ide-pmac: remove pmac_ide_{m,u}dma_enable() (take 2)
[deliverable/linux.git] / drivers / ide / ppc / pmac.c
1 /*
2 * linux/drivers/ide/ppc/pmac.c
3 *
4 * Support for IDE interfaces on PowerMacs.
5 * These IDE interfaces are memory-mapped and have a DBDMA channel
6 * for doing DMA.
7 *
8 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
9 * Copyright (C) 2007 Bartlomiej Zolnierkiewicz
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 *
16 * Some code taken from drivers/ide/ide-dma.c:
17 *
18 * Copyright (c) 1995-1998 Mark Lord
19 *
20 * TODO: - Use pre-calculated (kauai) timing tables all the time and
21 * get rid of the "rounded" tables used previously, so we have the
22 * same table format for all controllers and can then just have one
23 * big table
24 *
25 */
26 #include <linux/types.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/delay.h>
30 #include <linux/ide.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <linux/pci.h>
34 #include <linux/adb.h>
35 #include <linux/pmu.h>
36 #include <linux/scatterlist.h>
37
38 #include <asm/prom.h>
39 #include <asm/io.h>
40 #include <asm/dbdma.h>
41 #include <asm/ide.h>
42 #include <asm/pci-bridge.h>
43 #include <asm/machdep.h>
44 #include <asm/pmac_feature.h>
45 #include <asm/sections.h>
46 #include <asm/irq.h>
47
48 #ifndef CONFIG_PPC64
49 #include <asm/mediabay.h>
50 #endif
51
52 #include "../ide-timing.h"
53
54 #undef IDE_PMAC_DEBUG
55
56 #define DMA_WAIT_TIMEOUT 50
57
58 typedef struct pmac_ide_hwif {
59 unsigned long regbase;
60 int irq;
61 int kind;
62 int aapl_bus_id;
63 unsigned cable_80 : 1;
64 unsigned mediabay : 1;
65 unsigned broken_dma : 1;
66 unsigned broken_dma_warn : 1;
67 struct device_node* node;
68 struct macio_dev *mdev;
69 u32 timings[4];
70 volatile u32 __iomem * *kauai_fcr;
71 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
72 /* Those fields are duplicating what is in hwif. We currently
73 * can't use the hwif ones because of some assumptions that are
74 * beeing done by the generic code about the kind of dma controller
75 * and format of the dma table. This will have to be fixed though.
76 */
77 volatile struct dbdma_regs __iomem * dma_regs;
78 struct dbdma_cmd* dma_table_cpu;
79 #endif
80
81 } pmac_ide_hwif_t;
82
83 static pmac_ide_hwif_t pmac_ide[MAX_HWIFS];
84 static int pmac_ide_count;
85
86 enum {
87 controller_ohare, /* OHare based */
88 controller_heathrow, /* Heathrow/Paddington */
89 controller_kl_ata3, /* KeyLargo ATA-3 */
90 controller_kl_ata4, /* KeyLargo ATA-4 */
91 controller_un_ata6, /* UniNorth2 ATA-6 */
92 controller_k2_ata6, /* K2 ATA-6 */
93 controller_sh_ata6, /* Shasta ATA-6 */
94 };
95
96 static const char* model_name[] = {
97 "OHare ATA", /* OHare based */
98 "Heathrow ATA", /* Heathrow/Paddington */
99 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
100 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
101 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
102 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
103 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
104 };
105
106 /*
107 * Extra registers, both 32-bit little-endian
108 */
109 #define IDE_TIMING_CONFIG 0x200
110 #define IDE_INTERRUPT 0x300
111
112 /* Kauai (U2) ATA has different register setup */
113 #define IDE_KAUAI_PIO_CONFIG 0x200
114 #define IDE_KAUAI_ULTRA_CONFIG 0x210
115 #define IDE_KAUAI_POLL_CONFIG 0x220
116
117 /*
118 * Timing configuration register definitions
119 */
120
121 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
122 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
123 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
124 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
125 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
126
127 /* 133Mhz cell, found in shasta.
128 * See comments about 100 Mhz Uninorth 2...
129 * Note that PIO_MASK and MDMA_MASK seem to overlap
130 */
131 #define TR_133_PIOREG_PIO_MASK 0xff000fff
132 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
133 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
134 #define TR_133_UDMAREG_UDMA_EN 0x00000001
135
136 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
137 * this one yet, it appears as a pci device (106b/0033) on uninorth
138 * internal PCI bus and it's clock is controlled like gem or fw. It
139 * appears to be an evolution of keylargo ATA4 with a timing register
140 * extended to 2 32bits registers and a similar DBDMA channel. Other
141 * registers seem to exist but I can't tell much about them.
142 *
143 * So far, I'm using pre-calculated tables for this extracted from
144 * the values used by the MacOS X driver.
145 *
146 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
147 * register controls the UDMA timings. At least, it seems bit 0
148 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
149 * cycle time in units of 10ns. Bits 8..15 are used by I don't
150 * know their meaning yet
151 */
152 #define TR_100_PIOREG_PIO_MASK 0xff000fff
153 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
154 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
155 #define TR_100_UDMAREG_UDMA_EN 0x00000001
156
157
158 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
159 * 40 connector cable and to 4 on 80 connector one.
160 * Clock unit is 15ns (66Mhz)
161 *
162 * 3 Values can be programmed:
163 * - Write data setup, which appears to match the cycle time. They
164 * also call it DIOW setup.
165 * - Ready to pause time (from spec)
166 * - Address setup. That one is weird. I don't see where exactly
167 * it fits in UDMA cycles, I got it's name from an obscure piece
168 * of commented out code in Darwin. They leave it to 0, we do as
169 * well, despite a comment that would lead to think it has a
170 * min value of 45ns.
171 * Apple also add 60ns to the write data setup (or cycle time ?) on
172 * reads.
173 */
174 #define TR_66_UDMA_MASK 0xfff00000
175 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
176 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
177 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
178 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
179 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
180 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
181 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
182 #define TR_66_MDMA_MASK 0x000ffc00
183 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
184 #define TR_66_MDMA_RECOVERY_SHIFT 15
185 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
186 #define TR_66_MDMA_ACCESS_SHIFT 10
187 #define TR_66_PIO_MASK 0x000003ff
188 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
189 #define TR_66_PIO_RECOVERY_SHIFT 5
190 #define TR_66_PIO_ACCESS_MASK 0x0000001f
191 #define TR_66_PIO_ACCESS_SHIFT 0
192
193 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
194 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
195 *
196 * The access time and recovery time can be programmed. Some older
197 * Darwin code base limit OHare to 150ns cycle time. I decided to do
198 * the same here fore safety against broken old hardware ;)
199 * The HalfTick bit, when set, adds half a clock (15ns) to the access
200 * time and removes one from recovery. It's not supported on KeyLargo
201 * implementation afaik. The E bit appears to be set for PIO mode 0 and
202 * is used to reach long timings used in this mode.
203 */
204 #define TR_33_MDMA_MASK 0x003ff800
205 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
206 #define TR_33_MDMA_RECOVERY_SHIFT 16
207 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
208 #define TR_33_MDMA_ACCESS_SHIFT 11
209 #define TR_33_MDMA_HALFTICK 0x00200000
210 #define TR_33_PIO_MASK 0x000007ff
211 #define TR_33_PIO_E 0x00000400
212 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
213 #define TR_33_PIO_RECOVERY_SHIFT 5
214 #define TR_33_PIO_ACCESS_MASK 0x0000001f
215 #define TR_33_PIO_ACCESS_SHIFT 0
216
217 /*
218 * Interrupt register definitions
219 */
220 #define IDE_INTR_DMA 0x80000000
221 #define IDE_INTR_DEVICE 0x40000000
222
223 /*
224 * FCR Register on Kauai. Not sure what bit 0x4 is ...
