
487 {
488 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
489
490 if (pmif == NULL)
491 return;
492
493 if (drive->select.b.unit & 0x01) {
494 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
495 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
496 } else {
497 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
498 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
499 }
500 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
501 }
502
503 /*
504 * Force an update of controller timing values for a given drive
505 */
506 static void
507 pmac_ide_do_update_timings(ide_drive_t *drive)
508 {
509 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
510
511 if (pmif == NULL)
512 return;
513
514 if (pmif->kind == controller_sh_ata6 ||
515 pmif->kind == controller_un_ata6 ||
516 pmif->kind == controller_k2_ata6)
517 pmac_ide_kauai_selectproc(drive);
518 else
519 pmac_ide_selectproc(drive);
520 }
521
522 static void
523 pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
524 {
525 u32 tmp;
526
527 writeb(value, (void __iomem *) port);
528 tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
529 }
530
531 /*
532 * Send the SET_FEATURE IDE command to the drive and update drive->id with
533 * the new state. We currently don't use the generic routine as it used to
534 * cause various trouble, especially with older mediabays.
535 * This code is sometimes triggering a spurrious interrupt though, I need
536 * to sort that out sooner or later and see if I can finally get the
537 * common version to work properly in all cases
538 */
539 static int
540 pmac_ide_do_setfeature(ide_drive_t *drive, u8 command)
541 {
542 ide_hwif_t *hwif = HWIF(drive);
543 int result = 1;
544
545 disable_irq_nosync(hwif->irq);
546 udelay(1);
547 SELECT_DRIVE(drive);
548 SELECT_MASK(drive, 0);
549 udelay(1);
550 /* Get rid of pending error state */
551 (void) hwif->INB(IDE_STATUS_REG);
552 /* Timeout bumped for some powerbooks */
553 if (wait_for_ready(drive, 2000)) {
554 /* Timeout bumped for some powerbooks */
555 printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
556 "before SET_FEATURE!\n", drive->name);
557 goto out;
558 }
559 udelay(10);
560 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
561 hwif->OUTB(command, IDE_NSECTOR_REG);
562 hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
563 hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
564 udelay(1);
565 /* Timeout bumped for some powerbooks */
566 result = wait_for_ready(drive, 2000);
567 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
568 if (result)
569 printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
570 "after SET_FEATURE !\n", drive->name);
571 out:
572 SELECT_MASK(drive, 0);
573 if (result == 0) {
574 drive->id->dma_ultra &= ~0xFF00;
575 drive->id->dma_mword &= ~0x0F00;
576 drive->id->dma_1word &= ~0x0F00;
577 switch(command) {
578 case XFER_UDMA_7:
579 drive->id->dma_ultra |= 0x8080; break;
580 case XFER_UDMA_6:
581 drive->id->dma_ultra |= 0x4040; break;
582 case XFER_UDMA_5:
583 drive->id->dma_ultra |= 0x2020; break;
584 case XFER_UDMA_4:
585 drive->id->dma_ultra |= 0x1010; break;
586 case XFER_UDMA_3:
587 drive->id->dma_ultra |= 0x0808; break;
588 case XFER_UDMA_2:
589 drive->id->dma_ultra |= 0x0404; break;
590 case XFER_UDMA_1:
591 drive->id->dma_ultra |= 0x0202; break;
592 case XFER_UDMA_0:
593 drive->id->dma_ultra |= 0x0101; break;
594 case XFER_MW_DMA_2:
595 drive->id->dma_mword |= 0x0404; break;
596 case XFER_MW_DMA_1:
597 drive->id->dma_mword |= 0x0202; break;
598 case XFER_MW_DMA_0:
599 drive->id->dma_mword |= 0x0101; break;
600 case XFER_SW_DMA_2:
601 drive->id->dma_1word |= 0x0404; break;
602 case XFER_SW_DMA_1:
603 drive->id->dma_1word |= 0x0202; break;
604 case XFER_SW_DMA_0:
605 drive->id->dma_1word |= 0x0101; break;
606 default: break;
607 }
608 if (!drive->init_speed)
609 drive->init_speed = command;
610 drive->current_speed = command;
611 }
612 enable_irq(hwif->irq);
613 return result;
614 }
615
616 /*
617 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
618 */
619 static void
620 pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
621 {
622 u32 *timings;
623 unsigned accessTicks, recTicks;
624 unsigned accessTime, recTime;
625 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
626 unsigned int cycle_time;
627
628 if (pmif == NULL)
629 return;
630
631 /* which drive is it ? */
632 timings = &pmif->timings[drive->select.b.unit & 0x01];
633
634 cycle_time = ide_pio_cycle_time(drive, pio);
635
636 switch (pmif->kind) {
637 case controller_sh_ata6: {
638 /* 133Mhz cell */
639 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
640 if (tr == 0)
641 return;
642 *timings = ((*timings) & ~TR_133_PIOREG_PIO_MASK) | tr;
643 break;
644 }
645 case controller_un_ata6:
646 case controller_k2_ata6: {
647 /* 100Mhz cell */
648 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
649 if (tr == 0)
650 return;
651 *timings = ((*timings) & ~TR_100_PIOREG_PIO_MASK) | tr;
652 break;
653 }
654 case controller_kl_ata4:
655 /* 66Mhz cell */
656 recTime = cycle_time - ide_pio_timings[pio].active_time
657 - ide_pio_timings[pio].setup_time;
658 recTime = max(recTime, 150U);
659 accessTime = ide_pio_timings[pio].active_time;
660 accessTime = max(accessTime, 150U);
661 accessTicks = SYSCLK_TICKS_66(accessTime);
662 accessTicks = min(accessTicks, 0x1fU);
663 recTicks = SYSCLK_TICKS_66(recTime);
664 recTicks = min(recTicks, 0x1fU);
665 *timings = ((*timings) & ~TR_66_PIO_MASK) |
666 (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
667 (recTicks << TR_66_PIO_RECOVERY_SHIFT);
668 break;
669 default: {
670 /* 33Mhz cell */
671 int ebit = 0;
672 recTime = cycle_time - ide_pio_timings[pio].active_time
673 - ide_pio_timings[pio].setup_time;
674 recTime = max(recTime, 150U);
675 accessTime = ide_pio_timings[pio].active_time;
676 accessTime = max(accessTime, 150U);
677 accessTicks = SYSCLK_TICKS(accessTime);
678 accessTicks = min(accessTicks, 0x1fU);
679 accessTicks = max(accessTicks, 4U);
680 recTicks = SYSCLK_TICKS(recTime);
681 recTicks = min(recTicks, 0x1fU);
682 recTicks = max(recTicks, 5U) - 4;
683 if (recTicks > 9) {
684 recTicks--; /* guess, but it's only for PIO0, so... */
685 ebit = 1;
686 }
687 *timings = ((*timings) & ~TR_33_PIO_MASK) |
688 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
689 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
690 if (ebit)
691 *timings |= TR_33_PIO_E;
692 break;
693 }
694 }
695
696 #ifdef IDE_PMAC_DEBUG
697 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
698 drive->name, pio, *timings);