225 */
226 #define KAUAI_FCR_UATA_MAGIC 0x00000004
227 #define KAUAI_FCR_UATA_RESET_N 0x00000002
228 #define KAUAI_FCR_UATA_ENABLE 0x00000001
229
230 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
231
232 /* Rounded Multiword DMA timings
233 *
234 * I gave up finding a generic formula for all controller
235 * types and instead, built tables based on timing values
236 * used by Apple in Darwin's implementation.
237 */
238 struct mdma_timings_t {
239 int accessTime;
240 int recoveryTime;
241 int cycleTime;
242 };
243
244 struct mdma_timings_t mdma_timings_33[] =
245 {
246 { 240, 240, 480 },
247 { 180, 180, 360 },
248 { 135, 135, 270 },
249 { 120, 120, 240 },
250 { 105, 105, 210 },
251 { 90, 90, 180 },
252 { 75, 75, 150 },
253 { 75, 45, 120 },
254 { 0, 0, 0 }
255 };
256
257 struct mdma_timings_t mdma_timings_33k[] =
258 {
259 { 240, 240, 480 },
260 { 180, 180, 360 },
261 { 150, 150, 300 },
262 { 120, 120, 240 },
263 { 90, 120, 210 },
264 { 90, 90, 180 },
265 { 90, 60, 150 },
266 { 90, 30, 120 },
267 { 0, 0, 0 }
268 };
269
270 struct mdma_timings_t mdma_timings_66[] =
271 {
272 { 240, 240, 480 },
273 { 180, 180, 360 },
274 { 135, 135, 270 },
275 { 120, 120, 240 },
276 { 105, 105, 210 },
277 { 90, 90, 180 },
278 { 90, 75, 165 },
279 { 75, 45, 120 },
280 { 0, 0, 0 }
281 };
282
283 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
284 struct {
285 int addrSetup; /* ??? */
286 int rdy2pause;
287 int wrDataSetup;
288 } kl66_udma_timings[] =
289 {
290 { 0, 180, 120 }, /* Mode 0 */
291 { 0, 150, 90 }, /* 1 */
292 { 0, 120, 60 }, /* 2 */
293 { 0, 90, 45 }, /* 3 */
294 { 0, 90, 30 } /* 4 */
295 };
296
297 /* UniNorth 2 ATA/100 timings */
298 struct kauai_timing {
299 int cycle_time;
300 u32 timing_reg;
301 };
302
303 static struct kauai_timing kauai_pio_timings[] =
304 {
305 { 930 , 0x08000fff },
306 { 600 , 0x08000a92 },
307 { 383 , 0x0800060f },
308 { 360 , 0x08000492 },
309 { 330 , 0x0800048f },
310 { 300 , 0x080003cf },
311 { 270 , 0x080003cc },
312 { 240 , 0x0800038b },
313 { 239 , 0x0800030c },
314 { 180 , 0x05000249 },
315 { 120 , 0x04000148 },
316 { 0 , 0 },
317 };
318
319 static struct kauai_timing kauai_mdma_timings[] =
320 {
321 { 1260 , 0x00fff000 },
322 { 480 , 0x00618000 },
323 { 360 , 0x00492000 },
324 { 270 , 0x0038e000 },
325 { 240 , 0x0030c000 },
326 { 210 , 0x002cb000 },
327 { 180 , 0x00249000 },
328 { 150 , 0x00209000 },
329 { 120 , 0x00148000 },
330 { 0 , 0 },
331 };
332
333 static struct kauai_timing kauai_udma_timings[] =
334 {
335 { 120 , 0x000070c0 },
336 { 90 , 0x00005d80 },
337 { 60 , 0x00004a60 },
338 { 45 , 0x00003a50 },
339 { 30 , 0x00002a30 },
340 { 20 , 0x00002921 },
341 { 0 , 0 },
342 };
343
344 static struct kauai_timing shasta_pio_timings[] =
345 {
346 { 930 , 0x08000fff },
347 { 600 , 0x0A000c97 },
348 { 383 , 0x07000712 },
349 { 360 , 0x040003cd },
350 { 330 , 0x040003cd },
351 { 300 , 0x040003cd },
352 { 270 , 0x040003cd },
353 { 240 , 0x040003cd },
354 { 239 , 0x040003cd },
355 { 180 , 0x0400028b },
356 { 120 , 0x0400010a },
357 { 0 , 0 },
358 };
359
360 static struct kauai_timing shasta_mdma_timings[] =
361 {
362 { 1260 , 0x00fff000 },
363 { 480 , 0x00820800 },
364 { 360 , 0x00820800 },
365 { 270 , 0x00820800 },
366 { 240 , 0x00820800 },
367 { 210 , 0x00820800 },
368 { 180 , 0x00820800 },
369 { 150 , 0x0028b000 },
370 { 120 , 0x001ca000 },
371 { 0 , 0 },
372 };
373
374 static struct kauai_timing shasta_udma133_timings[] =
375 {
376 { 120 , 0x00035901, },
377 { 90 , 0x000348b1, },
378 { 60 , 0x00033881, },
379 { 45 , 0x00033861, },
380 { 30 , 0x00033841, },
381 { 20 , 0x00033031, },
382 { 15 , 0x00033021, },
383 { 0 , 0 },
384 };
385
386
387 static inline u32
388 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
389 {
390 int i;
391
392 for (i=0; table[i].cycle_time; i++)
393 if (cycle_time > table[i+1].cycle_time)
394 return table[i].timing_reg;
395 BUG();
396 return 0;
397 }
398
399 /* allow up to 256 DBDMA commands per xfer */
400 #define MAX_DCMDS 256
401
402 /*
403 * Wait 1s for disk to answer on IDE bus after a hard reset
404 * of the device (via GPIO/FCR).
405 *
406 * Some devices seem to "pollute" the bus even after dropping
407 * the BSY bit (typically some combo drives slave on the UDMA
408 * bus) after a hard reset. Since we hard reset all drives on
409 * KeyLargo ATA66, we have to keep that delay around. I may end
410 * up not hard resetting anymore on these and keep the delay only
411 * for older interfaces instead (we have to reset when coming
412 * from MacOS...) --BenH.
413 */
414 #define IDE_WAKEUP_DELAY (1*HZ)
415
416 static void pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif);
417 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
418 static void pmac_ide_selectproc(ide_drive_t *drive);
419 static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
420
421 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
422
423 /*
424 * N.B. this can't be an initfunc, because the media-bay task can
425 * call ide_[un]register at any time.