699 #endif
700
701 if (pmac_ide_do_setfeature(drive, XFER_PIO_0 + pio))
702 return;
703
704 pmac_ide_do_update_timings(drive);
705 }
706
707 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
708
709 /*
710 * Calculate KeyLargo ATA/66 UDMA timings
711 */
712 static int
713 set_timings_udma_ata4(u32 *timings, u8 speed)
714 {
715 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
716
717 if (speed > XFER_UDMA_4)
718 return 1;
719
720 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
721 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
722 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
723
724 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
725 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
726 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
727 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
728 TR_66_UDMA_EN;
729 #ifdef IDE_PMAC_DEBUG
730 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
731 speed & 0xf, *timings);
732 #endif
733
734 return 0;
735 }
736
737 /*
738 * Calculate Kauai ATA/100 UDMA timings
739 */
740 static int
741 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
742 {
743 struct ide_timing *t = ide_timing_find_mode(speed);
744 u32 tr;
745
746 if (speed > XFER_UDMA_5 || t == NULL)
747 return 1;
748 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
749 if (tr == 0)
750 return 1;
751 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
752 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
753
754 return 0;
755 }
756
757 /*
758 * Calculate Shasta ATA/133 UDMA timings
759 */
760 static int
761 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
762 {
763 struct ide_timing *t = ide_timing_find_mode(speed);
764 u32 tr;
765
766 if (speed > XFER_UDMA_6 || t == NULL)
767 return 1;
768 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
769 if (tr == 0)
770 return 1;
771 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
772 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
773
774 return 0;
775 }
776
777 /*
778 * Calculate MDMA timings for all cells
779 */
780 static int
781 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
782 u8 speed, int drive_cycle_time)
783 {
784 int cycleTime, accessTime = 0, recTime = 0;
785 unsigned accessTicks, recTicks;
786 struct mdma_timings_t* tm = NULL;
787 int i;
788
789 /* Get default cycle time for mode */
790 switch(speed & 0xf) {
791 case 0: cycleTime = 480; break;
792 case 1: cycleTime = 150; break;
793 case 2: cycleTime = 120; break;
794 default:
795 return 1;
796 }
797 /* Adjust for drive */
798 if (drive_cycle_time && drive_cycle_time > cycleTime)
799 cycleTime = drive_cycle_time;
800 /* OHare limits according to some old Apple sources */
801 if ((intf_type == controller_ohare) && (cycleTime < 150))
802 cycleTime = 150;
803 /* Get the proper timing array for this controller */
804 switch(intf_type) {
805 case controller_sh_ata6:
806 case controller_un_ata6:
807 case controller_k2_ata6:
808 break;
809 case controller_kl_ata4:
810 tm = mdma_timings_66;
811 break;
812 case controller_kl_ata3:
813 tm = mdma_timings_33k;
814 break;
815 default:
816 tm = mdma_timings_33;
817 break;
818 }
819 if (tm != NULL) {
820 /* Lookup matching access & recovery times */
821 i = -1;
822 for (;;) {
823 if (tm[i+1].cycleTime < cycleTime)
824 break;
825 i++;
826 }
827 if (i < 0)
828 return 1;
829 cycleTime = tm[i].cycleTime;
830 accessTime = tm[i].accessTime;
831 recTime = tm[i].recoveryTime;
832
833 #ifdef IDE_PMAC_DEBUG
834 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
835 drive->name, cycleTime, accessTime, recTime);
836 #endif
837 }
838 switch(intf_type) {
839 case controller_sh_ata6: {
840 /* 133Mhz cell */
841 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
842 if (tr == 0)
843 return 1;
844 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
845 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
846 }
847 case controller_un_ata6:
848 case controller_k2_ata6: {
849 /* 100Mhz cell */
850 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
851 if (tr == 0)
852 return 1;
853 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
854 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
855 }
856 break;
857 case controller_kl_ata4:
858 /* 66Mhz cell */
859 accessTicks = SYSCLK_TICKS_66(accessTime);
860 accessTicks = min(accessTicks, 0x1fU);
861 accessTicks = max(accessTicks, 0x1U);
862 recTicks = SYSCLK_TICKS_66(recTime);
863 recTicks = min(recTicks, 0x1fU);
864 recTicks = max(recTicks, 0x3U);
865 /* Clear out mdma bits and disable udma */
866 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
867 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
868 (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
869 break;
870 case controller_kl_ata3:
871 /* 33Mhz cell on KeyLargo */
872 accessTicks = SYSCLK_TICKS(accessTime);
873 accessTicks = max(accessTicks, 1U);
874 accessTicks = min(accessTicks, 0x1fU);
875 accessTime = accessTicks * IDE_SYSCLK_NS;
876 recTicks = SYSCLK_TICKS(recTime);
877 recTicks = max(recTicks, 1U);
878 recTicks = min(recTicks, 0x1fU);
879 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
880 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
881 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
882 break;
883 default: {
884 /* 33Mhz cell on others */
885 int halfTick = 0;
886 int origAccessTime = accessTime;
887 int origRecTime = recTime;
888
889 accessTicks = SYSCLK_TICKS(accessTime);
890 accessTicks = max(accessTicks, 1U);
891 accessTicks = min(accessTicks, 0x1fU);
892 accessTime = accessTicks * IDE_SYSCLK_NS;
893 recTicks = SYSCLK_TICKS(recTime);
894 recTicks = max(recTicks, 2U) - 1;
895 recTicks = min(recTicks, 0x1fU);
896 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
897 if ((accessTicks > 1) &&
898 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
899 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
900 halfTick = 1;
901 accessTicks--;
902 }
903 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
904 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
905 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
906 if (halfTick)
907 *timings |= TR_33_MDMA_HALFTICK;
908 }
909 }
910 #ifdef IDE_PMAC_DEBUG
911 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
912 drive->name, speed & 0xf, *timings);
913 #endif
914 return 0;
915 }
916 #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
917
918 /*
919 * Speedproc. This function is called by the core to set any of the standard
920 * DMA timing (MDMA or UDMA) to both the drive and the controller.