426 */
427 void
428 pmac_ide_init_hwif_ports(hw_regs_t *hw,
429 unsigned long data_port, unsigned long ctrl_port,
430 int *irq)
431 {
432 int i, ix;
433
434 if (data_port == 0)
435 return;
436
437 for (ix = 0; ix < MAX_HWIFS; ++ix)
438 if (data_port == pmac_ide[ix].regbase)
439 break;
440
441 if (ix >= MAX_HWIFS) {
442 /* Probably a PCI interface... */
443 for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; ++i)
444 hw->io_ports[i] = data_port + i - IDE_DATA_OFFSET;
445 hw->io_ports[IDE_CONTROL_OFFSET] = ctrl_port;
446 return;
447 }
448
449 for (i = 0; i < 8; ++i)
450 hw->io_ports[i] = data_port + i * 0x10;
451 hw->io_ports[8] = data_port + 0x160;
452
453 if (irq != NULL)
454 *irq = pmac_ide[ix].irq;
455
456 hw->dev = &pmac_ide[ix].mdev->ofdev.dev;
457 }
458
459 #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
460
461 /*
462 * Apply the timings of the proper unit (master/slave) to the shared
463 * timing register when selecting that unit. This version is for
464 * ASICs with a single timing register
465 */
466 static void
467 pmac_ide_selectproc(ide_drive_t *drive)
468 {
469 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
470
471 if (pmif == NULL)
472 return;
473
474 if (drive->select.b.unit & 0x01)
475 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
476 else
477 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
478 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
479 }
480
481 /*
482 * Apply the timings of the proper unit (master/slave) to the shared
483 * timing register when selecting that unit. This version is for
484 * ASICs with a dual timing register (Kauai)
485 */
486 static void
487 pmac_ide_kauai_selectproc(ide_drive_t *drive)
488 {
489 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
490
491 if (pmif == NULL)
492 return;
493
494 if (drive->select.b.unit & 0x01) {
495 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
496 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
497 } else {
498 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
499 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
500 }
501 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
502 }
503
504 /*
505 * Force an update of controller timing values for a given drive
506 */
507 static void
508 pmac_ide_do_update_timings(ide_drive_t *drive)
509 {
510 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
511
512 if (pmif == NULL)
513 return;
514
515 if (pmif->kind == controller_sh_ata6 ||
516 pmif->kind == controller_un_ata6 ||
517 pmif->kind == controller_k2_ata6)
518 pmac_ide_kauai_selectproc(drive);
519 else
520 pmac_ide_selectproc(drive);
521 }
522
523 static void
524 pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
525 {
526 u32 tmp;
527
528 writeb(value, (void __iomem *) port);
529 tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
530 }
531
532 /*
533 * Send the SET_FEATURE IDE command to the drive and update drive->id with
534 * the new state. We currently don't use the generic routine as it used to
535 * cause various trouble, especially with older mediabays.
536 * This code is sometimes triggering a spurrious interrupt though, I need
537 * to sort that out sooner or later and see if I can finally get the
538 * common version to work properly in all cases
539 */
540 static int
541 pmac_ide_do_setfeature(ide_drive_t *drive, u8 command)
542 {
543 ide_hwif_t *hwif = HWIF(drive);
544 int result = 1;
545
546 disable_irq_nosync(hwif->irq);
547 udelay(1);
548 SELECT_DRIVE(drive);
549 SELECT_MASK(drive, 0);
550 udelay(1);
551 /* Get rid of pending error state */
552 (void) hwif->INB(IDE_STATUS_REG);
553 /* Timeout bumped for some powerbooks */
554 if (wait_for_ready(drive, 2000)) {
555 /* Timeout bumped for some powerbooks */
556 printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
557 "before SET_FEATURE!\n", drive->name);
558 goto out;
559 }
560 udelay(10);
561 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
562 hwif->OUTB(command, IDE_NSECTOR_REG);
563 hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
564 hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
565 udelay(1);
566 /* Timeout bumped for some powerbooks */
567 result = wait_for_ready(drive, 2000);
568 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
569 if (result)
570 printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
571 "after SET_FEATURE !\n", drive->name);
572 out:
573 SELECT_MASK(drive, 0);
574 if (result == 0) {
575 drive->id->dma_ultra &= ~0xFF00;
576 drive->id->dma_mword &= ~0x0F00;
577 drive->id->dma_1word &= ~0x0F00;
578 switch(command) {
579 case XFER_UDMA_7:
580 drive->id->dma_ultra |= 0x8080; break;
581 case XFER_UDMA_6:
582 drive->id->dma_ultra |= 0x4040; break;
583 case XFER_UDMA_5:
584 drive->id->dma_ultra |= 0x2020; break;
585 case XFER_UDMA_4:
586 drive->id->dma_ultra |= 0x1010; break;
587 case XFER_UDMA_3:
588 drive->id->dma_ultra |= 0x0808; break;
589 case XFER_UDMA_2:
590 drive->id->dma_ultra |= 0x0404; break;
591 case XFER_UDMA_1:
592 drive->id->dma_ultra |= 0x0202; break;
593 case XFER_UDMA_0:
594 drive->id->dma_ultra |= 0x0101; break;
595 case XFER_MW_DMA_2:
596 drive->id->dma_mword |= 0x0404; break;
597 case XFER_MW_DMA_1:
598 drive->id->dma_mword |= 0x0202; break;
599 case XFER_MW_DMA_0:
600 drive->id->dma_mword |= 0x0101; break;
601 case XFER_SW_DMA_2:
602 drive->id->dma_1word |= 0x0404; break;
603 case XFER_SW_DMA_1:
604 drive->id->dma_1word |= 0x0202; break;
605 case XFER_SW_DMA_0:
606 drive->id->dma_1word |= 0x0101; break;
607 default: break;
608 }
609 if (!drive->init_speed)
610 drive->init_speed = command;
611 drive->current_speed = command;
612 }
613 enable_irq(hwif->irq);
614 return result;
615 }
616
617 /*
618 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
619 */
620 static void
621 pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
622 {
623 u32 *timings;
624 unsigned accessTicks, recTicks;
625 unsigned accessTime, recTime;
626 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
627 unsigned int cycle_time;
628
629 if (pmif == NULL)
630 return;
631
632 /* which drive is it ? */
633 timings = &pmif->timings[drive->select.b.unit & 0x01];
634
635 cycle_time = ide_pio_cycle_time(drive, pio);
636
637 switch (pmif->kind) {
638 case controller_sh_ata6: {
639 /* 133Mhz cell */
640 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
641 *timings = ((*timings) & ~TR_133_PIOREG_PIO_MASK) | tr;
642 break;
643 }
644 case controller_un_ata6:
645 case controller_k2_ata6: {
646 /* 100Mhz cell */
647 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
648 *timings = ((*timings) & ~TR_100_PIOREG_PIO_MASK) | tr;
649 break;
650 }
651 case controller_kl_ata4:
652 /* 66Mhz cell */
653 recTime = cycle_time - ide_pio_timings[pio].active_time
654 - ide_pio_timings[pio].setup_time;
655 recTime = max(recTime, 150U);
656 accessTime = ide_pio_timings[pio].active_time;
657 accessTime = max(accessTime, 150U);
658 accessTicks = SYSCLK_TICKS_66(accessTime);
659 accessTicks = min(accessTicks, 0x1fU);
660 recTicks = SYSCLK_TICKS_66(recTime);
661 recTicks = min(recTicks, 0x1fU);
662 *timings = ((*timings) & ~TR_66_PIO_MASK) |
663 (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
664 (recTicks << TR_66_PIO_RECOVERY_SHIFT);
665 break;
666 default: {
667 /* 33Mhz cell */
668 int ebit = 0;
669 recTime = cycle_time - ide_pio_timings[pio].active_time