921 * You may notice we don't use this function on normal "dma check" operation,
922 * our dedicated function is more precise as it uses the drive provided
923 * cycle time value. We should probably fix this one to deal with that too...
924 */
925 static int pmac_ide_tune_chipset(ide_drive_t *drive, const u8 speed)
926 {
927 int unit = (drive->select.b.unit & 0x01);
928 int ret = 0;
929 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
930 u32 *timings, *timings2;
931
932 if (pmif == NULL)
933 return 1;
934
935 timings = &pmif->timings[unit];
936 timings2 = &pmif->timings[unit+2];
937
938 switch(speed) {
939 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
940 case XFER_UDMA_6:
941 case XFER_UDMA_5:
942 case XFER_UDMA_4:
943 case XFER_UDMA_3:
944 case XFER_UDMA_2:
945 case XFER_UDMA_1:
946 case XFER_UDMA_0:
947 if (pmif->kind == controller_kl_ata4)
948 ret = set_timings_udma_ata4(timings, speed);
949 else if (pmif->kind == controller_un_ata6
950 || pmif->kind == controller_k2_ata6)
951 ret = set_timings_udma_ata6(timings, timings2, speed);
952 else if (pmif->kind == controller_sh_ata6)
953 ret = set_timings_udma_shasta(timings, timings2, speed);
954 else
955 ret = 1;
956 break;
957 case XFER_MW_DMA_2:
958 case XFER_MW_DMA_1:
959 case XFER_MW_DMA_0:
960 ret = set_timings_mdma(drive, pmif->kind, timings, timings2, speed, 0);
961 break;
962 case XFER_SW_DMA_2:
963 case XFER_SW_DMA_1:
964 case XFER_SW_DMA_0:
965 return 1;
966 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
967 default:
968 ret = 1;
969 }
970 if (ret)
971 return ret;
972
973 ret = pmac_ide_do_setfeature(drive, speed);
974 if (ret)
975 return ret;
976
977 pmac_ide_do_update_timings(drive);
978
979 return 0;
980 }
981
982 /*
983 * Blast some well known "safe" values to the timing registers at init or
984 * wakeup from sleep time, before we do real calculation
985 */
986 static void
987 sanitize_timings(pmac_ide_hwif_t *pmif)
988 {
989 unsigned int value, value2 = 0;
990
991 switch(pmif->kind) {
992 case controller_sh_ata6:
993 value = 0x0a820c97;
994 value2 = 0x00033031;
995 break;
996 case controller_un_ata6:
997 case controller_k2_ata6:
998 value = 0x08618a92;
999 value2 = 0x00002921;
1000 break;
1001 case controller_kl_ata4:
1002 value = 0x0008438c;
1003 break;
1004 case controller_kl_ata3:
1005 value = 0x00084526;
1006 break;
1007 case controller_heathrow:
1008 case controller_ohare:
1009 default:
1010 value = 0x00074526;
1011 break;
1012 }
1013 pmif->timings[0] = pmif->timings[1] = value;
1014 pmif->timings[2] = pmif->timings[3] = value2;
1015 }
1016
1017 unsigned long
1018 pmac_ide_get_base(int index)
1019 {
1020 return pmac_ide[index].regbase;
1021 }
1022
1023 int
1024 pmac_ide_check_base(unsigned long base)
1025 {
1026 int ix;
1027
1028 for (ix = 0; ix < MAX_HWIFS; ++ix)
1029 if (base == pmac_ide[ix].regbase)
1030 return ix;
1031 return -1;
1032 }
1033
1034 int
1035 pmac_ide_get_irq(unsigned long base)
1036 {
1037 int ix;
1038
1039 for (ix = 0; ix < MAX_HWIFS; ++ix)
1040 if (base == pmac_ide[ix].regbase)
1041 return pmac_ide[ix].irq;
1042 return 0;
1043 }
1044
1045 static int ide_majors[] = { 3, 22, 33, 34, 56, 57 };
1046
1047 dev_t __init
1048 pmac_find_ide_boot(char *bootdevice, int n)
1049 {
1050 int i;
1051
1052 /*
1053 * Look through the list of IDE interfaces for this one.
1054 */
1055 for (i = 0; i < pmac_ide_count; ++i) {
1056 char *name;
1057 if (!pmac_ide[i].node || !pmac_ide[i].node->full_name)
1058 continue;
1059 name = pmac_ide[i].node->full_name;
1060 if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) {
1061 /* XXX should cope with the 2nd drive as well... */
1062 return MKDEV(ide_majors[i], 0);
1063 }
1064 }
1065
1066 return 0;
1067 }
1068
1069 /* Suspend call back, should be called after the child devices
1070 * have actually been suspended
1071 */
1072 static int
1073 pmac_ide_do_suspend(ide_hwif_t *hwif)
1074 {
1075 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1076
1077 /* We clear the timings */
1078 pmif->timings[0] = 0;
1079 pmif->timings[1] = 0;
1080
1081 disable_irq(pmif->irq);
1082
1083 /* The media bay will handle itself just fine */
1084 if (pmif->mediabay)
1085 return 0;
1086
1087 /* Kauai has bus control FCRs directly here */
1088 if (pmif->kauai_fcr) {
1089 u32 fcr = readl(pmif->kauai_fcr);
1090 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
1091 writel(fcr, pmif->kauai_fcr);
1092 }
1093
1094 /* Disable the bus on older machines and the cell on kauai */
1095 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
1096 0);
1097
1098 return 0;
1099 }
1100
1101 /* Resume call back, should be called before the child devices
1102 * are resumed
1103 */
1104 static int
1105 pmac_ide_do_resume(ide_hwif_t *hwif)
1106 {
1107 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1108
1109 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
1110 if (!pmif->mediabay) {
1111 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
1112 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
1113 msleep(10);
1114 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
1115
1116 /* Kauai has it different */
1117 if (pmif->kauai_fcr) {
1118 u32 fcr = readl(pmif->kauai_fcr);
1119 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
1120 writel(fcr, pmif->kauai_fcr);
1121 }
1122
1123 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1124 }
1125
1126 /* Sanitize drive timings */
1127 sanitize_timings(pmif);
1128
1129 enable_irq(pmif->irq);
1130
1131 return 0;
1132 }
1133
1134 /*
1135 * Setup, register & probe an IDE channel driven by this driver, this is
1136 * called by one of the 2 probe functions (macio or PCI). Note that a channel
1137 * that ends up beeing free of any device is not kept around by this driver
1138 * (it is kept in 2.4). This introduce an interface numbering change on some
1139 * rare machines unfortunately, but it's better this way.
1140 */
1141 static int
1142 pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
1143 {
1144 struct device_node *np = pmif->node;
1145 const int *bidp;
1146
1147 pmif->cable_80 = 0;
1148 pmif->broken_dma = pmif->broken_dma_warn = 0;
1149 if (of_device_is_compatible(np, "shasta-ata"))
1150 pmif->kind = controller_sh_ata6;
1151 else if (of_device_is_compatible(np, "kauai-ata"))
1152 pmif->kind = controller_un_ata6;
1153 else if (of_device_is_compatible(np, "K2-UATA"))
1154 pmif->kind = controller_k2_ata6;
1155 else if (of_device_is_compatible(np, "keylargo-ata")) {
1156 if (strcmp(np->name, "ata-4") == 0)
1157 pmif->kind = controller_kl_ata4;
1158 else
1159 pmif->kind = controller_kl_ata3;
1160 } else if (of_device_is_compatible(np, "heathrow-ata"))
1161 pmif->kind = controller_heathrow;
1162 else {
1163 pmif->kind = controller_ohare;
1164 pmif->broken_dma = 1;
1165 }
1166
1167 bidp = of_get_property(np, "AAPL,bus-id", NULL);
1168 pmif->aapl_bus_id = bidp ? *bidp : 0;
1169
1170 /* Get cable type from device-tree */
1171 if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6
1172 || pmif->kind == controller_k2_ata6
1173 || pmif->kind == controller_sh_ata6) {
1174 const char* cable = of_get_property(np, "cable-type", NULL);
1175 if (cable && !strncmp(cable, "80-", 3))
1176 pmif->cable_80 = 1;
1177 }
1178 /* G5's seem to have incorrect cable type in device-tree. Let's assume
1179 * they have a 80 conductor cable, this seem to be always the case unless
1180 * the user mucked around
1181 */
1182 if (of_device_is_compatible(np, "K2-UATA") ||
1183 of_device_is_compatible(np, "shasta-ata"))
1184 pmif->cable_80 = 1;
1185
1186 /* On Kauai-type controllers, we make sure the FCR is correct */
1187 if (pmif->kauai_fcr)
1188 writel(KAUAI_FCR_UATA_MAGIC |
1189 KAUAI_FCR_UATA_RESET_N |
1190 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1191
1192 pmif->mediabay = 0;
1193
1194 /* Make sure we have sane timings */
1195 sanitize_timings(pmif);
1196
1197 #ifndef CONFIG_PPC64
1198 /* XXX FIXME: Media bay stuff need re-organizing */
1199 if (np->parent && np->parent->name
1200 && strcasecmp(np->parent->name, "media-bay") == 0) {
1201 #ifdef CONFIG_PMAC_MEDIABAY
1202 media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq, hwif->index);
1203 #endif /* CONFIG_PMAC_MEDIABAY */
1204 pmif->mediabay = 1;
1205 if (!bidp)
1206 pmif->aapl_bus_id = 1;
1207 } else if (pmif->kind == controller_ohare) {
1208 /* The code below is having trouble on some ohare machines
1209 * (timing related ?). Until I can put my hand on one of these
1210 * units, I keep the old way
1211 */
1212 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1213 } else
1214 #endif
1215 {
1216 /* This is necessary to enable IDE when net-booting */
1217 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1218 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1219 msleep(10);
1220 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1221 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1222 }
1223
1224 /* Setup MMIO ops */
1225 default_hwif_mmiops(hwif);
1226 hwif->OUTBSYNC = pmac_outbsync;
1227
1228 /* Tell common code _not_ to mess with resources */
1229 hwif->mmio = 1;
1230 hwif->hwif_data = pmif;
1231 pmac_ide_init_hwif_ports(&hwif->hw, pmif->regbase, 0, &hwif->irq);
1232 memcpy(hwif->io_ports, hwif->hw.io_ports, sizeof(hwif->io_ports));
1233 hwif->chipset = ide_pmac;
1234 hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET] || pmif->mediabay;
1235 hwif->hold = pmif->mediabay;
1236 hwif->cbl = pmif->cable_80 ? ATA_CBL_PATA80 : ATA_CBL_PATA40;
1237 hwif->drives[0].unmask = 1;
1238 hwif->drives[1].unmask = 1;
1239 hwif->pio_mask = ATA_PIO4;
1240 hwif->set_pio_mode = pmac_ide_set_pio_mode;
1241 if (pmif->kind == controller_un_ata6
1242 || pmif->kind == controller_k2_ata6
1243 || pmif->kind == controller_sh_ata6)
1244 hwif->selectproc = pmac_ide_kauai_selectproc;
1245 else
1246 hwif->selectproc = pmac_ide_selectproc;
1247 hwif->speedproc = pmac_ide_tune_chipset;
1248
1249 printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
1250 hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
1251 pmif->mediabay ? " (mediabay)" : "", hwif->irq);
1252
1253 #ifdef CONFIG_PMAC_MEDIABAY
1254 if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0)
1255 hwif->noprobe = 0;
1256 #endif /* CONFIG_PMAC_MEDIABAY */
1257
1258 hwif->sg_max_nents = MAX_DCMDS;
1259
1260 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1261 /* has a DBDMA controller channel */
1262 if (pmif->dma_regs)
1263 pmac_ide_setup_dma(pmif, hwif);
1264 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1265
1266 /* We probe the hwif now */
1267 probe_hwif_init(hwif);
1268
1269 ide_proc_register_port(hwif);
1270
1271 return 0;
1272 }
1273
1274 /*
1275 * Attach to a macio probed interface
1276 */
1277 static int __devinit
1278 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1279 {
1280 void __iomem *base;
1281 unsigned long regbase;
1282 int irq;
1283 ide_hwif_t *hwif;
1284 pmac_ide_hwif_t *pmif;
1285 int i, rc;
1286
1287 i = 0;
1288 while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
1289 || pmac_ide[i].node != NULL))
1290 ++i;
1291 if (i >= MAX_HWIFS) {
1292 printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
1293 printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
1294 return -ENODEV;
1295 }
1296
1297 pmif = &pmac_ide[i];
1298 hwif = &ide_hwifs[i];
1299
1300 if (macio_resource_count(mdev) == 0) {
1301 printk(KERN_WARNING "ide%d: no address for %s\n",
1302 i, mdev->ofdev.node->full_name);
1303 return -ENXIO;
1304 }
1305
1306 /* Request memory resource for IO ports */
1307 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1308 printk(KERN_ERR "ide%d: can't request mmio resource !\n", i);
1309 return -EBUSY;
1310 }
1311
1312 /* XXX This is bogus. Should be fixed in the registry by checking
1313 * the kind of host interrupt controller, a bit like gatwick
1314 * fixes in irq.c. That works well enough for the single case
1315 * where that happens though...