670 - ide_pio_timings[pio].setup_time;
671 recTime = max(recTime, 150U);
672 accessTime = ide_pio_timings[pio].active_time;
673 accessTime = max(accessTime, 150U);
674 accessTicks = SYSCLK_TICKS(accessTime);
675 accessTicks = min(accessTicks, 0x1fU);
676 accessTicks = max(accessTicks, 4U);
677 recTicks = SYSCLK_TICKS(recTime);
678 recTicks = min(recTicks, 0x1fU);
679 recTicks = max(recTicks, 5U) - 4;
680 if (recTicks > 9) {
681 recTicks--; /* guess, but it's only for PIO0, so... */
682 ebit = 1;
683 }
684 *timings = ((*timings) & ~TR_33_PIO_MASK) |
685 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
686 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
687 if (ebit)
688 *timings |= TR_33_PIO_E;
689 break;
690 }
691 }
692
693 #ifdef IDE_PMAC_DEBUG
694 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
695 drive->name, pio, *timings);
696 #endif
697
698 if (pmac_ide_do_setfeature(drive, XFER_PIO_0 + pio))
699 return;
700
701 pmac_ide_do_update_timings(drive);
702 }
703
704 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
705
706 /*
707 * Calculate KeyLargo ATA/66 UDMA timings
708 */
709 static int
710 set_timings_udma_ata4(u32 *timings, u8 speed)
711 {
712 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
713
714 if (speed > XFER_UDMA_4)
715 return 1;
716
717 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
718 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
719 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
720
721 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
722 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
723 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
724 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
725 TR_66_UDMA_EN;
726 #ifdef IDE_PMAC_DEBUG
727 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
728 speed & 0xf, *timings);
729 #endif
730
731 return 0;
732 }
733
734 /*
735 * Calculate Kauai ATA/100 UDMA timings
736 */
737 static int
738 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
739 {
740 struct ide_timing *t = ide_timing_find_mode(speed);
741 u32 tr;
742
743 if (speed > XFER_UDMA_5 || t == NULL)
744 return 1;
745 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
746 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
747 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
748
749 return 0;
750 }
751
752 /*
753 * Calculate Shasta ATA/133 UDMA timings
754 */
755 static int
756 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
757 {
758 struct ide_timing *t = ide_timing_find_mode(speed);
759 u32 tr;
760
761 if (speed > XFER_UDMA_6 || t == NULL)
762 return 1;
763 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
764 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
765 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
766
767 return 0;
768 }
769
770 /*
771 * Calculate MDMA timings for all cells
772 */
773 static void
774 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
775 u8 speed)
776 {
777 int cycleTime, accessTime = 0, recTime = 0;
778 unsigned accessTicks, recTicks;
779 struct hd_driveid *id = drive->id;
780 struct mdma_timings_t* tm = NULL;
781 int i;
782
783 /* Get default cycle time for mode */
784 switch(speed & 0xf) {
785 case 0: cycleTime = 480; break;
786 case 1: cycleTime = 150; break;
787 case 2: cycleTime = 120; break;
788 default:
789 BUG();
790 break;
791 }
792
793 /* Check if drive provides explicit DMA cycle time */
794 if ((id->field_valid & 2) && id->eide_dma_time)
795 cycleTime = max_t(int, id->eide_dma_time, cycleTime);
796
797 /* OHare limits according to some old Apple sources */
798 if ((intf_type == controller_ohare) && (cycleTime < 150))
799 cycleTime = 150;
800 /* Get the proper timing array for this controller */
801 switch(intf_type) {
802 case controller_sh_ata6:
803 case controller_un_ata6:
804 case controller_k2_ata6:
805 break;
806 case controller_kl_ata4:
807 tm = mdma_timings_66;
808 break;
809 case controller_kl_ata3:
810 tm = mdma_timings_33k;
811 break;
812 default:
813 tm = mdma_timings_33;
814 break;
815 }
816 if (tm != NULL) {
817 /* Lookup matching access & recovery times */
818 i = -1;
819 for (;;) {
820 if (tm[i+1].cycleTime < cycleTime)
821 break;
822 i++;
823 }
824 cycleTime = tm[i].cycleTime;
825 accessTime = tm[i].accessTime;
826 recTime = tm[i].recoveryTime;
827
828 #ifdef IDE_PMAC_DEBUG
829 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
830 drive->name, cycleTime, accessTime, recTime);
831 #endif
832 }
833 switch(intf_type) {
834 case controller_sh_ata6: {
835 /* 133Mhz cell */
836 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
837 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
838 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
839 }
840 case controller_un_ata6:
841 case controller_k2_ata6: {
842 /* 100Mhz cell */
843 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
844 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
845 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
846 }
847 break;
848 case controller_kl_ata4:
849 /* 66Mhz cell */
850 accessTicks = SYSCLK_TICKS_66(accessTime);
851 accessTicks = min(accessTicks, 0x1fU);
852 accessTicks = max(accessTicks, 0x1U);
853 recTicks = SYSCLK_TICKS_66(recTime);
854 recTicks = min(recTicks, 0x1fU);
855 recTicks = max(recTicks, 0x3U);
856 /* Clear out mdma bits and disable udma */
857 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
858 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
859 (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
860 break;
861 case controller_kl_ata3:
862 /* 33Mhz cell on KeyLargo */
863 accessTicks = SYSCLK_TICKS(accessTime);
864 accessTicks = max(accessTicks, 1U);
865 accessTicks = min(accessTicks, 0x1fU);
866 accessTime = accessTicks * IDE_SYSCLK_NS;
867 recTicks = SYSCLK_TICKS(recTime);
868 recTicks = max(recTicks, 1U);
869 recTicks = min(recTicks, 0x1fU);
870 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
871 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
872 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
873 break;
874 default: {
875 /* 33Mhz cell on others */
876 int halfTick = 0;
877 int origAccessTime = accessTime;
878 int origRecTime = recTime;
879
880 accessTicks = SYSCLK_TICKS(accessTime);
881 accessTicks = max(accessTicks, 1U);
882 accessTicks = min(accessTicks, 0x1fU);
883 accessTime = accessTicks * IDE_SYSCLK_NS;
884 recTicks = SYSCLK_TICKS(recTime);
885 recTicks = max(recTicks, 2U) - 1;
886 recTicks = min(recTicks, 0x1fU);
887 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
888 if ((accessTicks > 1) &&
889 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
890 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
891 halfTick = 1;
892 accessTicks--;
893 }
894 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
895 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
896 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
897 if (halfTick)
898 *timings |= TR_33_MDMA_HALFTICK;
899 }
900 }
901 #ifdef IDE_PMAC_DEBUG
902 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
903 drive->name, speed & 0xf, *timings);
904 #endif
905 }
906 #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
907
908 /*
909 * Speedproc. This function is called by the core to set any of the standard
910 * DMA timing (MDMA or UDMA) to both the drive and the controller.