1316 */
1317 if (macio_irq_count(mdev) == 0) {
1318 printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n",
1319 i, mdev->ofdev.node->full_name);
1320 irq = irq_create_mapping(NULL, 13);
1321 } else
1322 irq = macio_irq(mdev, 0);
1323
1324 base = ioremap(macio_resource_start(mdev, 0), 0x400);
1325 regbase = (unsigned long) base;
1326
1327 hwif->pci_dev = mdev->bus->pdev;
1328 hwif->gendev.parent = &mdev->ofdev.dev;
1329
1330 pmif->mdev = mdev;
1331 pmif->node = mdev->ofdev.node;
1332 pmif->regbase = regbase;
1333 pmif->irq = irq;
1334 pmif->kauai_fcr = NULL;
1335 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1336 if (macio_resource_count(mdev) >= 2) {
1337 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1338 printk(KERN_WARNING "ide%d: can't request DMA resource !\n", i);
1339 else
1340 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1341 } else
1342 pmif->dma_regs = NULL;
1343 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1344 dev_set_drvdata(&mdev->ofdev.dev, hwif);
1345
1346 rc = pmac_ide_setup_device(pmif, hwif);
1347 if (rc != 0) {
1348 /* The inteface is released to the common IDE layer */
1349 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1350 iounmap(base);
1351 if (pmif->dma_regs)
1352 iounmap(pmif->dma_regs);
1353 memset(pmif, 0, sizeof(*pmif));
1354 macio_release_resource(mdev, 0);
1355 if (pmif->dma_regs)
1356 macio_release_resource(mdev, 1);
1357 }
1358
1359 return rc;
1360 }
1361
1362 static int
1363 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1364 {
1365 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1366 int rc = 0;
1367
1368 if (mesg.event != mdev->ofdev.dev.power.power_state.event
1369 && mesg.event == PM_EVENT_SUSPEND) {
1370 rc = pmac_ide_do_suspend(hwif);
1371 if (rc == 0)
1372 mdev->ofdev.dev.power.power_state = mesg;
1373 }
1374
1375 return rc;
1376 }
1377
1378 static int
1379 pmac_ide_macio_resume(struct macio_dev *mdev)
1380 {
1381 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1382 int rc = 0;
1383
1384 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1385 rc = pmac_ide_do_resume(hwif);
1386 if (rc == 0)
1387 mdev->ofdev.dev.power.power_state = PMSG_ON;
1388 }
1389
1390 return rc;
1391 }
1392
1393 /*
1394 * Attach to a PCI probed interface
1395 */
1396 static int __devinit
1397 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1398 {
1399 ide_hwif_t *hwif;
1400 struct device_node *np;
1401 pmac_ide_hwif_t *pmif;
1402 void __iomem *base;
1403 unsigned long rbase, rlen;
1404 int i, rc;
1405
1406 np = pci_device_to_OF_node(pdev);
1407 if (np == NULL) {
1408 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1409 return -ENODEV;
1410 }
1411 i = 0;
1412 while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
1413 || pmac_ide[i].node != NULL))
1414 ++i;
1415 if (i >= MAX_HWIFS) {
1416 printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
1417 printk(KERN_ERR " %s\n", np->full_name);
1418 return -ENODEV;
1419 }
1420
1421 pmif = &pmac_ide[i];
1422 hwif = &ide_hwifs[i];
1423
1424 if (pci_enable_device(pdev)) {
1425 printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n",
1426 i, np->full_name);
1427 return -ENXIO;
1428 }
1429 pci_set_master(pdev);
1430
1431 if (pci_request_regions(pdev, "Kauai ATA")) {
1432 printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n",
1433 i, np->full_name);
1434 return -ENXIO;
1435 }
1436
1437 hwif->pci_dev = pdev;
1438 hwif->gendev.parent = &pdev->dev;
1439 pmif->mdev = NULL;
1440 pmif->node = np;
1441
1442 rbase = pci_resource_start(pdev, 0);
1443 rlen = pci_resource_len(pdev, 0);
1444
1445 base = ioremap(rbase, rlen);
1446 pmif->regbase = (unsigned long) base + 0x2000;
1447 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1448 pmif->dma_regs = base + 0x1000;
1449 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1450 pmif->kauai_fcr = base;
1451 pmif->irq = pdev->irq;
1452
1453 pci_set_drvdata(pdev, hwif);
1454
1455 rc = pmac_ide_setup_device(pmif, hwif);
1456 if (rc != 0) {
1457 /* The inteface is released to the common IDE layer */
1458 pci_set_drvdata(pdev, NULL);
1459 iounmap(base);
1460 memset(pmif, 0, sizeof(*pmif));
1461 pci_release_regions(pdev);
1462 }
1463
1464 return rc;
1465 }
1466
1467 static int
1468 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1469 {
1470 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1471 int rc = 0;
1472
1473 if (mesg.event != pdev->dev.power.power_state.event
1474 && mesg.event == PM_EVENT_SUSPEND) {
1475 rc = pmac_ide_do_suspend(hwif);
1476 if (rc == 0)
1477 pdev->dev.power.power_state = mesg;
1478 }
1479
1480 return rc;
1481 }
1482
1483 static int
1484 pmac_ide_pci_resume(struct pci_dev *pdev)
1485 {
1486 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1487 int rc = 0;
1488
1489 if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1490 rc = pmac_ide_do_resume(hwif);
1491 if (rc == 0)
1492 pdev->dev.power.power_state = PMSG_ON;
1493 }
1494
1495 return rc;
1496 }
1497
1498 static struct of_device_id pmac_ide_macio_match[] =
1499 {
1500 {
1501 .name = "IDE",
1502 },
1503 {
1504 .name = "ATA",
1505 },
1506 {
1507 .type = "ide",
1508 },
1509 {
1510 .type = "ata",
1511 },
1512 {},
1513 };
1514
1515 static struct macio_driver pmac_ide_macio_driver =
1516 {
1517 .name = "ide-pmac",
1518 .match_table = pmac_ide_macio_match,
1519 .probe = pmac_ide_macio_attach,
1520 .suspend = pmac_ide_macio_suspend,
1521 .resume = pmac_ide_macio_resume,
1522 };
1523
1524 static struct pci_device_id pmac_ide_pci_match[] = {
1525 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA,
1526 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1527 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100,
1528 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1529 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100,
1530 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1531 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_ATA,
1532 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1533 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA,
1534 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1535 {},
1536 };
1537
1538 static struct pci_driver pmac_ide_pci_driver = {
1539 .name = "ide-pmac",
1540 .id_table = pmac_ide_pci_match,
1541 .probe = pmac_ide_pci_attach,
1542 .suspend = pmac_ide_pci_suspend,
1543 .resume = pmac_ide_pci_resume,
1544 };
1545 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1546
1547 int __init pmac_ide_probe(void)
1548 {
1549 int error;
1550
1551 if (!machine_is(powermac))
1552 return -ENODEV;
1553
1554 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1555 error = pci_register_driver(&pmac_ide_pci_driver);
1556 if (error)
1557 goto out;
1558 error = macio_register_driver(&pmac_ide_macio_driver);
1559 if (error) {
1560 pci_unregister_driver(&pmac_ide_pci_driver);
1561 goto out;
1562 }
1563 #else
1564 error = macio_register_driver(&pmac_ide_macio_driver);
1565 if (error)
1566 goto out;
1567 error = pci_register_driver(&pmac_ide_pci_driver);
1568 if (error) {
1569 macio_unregister_driver(&pmac_ide_macio_driver);
1570 goto out;
1571 }
1572 #endif
1573 out:
1574 return error;
1575 }
1576
1577 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1578
1579 /*
1580 * pmac_ide_build_dmatable builds the DBDMA command list
1581 * for a transfer and sets the DBDMA channel to point to it.
1582 */
1583 static int
1584 pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
1585 {
1586 struct dbdma_cmd *table;
1587 int i, count = 0;
1588 ide_hwif_t *hwif = HWIF(drive);
1589 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1590 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1591 struct scatterlist *sg;
1592 int wr = (rq_data_dir(rq) == WRITE);
1593
1594 /* DMA table is already aligned */
1595 table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1596
1597 /* Make sure DMA controller is stopped (necessary ?) */
1598 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1599 while (readl(&dma->status) & RUN)
1600 udelay(1);
1601
1602 hwif->sg_nents = i = ide_build_sglist(drive, rq);
1603
1604 if (!i)
1605 return 0;
1606
1607 /* Build DBDMA commands list */
1608 sg = hwif->sg_table;
1609 while (i && sg_dma_len(sg)) {
1610 u32 cur_addr;
1611 u32 cur_len;
1612
1613 cur_addr = sg_dma_address(sg);
1614 cur_len = sg_dma_len(sg);
1615
1616 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1617 if (pmif->broken_dma_warn == 0) {
1618 printk(KERN_WARNING "%s: DMA on non aligned address,"
1619 "switching to PIO on Ohare chipset\n", drive->name);
1620 pmif->broken_dma_warn = 1;
1621 }
1622 goto use_pio_instead;
1623 }
1624 while (cur_len) {
1625 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1626
1627 if (count++ >= MAX_DCMDS) {
1628 printk(KERN_WARNING "%s: DMA table too small\n",
1629 drive->name);
1630 goto use_pio_instead;
1631 }
1632 st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1633 st_le16(&table->req_count, tc);
1634 st_le32(&table->phy_addr, cur_addr);
1635 table->cmd_dep = 0;
1636 table->xfer_status = 0;
1637 table->res_count = 0;
1638 cur_addr += tc;
1639 cur_len -= tc;
1640 ++table;
1641 }
1642 sg++;
1643 i--;
1644 }
1645
1646 /* convert the last command to an input/output last command */
1647 if (count) {
1648 st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1649 /* add the stop command to the end of the list */
1650 memset(table, 0, sizeof(struct dbdma_cmd));
1651 st_le16(&table->command, DBDMA_STOP);
1652 mb();
1653 writel(hwif->dmatable_dma, &dma->cmdptr);
1654 return 1;
1655 }
1656
1657 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1658 use_pio_instead:
1659 pci_unmap_sg(hwif->pci_dev,
1660 hwif->sg_table,
1661 hwif->sg_nents,
1662 hwif->sg_dma_direction);
1663 return 0; /* revert to PIO for this request */
1664 }
1665
1666 /* Teardown mappings after DMA has completed. */
1667 static void
1668 pmac_ide_destroy_dmatable (ide_drive_t *drive)
1669 {
1670 ide_hwif_t *hwif = drive->hwif;
1671 struct pci_dev *dev = HWIF(drive)->pci_dev;
1672 struct scatterlist *sg = hwif->sg_table;
1673 int nents = hwif->sg_nents;
1674
1675 if (nents) {
1676 pci_unmap_sg(dev, sg, nents, hwif->sg_dma_direction);
1677 hwif->sg_nents = 0;
1678 }