911 */
912 static int pmac_ide_tune_chipset(ide_drive_t *drive, const u8 speed)
913 {
914 int unit = (drive->select.b.unit & 0x01);
915 int ret = 0;
916 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
917 u32 *timings, *timings2, tl[2];
918
919 timings = &pmif->timings[unit];
920 timings2 = &pmif->timings[unit+2];
921
922 /* Copy timings to local image */
923 tl[0] = *timings;
924 tl[1] = *timings2;
925
926 switch(speed) {
927 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
928 case XFER_UDMA_6:
929 case XFER_UDMA_5:
930 case XFER_UDMA_4:
931 case XFER_UDMA_3:
932 case XFER_UDMA_2:
933 case XFER_UDMA_1:
934 case XFER_UDMA_0:
935 if (pmif->kind == controller_kl_ata4)
936 ret = set_timings_udma_ata4(&tl[0], speed);
937 else if (pmif->kind == controller_un_ata6
938 || pmif->kind == controller_k2_ata6)
939 ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
940 else if (pmif->kind == controller_sh_ata6)
941 ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
942 else
943 ret = 1;
944 break;
945 case XFER_MW_DMA_2:
946 case XFER_MW_DMA_1:
947 case XFER_MW_DMA_0:
948 set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
949 break;
950 case XFER_SW_DMA_2:
951 case XFER_SW_DMA_1:
952 case XFER_SW_DMA_0:
953 return 1;
954 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
955 default:
956 ret = 1;
957 }
958 if (ret)
959 return ret;
960
961 ret = pmac_ide_do_setfeature(drive, speed);
962 if (ret)
963 return ret;
964
965 /* Apply timings to controller */
966 *timings = tl[0];
967 *timings2 = tl[1];
968
969 pmac_ide_do_update_timings(drive);
970
971 return 0;
972 }
973
974 /*
975 * Blast some well known "safe" values to the timing registers at init or
976 * wakeup from sleep time, before we do real calculation
977 */
978 static void
979 sanitize_timings(pmac_ide_hwif_t *pmif)
980 {
981 unsigned int value, value2 = 0;
982
983 switch(pmif->kind) {
984 case controller_sh_ata6:
985 value = 0x0a820c97;
986 value2 = 0x00033031;
987 break;
988 case controller_un_ata6:
989 case controller_k2_ata6:
990 value = 0x08618a92;
991 value2 = 0x00002921;
992 break;
993 case controller_kl_ata4:
994 value = 0x0008438c;
995 break;
996 case controller_kl_ata3:
997 value = 0x00084526;
998 break;
999 case controller_heathrow:
1000 case controller_ohare:
1001 default:
1002 value = 0x00074526;
1003 break;
1004 }
1005 pmif->timings[0] = pmif->timings[1] = value;
1006 pmif->timings[2] = pmif->timings[3] = value2;
1007 }
1008
1009 unsigned long
1010 pmac_ide_get_base(int index)
1011 {
1012 return pmac_ide[index].regbase;
1013 }
1014
1015 int
1016 pmac_ide_check_base(unsigned long base)
1017 {
1018 int ix;
1019
1020 for (ix = 0; ix < MAX_HWIFS; ++ix)
1021 if (base == pmac_ide[ix].regbase)
1022 return ix;
1023 return -1;
1024 }
1025
1026 int
1027 pmac_ide_get_irq(unsigned long base)
1028 {
1029 int ix;
1030
1031 for (ix = 0; ix < MAX_HWIFS; ++ix)
1032 if (base == pmac_ide[ix].regbase)
1033 return pmac_ide[ix].irq;
1034 return 0;
1035 }
1036
1037 static int ide_majors[] = { 3, 22, 33, 34, 56, 57 };
1038
1039 dev_t __init
1040 pmac_find_ide_boot(char *bootdevice, int n)
1041 {
1042 int i;
1043
1044 /*
1045 * Look through the list of IDE interfaces for this one.
1046 */
1047 for (i = 0; i < pmac_ide_count; ++i) {
1048 char *name;
1049 if (!pmac_ide[i].node || !pmac_ide[i].node->full_name)
1050 continue;
1051 name = pmac_ide[i].node->full_name;
1052 if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) {
1053 /* XXX should cope with the 2nd drive as well... */
1054 return MKDEV(ide_majors[i], 0);
1055 }
1056 }
1057
1058 return 0;
1059 }
1060
1061 /* Suspend call back, should be called after the child devices
1062 * have actually been suspended
1063 */
1064 static int
1065 pmac_ide_do_suspend(ide_hwif_t *hwif)
1066 {
1067 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1068
1069 /* We clear the timings */
1070 pmif->timings[0] = 0;
1071 pmif->timings[1] = 0;
1072
1073 disable_irq(pmif->irq);
1074
1075 /* The media bay will handle itself just fine */
1076 if (pmif->mediabay)
1077 return 0;
1078
1079 /* Kauai has bus control FCRs directly here */
1080 if (pmif->kauai_fcr) {
1081 u32 fcr = readl(pmif->kauai_fcr);
1082 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
1083 writel(fcr, pmif->kauai_fcr);
1084 }
1085
1086 /* Disable the bus on older machines and the cell on kauai */
1087 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
1088 0);
1089
1090 return 0;
1091 }
1092
1093 /* Resume call back, should be called before the child devices
1094 * are resumed
1095 */
1096 static int
1097 pmac_ide_do_resume(ide_hwif_t *hwif)
1098 {
1099 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1100
1101 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
1102 if (!pmif->mediabay) {
1103 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
1104 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
1105 msleep(10);
1106 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
1107
1108 /* Kauai has it different */
1109 if (pmif->kauai_fcr) {
1110 u32 fcr = readl(pmif->kauai_fcr);
1111 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
1112 writel(fcr, pmif->kauai_fcr);
1113 }
1114
1115 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1116 }
1117
1118 /* Sanitize drive timings */
1119 sanitize_timings(pmif);
1120
1121 enable_irq(pmif->irq);
1122
1123 return 0;
1124 }
1125
1126 /*
1127 * Setup, register & probe an IDE channel driven by this driver, this is
1128 * called by one of the 2 probe functions (macio or PCI). Note that a channel
1129 * that ends up beeing free of any device is not kept around by this driver
1130 * (it is kept in 2.4). This introduce an interface numbering change on some
1131 * rare machines unfortunately, but it's better this way.
1132 */
1133 static int
1134 pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
1135 {
1136 struct device_node *np = pmif->node;
1137 const int *bidp;
1138
1139 pmif->cable_80 = 0;
1140 pmif->broken_dma = pmif->broken_dma_warn = 0;
1141 if (of_device_is_compatible(np, "shasta-ata"))
1142 pmif->kind = controller_sh_ata6;
1143 else if (of_device_is_compatible(np, "kauai-ata"))
1144 pmif->kind = controller_un_ata6;
1145 else if (of_device_is_compatible(np, "K2-UATA"))
1146 pmif->kind = controller_k2_ata6;
1147 else if (of_device_is_compatible(np, "keylargo-ata")) {
1148 if (strcmp(np->name, "ata-4") == 0)
1149 pmif->kind = controller_kl_ata4;
1150 else
1151 pmif->kind = controller_kl_ata3;
1152 } else if (of_device_is_compatible(np, "heathrow-ata"))
1153 pmif->kind = controller_heathrow;
1154 else {
1155 pmif->kind = controller_ohare;
1156 pmif->broken_dma = 1;
1157 }
1158
1159 bidp = of_get_property(np, "AAPL,bus-id", NULL);
1160 pmif->aapl_bus_id = bidp ? *bidp : 0;
1161
1162 /* Get cable type from device-tree */
1163 if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6
1164 || pmif->kind == controller_k2_ata6
1165 || pmif->kind == controller_sh_ata6) {
1166 const char* cable = of_get_property(np, "cable-type", NULL);
1167 if (cable && !strncmp(cable, "80-", 3))
1168 pmif->cable_80 = 1;
1169 }
1170 /* G5's seem to have incorrect cable type in device-tree. Let's assume
1171 * they have a 80 conductor cable, this seem to be always the case unless
1172 * the user mucked around
1173 */
1174 if (of_device_is_compatible(np, "K2-UATA") ||
1175 of_device_is_compatible(np, "shasta-ata"))
1176 pmif->cable_80 = 1;
1177
1178 /* On Kauai-type controllers, we make sure the FCR is correct */
1179 if (pmif->kauai_fcr)
1180 writel(KAUAI_FCR_UATA_MAGIC |
1181 KAUAI_FCR_UATA_RESET_N |
1182 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1183
1184 pmif->mediabay = 0;
1185
1186 /* Make sure we have sane timings */
1187 sanitize_timings(pmif);
1188
1189 #ifndef CONFIG_PPC64
1190 /* XXX FIXME: Media bay stuff need re-organizing */
1191 if (np->parent && np->parent->name
1192 && strcasecmp(np->parent->name, "media-bay") == 0) {
1193 #ifdef CONFIG_PMAC_MEDIABAY
1194 media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq, hwif->index);
1195 #endif /* CONFIG_PMAC_MEDIABAY */
1196 pmif->mediabay = 1;
1197 if (!bidp)
1198 pmif->aapl_bus_id = 1;
1199 } else if (pmif->kind == controller_ohare) {
1200 /* The code below is having trouble on some ohare machines
1201 * (timing related ?). Until I can put my hand on one of these
1202 * units, I keep the old way
1203 */
1204 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1205 } else
1206 #endif
1207 {
1208 /* This is necessary to enable IDE when net-booting */
1209 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1210 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1211 msleep(10);
1212 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1213 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1214 }
1215
1216 /* Setup MMIO ops */
1217 default_hwif_mmiops(hwif);
1218 hwif->OUTBSYNC = pmac_outbsync;
1219
1220 /* Tell common code _not_ to mess with resources */
1221 hwif->mmio = 1;
1222 hwif->hwif_data = pmif;
1223 pmac_ide_init_hwif_ports(&hwif->hw, pmif->regbase, 0, &hwif->irq);
1224 memcpy(hwif->io_ports, hwif->hw.io_ports, sizeof(hwif->io_ports));
1225 hwif->chipset = ide_pmac;
1226 hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET] || pmif->mediabay;
1227 hwif->hold = pmif->mediabay;
1228 hwif->cbl = pmif->cable_80 ? ATA_CBL_PATA80 : ATA_CBL_PATA40;
1229 hwif->drives[0].unmask = 1;
1230 hwif->drives[1].unmask = 1;
1231 hwif->pio_mask = ATA_PIO4;
1232 hwif->set_pio_mode = pmac_ide_set_pio_mode;
1233 if (pmif->kind == controller_un_ata6
1234 || pmif->kind == controller_k2_ata6
1235 || pmif->kind == controller_sh_ata6)
1236 hwif->selectproc = pmac_ide_kauai_selectproc;
1237 else
1238 hwif->selectproc = pmac_ide_selectproc;
1239 hwif->speedproc = pmac_ide_tune_chipset;
1240
1241 printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
1242 hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
1243 pmif->mediabay ? " (mediabay)" : "", hwif->irq);
1244
1245 #ifdef CONFIG_PMAC_MEDIABAY
1246 if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0)
1247 hwif->noprobe = 0;
1248 #endif /* CONFIG_PMAC_MEDIABAY */
1249
1250 hwif->sg_max_nents = MAX_DCMDS;
1251
1252 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1253 /* has a DBDMA controller channel */
1254 if (pmif->dma_regs)
1255 pmac_ide_setup_dma(pmif, hwif);
1256 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1257
1258 /* We probe the hwif now */
1259 probe_hwif_init(hwif);
1260
1261 ide_proc_register_port(hwif);
1262
1263 return 0;
1264 }
1265
1266 /*
1267 * Attach to a macio probed interface
1268 */
1269 static int __devinit
1270 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1271 {
1272 void __iomem *base;
1273 unsigned long regbase;
1274 int irq;
1275 ide_hwif_t *hwif;
1276 pmac_ide_hwif_t *pmif;
1277 int i, rc;
1278
1279 i = 0;
1280 while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
1281 || pmac_ide[i].node != NULL))
1282 ++i;
1283 if (i >= MAX_HWIFS) {
1284 printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
1285 printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
1286 return -ENODEV;
1287 }
1288
1289 pmif = &pmac_ide[i];
1290 hwif = &ide_hwifs[i];
1291
1292 if (macio_resource_count(mdev) == 0) {
1293 printk(KERN_WARNING "ide%d: no address for %s\n",
1294 i, mdev->ofdev.node->full_name);
1295 return -ENXIO;
1296 }
1297
1298 /* Request memory resource for IO ports */
1299 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1300 printk(KERN_ERR "ide%d: can't request mmio resource !\n", i);
1301 return -EBUSY;
1302 }
1303
1304 /* XXX This is bogus. Should be fixed in the registry by checking
1305 * the kind of host interrupt controller, a bit like gatwick
1306 * fixes in irq.c. That works well enough for the single case
1307 * where that happens though...
1308 */
1309 if (macio_irq_count(mdev) == 0) {
1310 printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n",
1311 i, mdev->ofdev.node->full_name);
1312 irq = irq_create_mapping(NULL, 13);
1313 } else
1314 irq = macio_irq(mdev, 0);
1315
1316 base = ioremap(macio_resource_start(mdev, 0), 0x400);
1317 regbase = (unsigned long) base;
1318
1319 hwif->pci_dev = mdev->bus->pdev;
1320 hwif->gendev.parent = &mdev->ofdev.dev;
1321
1322 pmif->mdev = mdev;
1323 pmif->node = mdev->ofdev.node;
1324 pmif->regbase = regbase;
1325 pmif->irq = irq;
1326 pmif->kauai_fcr = NULL;
1327 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1328 if (macio_resource_count(mdev) >= 2) {
1329 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1330 printk(KERN_WARNING "ide%d: can't request DMA resource !\n", i);
1331 else
1332 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1333 } else
1334 pmif->dma_regs = NULL;
1335 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1336 dev_set_drvdata(&mdev->ofdev.dev, hwif);
1337
1338 rc = pmac_ide_setup_device(pmif, hwif);
1339 if (rc != 0) {
1340 /* The inteface is released to the common IDE layer */
1341 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1342 iounmap(base);
1343 if (pmif->dma_regs)
1344 iounmap(pmif->dma_regs);
1345 memset(pmif, 0, sizeof(*pmif));
1346 macio_release_resource(mdev, 0);
1347 if (pmif->dma_regs)
1348 macio_release_resource(mdev, 1);
1349 }
1350
1351 return rc;
1352 }
1353
1354 static int
1355 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1356 {
1357 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1358 int rc = 0;
1359
1360 if (mesg.event != mdev->ofdev.dev.power.power_state.event
1361 && mesg.event == PM_EVENT_SUSPEND) {
1362 rc = pmac_ide_do_suspend(hwif);
1363 if (rc == 0)
1364 mdev->ofdev.dev.power.power_state = mesg;
1365 }
1366
1367 return rc;
1368 }
1369
1370 static int
1371 pmac_ide_macio_resume(struct macio_dev *mdev)
1372 {
1373 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1374 int rc = 0;
1375
1376 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1377 rc = pmac_ide_do_resume(hwif);
1378 if (rc == 0)
1379 mdev->ofdev.dev.power.power_state = PMSG_ON;
1380 }
1381
1382 return rc;
1383 }
1384
1385 /*
1386 * Attach to a PCI probed interface
1387 */
1388 static int __devinit
1389 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1390 {
1391 ide_hwif_t *hwif;
1392 struct device_node *np;
1393 pmac_ide_hwif_t *pmif;
1394 void __iomem *base;
1395 unsigned long rbase, rlen;
1396 int i, rc;
1397
1398 np = pci_device_to_OF_node(pdev);
1399 if (np == NULL) {
1400 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1401 return -ENODEV;
1402 }
1403 i = 0;
1404 while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
1405 || pmac_ide[i].node != NULL))
1406 ++i;
1407 if (i >= MAX_HWIFS) {
1408 printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
1409 printk(KERN_ERR " %s\n", np->full_name);
1410 return -ENODEV;