1679 }
1680
1681 /*
1682 * Pick up best MDMA timing for the drive and apply it
1683 */
1684 static int
1685 pmac_ide_mdma_enable(ide_drive_t *drive, u16 mode)
1686 {
1687 ide_hwif_t *hwif = HWIF(drive);
1688 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1689 int drive_cycle_time;
1690 struct hd_driveid *id = drive->id;
1691 u32 *timings, *timings2;
1692 u32 timing_local[2];
1693 int ret;
1694
1695 /* which drive is it ? */
1696 timings = &pmif->timings[drive->select.b.unit & 0x01];
1697 timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
1698
1699 /* Check if drive provide explicit cycle time */
1700 if ((id->field_valid & 2) && (id->eide_dma_time))
1701 drive_cycle_time = id->eide_dma_time;
1702 else
1703 drive_cycle_time = 0;
1704
1705 /* Copy timings to local image */
1706 timing_local[0] = *timings;
1707 timing_local[1] = *timings2;
1708
1709 /* Calculate controller timings */
1710 ret = set_timings_mdma( drive, pmif->kind,
1711 &timing_local[0],
1712 &timing_local[1],
1713 mode,
1714 drive_cycle_time);
1715 if (ret)
1716 return 0;
1717
1718 /* Set feature on drive */
1719 printk(KERN_INFO "%s: Enabling MultiWord DMA %d\n", drive->name, mode & 0xf);
1720 ret = pmac_ide_do_setfeature(drive, mode);
1721 if (ret) {
1722 printk(KERN_WARNING "%s: Failed !\n", drive->name);
1723 return 0;
1724 }
1725
1726 /* Apply timings to controller */
1727 *timings = timing_local[0];
1728 *timings2 = timing_local[1];
1729
1730 return 1;
1731 }
1732
1733 /*
1734 * Pick up best UDMA timing for the drive and apply it
1735 */
1736 static int
1737 pmac_ide_udma_enable(ide_drive_t *drive, u16 mode)
1738 {
1739 ide_hwif_t *hwif = HWIF(drive);
1740 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1741 u32 *timings, *timings2;
1742 u32 timing_local[2];
1743 int ret;
1744
1745 /* which drive is it ? */
1746 timings = &pmif->timings[drive->select.b.unit & 0x01];
1747 timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
1748
1749 /* Copy timings to local image */
1750 timing_local[0] = *timings;
1751 timing_local[1] = *timings2;
1752
1753 /* Calculate timings for interface */
1754 if (pmif->kind == controller_un_ata6
1755 || pmif->kind == controller_k2_ata6)
1756 ret = set_timings_udma_ata6( &timing_local[0],
1757 &timing_local[1],
1758 mode);
1759 else if (pmif->kind == controller_sh_ata6)
1760 ret = set_timings_udma_shasta( &timing_local[0],
1761 &timing_local[1],
1762 mode);
1763 else
1764 ret = set_timings_udma_ata4(&timing_local[0], mode);
1765 if (ret)
1766 return 0;
1767
1768 /* Set feature on drive */
1769 printk(KERN_INFO "%s: Enabling Ultra DMA %d\n", drive->name, mode & 0x0f);
1770 ret = pmac_ide_do_setfeature(drive, mode);
1771 if (ret) {
1772 printk(KERN_WARNING "%s: Failed !\n", drive->name);
1773 return 0;
1774 }
1775
1776 /* Apply timings to controller */
1777 *timings = timing_local[0];
1778 *timings2 = timing_local[1];
1779
1780 return 1;
1781 }
1782
1783 /*
1784 * Check what is the best DMA timing setting for the drive and
1785 * call appropriate functions to apply it.
1786 */
1787 static int
1788 pmac_ide_dma_check(ide_drive_t *drive)
1789 {
1790 struct hd_driveid *id = drive->id;
1791 ide_hwif_t *hwif = HWIF(drive);
1792 int enable = 1;
1793 drive->using_dma = 0;
1794
1795 if (drive->media == ide_floppy)
1796 enable = 0;
1797 if (((id->capability & 1) == 0) && !__ide_dma_good_drive(drive))
1798 enable = 0;
1799 if (__ide_dma_bad_drive(drive))
1800 enable = 0;
1801
1802 if (enable) {
1803 u8 mode = ide_max_dma_mode(drive);
1804
1805 if (mode >= XFER_UDMA_0)
1806 drive->using_dma = pmac_ide_udma_enable(drive, mode);
1807 else if (mode >= XFER_MW_DMA_0)
1808 drive->using_dma = pmac_ide_mdma_enable(drive, mode);
1809 hwif->OUTB(0, IDE_CONTROL_REG);
1810 /* Apply settings to controller */
1811 pmac_ide_do_update_timings(drive);
1812 }
1813 return 0;
1814 }
1815
1816 /*
1817 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1818 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1819 */
1820 static int
1821 pmac_ide_dma_setup(ide_drive_t *drive)
1822 {
1823 ide_hwif_t *hwif = HWIF(drive);
1824 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1825 struct request *rq = HWGROUP(drive)->rq;
1826 u8 unit = (drive->select.b.unit & 0x01);
1827 u8 ata4;
1828
1829 if (pmif == NULL)
1830 return 1;
1831 ata4 = (pmif->kind == controller_kl_ata4);
1832
1833 if (!pmac_ide_build_dmatable(drive, rq)) {
1834 ide_map_sg(drive, rq);
1835 return 1;
1836 }
1837
1838 /* Apple adds 60ns to wrDataSetup on reads */
1839 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1840 writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
1841 PMAC_IDE_REG(IDE_TIMING_CONFIG));
1842 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1843 }
1844
1845 drive->waiting_for_dma = 1;
1846
1847 return 0;
1848 }
1849
1850 static void
1851 pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
1852 {
1853 /* issue cmd to drive */
1854 ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
1855 }
1856
1857 /*
1858 * Kick the DMA controller into life after the DMA command has been issued
1859 * to the drive.