1411 }
1412
1413 pmif = &pmac_ide[i];
1414 hwif = &ide_hwifs[i];
1415
1416 if (pci_enable_device(pdev)) {
1417 printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n",
1418 i, np->full_name);
1419 return -ENXIO;
1420 }
1421 pci_set_master(pdev);
1422
1423 if (pci_request_regions(pdev, "Kauai ATA")) {
1424 printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n",
1425 i, np->full_name);
1426 return -ENXIO;
1427 }
1428
1429 hwif->pci_dev = pdev;
1430 hwif->gendev.parent = &pdev->dev;
1431 pmif->mdev = NULL;
1432 pmif->node = np;
1433
1434 rbase = pci_resource_start(pdev, 0);
1435 rlen = pci_resource_len(pdev, 0);
1436
1437 base = ioremap(rbase, rlen);
1438 pmif->regbase = (unsigned long) base + 0x2000;
1439 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1440 pmif->dma_regs = base + 0x1000;
1441 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1442 pmif->kauai_fcr = base;
1443 pmif->irq = pdev->irq;
1444
1445 pci_set_drvdata(pdev, hwif);
1446
1447 rc = pmac_ide_setup_device(pmif, hwif);
1448 if (rc != 0) {
1449 /* The inteface is released to the common IDE layer */
1450 pci_set_drvdata(pdev, NULL);
1451 iounmap(base);
1452 memset(pmif, 0, sizeof(*pmif));
1453 pci_release_regions(pdev);
1454 }
1455
1456 return rc;
1457 }
1458
1459 static int
1460 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1461 {
1462 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1463 int rc = 0;
1464
1465 if (mesg.event != pdev->dev.power.power_state.event
1466 && mesg.event == PM_EVENT_SUSPEND) {
1467 rc = pmac_ide_do_suspend(hwif);
1468 if (rc == 0)
1469 pdev->dev.power.power_state = mesg;
1470 }
1471
1472 return rc;
1473 }
1474
1475 static int
1476 pmac_ide_pci_resume(struct pci_dev *pdev)
1477 {
1478 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1479 int rc = 0;
1480
1481 if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1482 rc = pmac_ide_do_resume(hwif);
1483 if (rc == 0)
1484 pdev->dev.power.power_state = PMSG_ON;
1485 }
1486
1487 return rc;
1488 }
1489
1490 static struct of_device_id pmac_ide_macio_match[] =
1491 {
1492 {
1493 .name = "IDE",
1494 },
1495 {
1496 .name = "ATA",
1497 },
1498 {
1499 .type = "ide",
1500 },
1501 {
1502 .type = "ata",
1503 },
1504 {},
1505 };
1506
1507 static struct macio_driver pmac_ide_macio_driver =
1508 {
1509 .name = "ide-pmac",
1510 .match_table = pmac_ide_macio_match,
1511 .probe = pmac_ide_macio_attach,
1512 .suspend = pmac_ide_macio_suspend,
1513 .resume = pmac_ide_macio_resume,
1514 };
1515
1516 static struct pci_device_id pmac_ide_pci_match[] = {
1517 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA,
1518 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1519 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100,
1520 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1521 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100,
1522 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1523 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_ATA,
1524 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1525 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA,
1526 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1527 {},
1528 };
1529
1530 static struct pci_driver pmac_ide_pci_driver = {
1531 .name = "ide-pmac",
1532 .id_table = pmac_ide_pci_match,
1533 .probe = pmac_ide_pci_attach,
1534 .suspend = pmac_ide_pci_suspend,
1535 .resume = pmac_ide_pci_resume,
1536 };
1537 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1538
1539 int __init pmac_ide_probe(void)
1540 {
1541 int error;
1542
1543 if (!machine_is(powermac))
1544 return -ENODEV;
1545
1546 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1547 error = pci_register_driver(&pmac_ide_pci_driver);
1548 if (error)
1549 goto out;
1550 error = macio_register_driver(&pmac_ide_macio_driver);
1551 if (error) {
1552 pci_unregister_driver(&pmac_ide_pci_driver);
1553 goto out;
1554 }
1555 #else
1556 error = macio_register_driver(&pmac_ide_macio_driver);
1557 if (error)
1558 goto out;
1559 error = pci_register_driver(&pmac_ide_pci_driver);
1560 if (error) {
1561 macio_unregister_driver(&pmac_ide_macio_driver);
1562 goto out;
1563 }
1564 #endif
1565 out:
1566 return error;
1567 }
1568
1569 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1570
1571 /*
1572 * pmac_ide_build_dmatable builds the DBDMA command list
1573 * for a transfer and sets the DBDMA channel to point to it.
1574 */
1575 static int
1576 pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
1577 {
1578 struct dbdma_cmd *table;
1579 int i, count = 0;
1580 ide_hwif_t *hwif = HWIF(drive);
1581 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1582 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1583 struct scatterlist *sg;
1584 int wr = (rq_data_dir(rq) == WRITE);
1585
1586 /* DMA table is already aligned */
1587 table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1588
1589 /* Make sure DMA controller is stopped (necessary ?) */
1590 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1591 while (readl(&dma->status) & RUN)
1592 udelay(1);
1593
1594 hwif->sg_nents = i = ide_build_sglist(drive, rq);
1595
1596 if (!i)
1597 return 0;
1598
1599 /* Build DBDMA commands list */
1600 sg = hwif->sg_table;
1601 while (i && sg_dma_len(sg)) {
1602 u32 cur_addr;
1603 u32 cur_len;
1604
1605 cur_addr = sg_dma_address(sg);
1606 cur_len = sg_dma_len(sg);
1607
1608 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1609 if (pmif->broken_dma_warn == 0) {
1610 printk(KERN_WARNING "%s: DMA on non aligned address,"
1611 "switching to PIO on Ohare chipset\n", drive->name);
1612 pmif->broken_dma_warn = 1;
1613 }
1614 goto use_pio_instead;
1615 }
1616 while (cur_len) {
1617 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1618
1619 if (count++ >= MAX_DCMDS) {
1620 printk(KERN_WARNING "%s: DMA table too small\n",
1621 drive->name);
1622 goto use_pio_instead;
1623 }
1624 st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1625 st_le16(&table->req_count, tc);
1626 st_le32(&table->phy_addr, cur_addr);
1627 table->cmd_dep = 0;
1628 table->xfer_status = 0;
1629 table->res_count = 0;
1630 cur_addr += tc;
1631 cur_len -= tc;
1632 ++table;
1633 }
1634 sg++;
1635 i--;
1636 }
1637
1638 /* convert the last command to an input/output last command */
1639 if (count) {
1640 st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1641 /* add the stop command to the end of the list */
1642 memset(table, 0, sizeof(struct dbdma_cmd));
1643 st_le16(&table->command, DBDMA_STOP);
1644 mb();
1645 writel(hwif->dmatable_dma, &dma->cmdptr);
1646 return 1;
1647 }
1648
1649 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1650 use_pio_instead:
1651 pci_unmap_sg(hwif->pci_dev,
1652 hwif->sg_table,
1653 hwif->sg_nents,
1654 hwif->sg_dma_direction);
1655 return 0; /* revert to PIO for this request */
1656 }
1657
1658 /* Teardown mappings after DMA has completed. */
1659 static void
1660 pmac_ide_destroy_dmatable (ide_drive_t *drive)
1661 {
1662 ide_hwif_t *hwif = drive->hwif;
1663 struct pci_dev *dev = HWIF(drive)->pci_dev;
1664 struct scatterlist *sg = hwif->sg_table;
1665 int nents = hwif->sg_nents;
1666
1667 if (nents) {
1668 pci_unmap_sg(dev, sg, nents, hwif->sg_dma_direction);
1669 hwif->sg_nents = 0;
1670 }
1671 }
1672
1673 /*
1674 * Check what is the best DMA timing setting for the drive and
1675 * call appropriate functions to apply it.
1676 */
1677 static int
1678 pmac_ide_dma_check(ide_drive_t *drive)
1679 {
1680 int enable = 1;
1681
1682 drive->using_dma = 0;
1683
1684 if (drive->media == ide_floppy)
1685 enable = 0;
1686 if ((drive->id->capability & 1) == 0 && !__ide_dma_good_drive(drive))
1687 enable = 0;
1688 if (__ide_dma_bad_drive(drive))
1689 enable = 0;
1690
1691 if (enable) {
1692 u8 mode = ide_max_dma_mode(drive);
1693
1694 if (mode && pmac_ide_tune_chipset(drive, mode) == 0)
1695 drive->using_dma = 1;
1696 }
1697 return 0;
1698 }
1699
1700 /*
1701 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1702 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1703 */
1704 static int
1705 pmac_ide_dma_setup(ide_drive_t *drive)
1706 {
1707 ide_hwif_t *hwif = HWIF(drive);
1708 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1709 struct request *rq = HWGROUP(drive)->rq;
1710 u8 unit = (drive->select.b.unit & 0x01);
1711 u8 ata4;
1712
1713 if (pmif == NULL)
1714 return 1;
1715 ata4 = (pmif->kind == controller_kl_ata4);
1716
1717 if (!pmac_ide_build_dmatable(drive, rq)) {
1718 ide_map_sg(drive, rq);
1719 return 1;
1720 }
1721
1722 /* Apple adds 60ns to wrDataSetup on reads */
1723 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1724 writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
1725 PMAC_IDE_REG(IDE_TIMING_CONFIG));
1726 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1727 }
1728
1729 drive->waiting_for_dma = 1;
1730
1731 return 0;
1732 }
1733
1734 static void
1735 pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
1736 {
1737 /* issue cmd to drive */
1738 ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
1739 }
1740
1741 /*
1742 * Kick the DMA controller into life after the DMA command has been issued
1743 * to the drive.
1744 */
1745 static void
1746 pmac_ide_dma_start(ide_drive_t *drive)
1747 {
1748 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1749 volatile struct dbdma_regs __iomem *dma;
1750
1751 dma = pmif->dma_regs;
1752
1753 writel((RUN << 16) | RUN, &dma->control);
1754 /* Make sure it gets to the controller right now */
1755 (void)readl(&dma->control);
1756 }
1757
1758 /*
1759 * After a DMA transfer, make sure the controller is stopped
1760 */
1761 static int
1762 pmac_ide_dma_end (ide_drive_t *drive)
1763 {
1764 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1765 volatile struct dbdma_regs __iomem *dma;
1766 u32 dstat;
1767
1768 if (pmif == NULL)
1769 return 0;
1770 dma = pmif->dma_regs;
1771
1772 drive->waiting_for_dma = 0;
1773 dstat = readl(&dma->status);
1774 writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1775 pmac_ide_destroy_dmatable(drive);
1776 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1777 * in theory, but with ATAPI decices doing buffer underruns, that would
1778 * cause us to disable DMA, which isn't what we want
1779 */
1780 return (dstat & (RUN|DEAD)) != RUN;
1781 }
1782
1783 /*
1784 * Check out that the interrupt we got was for us. We can't always know this
1785 * for sure with those Apple interfaces (well, we could on the recent ones but
1786 * that's not implemented yet), on the other hand, we don't have shared interrupts
1787 * so it's not really a problem
1788 */
1789 static int
1790 pmac_ide_dma_test_irq (ide_drive_t *drive)
1791 {
1792 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1793 volatile struct dbdma_regs __iomem *dma;
1794 unsigned long status, timeout;
1795
1796 if (pmif == NULL)
1797 return 0;
1798 dma = pmif->dma_regs;
1799
1800 /* We have to things to deal with here:
1801 *
1802 * - The dbdma won't stop if the command was started
1803 * but completed with an error without transferring all
1804 * datas. This happens when bad blocks are met during
1805 * a multi-block transfer.
1806 *
1807 * - The dbdma fifo hasn't yet finished flushing to
1808 * to system memory when the disk interrupt occurs.
1809 *
1810 */
1811
1812 /* If ACTIVE is cleared, the STOP command have passed and
1813 * transfer is complete.
1814 */
1815 status = readl(&dma->status);
1816 if (!(status & ACTIVE))
1817 return 1;
1818 if (!drive->waiting_for_dma)
1819 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1820 called while not waiting\n", HWIF(drive)->index);
1821
1822 /* If dbdma didn't execute the STOP command yet, the
1823 * active bit is still set. We consider that we aren't
1824 * sharing interrupts (which is hopefully the case with
1825 * those controllers) and so we just try to flush the
1826 * channel for pending data in the fifo
1827 */
1828 udelay(1);
1829 writel((FLUSH << 16) | FLUSH, &dma->control);
1830 timeout = 0;
1831 for (;;) {
1832 udelay(1);
1833 status = readl(&dma->status);
1834 if ((status & FLUSH) == 0)
1835 break;
1836 if (++timeout > 100) {
1837 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1838 timeout flushing channel\n", HWIF(drive)->index);
1839 break;
1840 }
1841 }
1842 return 1;
1843 }
1844
1845 static void pmac_ide_dma_host_off(ide_drive_t *drive)
1846 {
1847 }
1848
1849 static void pmac_ide_dma_host_on(ide_drive_t *drive)
1850 {
1851 }
1852
1853 static void
1854 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1855 {
1856 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1857 volatile struct dbdma_regs __iomem *dma;
1858 unsigned long status;
1859
1860 if (pmif == NULL)
1861 return;
1862 dma = pmif->dma_regs;
1863
1864 status = readl(&dma->status);
1865 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1866 }
1867
1868 /*
1869 * Allocate the data structures needed for using DMA with an interface
1870 * and fill the proper list of functions pointers
1871 */
1872 static void __init
1873 pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
1874 {
1875 /* We won't need pci_dev if we switch to generic consistent
1876 * DMA routines ...
1877 */
1878 if (hwif->pci_dev == NULL)
1879 return;
1880 /*
1881 * Allocate space for the DBDMA commands.
1882 * The +2 is +1 for the stop command and +1 to allow for
1883 * aligning the start address to a multiple of 16 bytes.
1884 */
1885 pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
1886 hwif->pci_dev,
1887 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1888 &hwif->dmatable_dma);
1889 if (pmif->dma_table_cpu == NULL) {
1890 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1891 hwif->name);
1892 return;
1893 }
1894
1895 hwif->dma_off_quietly = &ide_dma_off_quietly;
1896 hwif->ide_dma_on = &__ide_dma_on;
1897 hwif->ide_dma_check = &pmac_ide_dma_check;
1898 hwif->dma_setup = &pmac_ide_dma_setup;
1899 hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd;
1900 hwif->dma_start = &pmac_ide_dma_start;
1901 hwif->ide_dma_end = &pmac_ide_dma_end;
1902 hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq;
1903 hwif->dma_host_off = &pmac_ide_dma_host_off;
1904 hwif->dma_host_on = &pmac_ide_dma_host_on;
1905 hwif->dma_timeout = &ide_dma_timeout;
1906 hwif->dma_lost_irq = &pmac_ide_dma_lost_irq;
1907
1908 hwif->atapi_dma = 1;
1909 switch(pmif->kind) {
1910 case controller_sh_ata6:
1911 hwif->ultra_mask = pmif->cable_80 ? 0x7f : 0x07;
1912 hwif->mwdma_mask = 0x07;
1913 hwif->swdma_mask = 0x00;
1914 break;
1915 case controller_un_ata6:
1916 case controller_k2_ata6:
1917 hwif->ultra_mask = pmif->cable_80 ? 0x3f : 0x07;
1918 hwif->mwdma_mask = 0x07;
1919 hwif->swdma_mask = 0x00;
1920 break;
1921 case controller_kl_ata4:
1922 hwif->ultra_mask = pmif->cable_80 ? 0x1f : 0x07;
1923 hwif->mwdma_mask = 0x07;
1924 hwif->swdma_mask = 0x00;
1925 break;
1926 default:
1927 hwif->ultra_mask = 0x00;
1928 hwif->mwdma_mask = 0x07;
1929 hwif->swdma_mask = 0x00;
1930 break;
1931 }
1932 }
1933
1934 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
This page took 0.07895 seconds and 6 git commands to generate.