1860 */
1861 static void
1862 pmac_ide_dma_start(ide_drive_t *drive)
1863 {
1864 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1865 volatile struct dbdma_regs __iomem *dma;
1866
1867 dma = pmif->dma_regs;
1868
1869 writel((RUN << 16) | RUN, &dma->control);
1870 /* Make sure it gets to the controller right now */
1871 (void)readl(&dma->control);
1872 }
1873
1874 /*
1875 * After a DMA transfer, make sure the controller is stopped
1876 */
1877 static int
1878 pmac_ide_dma_end (ide_drive_t *drive)
1879 {
1880 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1881 volatile struct dbdma_regs __iomem *dma;
1882 u32 dstat;
1883
1884 if (pmif == NULL)
1885 return 0;
1886 dma = pmif->dma_regs;
1887
1888 drive->waiting_for_dma = 0;
1889 dstat = readl(&dma->status);
1890 writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1891 pmac_ide_destroy_dmatable(drive);
1892 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1893 * in theory, but with ATAPI decices doing buffer underruns, that would
1894 * cause us to disable DMA, which isn't what we want
1895 */
1896 return (dstat & (RUN|DEAD)) != RUN;
1897 }
1898
1899 /*
1900 * Check out that the interrupt we got was for us. We can't always know this
1901 * for sure with those Apple interfaces (well, we could on the recent ones but
1902 * that's not implemented yet), on the other hand, we don't have shared interrupts
1903 * so it's not really a problem
1904 */
1905 static int
1906 pmac_ide_dma_test_irq (ide_drive_t *drive)
1907 {
1908 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1909 volatile struct dbdma_regs __iomem *dma;
1910 unsigned long status, timeout;
1911
1912 if (pmif == NULL)
1913 return 0;
1914 dma = pmif->dma_regs;
1915
1916 /* We have to things to deal with here:
1917 *
1918 * - The dbdma won't stop if the command was started
1919 * but completed with an error without transferring all
1920 * datas. This happens when bad blocks are met during
1921 * a multi-block transfer.
1922 *
1923 * - The dbdma fifo hasn't yet finished flushing to
1924 * to system memory when the disk interrupt occurs.
1925 *
1926 */
1927
1928 /* If ACTIVE is cleared, the STOP command have passed and
1929 * transfer is complete.
1930 */
1931 status = readl(&dma->status);
1932 if (!(status & ACTIVE))
1933 return 1;
1934 if (!drive->waiting_for_dma)
1935 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1936 called while not waiting\n", HWIF(drive)->index);
1937
1938 /* If dbdma didn't execute the STOP command yet, the
1939 * active bit is still set. We consider that we aren't
1940 * sharing interrupts (which is hopefully the case with
1941 * those controllers) and so we just try to flush the
1942 * channel for pending data in the fifo
1943 */
1944 udelay(1);
1945 writel((FLUSH << 16) | FLUSH, &dma->control);
1946 timeout = 0;
1947 for (;;) {
1948 udelay(1);
1949 status = readl(&dma->status);
1950 if ((status & FLUSH) == 0)
1951 break;
1952 if (++timeout > 100) {
1953 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1954 timeout flushing channel\n", HWIF(drive)->index);
1955 break;
1956 }
1957 }
1958 return 1;
1959 }
1960
1961 static void pmac_ide_dma_host_off(ide_drive_t *drive)
1962 {
1963 }
1964
1965 static void pmac_ide_dma_host_on(ide_drive_t *drive)
1966 {
1967 }
1968
1969 static void
1970 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1971 {
1972 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1973 volatile struct dbdma_regs __iomem *dma;
1974 unsigned long status;
1975
1976 if (pmif == NULL)
1977 return;
1978 dma = pmif->dma_regs;
1979
1980 status = readl(&dma->status);
1981 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1982 }
1983
1984 /*
1985 * Allocate the data structures needed for using DMA with an interface
1986 * and fill the proper list of functions pointers
1987 */
1988 static void __init
1989 pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
1990 {
1991 /* We won't need pci_dev if we switch to generic consistent
1992 * DMA routines ...
1993 */
1994 if (hwif->pci_dev == NULL)
1995 return;
1996 /*
1997 * Allocate space for the DBDMA commands.
1998 * The +2 is +1 for the stop command and +1 to allow for
1999 * aligning the start address to a multiple of 16 bytes.
2000 */
2001 pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
2002 hwif->pci_dev,
2003 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
2004 &hwif->dmatable_dma);
2005 if (pmif->dma_table_cpu == NULL) {
2006 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
2007 hwif->name);
2008 return;
2009 }
2010
2011 hwif->dma_off_quietly = &ide_dma_off_quietly;
2012 hwif->ide_dma_on = &__ide_dma_on;
2013 hwif->ide_dma_check = &pmac_ide_dma_check;
2014 hwif->dma_setup = &pmac_ide_dma_setup;
2015 hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd;
2016 hwif->dma_start = &pmac_ide_dma_start;
2017 hwif->ide_dma_end = &pmac_ide_dma_end;
2018 hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq;
2019 hwif->dma_host_off = &pmac_ide_dma_host_off;
2020 hwif->dma_host_on = &pmac_ide_dma_host_on;
2021 hwif->dma_timeout = &ide_dma_timeout;
2022 hwif->dma_lost_irq = &pmac_ide_dma_lost_irq;
2023
2024 hwif->atapi_dma = 1;
2025 switch(pmif->kind) {
2026 case controller_sh_ata6:
2027 hwif->ultra_mask = pmif->cable_80 ? 0x7f : 0x07;
2028 hwif->mwdma_mask = 0x07;
2029 hwif->swdma_mask = 0x00;
2030 break;
2031 case controller_un_ata6:
2032 case controller_k2_ata6:
2033 hwif->ultra_mask = pmif->cable_80 ? 0x3f : 0x07;
2034 hwif->mwdma_mask = 0x07;
2035 hwif->swdma_mask = 0x00;
2036 break;
2037 case controller_kl_ata4:
2038 hwif->ultra_mask = pmif->cable_80 ? 0x1f : 0x07;
2039 hwif->mwdma_mask = 0x07;
2040 hwif->swdma_mask = 0x00;
2041 break;
2042 default:
2043 hwif->ultra_mask = 0x00;
2044 hwif->mwdma_mask = 0x07;
2045 hwif->swdma_mask = 0x00;
2046 break;
2047 }
2048 }
2049
2050 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
This page took 0.07155 seconds and 6 git commands to generate.